

Previous: 6.1.3 File Descriptor Operations Up: 6.1 os Next: 6.1.5 Process Management

6.1.4 Files and Directories

Use the real uid/gid to test for access to path. Note that most operations will use the effective uid/gid,
therefore this routine can be used in a suid/sgid environment to test if the invoking user has the specified
access to path. mode should be F_OK to test the existence of path, or it can be the inclusive OR of one or more
of R_OK, W_OK, and X_OK to test permissions. Return 1 if access is allowed, 0 if not. See the UNIX
access(2) for more information. Availability: UNIX , Windows.

F_OK
Value to pass as the mode parameter of access() to test the existence of path.

R_OK
Value to include in the mode parameter of access() to test the readability of path.

W_OK
Value to include in the mode parameter of access() to test the writability of path.

X_OK
Value to include in the mode parameter of access() to determine if path can be executed.

Change the current working directory to path. Availability: Macintosh, UNIX , Windows.

access(path, mode)

chdir(path)

fchdir(fd)

Página 1 de 9Python 2.3 Documentation - 6.1.4 Files and Directories

27/6/2005

Change the current working directory to the directory represented by the file descriptor fd. The descriptor
must refer to an opened directory, not an open file. Availability: UNIX . New in version 2.3.

Return a string representing the current working directory. Availability: Macintosh, UNIX , Windows.

Return a Unicode object representing the current working directory. Availability: UNIX , Windows.
version 2.3.

Change the root directory of the current process to path. Availability: UNIX . New in version 2.2.

Change the mode of path to the numeric mode. mode may take one of the following values (as defined in the
stat module):

� S_ISUID
� S_ISGID
� S_ENFMT
� S_ISVTX
� S_IREAD
� S_IWRITE
� S_IEXEC
� S_IRWXU
� S_IRUSR
� S_IWUSR
� S_IXUSR
� S_IRWXG
� S_IRGRP
� S_IWGRP
� S_IXGRP
� S_IRWXO
� S_IROTH
� S_IWOTH
� S_IXOTH

Availability: UNIX , Windows.

getcwd()

getcwdu()

chroot(path)

chmod(path, mode)

chown(path, uid, gid)

Página 2 de 9Python 2.3 Documentation - 6.1.4 Files and Directories

27/6/2005

Change the owner and group id of path to the numeric uid and gid. Availability: UNIX .

Change the owner and group id of path to the numeric uid and gid. This function will not follow symbolic
links. Availability: UNIX . New in version 2.3.

Create a hard link pointing to src named dst. Availability: UNIX .

Return a list containing the names of the entries in the directory. The list is in arbitrary order. It does not
include the special entries '.' and '..' even if they are present in the directory. Availability: Macintosh,
UNIX , Windows.

Changed in version 2.3: On Windows NT/2k/XP and Unix, if path is a Unicode object, the result will be a list
of Unicode objects..

Like stat() , but do not follow symbolic links. Availability: UNIX .

Create a FIFO (a named pipe) named path with numeric mode mode. The default mode is 0666

current umask value is first masked out from the mode. Availability: UNIX .

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink()). Generally, FIFOs are used as rendezvous between ``client'' and ``server'' type processes: the
server opens the FIFO for reading, and the client opens it for writing. Note that mkfifo() doesn't open
FIFO -- it just creates the rendezvous point.

Create a filesystem node (file, device special file or named pipe) named filename. mode specifies both the
permissions to use and the type of node to be created, being combined (bitwise OR) with one of S_IFREG,
S_IFCHR, S_IFBLK, and S_IFIFO (those constants are available in stat). For S_IFCHR and S_IFBLK,
device defines the newly created device special file (probably using os.makedev()), otherwise it is ignored.
New in version 2.3.

lchown(path, uid, gid)

link(src, dst)

listdir(path)

lstat(path)

mkfifo(path[, mode])

mknod(path[, mode=0600, device])

Página 3 de 9Python 2.3 Documentation - 6.1.4 Files and Directories

27/6/2005

Extracts a device major number from a raw device number. New in version 2.3.

Extracts a device minor number from a raw device number. New in version 2.3.

Composes a raw device number from the major and minor device numbers. New in version 2.3.

Create a directory named path with numeric mode mode. The default mode is 0777 (octal). On some systems,
mode is ignored. Where it is used, the current umask value is first masked out. Availability: Macintosh,
Windows.

Recursive directory creation function. Like mkdir() , but makes all intermediate-level directories needed to
contain the leaf directory. Throws an error exception if the leaf directory already exists or cannot be created.
The default mode is 0777 (octal). This function does not properly handle UNC paths (only relevant on
Windows systems; Universal Naming Convention paths are those that use the `\\host\path ' syntax).
version 1.5.2.

Return system configuration information relevant to a named file. name specifies the configuration value to
retrieve; it may be a string which is the name of a defined system value; these names are specified in a
number of standards (POSIX.1, UNIX 95, UNIX 98, and others). Some platforms define additional names as
well. The names known to the host operating system are given in the pathconf_names dictionary. For
configuration variables not included in that mapping, passing an integer for name is also accepted.
Availability: UNIX .

If name is a string and is not known, ValueError is raised. If a specific value for name is not supported by
the host system, even if it is included in pathconf_names , an OSError is raised with errno.EINVAL

error number.

major(device)

minor(device)

makedev(major, minor)

mkdir(path[, mode])

makedirs(path[, mode])

pathconf(path, name)

Página 4 de 9Python 2.3 Documentation - 6.1.4 Files and Directories

27/6/2005

pathconf_names
Dictionary mapping names accepted by pathconf() and fpathconf() to the integer values defined for those
names by the host operating system. This can be used to determine the set of names known to the system.
Availability: UNIX .

Return a string representing the path to which the symbolic link points. The result may be either an absolute
or relative pathname; if it is relative, it may be converted to an absolute pathname using os.path.join

(os.path.dirname(path), result) . Availability: UNIX .

Remove the file path. If path is a directory, OSError is raised; see rmdir() below to remove a directory. This
is identical to the unlink() function documented below. On Windows, attempting to remove a file that is in
use causes an exception to be raised; on UNIX , the directory entry is removed but the storage allocated to the
file is not made available until the original file is no longer in use. Availability: Macintosh, UNIX

Removes directories recursively. Works like rmdir() except that, if the leaf directory is successfully
removed, directories corresponding to rightmost path segments will be pruned way until either the whole path
is consumed or an error is raised (which is ignored, because it generally means that a parent directory is not
empty). Throws an error exception if the leaf directory could not be successfully removed. New in version
1.5.2.

Rename the file or directory src to dst. If dst is a directory, OSError will be raised. On UNIX , if
is a file, it will be removed silently if the user has permission. The operation may fail on some
src and dst are on different filesystems. If successful, the renaming will be an atomic operation (this is a
POSIX requirement). On Windows, if dst already exists, OSError will be raised even if it is a file; there may
be no way to implement an atomic rename when dst names an existing file. Availability: Macintosh,
Windows.

Recursive directory or file renaming function. Works like rename() , except creation of any intermediate
directories needed to make the new pathname good is attempted first. After the rename, directories
corresponding to rightmost path segments of the old name will be pruned away using removedirs()

Note: this function can fail with the new directory structure made if you lack permissions needed to remove
the leaf directory or file. New in version 1.5.2.

readlink(path)

remove(path)

removedirs(path)

rename(src, dst)

renames(old, new)

Página 5 de 9Python 2.3 Documentation - 6.1.4 Files and Directories

27/6/2005

Remove the directory path. Availability: Macintosh, UNIX , Windows.

Perform a stat() system call on the given path. The return value is an object whose attributes correspond to
the members of the stat structure, namely: st_mode (protection bits), st_ino (inode number),
(device), st_nlink (number of hard links), st_uid (user ID of owner), st_gid (group ID of owner),
st_size (size of file, in bytes), st_atime (time of most recent access), st_mtime (time of most recent
content modification), st_ctime (time of most recent content modification or metadata change).

Changed in version 2.3: If stat_float_times returns true, the time values are floats, measuring seconds.
Fractions of a second may be reported if the system supports that. On Mac OS, the times are always floats.
See stat_float_times for further discussion. .

On some Unix systems (such as Linux), the following attributes may also be available: st_blocks

of blocks allocated for file), st_blksize (filesystem blocksize), st_rdev (type of device if an inode device).

On Mac OS systems, the following attributes may also be available: st_rsize , st_creator , st_type

On RISCOS systems, the following attributes are also available: st_ftype (file type), st_attrs

st_obtype (object type).

For backward compatibility, the return value of stat() is also accessible as a tuple of at least 10 integers
giving the most important (and portable) members of the stat structure, in the order st_mode

st_dev , st_nlink , st_uid , st_gid , st_size , st_atime , st_mtime , st_ctime . More items may be added at
the end by some implementations. The standard module stat defines functions and constants that are useful
for extracting information from a stat structure. (On Windows, some items are filled with dummy values.)
Availability: Macintosh, UNIX , Windows.

Changed in version 2.2: Added access to values as attributes of the returned object.

Determine whether stat_result represents time stamps as float objects. If newval is True, future calls to stat
() return floats, if it is False, future calls return ints. If newval is omitted, return the current setting.

For compatibility with older Python versions, accessing stat_result as a tuple always returns integers. For
compatibility with Python 2.2, accessing the time stamps by field name also returns integers. Applications
that want to determine the fractions of a second in a time stamp can use this function to have time stamps
represented as floats. Whether they will actually observe non-zero fractions depends on the system.

Future Python releases will change the default of this setting; applications that cannot deal with floating point
time stamps can then use this function to turn the feature off.

It is recommended that this setting is only changed at program startup time in the __main__ module; libraries
should never change this setting. If an application uses a library that works incorrectly if floating point time
stamps are processed, this application should turn the feature off until the library has been corrected.

rmdir(path)

stat(path)

stat_float_times([newvalue])

Página 6 de 9Python 2.3 Documentation - 6.1.4 Files and Directories

27/6/2005

Perform a statvfs() system call on the given path. The return value is an object whose attributes describe
the filesystem on the given path, and correspond to the members of the statvfs structure, namely:
f_blocks , f_bfree , f_bavail , f_files , f_ffree , f_favail , f_flag , f_namemax . Availability:

For backward compatibility, the return value is also accessible as a tuple whose values correspond to the
attributes, in the order given above. The standard module statvfs defines constants that are useful for
extracting information from a statvfs structure when accessing it as a sequence; this remains useful when
writing code that needs to work with versions of Python that don't support accessing the fields as attributes.

Changed in version 2.2: Added access to values as attributes of the returned object.

Create a symbolic link pointing to src named dst. Availability: UNIX .

Return a unique path name that is reasonable for creating a temporary file. This will be an absolute path that
names a potential directory entry in the directory dir or a common location for temporary files if
omitted or None. If given and not None, prefix is used to provide a short prefix to the filename. Applications
are responsible for properly creating and managing files created using paths returned by tempnam()

automatic cleanup is provided. On UNIX , the environment variable TMPDIR overrides dir, while on
Windows the TMP is used. The specific behavior of this function depends on the C library implementation;
some aspects are underspecified in system documentation. Warning: Use of tempnam() is vulnerable to
symlink attacks; consider using tmpfile() instead. Availability: UNIX , Windows.

Return a unique path name that is reasonable for creating a temporary file. This will be an absolute path that
names a potential directory entry in a common location for temporary files. Applications are responsible for
properly creating and managing files created using paths returned by tmpnam() ; no automatic cleanup is
provided. Warning: Use of tmpnam() is vulnerable to symlink attacks; consider using tmpfile()

Availability: UNIX , Windows. This function probably shouldn't be used on Windows, though: Microsoft's
implementation of tmpnam() always creates a name in the root directory of the current drive, and that's
generally a poor location for a temp file (depending on privileges, you may not even be able to open a file
using this name).

TMP_MAX
The maximum number of unique names that tmpnam() will generate before reusing names.

Remove the file path. This is the same function as remove() ; the unlink() name is its traditional

statvfs(path)

symlink(src, dst)

tempnam([dir[, prefix]])

tmpnam()

unlink(path)

Página 7 de 9Python 2.3 Documentation - 6.1.4 Files and Directories

27/6/2005

name. Availability: Macintosh, UNIX , Windows.

Set the access and modified times of the file specified by path. If times is None, then the file's access and
modified times are set to the current time. Otherwise, times must be a 2-tuple of numbers, of the form
(atime, mtime) which is used to set the access and modified times, respectively. Changed in version 2.0:
Added support for None for times. Availability: Macintosh, UNIX , Windows.

walk() generates the file names in a directory tree, by walking the tree either top down or bottom up. For
each directory in the tree rooted at directory top (including top itself), it yields a 3-tuple (dirpath

dirnames, filenames) .

dirpath is a string, the path to the directory. dirnames is a list of the names of the subdirectories in
(excluding '.' and '..'). filenames is a list of the names of the non-directory files in dirpath
names in the lists contain no path components. To get a full path (which begins with top) to a file or directory
in dirpath, do os.path.join(dirpath, name) .

If optional argument topdown is true or not specified, the triple for a directory is generated before the triples
for any of its subdirectories (directories are generated top down). If topdown is false, the triple for a directory
is generated after the triples for all of its subdirectories (directories are generated bottom up).

When topdown is true, the caller can modify the dirnames list in-place (perhaps using del or slice
assignment), and walk() will only recurse into the subdirectories whose names remain in dirnames
be used to prune the search, impose a specific order of visiting, or even to inform walk() about directories
the caller creates or renames before it resumes walk() again. Modifying dirnames when topdown
ineffective, because in bottom-up mode the directories in dirnames are generated before dirnames
generated.

By default errors from the os.listdir() call are ignored. If optional argument onerror is specified, it should
be a function; it will be called with one argument, an os.error instance. It can report the error to continue with
the walk, or raise the exception to abort the walk. Note that the filename is available as the filename

of the exception object.

Note: If you pass a relative pathname, don't change the current working directory between resumptions of
walk() . walk() never changes the current directory, and assumes that its caller doesn't either.

Note: On systems that support symbolic links, links to subdirectories appear in dirnames lists, but
will not visit them (infinite loops are hard to avoid when following symbolic links). To visit linked
directories, you can identify them with os.path.islink(path) , and invoke walk(path) on each directly.

This example displays the number of bytes taken by non-directory files in each directory under the starting
directory, except that it doesn't look under any CVS subdirectory:

import os

utime(path, times)

walk(top[, topdown=True [, onerror=None]])

Página 8 de 9Python 2.3 Documentation - 6.1.4 Files and Directories

27/6/2005

from os.path import join, getsize
for root, dirs, files in os.walk('python/Lib/email'):
 print root, "consumes",
 print sum([getsize(join(root, name)) for name i n files]),
 print "bytes in", len(files), "non-directory fi les"
 if 'CVS' in dirs:
 dirs.remove('CVS') # don't visit CVS direc tories

In the next example, walking the tree bottom up is essential: rmdir() doesn't allow deleting a directory
before the directory is empty:

import os
from os.path import join
Delete everything reachable from the directory na med in 'top'.
CAUTION: This is dangerous! For example, if top == '/', it
could delete all your disk files.
for root, dirs, files in os.walk(top, topdown=False):
 for name in files:
 os.remove(join(root, name))
 for name in dirs:
 os.rmdir(join(root, name))

New in version 2.3.

© 2002-2004 Active-Venture.com Webhosting Service

Disclaimer: This documentation is provided only for the benefits of our hosting customers.
For authoritative source of the documentation, please refer to http://python.org/doc/

Active-Domain.com offers
domain name registration,
domain name transfer and
domain search services

Cheap domain registration : Register
domain name or buy domain name,
including free domain hosting services

Domain registration : Buy
domain name or register
domain name from
$5.95/year only

Página 9 de 9Python 2.3 Documentation - 6.1.4 Files and Directories

27/6/2005

