Distributing Python Modules
Release 2.4.1cl

Greg Ward

Anthony Baxter

March 9, 2005

Python Software Foundation
Email: distutils-sig@python.org

Abstract

This document describes the Python Distribution Utilities (“Distutils”) from the module developer’s point of view,
describing how to use the Distutils to make Python modules and extensions easily available to a wider audience
with very little overhead for build/release/install mechanics.

10

CONTENTS

An Introduction to Distutils 1
1.1 Concepts& Terminology o i e 1
1.2 ASimple Example. e 1
1.3 General Pythonterminology 3
1.4 Distutils-specificterminology. 3
Writing the Setup Script 5
2.1 Listingwhole packages. 6
2.2 Listingindividualmodules 6
2.3 Describing extensionmodules. L L L 6
2.4 Installing SCripts. 10
2.5 InstallingPackage Data 10
2.6 Installing Additional Files. e 11
2.7 Additionalmeta-data e 11
2.8 Debuggingthe setup script. e 12
Writing the Setup Configuration File 15
Creating a Source Distribution 17
4.1 Specifyingthefilestodistribute 17
4.2 Manifest-related options 19
Creating Built Distributions 21
5.1 Creating dumb built distributions. 22
5.2 Creating RPMpackages. e 22
5.3 CreatingWindows Installers 24
Registering with the Package Index 27
Examples 29
7.1 Pure Pythondistribution (by module) 29
7.2 Pure Python distribution (by package) 30
7.3 Singleextensionmodule. 32
Extending Distutils 33
8.1 Integrating new commands. e e 33
Command Reference 35
9.1 Installing modules: thimstall commandfamily 35
9.2 Creating a source distribution: thdist command. 35
API Reference 37
10.1 distutils.core — Core Distutils functionality 37
10.2 distutils.ccompiler — CCompilerbaseclass 38

10.3 distutils.unixccompiler —UnixCCompiler 43

10.4 distutils.msvccompiler — Microsoft Compiler. 43
10.5 distutils.bcppcompiler — Borland Compiler. oL 44
10.6 distutils.cygwincompiler — Cygwin Compiler 44
10.7 distutils.emxccompiler — OS/2EMX Compiler. 44
10.8 distutils.mwerkscompiler — Metrowerks CodeWarrior support. 44
10.9 distutils.archive _util — Archiving utilities 44
10.10distutils.dep _utl — Dependency checking L. 44
10.11 distutils.dir _utl — Directory tree operations. 45
10.12distutils.file _util —Singlefileoperations. 0oL 45
10.13distutils.util — Miscellaneous other utility functions. 46
10.14distutils.dist — The Distributionclass. 48
10.15distutils.extension — The Extensionclass. 48
10.16distutils.debug — Distutilsdebugmode oo 48
10.17distutils.errors — Distutilsexceptions o 48
10.18distutils.fancy _getopt — Wrapper around the standard getopt module. 48
10.19distutils filelist — The FileListclass. 49
10.20distutils.log — Simple PEP 282-style logging. 49
10.21distutils.spawn — Spawn asub-process. 49
10.22distutils.sysconfig — System configuration information 49
10.23distutils.text _file —TheTextFileclass. 50
10.24 distutils.version — \Versionnumberclasses. oL 51
10.25distutils.cmd — Abstract base class for Distutils commands. 51
10.26distutils.command — Individual Distutilscommands. 53
10.27 distutils.command.bdist —Build abinaryinstaller 53
10.28distutils.command.bdist _packager — Abstract base class for packagers 53
10.29distutils.command.bdist _dumb— Build a“dumb”installer. 53
10.30distutils.command.bdist _rpm — Build a binary distribution as a Redhat RPM and SRES|
10.31distutils.command.bdist _wininst — Build a Windows installer 53
10.32distutils.command.sdist — Build a source distribution. L. 53
10.33distutils.command.build — Build all filesofapackage. 53
10.34 distutils.command.build _clib — Build any C libraries in a package. 53
10.35distutils.command.build _ext — Build any extensionsinapackage. 53
10.36distutils.command.build _py — Build the .py/.pyc files ofapackage 53
10.37distutils.command.build _scripts — Build the scripts of a package. 53
10.38distutils.command.clean — Cleanapackage buildarea 53
10.39distutils.command.config — Perform package configuration 53
10.40distutils.command.install —Installapackage. 53
10.41 distutils.command.install _data — Install data files from a package 53
10.42distutils.command.install _headers — Install C/C++ header files from a package 53
10.43distutils.command.install _lib — Install library files from a package. 53
10.44 distutils.command.install _scripts — Install script files from a package 53
10.45distutils.command.register — Register a module with the Python Package Index. 53
10.46 Creatinganew Distutilscommand 54
Module Index 55

Index 57

CHAPTER
ONE

An Introduction to Distutils

This document covers using the Distutils to distribute your Python modules, concentrating on the role of devel-
oper/distributor: if you're looking for information on installing Python modules, you should refer to¢halling
Python Modulesnanual.

1.1 Concepts & Terminology

Using the Distutils is quite simple, both for module developers and for users/administrators installing third-party
modules. As a developer, your responsibilities (apart from writing solid, well-documented and well-tested code,
of course!) are:

e write a setup script §etup.py’ by convention)
e (optional) write a setup configuration file
e create a source distribution

e (optional) create one or more built (binary) distributions

Each of these tasks is covered in this document.

Not all module developers have access to a multitude of platforms, so it's not always feasible to expect them to
create a multitude of built distributions. It is hoped that a class of intermediaries, paltédgerswill arise to

address this need. Packagers will take source distributions released by module developers, build them on one or
more platforms, and release the resulting built distributions. Thus, users on the most popular platforms will be
able to install most popular Python module distributions in the most natural way for their platform, without having

to run a single setup script or compile a line of code.

1.2 A Simple Example

The setup script is usually quite simple, although since it's written in Python, there are no arbitrary limits to what
you can do with it, though you should be careful about putting arbitrarily expensive operations in your setup script.
Unlike, say, Autoconf-style configure scripts, the setup script may be run multiple times in the course of building
and installing your module distribution.

If all you want to do is distribute a module calléab , contained in a filefbo.py’, then your setup script can be
as simple as this:

from distutils.core import setup
setup(name="foo’,
version="1.0’,
py_modules=['foo’],

)

Some observations:

e most information that you supply to the Distutils is supplied as keyword arguments setiln®) func-
tion

e those keyword arguments fall into two categories: package metadata (hname, version number) and informa-
tion about what's in the package (a list of pure Python modules, in this case)

e modules are specified by module name, not filename (the same will hold true for packages and extensions)

e it's recommended that you supply a little more metadata, in particular your name, email address and a URL
for the project (see section 2 for an example)

To create a source distribution for this module, you would create a setup ssgiph.py’, containing the above
code, and run:

python setup.py sdist

which will create an archive file (e.g., tarball onNx, ZIP file on Windows) containing your setup script
‘setup.py’, and your modulefoo.py’. The archive file will be namedfdo-1.0.tar.gz’ (or *.zip’), and will unpack
into a directory foo-1.0’.

If an end-user wishes to install yofgo module, all she has to do is downloddo-1.0.tar.gz’ (or *.zip"), unpack
it, and—from the foo-1.0’ directory—run

python setup.py install

which will ultimately copy foo.py’ to the appropriate directory for third-party modules in their Python installation.

This simple example demonstrates some fundamental concepts of the Distutils. First, both developers and in-
stallers have the same basic user interface, i.e. the setup script. The difference is which Da@tutilands

they use: thesdist command is almost exclusively for module developers, wihistall is more often for
installers (although most developers will want to install their own code occasionally).

If you want to make things really easy for your users, you can create one or more built distributions for them.
For instance, if you are running on a Windows machine, and want to make things easy for other Windows users,
you can create an executable installer (the most appropriate type of built distribution for this platform) with the
bdist _wininst command. For example:

python setup.py bdist_wininst

will create an executable installefp6-1.0.win32.exe’, in the current directory.

Other useful built distribution formats are RPM, implemented byhtist _rpm command, Solaripkgtool
(bdist _pkgtool), and HP-UXswinstall (bdist _sdux). For example, the following command will create
an RPM file calledfoo-1.0.noarch.rpm’:

python setup.py bdist_rpm

(Thebdist _rpm command uses thipm executable, therefore this has to be run on an RPM-based system such
as Red Hat Linux, SUSE Linux, or Mandrake Linux.)

You can find out what distribution formats are available at any time by running

python setup.py bdist --help-formats

2 Chapter 1. An Introduction to Distutils

1.3 General Python terminology

If you're reading this document, you probably have a good idea of what modules, extensions, and so forth are.
Nevertheless, just to be sure that everyone is operating from a common starting point, we offer the following
glossary of common Python terms:

module the basic unit of code reusability in Python: a block of code imported by some other code. Three types
of modules concern us here: pure Python modules, extension modules, and packages.

pure Python module a module written in Python and contained in a singpg’‘file (and possibly associated
‘.pyc’ and/or “.pyo’ files). Sometimes referred to as a “pure module.”

extension modulea module written in the low-level language of the Python implementation+€fGr Python,
Java for Jython. Typically contained in a single dynamically loadable pre-compiled file, e.g. a shared object
(*.s0") file for Python extensions on Mix, a DLL (given the ‘pyd’ extension) for Python extensions on
Windows, or a Java class file for Jython extensions. (Note that currently, the Distutils only handtes C/C
extensions for Python.)

package a module that contains other modules; typically contained in a directory in the filesystem and distin-
guished from other directories by the presence of a filénit__.py’.

root package the root of the hierarchy of packages. (This isn't really a package, since it doesn’t have an
‘__init__.py’ file. But we have to call it something.) The vast majority of the standard library is in the
root package, as are many small, standalone third-party modules that don’t belong to a larger module col-
lection. Unlike regular packages, modules in the root package can be found in many directories: in fact,
every directory listed isys.path contributes modules to the root package.

1.4 Distutils-specific terminology

The following terms apply more specifically to the domain of distributing Python modules using the Distutils:

module distribution a collection of Python modules distributed together as a single downloadable resource and
meant to be installedn masseExamples of some well-known module distributions are Numeric Python,
PyXML, PIL (the Python Imaging Library), or mxBase. (This would be callgthekage except that term
is already taken in the Python context: a single module distribution may contain zero, one, or many Python
packages.)

pure module distribution a module distribution that contains only pure Python modules and packages. Some-
times referred to as a “pure distribution.”

non-pure module distribution a module distribution that contains at least one extension module. Sometimes
referred to as a “non-pure distribution.”

distribution root the top-level directory of your source tree (or source distribution); the directory where
‘setup.py’ exists. Generallysetup.py’ will be run from this directory.

1.3. General Python terminology 3

CHAPTER
TWO

Writing the Setup Script

The setup script is the centre of all activity in building, distributing, and installing modules using the Distutils.
The main purpose of the setup script is to describe your module distribution to the Distutils, so that the various
commands that operate on your modules do the right thing. As we saw in section 1.2 above, the setup script
consists mainly of a call teetup() , and most information supplied to the Distutils by the module developer is
supplied as keyword argumentssetup()

Here’s a slightly more involved example, which we’ll follow for the next couple of sections: the Distutils’ own
setup script. (Keep in mind that although the Distutils are included with Python 1.6 and later, they also have an
independent existence so that Python 1.5.2 users can use them to install other module distributions. The Distutils’
own setup script, shown here, is used to install the package into Python 1.5.2.)

#!/usr/bin/env python
from distutils.core import setup

setup(name="Distutils’,
version='1.0’,
description="Python Distribution Ultilities’,
author="Greg Ward’,
author_email="gward@python.net’,
url="http://www.python.org/sigs/distutils-sig/’,
packages=['distutils’, 'distutils.command’],

There are only two differences between this and the trivial one-file distribution presented in section 1.2: more
metadata, and the specification of pure Python modules by package, rather than by module. This is important
since the Distutils consist of a couple of dozen modules split into (so far) two packages; an explicit list of every
module would be tedious to generate and difficult to maintain. For more information on the additional meta-data,
see section 2.7.

Note that any pathnames (files or directories) supplied in the setup script should be written usimgxhmh*

vention, i.e. slash-separated. The Distutils will take care of converting this platform-neutral representation into
whatever is appropriate on your current platform before actually using the pathname. This makes your setup script
portable across operating systems, which of course is one of the major goals of the Distutils. In this spirit, all
pathnames in this document are slash-separated. (Mac OS 9 programmers should keep in mindtibahtee

of a leading slash indicates a relative path, the opposite of the Mac OS convention with colons.)

This, of course, only applies to pathnames given to Distutils functions. If you, for example, use standard Python
functions such aglob.glob() or os.listdir() to specify files, you should be careful to write portable
code instead of hardcoding path separators:

glob.glob(os.path.join('mydir’, 'subdir’, "*.html’))
os.listdir(os.path.join('mydir’, 'subdir’))

2.1 Listing whole packages

The packages option tells the Distutils to process (build, distribute, install, etc.) all pure Python modules found

in each package mentioned in thackages list. In order to do this, of course, there has to be a correspondence
between package names and directories in the filesystem. The default correspondence is the most obvious one,
i.e. packagelistutils is found in the directorydistutils’ relative to the distribution root. Thus, when you say
packages = [foo’] in your setup script, you are promising that the Distutils will find a fibe/__init__.py’

(which might be spelled differently on your system, but you get the idea) relative to the directory where your setup
script lives. If you break this promise, the Distutils will issue a warning but still process the broken package
anyways.

If you use a different convention to lay out your source directory, that's no problem: you just have to supply the
package_dir option to tell the Distutils about your convention. For example, say you keep all Python source under
‘lib’, so that modules in the “root package” (i.e., not in any package at all) alie’jrmiodules in thoo package

are in fib/foo’, and so forth. Then you would put

package_dir = {": ’lib’}

in your setup script. The keys to this dictionary are package names, and an empty package name stands for the root
package. The values are directory names relative to your distribution root. In this case, when yacksaes
= ['foo] , you are promising that the filéib/foo/ __init__.py’ exists.

Another possible convention is to put them package right inlib’, the foo.bar package inlib/bar’, etc. This
would be written in the setup script as

package_dir = {foo": ’lib}

A package dir entry in thepackage_dir dictionary implicitly applies to all packages belgrackage so the
foo.bar case is automatically handled here. In this example, hapdicgages = [foo’, 'foo.bar’]

tells the Distutils to look forlib/__init__.py’ and ‘lib/bar/__init__.py’. (Keep in mind that althougpackage _dir
applies recursively, you must explicitly list all packagegitkages: the Distutils will not recursively scan your
source tree looking for any directory with an ‘init__.py’ file.)

2.2 Listing individual modules

For a small module distribution, you might prefer to list all modules rather than listing packages—especially the
case of a single module that goes in the “root package” (i.e., no package at all). This simplest case was shown in
section 1.2; here is a slightly more involved example:

py_modules = ['modl’, 'pkg.mod2’]

This describes two modules, one of them in the “root” package, the other pkth@ackage. Again, the default
package/directory layout implies that these two modules can be foumabifiL:py’ and ‘pkg/mod2.py’, and that
‘pkg/__init__.py’ exists as well. And again, you can override the package/directory correspondence using the
package_dir option.

2.3 Describing extension modules

Just as writing Python extension modules is a bit more complicated than writing pure Python modules, describing
them to the Distutils is a bit more complicated. Unlike pure modules, it's not enough just to list modules or
packages and expect the Distutils to go out and find the right files; you have to specify the extension nhame, source
file(s), and any compile/link requirements (include directories, libraries to link with, etc.).

6 Chapter 2. Writing the Setup Script

All of this is done through another keyword argumensétup() , theextensions option. extensions is just a list

of Extension instances, each of which describes a single extension module. Suppose your distribution includes
a single extension, callddo and implemented byfdo.c’. If no additional instructions to the compiler/linker are
needed, describing this extension is quite simple:

Extension('foo’, ['foo.c’])

TheExtension class can be imported frodistutils.core along withsetup() . Thus, the setup script
for a module distribution that contains only this one extension and nothing else might be:

from distutils.core import setup, Extension
setup(name="foo’,
version='1.0’,
ext_modules=[Extension(‘foo’, [foo.c’])],

)

TheExtension class (actually, the underlying extension-building machinery implemented lutlie _ext
command) supports a great deal of flexibility in describing Python extensions, which is explained in the following
sections.

2.3.1 Extension names and packages

The first argument to thExtension constructor is always the name of the extension, including any package
names. For example,

Extension('foo’, ['src/fool.c’, 'src/foo2.c’])

describes an extension that lives in the root package, while

Extension('pkg.foo’, ['src/fool.c’, 'src/foo2.c’])

describes the same extension in kg package. The source files and resulting object code are identical in both
cases; the only difference is where in the filesystem (and therefore where in Python’s namespace hierarchy) the
resulting extension lives.

If you have a number of extensions all in the same package (or all under the same base package), use the
ext_package keyword argument tsetup() . For example,

setup(...
ext_package="pkg’,
ext_modules=[Extension(‘foo’, [foo.c’]),
Extension('subpkg.bar’, [bar.c)],

will compile ‘foo.c’ to the extensiompkg.foo , and bar.c’ to pkg.subpkg.bar

2.3.2 Extension source files

The second argument to tl&xtension constructor is a list of source files. Since the Distutils currently only
support C, G+, and Objective-C extensions, these are normally+G/Objective-C source files. (Be sure to use
appropriate extensions to distinguishCsource files: .cc’ and ‘.cpp’ seem to be recognized by bothvik and
Windows compilers.)

However, you can also include SWIG interface’)files in the list; thebuild _ext command knows how to

2.3. Describing extension modules 7

deal with SWIG extensions: it will run SWIG on the interface file and compile the resulting-€fi@ into your
extension.

*SWIG support is rough around the edges and largely untested; especially SWIG support for @+ exten-
sions! Explain in more detail here when the interface firms up.**

On some platforms, you can include non-source files that are processed by the compiler and included in your
extension. Currently, this just means Windows message text')'files and resource definition.(t’) files for
Visual C++. These will be compiled to binary resourced$’) files and linked into the executable.

2.3.3 Preprocessor options

Three optional arguments Extension will help if you need to specify include directories to search or prepro-
cessor macros to define/undefimeclude _dirs |, define _macros , andundef _macros .

For example, if your extension requires header files initiedude’ directory under your distribution root, use the
include _dirs option:

Extension(’foo’, ['foo.c’], include_dirs=['include’])

You can specify absolute directories there; if you know that your extension will only be builiNor &lstems
with X11R6 installed to/usr’, you can get away with

Extension('foo’, ['foo.c’], include_dirs=[/usr/include/X11'])

You should avoid this sort of non-portable usage if you plan to distribute your code: it's probably better to write
C code like

#include <X11/Xlib.h>

If you need to include header files from some other Python extension, you can take advantage of the fact that header
files are installed in a consistent way by the Distutilstall ~ _header command. For example, the Numerical
Python header files are installed (on a standard Unix installation)sdé6cal/include/python1.5/Numerical’. (The

exact location will differ according to your platform and Python installation.) Since the Python include directory—
‘lusr/locallinclude/pythonl.5’ in this case—is always included in the search path when building Python extensions,
the best approach is to write C code like

#include <Numerical/arrayobject.h>

If you must put the Numerical’ include directory right into your header search path, though, you can find that
directory using the Distutildistutils.sysconfig module:

from distutils.sysconfig import get_python_inc
incdir = os.path.join(get_python_inc(plat_specific=1), 'Numerical’)
setup(...,

Extension(..., include_dirs=[incdir]),

)

Even though this is quite portable—it will work on any Python installation, regardless of platform—it's probably
easier to just write your C code in the sensible way.

You can define and undefine pre-processor macros witlié¢fiee _macros andundef _macros options.
define _macros takes a list ofname, value) tuples, wheramame is the name of the macro to define (a
string) andvalue s its value: either a string ddone. (Defining a macrd-OOto None is the equivalent of a

8 Chapter 2. Writing the Setup Script

bare#define FOO in your C source: with most compilers, this se80to the stringl.) undef _macros is
just a list of macros to undefine.

For example:

Extension(...,
define_macros=[(NDEBUG’, '1"),
(HAVE_STRFTIME’, None)],
undef_macros=[HAVE_FOOQO’, 'HAVE_BAR’))

is the equivalent of having this at the top of every C source file:

#define NDEBUG 1
#define HAVE_STRFTIME
#undef HAVE_FOO
#undef HAVE_BAR

2.3.4 Library options

You can also specify the libraries to link against when building your extension, and the directories to search for
those libraries. Thibraries option is a list of libraries to link againdtbrary ~ _dirs is alist of directories

to search for libraries at link-time, ardntime _library ~ _dirs is a list of directories to search for shared
(dynamically loaded) libraries at run-time.

For example, if you need to link against libraries known to be in the standard library search path on target systems

Extension(...,
libraries=['gdbm’, ’readline’])

If you need to link with libraries in a non-standard location, you'll have to include the location in
library _dirs

Extension(...,
library_dirs=[/usr/X11R6/lib],
libraries=['X11’, 'Xt7)

(Again, this sort of non-portable construct should be avoided if you intend to distribute your code.)

Should mention clib libraries here or somewhere else!

2.3.5 Other options

There are still some other options which can be used to handle special cases.

Theextra_objects option is a list of object files to be passed to the linker. These files must not have extensions, as
the default extension for the compiler is used.

extra_compile_args andextra_link_args can be used to specify additional command line options for the respective
compiler and linker command lines.

export_symbols is only useful on Windows. It can contain a list of symbols (functions or variables) to be exported.
This option is not needed when building compiled extensions: Distutils will automaticallingdwdule to
the list of exported symbols.

2.3. Describing extension modules 9

2.4 Installing Scripts

So far we have been dealing with pure and non-pure Python modules, which are usually not run by themselves but
imported by scripts.

Scripts are files containing Python source code, intended to be started from the command line. Scripts don’t
require Distutils to do anything very complicated. The only clever feature is that if the first line of the script starts
with #! and contains the word “python”, the Distutils will adjust the first line to refer to the current interpreter
location. By default, it is replaced with the current interpreter location.-Téeecutable(or -€) option will allow

the interpreter path to be explicitly overridden.

Thescripts option simply is a list of files to be handled in this way. From the PyXML setup script:

setup(...
scripts=['scripts/xmlproc_parse’, ’'scripts/xmlproc_val’]

2.5 Installing Package Data

Often, additional files need to be installed into a package. These files are often data that’s closely related to the
package’s implementation, or text files containing documentation that might be of interest to programmers using
the package. These files are calfatkage data

Package data can be added to packages usimqgattieage _data keyword argument to theetup() function.

The value must be a mapping from package name to a list of relative path names that should be copied into
the package. The paths are interpreted as relative to the directory containing the package (information from the
package _dir mapping is used if appropriate); that is, the files are expected to be part of the package in the
source directories. They may contain glob patterns as well.

The path names may contain directory portions; any necessary directories will be created in the installation.

For example, if a package should contain a subdirectory with several data files, the files can be arranged like this
in the source tree:

setup.py
src/
mypkg/
__init__.py
module.py
data/
tables.dat
spoons.dat
forks.dat

The corresponding call teetup() might be:

setup(...,
packages=['mypkg’],
package_dir={'mypkg’: ’src/mypkg’},
package_data={'mypkg’: [data/*.dat’]},
)

New in version 2.4.

10 Chapter 2. Writing the Setup Script

2.6 Installing Additional Files

Thedata_files option can be used to specify additional files needed by the module distribution: configuration files,
message catalogs, data files, anything which doesn't fit in the previous categories.

data_files specifies a sequence difectory, files) pairs in the following way:

setup(...
data_files=[('bitmaps’, [bm/bl.gif’, 'bm/b2.gif"]),
(‘config’, ['cfg/data.cfg?),
(letc/init.d’, [init-script])]

Note that you can specify the directory names where the data files will be installed, but you cannot rename the
data files themselves.

Each @irectory, files) pair in the sequence specifies the installation directory and the files to install there. If
directoryis a relative path, it is interpreted relative to the installation prefix (Pythsyssprefix for pure-
Python packagesys.exec _prefix for packages that contain extension modules). Each file narilesis
interpreted relative to thesétup.py’ script at the top of the package source distribution. No directory information
from filesis used to determine the final location of the installed file; only the name of the file is used.

You can specify thelata_files options as a simple sequence of files without specifying a target directory, but this
is not recommended, and thestall command will print a warning in this case. To install data files directly in
the target directory, an empty string should be given as the directory.

2.7 Additional meta-data

The setup script may include additional meta-data beyond the name and version. This information includes:

Meta-Data Description Value Notes
name name of the package short string ()
version version of this release short string D(?2)
author package author’s name short string 3)
author _email email address of the package author email address (3)
maintainer package maintainer's name short string 3)
maintainer _email email address of the package maintainer email address (3)
url home page for the package URL Q)
description short, summary description of the package | short string

long _description longer description of the package long string

download _url location where the package may be downloadddRL 4)
classifiers a list of Trove classifiers list of strings 4)

Notes:

(1) These fields are required.
(2) Itis recommended that versions take the fcvrmjor.minor[.patcf{.sub]] :
(3) Either the author or the maintainer must be identified.

(4) These fields should not be used if your package is to be compatible with Python versions prior to 2.2.3 or 2.3.
The list is available from theyPI| website

'short string’ A single line of text, not more than 200 characters.
‘long string’ Multiple lines of plain text in reStructuredText format (deg://docutils.sf.net/).

'list of strings’ See below.

2.6. Installing Additional Files 11

None of the string values may be Unicode.

Encoding the version information is an art in itself. Python packages generally adhere to the versiomfarmat
jor.minor?.patch][sub]. The major number is O for initial, experimental releases of software. It is incremented

for releases that represent major milestones in a package. The minor number is incremented when important
new features are added to the package. The patch number increments when bug-fix releases are made. Addi-
tional trailing version information is sometimes used to indicate sub-releases. These are "al,a2,...,aN” (for alpha
releases, where functionality and API may change), "b1,b2,...,bN” (for beta releases, which only fix bugs) and
"prl,pr2,...,prN” (for final pre-release release testing). Some examples:

0.1.0 the first, experimental release of a package

1.0.1a2 the second alpha release of the first patch version of 1.0

classifiers are specified in a python list:

setup(...
classifiers=[
'Development Status :: 4 - Beta),
'Environment :: Console’,
'Environment :: Web Environment’,
'Intended Audience :: End Users/Desktop’,
'Intended Audience :: Developers’,
'Intended Audience : System Administrators’,
'License :: OSI Approved :: Python Software Foundation License’,
'Operating System :: MacOS : MacOS X,
'Operating System :: Microsoft :: Windows’,
'Operating System :: POSIX,
'Programming Language :: Python’,
"Topic :: Communications :: Email’,
'"Topic :: Office/Business’,
"Topic :: Software Development :: Bug Tracking’,

I,

If you wish to include classifiers in yousétup.py’ file and also wish to remain backwards-compatible with Python
releases prior to 2.2.3, then you can include the following code fragment in setup.py’ before thesetup()
call.

patch distutils if it can’t cope with the "classifiers" or

"download_url" keywords

if sys.version < '2.2.3"
from distutils.dist import DistributionMetadata
DistributionMetadata.classifiers = None
DistributionMetadata.download_url = None

2.8 Debugging the setup script

Sometimes things go wrong, and the setup script doesn’t do what the developer wants.

Distutils catches any exceptions when running the setup script, and print a simple error message before the script
is terminated. The motivation for this behaviour is to not confuse administrators who don’t know much about
Python and are trying to install a package. If they get a big long traceback from deep inside the guts of Distutils,
they may think the package or the Python installation is broken because they don't read all the way down to the
bottom and see that it's a permission problem.

On the other hand, this doesn't help the developer to find the cause of the failure. For this purpose, the DISTU-
TILS_DEBUG environment variable can be set to anything except an empty string, and distutils will now print

12 Chapter 2. Writing the Setup Script

detailed information what it is doing, and prints the full traceback in case an exception occurs.

2.8. Debugging the setup script

13

14

CHAPTER
THREE

Writing the Setup Configuration File

Often, it's not possible to write down everything needed to build a distribuatipriori: you may need to get some
information from the user, or from the user’s system, in order to proceed. As long as that information is fairly
simple—a list of directories to search for C header files or libraries, for example—then providing a configuration
file, ‘setup.cfg’, for users to edit is a cheap and easy way to solicit it. Configuration files also let you provide
default values for any command option, which the installer can then override either on the command-line or by
editing the config file.

The setup configuration file is a useful middle-ground between the setup script—which, ideally, would be opaque
to installers—and the command-line to the setup script, which is outside of your control and entirely up to the
installer. In fact, setup.cfg’ (and any other Distutils configuration files present on the target system) are processed
after the contents of the setup script, but before the command-line. This has several useful consequences:

e installers can override some of what you putsattp.py’ by editing ‘setup.cfg’

e you can provide non-standard defaults for options that are not easily setup.py’

e installers can override anything isetup.cfg’ using the command-line options teetup.py’

The basic syntax of the configuration file is simple:

[command]
option=value

wherecommands one of the Distutils commands (elguild _py, install), andoptionis one of the options

that command supports. Any number of options can be supplied for each command, and any number of command
sections can be included in the file. Blank lines are ignored, as are comments, which run#arhaacter until

the end of the line. Long option values can be split across multiple lines simply by indenting the continuation
lines.

You can find out the list of options supported by a particular command with the univereld option, e.g.

> python setup.py --help build_ext
(]

Options for ’build_ext’ command:

--build-lib (-b) directory for compiled extension modules
--build-temp (-t) directory for temporary files (build by-products)
--inplace (-i) ignore build-lib and put compiled extensions into the

source directory alongside your pure Python modules
--include-dirs (-I) list of directories to search for header files
--define (-D) C preprocessor macros to define
--undef (-U) C preprocessor macros to undefine

]

1This ideal probably won't be achieved until auto-configuration is fully supported by the Distutils.

15

Note that an option spellegfoo-bar on the command-line is spelldésb_bar in configuration files.

For example, say you want your extensions to be built “in-place”—that is, you have an extpkgiert , and

you want the compiled extension fileekt.so’ on UNIX, say) to be put in the same source directory as your pure
Python modulepkg.modl andpkg.mod2 . You can always use theinplace option on the command-line to
ensure this:

python setup.py build_ext --inplace

But this requires that you always specify thaild _ext command explicitly, and remember to provide
inplace. An easier way is to “set and forget” this option, by encoding itsetup.cfg’, the configuration file for
this distribution:

[build_ext]
inplace=1

This will affect all builds of this module distribution, whether or not you explicitly spebifyld _ext . If you

include ‘setup.cfg’ in your source distribution, it will also affect end-user builds—which is probably a bad idea
for this option, since always building extensions in-place would break installation of the module distribution. In
certain peculiar cases, though, modules are built right in their installation directory, so this is conceivably a useful
ability. (Distributing extensions that expect to be built in their installation directory is almost always a bad idea,
though.)

Another example: certain commands take a lot of options that don’t change from run to run; for example,
bdist _rpm needs to know everything required to generate a “spec” file for creating an RPM distribution. Some
of this information comes from the setup script, and some is automatically generated by the Distutils (such as the
list of files installed). But some of it has to be supplied as optiorxdist _rpm, which would be very tedious

to do on the command-line for every run. Hence, here is a snippet from the Distutils'sewp.tfg’:

[bdist_rpm]
release = 1
packager = Greg Ward <gward@python.net>
doc files = CHANGES.txt
README.txt
USAGE.txt
doc/
examples/

Note that thedoc_files option is simply a whitespace-separated string split across multiple lines for readability.
See Also:

Installing Python Modules
(../inst/config-syntax.html)
More information on the configuration files is available in the manual for system administrators.

16 Chapter 3. Writing the Setup Configuration File

CHAPTER
FOUR

Creating a Source Distribution

As shown in section 1.2, you use théist command to create a source distribution. In the simplest case,

python setup.py sdist

(assuming you haven't specified asgist options in the setup script or config fileist creates the archive
of the default format for the current platform. The default format is a gzip’ed tar fite.¢z’) on UNIx, and ZIP
file on Windows.

You can specify as many formats as you like using-tfermats option, for example:

python setup.py sdist --formats=gztar,zip

to create a gzipped tarball and a zip file. The available formats are:

Format | Description Notes
zip zip file (*.zip") D),(3)
gztar gzip'ed tar file (‘tar.gz’) (2),(4)
bztar bzip2'ed tar file (‘tar.bz2’) (4)
ztar compressed tar file (ar.z") (4)
tar tar file (‘.tar") 4)

Notes:

(1) default on Windows
(2) default on WNIX
(3) requires either externalp utility or zipfile module (part of the standard Python library since Python 1.6)

(4) requires external utilitiegar and possibly one djzip, bzip2, or compress

4.1 Specifying the files to distribute

If you don’t supply an explicit list of files (or instructions on how to generate one)sdise command puts a
minimal default set into the source distribution:

¢ all Python source files implied by thy_modules andpackages options

e all C source files mentioned in tl&t_modules or libraries options {*getting C library sources currently
broken—no get _source _files() method in ‘build _clib.py "**)

e scripts identified by thecripts option

17

e anything that looks like a test scripttest/itest*.py’ (currently, the Distutils don’t do anything with test
scripts except include them in source distributions, but in the future there will be a standard for testing
Python module distributions)

e ‘README.txt’ (or ‘README), ‘ setup.py’ (or whatever you called your setup script), asdtup.cfg’

Sometimes this is enough, but usually you will want to specify additional files to distribute. The typical way
to do this is to write ananifest templatecalled MANIFEST.in’ by default. The manifest template is just a list

of instructions for how to generate your manifest filIANIFEST’, which is the exact list of files to include in

your source distribution. Thedist command processes this template and generates a manifest based on its
instructions and what it finds in the filesystem.

If you prefer to roll your own manifest file, the format is simple: one filename per line, regular files (or symlinks
to them) only. If you do supply your owrMANIFEST’, you must specify everything: the default set of files
described above does not apply in this case.

The manifest template has one command per line, where each command specifies a set of files to include or
exclude from the source distribution. For an example, again we turn to the Distutils’ own manifest template:

include *.txt
recursive-include examples *.txt *.py
prune examples/sample?/build

The meanings should be fairly clear: include all files in the distribution root matchimg’,‘ all files
anywhere under theexamples’ directory matching *.txt' or ‘*.py’, and exclude all directories matching
‘examples/sample?/build’. All of this is done after the standard include set, so you can exclude files from the
standard set with explicit instructions in the manifest template. (Or, you can usathdefaults option to dis-

able the standard set entirely.) There are several other commands available in the manifest template mini-language;
see section 9.2.

The order of commands in the manifest template matters: initially, we have the list of default files as described
above, and each command in the template adds to or removes from that list of files. Once we have fully processed
the manifest template, we remove files that should not be included in the source distribution:

e all files in the Distutils “build” tree (defaultbuild/’)
e allfiles in directories namedCS’, ‘ CVS’ or ‘ .svn’
Now we have our complete list of files, which is written to the manifest for future reference, and then used to build

the source distribution archive(s).

You can disable the default set of included files with the-defaults option, and you can disable the standard
exclude set with-no-prune.

Following the Distutils’ own manifest template, let’s trace how Hutst command builds the list of files to
include in the Distutils source distribution:

1. include all Python source files in theistutils’ and ‘distutils/command’ subdirectories (because packages
corresponding to those two directories were mentioned imp#ekages option in the setup script—see
section 2)

2. include README.txt", ‘ setup.py’, and ‘setup.cfg’ (standard files)
3. include test/test*.py’ (standard files)

4. include *.txt" in the distribution root (this will find README.txt' a second time, but such redundancies are
weeded out later)

5. include anything matching.txt’ or ‘ *.py’ in the sub-tree undekxamples’,

6. exclude all files in the sub-trees starting at directories matcleixegniples/sample?/build'—this may ex-
clude files included by the previous two steps, so it's important thapthee command in the manifest
template comes after threcursive-include command

18 Chapter 4. Creating a Source Distribution

7. exclude the entireblild’ tree, and anyRCS’, ' CVS’ and ‘.svn’ directories

Just like in the setup script, file and directory names in the manifest template should always be slash-separated; the
Distutils will take care of converting them to the standard representation on your platform. That way, the manifest
template is portable across operating systems.

4.2 Manifest-related options

The normal course of operations for thdist command is as follows:

o if the manifest file, MANIFEST’ doesn’t exist, readVIANIFEST.in’ and create the manifest
e if neither MANIFEST’ nor ‘“MANIFEST.in’ exist, create a manifest with just the default file set

e if either ‘MANIFEST.in’ or the setup script €etup.py’) are more recent thanMANIFEST’, recreate
‘MANIFEST’ by reading MANIFEST.in’

e use the list of files now iINnMANIFEST’ (either just generated or read in) to create the source distribution
archive(s)

There are a couple of options that modify this behaviour. First, usetloedefaults and--no-prune to disable
the standard “include” and “exclude” sets.

Second, you might want to force the manifest to be regenerated—for example, if you have added or removed files
or directories that match an existing pattern in the manifest template, you should regenerate the manifest:

python setup.py sdist --force-manifest

Or, you might just want to (re)generate the manifest, but not create a source distribution:

python setup.py sdist --manifest-only

--manifest-only implies--force-manifest -o is a shortcut for-manifest-only, and-f for --force-manifest

4.2. Manifest-related options 19

20

CHAPTER
FIVE

Creating Built Distributions

A “built distribution” is what you're probably used to thinking of either as a “binary package” or an “installer”
(depending on your background). It's not necessarily binary, though, because it might contain only Python source
code and/or byte-code; and we don't call it a package, because that word is already spoken for in Python. (And
“installer” is a term specific to the world of mainstream desktop systems.)

A built distribution is how you make life as easy as possible for installers of your module distribution: for users of
RPM-based Linux systems, it's a binary RPM; for Windows users, it's an executable installer; for Debian-based
Linux users, it's a Debian package; and so forth. Obviously, no one person will be able to create built distributions
for every platform under the sun, so the Distutils are designed to enable module developers to concentrate on
their specialty—writing code and creating source distributions—while an intermediary speciegealagers

springs up to turn source distributions into built distributions for as many platforms as there are packagers.

Of course, the module developer could be his own packager; or the packager could be a volunteer “out there”
somewhere who has access to a platform which the original developer does not; or it could be software periodically
grabbing new source distributions and turning them into built distributions for as many platforms as the software
has access to. Regardless of who they are, a packager uses the setup scripbdisd theommand family to
generate built distributions.

As a simple example, if | run the following command in the Distutils source tree:

python setup.py bdist

then the Distutils builds my module distribution (the Distutils itself in this case), does a “fake” installation (also
in the ‘build’ directory), and creates the default type of built distribution for my platform. The default format for
built distributions is a “dumb” tar file on Nix, and a simple executable installer on Windows. (That tar file is
considered “dumb” because it has to be unpacked in a specific location to work.)

Thus, the above command on avld system createDistutils-1.0.plat.tar.gz’; unpacking this tarball from the
right place installs the Distutils just as though you had downloaded the source distribution apgthran
setup.py install . (The “right place” is either the root of the filesystem or Pythquisfix directory, de-
pending on the options given to thelist _dumb command; the default is to make dumb distributions relative
to prefix.)

Obviously, for pure Python distributions, this isn't any simpler than just runrpgthon setup.py

install —but for non-pure distributions, which include extensions that would need to be compiled, it can mean
the difference between someone being able to use your extensions or not. And creating “smart” built distributions,
such as an RPM package or an executable installer for Windows, is far more convenient for users even if your
distribution doesn’t include any extensions.

Thebdist command has aformats option, similar to thesdist command, which you can use to select the
types of built distribution to generate: for example,

python setup.py bdist --format=zip

would, when run on a Nix system, createDistutils-1.0.plat.zip'—again, this archive would be unpacked from

21

the root directory to install the Distutils.

The available formats for built distributions are:

Format Description Notes
gztar gzipped tar file (tar.gz’) (1),(3)
ztar compressed tar file (ar.z"))
tar tar file (“.tar"))
zip zip file (*.zip") (4)
rpm RPM (5)
pkgtool Solarispkgtool

sdux HP-UX swinstall

rpm RPM (5)
wininst self-extracting ZIP file for Windows (2),(4)

Notes:

(1) default on Wix

(2) default on Windowg*to-do!**

(3) requires external utilitiegar and possibly one dfzip, bzip2, or compress

(4) requires either externalp utility or zipfile module (part of the standard Python library since Python 1.6)

(5) requires externalpm utility, version 3.0.4 or better (usgpm --version to find out which version you
have)

You don’t have to use thiedist command with the-formats option; you can also use the command that directly
implements the format you're interested in. Some of tHedist “sub-commands” actually generate several
similar formats; for instance, tHadist _dumb command generates all the “dumb” archive forméds (, ztar
gztar , andzip), andbdist _rpm generates both binary and source RPMs. btlist sub-commands, and
the formats generated by each, are:

Command | Formats

bdist _dumb tar, ztar, gztar, zip
bdist _rpm rpm, srpm

bdist _wininst wininst

The following sections give details on the individimlist _* commands.

5.1 Creating dumb built distributions

Need to document absolute vs. prefix-relative packages here, but first | have to implement it!

5.2 Creating RPM packages

The RPM format is used by many popular Linux distributions, including Red Hat, SUSE, and Mandrake. If one
of these (or any of the other RPM-based Linux distributions) is your usual environment, creating RPM packages
for other users of that same distribution is trivial. Depending on the complexity of your module distribution and
differences between Linux distributions, you may also be able to create RPMs that work on different RPM-based
distributions.

The usual way to create an RPM of your module distribution is to ruttie _rpm command:

python setup.py bdist_rpm

22 Chapter 5. Creating Built Distributions

or thebdist

command with the-format option:

python setup.py bdist --formats=rpm

The former allows you to specify RPM-specific options; the latter allows you to easily specify multiple formats in
one run. If you need to do both, you can explicitly specify multiplist _* commands and their options:

python setup.py bdist_rpm --packager="John Doe <jdoe@example.org>" \
bdist_wininst --target_version="2.0"

Creating RPM packages is driven by.spec’ file, much as using the Distutils is driven by the setup script. To
make your life easier, thibdist _rpm command normally creates apec’ file based on the information you
supply in the setup script, on the command line, and in any Distutils configuration files. Various options and
sections in the.spec’ file are derived from options in the setup script as follows:

RPM ‘.spec’ file option or section

Distutils setup script option

Name

Summary (in preamble)
Version

Vendor

Copyright
Url
%description (section)

name
description
version

licence
url

author andauthor_email, or
maintainer andmaintainer_email

long_description

Additionally, there many options inspec’ files that don’t have corresponding options in the setup script. Most of

these are handled through options to Iblaiést

RPM ‘.spec’ file option or section

bdist _rpm option

_rpm command as follows:

default value

Release
Group
Vendor
Packager
Provides
Requires
Conflicts
Obsoletes
Distribution
BuildRequires
Icon

release

group

vendor
packager
provides
requires
conflicts
obsoletes
distribution_name
build_requires
icon

T E
“Development/Libraries”
(see above)

(none)

(none)

(none)

(none)

(none)

(none)

(none)

(none)

Obviously, supplying even a few of these options on the command-line would be tedious and error-prone, so it's
usually best to put them in the setup configuration fisetup.cfg'—see section 3. If you distribute or package
many Python module distributions, you might want to put options that apply to all of them in your personal
Distutils configuration file (7.pydistutils.cfg’).

There are three steps to building a binary RPM package, all of which are handled automatically by the Distutils:

1. create a.spec’ file, which describes the package (analogous to the Distutils setup script; in fact, much of
the information in the setup script winds up in thepec’ file)

2. create the source RPM

3. create the “binary” RPM (which may or may not contain binary code, depending on whether your module
distribution contains Python extensions)

5.2. Creating RPM packages

23

Normally, RPM bundles the last two steps together; when you use the Distutils, all three steps are typically bundled
together.

If you wish, you can separate these three steps. You can usesfiez-onlyoption to makebdist _rpm just
create the.spec’ file and exit; in this case, thespec’ file will be written to the “distribution directory”—normally
‘dist/’, but customizable with the-dist-dir option. (Normally, the .spec’ file winds up deep in the “build tree,”
in a temporary directory created bgist _rpm.)

5.3 Creating Windows Installers

Executable installers are the natural format for binary distributions on Windows. They display a nice graphical
user interface, display some information about the module distribution to be installed taken from the metadata in
the setup script, let the user select a few options, and start or cancel the installation.

Since the metadata is taken from the setup script, creating Windows installers is usually as easy as running:

python setup.py bdist_wininst

or thebdist command with the-formats option:

python setup.py bdist --formats=wininst

If you have a pure module distribution (only containing pure Python modules and packages), the resulting installer
will be version independent and have a name like-1.0.win32.exe’. These installers can even be created on
UNIX or Mac OS platforms.

If you have a non-pure distribution, the extensions can only be created on a Windows platform, and will be Python
version dependent. The installer filename will reflect this and now has the fasm.0.win32-py2.0.exe’. You
have to create a separate installer for every Python version you want to support.

The installer will try to compile pure modules into bytecode after installation on the target system in normal and
optimizing mode. If you don’t want this to happen for some reason, you can ripdisie _wininst command
with the--no-target-compileand/or the-no-target-optimize option.

By default the installer will display the cool “Python Powered” logo when it is run, but you can also supply your
own bitmap which must be a Windowsmp’ file with the --bitmap option.

The installer will also display a large title on the desktop background window when it is run, which is constructed
from the name of your distribution and the version number. This can be changed to another text by usiitig the
option.

The installer file will be written to the “distribution directory” — normallgist’, but customizable with the
--dist-dir option.

5.3.1 The Postinstallation script

Starting with Python 2.3, a postinstallation script can be specified whichitistall-script option. The basename
of the script must be specified, and the script flename must also be listed in the scripts argument to the setup
function.

This script will be run at installation time on the target system after all the files have been copieargvitt
set to-install, and again at uninstallation time before the files are removedaxiffl] set to-remove

The installation script runs embedded in the windows installer, every owgpsisdout , sys.stderr) is
redirected into a buffer and will be displayed in the GUI after the script has finished.

Some functions especially useful in this context are available as additional built-in functions in the installation
script.

directory _created (path)

24 Chapter 5. Creating Built Distributions

file _created (path
These functions should be called when a directory or file is created by the postinstall script at installation
time. It will registerpathwith the uninstaller, so that it will be removed when the distribution is uninstalled.
To be safe, directories are only removed if they are empty.

get _special _folder _path (csidLstring)
This function can be used to retrieve special folder locations on Windows like the Start Menu or the Desktop.
It returns the full path to the foldeesidl_string must be one of the following strings:

"CSIDL_APPDATA"

"CSIDL_COMMON_STARTMENU"
"CSIDL_STARTMENU"

"CSIDL_COMMON_DESKTOPDIRECTORY"
"CSIDL_DESKTOPDIRECTORY"

"CSIDL_COMMON_STARTUP"
"CSIDL_STARTUP"

"CSIDL_COMMON_PROGRAMS"
"CSIDL_PROGRAMS"

"CSIDL_FONTS"

If the folder cannot be retrieve@SError is raised.

Which folders are available depends on the exact Windows version, and probably also the configuration.
For details refer to Microsoft's documentation of tAelGetSpecialFolderPath() function.

create _shortcut (target, description, filenanﬁeargumentg, workdir[, iconpatl{, iconindeﬂ]]])
This function creates a shortctiargetis the path to the program to be started by the shorttrgcriptionis
the description of the sortcufilenameis the title of the shortcut that the user will seggumentspecifies
the command line arguments, if arworkdir is the working directory for the prograniconpathis the file
containing the icon for the shortcut, ammbnindexis the index of the icon in the fileonpath Again, for
details consult the Microsoft documentation for t&&ellLink interface.

5.3. Creating Windows Installers 25

26

CHAPTER
SIX

Registering with the Package Index

The Python Package Index (PyPl) holds meta-data describing distributions packaged with distutils. The distutils
commandegister is used to submit your distribution’s meta-data to the index. It is invoked as follows:

python setup.py register

Distutils will respond with the following prompt:

running register

We need to know who you are, so please choose either:

1. use your existing login,

2. register as a new user,

3. have the server generate a new password for you (and email it to you), or
4. quit

Your selection [default 1]:

Note: if your username and password are saved locally, you will not see this menu.

If you have not registered with PyPlI, then you will need to do so now. You should choose option 2, and enter your
details as required. Soon after submitting your details, you will receive an email which will be used to confirm
your registration.

Once you are registered, you may choose option 1 from the menu. You will be prompted for your PyPI username
and password, anetgister will then submit your meta-data to the index.

You may submit any number of versions of your distribution to the index. If you alter the meta-data for a particular
version, you may submit it again and the index will be updated.

PyPI holds a record for each (name, version) combination submitted. The first user to submit information for a
given name is designated the Owner of that name. They may submit changes throrggiisfee = command

or through the web interface. They may also designate other users as Owners or Maintainers. Maintainers may
edit the package information, but not designate other Owners or Maintainers.

By default PyPI will list all versions of a given package. To hide certain versions, the Hidden property should be
set to yes. This must be edited through the web interface.

27

28

CHAPTER
SEVEN

Examples

This chapter provides a number of basic examples to help get started with distutils. Additional information about
using distutils can be found in the Distutils Cookbook.

See Also:

Distutils Cookbook
Collection of recipes showing how to achieve more control over distutils.

7.1 Pure Python distribution (by module)

If you're just distributing a couple of modules, especially if they don't live in a particular package, you can specify
them individually using the@y_modules option in the setup script.

In the simplest case, you'll have two files to worry about: a setup script and the single module you're distributing,
‘foo.py’ in this example:

<root>/

setup.py
foo.py

(In all diagrams in this sectiorsroot> will refer to the distribution root directory.) A minimal setup script to
describe this situation would be:

from distutils.core import setup
setup(name="foo’,
version="1.0’,
py_modules=[foo’],

)

Note that the name of the distribution is specified independently witlmdhe option, and there’s no rule that

says it has to be the same as the name of the sole module in the distribution (although that's probably a good
convention to follow). However, the distribution name is used to generate filenames, so you should stick to letters,
digits, underscores, and hyphens.

Sincepy_modules is a list, you can of course specify multiple modules, eg. if you're distributing modotes
andbar , your setup might look like this:

<root>/

setup.py
foo.py

bar.py

and the setup script might be

29

from distutils.core import setup

setup(name="foobar’,
version='1.0’,
py_modules=['foo’, 'barT,

)

You can put module source files into another directory, but if you have enough modules to do that, it's probably
easier to specify modules by package rather than listing them individually.

7.2 Pure Python distribution (by package)

If you have more than a couple of modules to distribute, especially if they are in multiple packages, it's probably
easier to specify whole packages rather than individual modules. This works even if your modules are not in a
package; you can just tell the Distutils to process modules from the root package, and that works the same as any
other package (except that you don'’t have to have aimit__.py’ file).

The setup script from the last example could also be written as

from distutils.core import setup

setup(name="foobar’,
version="1.0’,
packages=["],

)

(The empty string stands for the root package.)
If those two files are moved into a subdirectory, but remain in the root package, e.g.:

<root>/
setup.py
src/ foo.py
bar.py

then you would still specify the root package, but you have to tell the Distutils where source files in the root
package live:

from distutils.core import setup

setup(name="foobar’,
version="1.0’,
package_dir={": ’src’},
packages=["],

)

More typically, though, you will want to distribute multiple modules in the same package (or in sub-packages).
For example, if thdoo andbar modules belong in packadeobar , one way to layout your source tree is

<root>/
setup.py
foobar/
__init__.py
foo.py
bar.py

This is in fact the default layout expected by the Distutils, and the one that requires the least work to describe in
your setup script:

30 Chapter 7. Examples

from distutils.core import setup

setup(name="foobar’,
version='1.0’,
packages=['foobar’],

)

If you want to put modules in directories not named for their package, then you need to psektiye _dir option
again. For example, if thesfc’ directory holds modules in thiwobar package:

<root>/
setup.py
src/
__init__.py
foo.py
bar.py

an appropriate setup script would be

from distutils.core import setup
setup(name="foobar’,
version="1.0’,
package_dir={"foobar’: ’'src’},
packages=['foobar’],

)

Or, you might put modules from your main package right in the distribution root:

<root>/
setup.py
__init__.py
foo.py
bar.py

in which case your setup script would be

from distutils.core import setup

setup(name="foobar’,
version="1.0’,
package_dir={'foobar’: "},
packages=[foobar’],

)

(The empty string also stands for the current directory.)

If you have sub-packages, they must be explicitly listephickages, but any entries ipackage_dir automatically
extend to sub-packages. (In other words, the Distutils doéscan your source tree, trying to figure out which
directories correspond to Python packages by looking fainit__.py’ files.) Thus, if the default layout grows a

sub-package:

7.2. Pure Python distribution (by package) 31

<root>/

setup.py
foobar/
__init__.py
foo.py
bar.py
subfoo/
__init__.py
blah.py

then the corresponding setup script would be

from distutils.core import setup
setup(name="foobar’,

version="1.0’,

packages=['foobar’, 'foobar.subfoo’],

)

(Again, the empty string ipackage_dir stands for the current directory.)

7.3 Single extension module

Extension modules are specified using #te_modules option. package_dir has no effect on where extension
source files are found; it only affects the source for pure Python modules. The simplest case, a single extension
module in a single C source file, is:

<root>/

setup.py
foo.c

If the foo extension belongs in the root package, the setup script for this could be

from distutils.core import setup
setup(name="foobar’,
version="1.0’,
ext_modules=[Extension(‘foo’, [foo.c’])],

)

If the extension actually belongs in a package, feapkg , then

With exactly the same source tree layout, this extension can be put fadpkg package simply by changing
the name of the extension:

from distutils.core import setup

setup(name="foobar’,
version="1.0’,
ext_modules=[Extension(‘foopkg.foo’, [foo.c])],

)

32 Chapter 7. Examples

CHAPTER
EIGHT

Extending Distutils

Distutils can be extended in various ways. Most extensions take the form of new commands or replacements
for existing commands. New commands may be written to support new types of platform-specific packaging, for
example, while replacements for existing commands may be made to modify details of how the command operates
on a package.

Most extensions of the distutils are made withsatup.py’ scripts that want to modify existing commands; many
simply add a few file extensions that should be copied into packages in additipy’ tilés as a convenience.

Most distutils command implementations are subclasses aftimemandclass fromdistutils.cmd . New
commands may directly inherit fro@ommand while replacements often derive froBommandindirectly, di-
rectly subclassing the command they are replacing. Commands are required to deriGofronand

8.1 Integrating new commands

There are different ways to integrate new command implementations into distutils. The most difficult is to lobby
for the inclusion of the new features in distutils itself, and wait for (and require) a version of Python that provides
that support. This is really hard for many reasons.

The most common, and possibly the most reasonable for most needs, is to include the new implementations with
your ‘setup.py’ script, and cause thaistutils.core.setup() function use them:

from distutils.command.build_py import build_py as _build_py
from distutils.core import setup

class build_py(_build_py):
""Specialized Python source builder.

implement whatever needs to be different...

setup(cmdclass={’build_py’: build_py},

This approach is most valuable if the new implementations must be used to use a particular package, as everyone
interested in the package will need to have the new command implementation.

Beginning with Python 2.4, a third option is available, intended to allow new commands to be added which can
support existingsetup.py’ scripts without requiring modifications to the Python installation. This is expected to
allow third-party extensions to provide support for additional packaging systems, but the commands can be used
for anything distutils commands can be used for. A new configuration opthamand_packages (command-line
option--command-packagey can be used to specify additional packages to be searched for modules implement-
ing commands. Like all distutils options, this can be specified on the command line or in a configuration file. This
option can only be setin tHglobal] section of a configuration file, or before any commands on the command
line. If set in a configuration file, it can be overridden from the command line; setting it to an empty string on
the command line causes the default to be used. This should never be set in a configuration file provided with a

33

package.

This new option can be used to add any number of packages to the list of packages searched for command imple-
mentations; multiple package names should be separated by commas. When not specified, the search is only per-
formed in thedistutils.command package. Whensetup.py’ is run with the option--command-packages
distcmds,buildcmds however, the packagefistutils.command , distcmds , andbuildcmds will be

searched in that order. New commands are expected to be implemented in modules of the same name as the
command by classes sharing the same name. Given the example command line option above, the command
bdist _openpkg could be implemented by the cladistcmds.bdist _openpkg.bdist _openpkg or
buildcmds.bdist _openpkg.bdist _openpkg .

34 Chapter 8. Extending Distultils

CHAPTER
NINE

Command Reference

9.1 Installing modules: the install command family

The install command ensures that the build commands have been run and then runs the subcommands
install _lib ,install _data andinstall _scripts

9.1.1 install _data

This command installs all data files provided with the distribution.

9.1.2 install _scripts

This command installs all (Python) scripts in the distribution.

9.2 Creating a source distribution: the sdist command

fragment moved down from above: needs context!

The manifest template commands are:

Command Description
include patl pat2... include all files matching any of the listed patterns
exclude patl pat2 ... exclude all files matching any of the listed patterns
recursive-include dir patl pat2 ... include all files undedir matching any of the listed patterns
recursive-exclude dir patl pat2 ... exclude all files undedir matching any of the listed patterns
global-include patl pat2 ... include all files anywhere in the source tree matching

any of the listed patterns
global-exclude patl pat2 ... exclude all files anywhere in the source tree matching

any of the listed patterns
prune dir exclude all files undedir
graft dir include all files undedir

The patterns here areNuUx-style “glob” patterns:* matches any sequence of regular filename charac?ers,
matches any single regular filename character,[aladggd matches any of the charactersrange (e.g.,a-z ,
a-zA-Z ,a-f0-9 _.). The definition of “regular filename character” is platform-specific: oaUit is anything
except slash; on Windows anything except backslash or colon; on Mac OS 9 anything except colon.

*Windows support not there yet**

35

36

CHAPTER

TEN

10.1 distutils.core

Thedistutils.core

API| Reference

anddistutils.cmd.Command class.

setup (argumenty

— Core Distutils functionality

module is the only module that needs to be installed to use the Distutils. It provides the
setup() (which is called from the setup script). Indirectly providesdistutils.dist.Distribution

The basic do-everything function that does most everything you could ever ask for from a Distutils method.

See XXXXX

The setup function takes a large number of arguments. These are laid out in the following table.

argument name | value type
name The name of the package a string
version The version number of the package Seedistutils.version
description A single line describing the package a string
long_description | Longer description of the package a string
author The name of the package author a string
author_emalil The email address of the package author a string
maintainer The name of the current maintainer, if different from the author a string
maintainer email | The email address of the current maintainer, if different from the author
url A URL for the package (homepage) a URL
download._url A URL to download the package a URL
packages A list of Python packages that distutils will manipulate a list of strings
py_modules A list of Python modules that distutils will manipulate a list of strings
scripts A list of standalone script files to be built and installed a list of strings
ext_modules | Alist of Python extensions to be built A list of instances oflistutil
classifiers A list of Trove categories for the package XXX link to better definitio
distclass the Distribution class to use A subclass oflistutils.core
script_name The name of the setup.py script - defaultsys.argv|0] a string
script_args Arguments to supply to the setup script a list of strings
options default options for the setup script a string
license The license for the package
keywords Descriptive meta-data. See PEP 314
platforms
cmdclass A mapping of command names @mmandsubclasses a dictionary

run _setup (scrianame[,scripLargs:None,stopLafter:’run’])

Run a setup

distutils.dist.Distribution

script in a somewhat controlled environment,
instance that drives things. This is useful if you need to

and return the

find out the distribution meta-data (passed as keyword argsgovipt to setup()), or the contents of the
config files or command-line.

script_nameis a file that will be run withexecfile() sys.argv[0]
the duration of the callscript_argsis a list of strings; if suppliedsys.argv[1:]

script_argsfor the duration of the call.

will be replaced withscript for
will be replaced by

37

stop_after tells setup()

value | description

when to stop processing; possible values:

Stop after théistribution
Stop after config files have been parsed (and their data stored Didtrdution
Stop after the command-linsys.argv[1:]
Stop after all commands have been run (the samesztup()

In addition, thedistutils.core

e Extension

instance has been created and populated with the keyword argumeatai¢)
instance)

or script_args) have been parsed (and the data stored iDik#il
had been called in the usual way). This is the

module exposed a number of classes that live elsewhere.

from distutils.extension

e Commandrom distutils.cmd

e Distribution

from distutils.dist

A short description of each of these follows, but see the relevant module for the full reference.

classExtension

The Extension class describes a single C dt€tension module in a setup script. It accepts the following
keyword arguments in it's constructor

argument name

value

name
sources
include_dirs
define_macros
undef_macros
library_dirs
libraries
runtime_library_dirs
extra_objects
extra_compile_args
extra_link_args
export_symbols
depends
language

classDistribution
A Distribution

See thesetup()
setup()

classCommand

the full name of the extension, including any packages —Adta filename or pathname, but Py
list of source filenames, relative to the distribution root (where the setup script lives), in Uni
list of directories to search for C#3 header files (in Wix form for portability)

list of macros to define; each macro is defined using a 2-tuple, where 'value’ is either the st
list of macros to undefine explicitly

list of directories to search for C/G libraries at link time

list of library names (not filenames or paths) to link against

list of directories to search for C/G libraries at run time (for shared extensions, this is when

list of extra files to link with (eg. object files not implied by 'sources’, static library that must |
any extra platform- and compiler-specific information to use when compiling the source file:
any extra platform- and compiler-specific information to use when linking object files togeth
list of symbols to be exported from a shared extension. Not used on all platforms, and not ¢
list of files that the extension depends on

extension language (i.&’ ,’c++’ ,’objc’). Will be detected from the source extensions |

describes how to build, install and package up a Python software package.

function for a list of keyword arguments accepted by the Distribution constructor.
creates a Distribution instance.

A Commancdclass (or rather, an instance of one of it's subclasses) implement a single distutils command.

10.2 distutils.ccompiler

This module provides the abstract base class foCtGempiler

— CCompiler base class

classes. ACCompiler instance can be used

for all the compile and link steps needed to build a single project. Methods are provided to set options for the
compiler — macro definitions, include directories, link path, libraries and the like.

This module provides the following functions.

gen_lib _options (compiler, library_dirs, runtime_library _dirs, libraries)
Generate linker options for searching library directories and linking with specific librdi@aries and
library _dirs are, respectively, lists of library names (not filenames!) and search directories. Returns a list
of command-line options suitable for use with some compiler (depending on the two format strings passed

in).

38

Chapter 10. API Reference

gen _preprocess _options (macros, includedirs)
Generate C pre-processor optiorid,(-U, -1) as used by at least two types of compilers: the typicaiXJ
compiler and Visual €+. macrosis the usual thing, a list of 1- or 2-tuples, whémeame) means undefine
(-U) macroname and(name valug means define-D) macronameto value include_dirs is just a list
of directory names to be added to the header file search gatiReturns a list of command-line options
suitable for either tiix compilers or Visual &+,

get _default _compiler (osname, platforin
Determine the default compiler to use for the given platform.

osnameshould be one of the standard Python OS names (i.e. the ones returoeci&me) andplatform
the common value returned Bys.platform for the platform in question.

The default values ar@s.name andsys.platform in case the parameters are not given.

new_compiler (plat=None, compiler=None, verbose®$, dry_run=0, force=0)
Factory function to generate an instance of some CCompiler subclass for the supplied platform/compiler
combination. plat defaults toos.name (eg. 'posix’ , 'nt’"), andcompiler defaults to the default
compiler for that platform. Currently onljposix’ and’'nt’ are supported, and the default compilers
are “traditional WX interface” UnixCCompiler class) and Visual €(MSVCCompiler class). Note
that it's perfectly possible to ask for aNUx compiler object under Windows, and a Microsoft compiler
object under Wix—if you supply a value focompiler, platis ignored.

show_compilers ()
Print list of available compilers (used by thehelp-compiler options to build , build _ext ,
build _clib).

classCCompiler ([verbosezﬂ, dry_run=0, force:O])
The abstract base clag&Compiler defines the interface that must be implemented by real compiler
classes. The class also has some utility methods used by several compiler classes.

The basic idea behind a compiler abstraction class is that each instance can be used for all the compile/link
steps in building a single project. Thus, attributes common to all of those compile and link steps — include
directories, macros to define, libraries to link against, etc. — are attributes of the compiler instance. To allow
for variability in how individual files are treated, most of those attributes may be varied on a per-compilation
or per-link basis.

The constructor for each subclass creates an instance of the Compiler object. Flagbase(show ver-
bose output)dry_run (don'’t actually execute the steps) datce (rebuild everything, regardless of depen-
dencies). All of these flags default®(off). Note that you probably don’t want to instanti@@€ompiler

or one of it's subclasses directly - use ttistutils. CCompiler.new _compiler() factory func-
tion instead.

The following methods allow you to manually alter compiler options for the instance of the Compiler class.

add _include _dir (dir)
Add dir to the list of directories that will be searched for header files. The compiler is in-
structed to search directories in the order in which they are supplied by successive calls to
add _include _dir()

set _include _dirs (dirs)
Set the list of directories that will be searcheddios (a list of strings). Overrides any preceding
calls toadd _include _dir() ;subsequent calls @dd _include _dir() add to the list passed
to set _include _dirs() . This does not affect any list of standard include directories that the
compiler may search by default.

add _library (libnamé
Add libnameto the list of libraries that will be included in all links driven by this compiler object.
Note thatlibnameshould *not* be the name of a file containing a library, but the name of the library
itself: the actual filename will be inferred by the linker, the compiler, or the compiler class (depending
on the platform).
The linker will be instructed to link against libraries in the order they were supplied to
add _library() and/orset _libraries() . It is perfectly valid to duplicate library names;
the linker will be instructed to link against libraries as many times as they are mentioned.

10.2. distutils.ccompiler — CCompiler base class 39

set _libraries (libname$
Set the list of libraries to be included in all links driven by this compiler objedibitames(a list of
strings). This does not affect any standard system libraries that the linker may include by default.

add _library _dir (dir)
Add dir to the list of directories that will be searched for libraries specifieddd _library()
andset _libraries() . The linker will be instructed to search for libraries in the order they are
supplied toadd _library _dir() and/orset _library _dirs()

set _library _dirs (dirs)
Set the list of library search directories dars (a list of strings). This does not affect any standard
library search path that the linker may search by default.

add _runtime _library _dir (dir)
Add dir to the list of directories that will be searched for shared libraries at runtime.

set _runtime _library _dirs (dirs)
Set the list of directories to search for shared libraries at runtinaér$da list of strings). This does
not affect any standard search path that the runtime linker may search by default.

define _macro (nam«{, vaIue=None])
Define a preprocessor macro for all compilations driven by this compiler object. The optional param-
etervalueshould be a string; if it is not supplied, then the macro will be defined without an explicit
value and the exact outcome depends on the compiler used (XXX true? does ANSI say anything about
this?)

undefine _macro (name¢
Undefine a preprocessor macro for all compilations driven by this compiler object. If the same macro
is defined bydefine _macro() and undefined byndefine _macro() the last call takes prece-
dence (including multiple redefinitions or undefinitions). If the macro is redefined/undefined on a
per-compilation basis (ie. in the call tmmpile()), then that takes precedence.

add_link _object (objec)
Add objectto the list of object files (or analogues, such as explicitly named library files or the output
of “resource compilers”) to be included in every link driven by this compiler object.

set _link _objects (object3
Set the list of object files (or analogues) to be included in every lirdbjects This does not affect
any standard object files that the linker may include by default (such as system libraries).

The following methods implement methods for autodetection of compiler options, providing some func-
tionality similar to GNUautoconf.

detect _language (source$
Detect the language of a given file, or list of files. Uses the instance attrilautgsage _map (a
dictionary), andanguage _order (a list)to do the job.

find _library _file (dirs, lib[, debug®])
Search the specified list of directories for a static or shared libraryilfilend return the full path to
that file. If debugis true, look for a debugging version (if that makes sense on the current platform).
ReturnNone if lib wasn’t found in any of the specified directories.

has _function (funcname[, includes=None, include_dirs=None, libraries=None, Iibraryfdirs:None])
Return a boolean indicating whethiemcnameis supported on the current platform. The optional
arguments can be used to augment the compilation environment by providing additional include files
and paths and libraries and paths.
library _dir _option (dir)
Return the compiler option to adtir to the list of directories searched for libraries.
library _option (lib)
Return the compiler option to adiir to the list of libraries linked into the shared library or executable.
runtime _library _dir _option (dir)
Return the compiler option to aditir to the list of directories searched for runtime libraries.

set _executables (**args)
Define the executables (and options for them) that will be run to perform the various stages of compi-
lation. The exact set of executables that may be specified here depends on the compiler class (via the
‘'executables’ class attribute), but most will have:

40

Chapter 10. API Reference

attribute | description

compiler | the C/C++ compiler

linker_so | linker used to create shared objects and libraries

linker_exe | linker used to create binary executables

archiver static library creator
On platforms with a command-line (ux, DOS/Windows), each of these is a string that will be split
into executable name and (optional) list of arguments. (Splitting the string is done similarly to how
UNIxX shells operate: words are delimited by spaces, but quotes and backslashes can override this. See
distutils.util.split _quoted() .)

The following methods invoke stages in the build process.

compile (sourceﬁ, output_dir=None, macros=None, include_dirs=None, debug=, extra_preargs=None,
extra_postargs#None, dependsNone])

Compile one or more source files. Generates object files (e.g. transforehfla to a ‘.o’ file.)
sourcesmust be a list of filenames, most likely C¥€&files, but in reality anything that can be han-
dled by a particular compiler and compiler class (85VCCompiler can handle resource files in
source$. Return a list of object filenames, one per source filenanseimces Depending on the im-
plementation, not all source files will necessarily be compiled, but all corresponding object filenames
will be returned.

If output_dir is given, object files will be put under it, while retaining their original path component.
That is, foo/bar.c’ normally compiles to foo/bar.o’ (for a UNIX implementation); ifoutput_dir is
build, then it would compile tobuild/foo/bar.o’.

macros if given, must be a list of macro definitions. A macro definition is eithef rmme

valug 2-tuple or a(name) 1-tuple. The former defines a macro; if the valueNene, the
macro is defined without an explicit value. The 1-tuple case undefines a macro. Later defini-
tions/redefinitions/undefinitions take precedence.

include_dirs, if given, must be a list of strings, the directories to add to the default include file search
path for this compilation only.

debugis a boolean; if true, the compiler will be instructed to output debug symbols in (or alongside)
the object file(s).

extra_preargsandextra_postargsare implementation-dependent. On platforms that have the notion

of a command-line (e.g. Wix, DOS/Windows), they are most likely lists of strings: extra command-

line arguments to prepend/append to the compiler command line. On other platforms, consult the
implementation class documentation. In any event, they are intended as an escape hatch for those
occasions when the abstract compiler framework doesn’t cut the mustard.

dependsif given, is a list of filenames that all targets depend on. If a source file is older than any file
in depends, then the source file will be recompiled. This supports dependency tracking, but only at a
coarse granularity.

RaisesCompileError on failure.

create _static _lib (objects, outputlibname{, output_dir=None, debug=0, targeLIang=None])
Link a bunch of stuff together to create a static library file. The “bunch of stuff” consists of the list
of object files supplied a®bjects the extra object files supplied tadd _link _object()
and/or set _link _objects() , the libraries supplied to add _library() and/or
set _libraries() , and the libraries supplied &braries (if any).

output_libnameshould be a library name, not a filename; the filename will be inferred from the library
name.output_dir is the directory where the library file will be put. XXX defaults to what?

debugis a boolean; if true, debugging information will be included in the library (note that on most
platforms, it is the compile step where this matters: diebugflag is included here just for consis-
tency).

target_langis the target language for which the given objects are being compiled. This allows specific
linkage time treatment of certain languages.

Raised.ibError on failure.
link (target.desc, objects, outputilenam{, output_dir=None, libraries=None, library_dirs=None,
runtime_library _dirs=None, export.symbols®None, debug®, extra_preargs=None, ex-

tra_postargssNone, build_temp=None, targeLIang:None])
Link a bunch of stuff together to create an executable or shared library file.

10.2. distutils.ccompiler — CCompiler base class 41

The “bunch of stuff” consists of the list of object files suppliedagects output_filenameshould be a
filename. Ifoutput_dir is suppliedputput_filenameis relative to it (i.e.output_filenamecan provide
directory components if needed).

libraries is a list of libraries to link against. These are library nhames, not filenames, since they're
translated into filenames in a platform-specific way (fg becomeslibfoo.a’ on UNIX and foo.lib’

on DOS/Windows). However, they can include a directory component, which means the linker will
look in that specific directory rather than searching all the normal locations.

library _dirs, if supplied, should be a list of directories to search for libraries that were specified as
bare library names (ie. no directory component). These are on top of the system default and those
supplied toadd _library _dir() and/orset _library _dirs() . runtime_library_dirs is a

list of directories that will be embedded into the shared library and used to search for other shared
libraries that *it* depends on at run-time. (This may only be relevant ainxl)

export_symbolsis a list of symbols that the shared library will export. (This appears to be relevant
only on Windows.)

debugis as forcompile() andcreate _static _lib() , with the slight distinction that it actu-

ally matters on most platforms (as opposecteate _static _lib() , which includes alebug

flag mostly for form’s sake).

extra_preargs and extra_postargsare as forcompile() (except of course that they supply
command-line arguments for the particular linker being used).

target_langis the target language for which the given objects are being compiled. This allows specific
linkage time treatment of certain languages.

Raised.inkError on failure.

link _executable (objects, outpulprognam{, output_dir=None, libraries=None, library_dirs=None,
runtime_library _dirs=None, debug=0, extra_preargs=None, extra_postargsNone,
targeLIang:None])
Link an executable output_prognameis the name of the file executable, whdéjectsare a list of
object filenames to link in. Other arguments are as folithe method.

link _shared _lib (objects, outputlibname[, output_dir=None, libraries=None, library_dirs=None, run-
time_library _dirs=None, export_symbolsNone, debug=, extra_preargs=None, ex-

tra_postargssNone, build_temp=None, target_lang=None |)
Link a shared libraryoutput_libnameis the name of the output library, whitébjectsis a list of object

filenames to link in. Other arguments are as forlthke method.

link _shared _object (objects, outpulfilename{,outpuLdir:None, libraries=None, library_dirs=None,
runtime_library _dirs=None, export_symbolsNone, debug9, ex-
tra_preargs=None, extra_postargsNone, build_temp=None, target_lang=None

Link a shared objectoutput filenameis the name of the shared object that will be created, while
objectsis a list of object flenames to link in. Other arguments are as folinke method.

preprocess (source[, output file=None, macrossNone, include_dirs=None, extra_preargs=None, ex-
tra_postargsNone |)
Preprocess a single C& source file, named isource Output will be written to file namedut-

put_file, or stdoutif output_file not suppliedmacrosis a list of macro definitions as faompile() ,
which will augment the macros set witthefine _macro() and undefine _macro() . in-
clude_dirs is a list of directory names that will be added to the default list, in the same way as
add _include _dir()

RaisesPreprocessError on failure.

The following utility methods are defined by ti@Compiler class, for use by the various concrete sub-
classes.

executable _filename (basenamE\, strip_dir=0, output_dir="])
Returns the filename of the executable for the givasenameTypically for non-Windows platforms
this is the same as the basename, while Windows will geixa'‘added.

library _filename (Iibname[, lib_type=static’ , Strip_dir=0, output_dir="])
Returns the filename for the given library name on the current platform. @ux @ library with
lib _typeof 'static’ will typically be of the form liblibname.a’, while alib_typeof 'dynamic’

will be of the form fiblibname.so’.

Chapter 10. API Reference

object _filenames (source_ﬁlenameE, strip_dir=0, output_dir="])
Returns the name of the object files for the given source fdesirce filenamesshould be a list of
filenames.

shared _object _filename (basenam[a strip_dir=0, output_dir="])
Returns the name of a shared object file for the given file naasename

execute (func, arg:{, msg=None, Ievelzl])
Invokes distutils.util.execute() This method invokes a Python functidanc with the
given argumentargs, after logging and taking into account tey_run flag. XXX see also.

spawn (cmad
Invokesdistutils.util.spawn() . This invokes an external process to run the given command.
XXX see also.

mkpath (name[, mode=511])
Invokesdistutils.dir _util.mkpath() . This creates a directory and any missing ancestor
directories. XXX see also.

move_file (src, ds}

Invokesdistutils.file _uti.move _file() . Renamesrctodst XXX see also.
announce (msg[, Ievelzl])

Write a message usirdjstutils.log.debug() . XXX see also.
warn (msg

Write a warning messagasgto standard error.

debug _print (msg
If the debugflag is set on thisCCompiler instance, printmsgto standard output, otherwise do
nothing.

10.3 distutils.unixccompiler — Unix C Compiler

This module provides thenixCCompiler class, a subclass @Compiler that handles the typical ux-style
command-line C compiler:

macros defined witaname{:vaIue]

e macros undefined witHJname

e include search directories specified withir

e libraries specified withllib

e library search directories specified wihdir

e compile handled bgc (or similar) executable withc option: compiles.c’to ‘.o’
e link static library handled bar command (possibly withanlib)

e link shared library handled bgc -shared

10.4 distutils.msvccompiler — Microsoft Compiler

This module providesMSVCCompiler , an implementation of the abstraCCompiler class for Microsoft
Visual Studio. It should also work using the freely available compiler provided as part of the .Net SDK download.
XXX download link.

10.3. distutils.unixccompiler — Unix C Compiler 43

10.5 distutils.bcppcompiler — Borland Compiler

This module provideBorlandCCompiler , an subclass of the abstr&&€ompiler class for the Borland €+
compiler.

10.6 distutils.cygwincompiler — Cygwin Compiler

This module provides th€ygwinCCompiler class, a subclass dfnixCCompiler that handles the Cygwin
port of the GNU C compiler to Windows. It also contains the Mingw32CCompiler class which handles the
mingw32 port of GCC (same as cygwin in no-cygwin mode).

10.7 distutils.emxccompiler — 0OS/2 EMX Compiler

This module provides the EMXCCompiler class, a subclasgrokRCCompiler that handles the EMX port of
the GNU C compiler to OS/2.

10.8 distutils.mwerkscompiler — Metrowerks CodeWarrior
support

ContainsMWerksCompiler , an implementation of the abstracCompiler class for MetroWerks CodeWar-
rior on the pre-Mac OS X Macintosh. Needs work to support CW on Windows or Mac OS X.

10.9 distutils.archive _util — Archiving utilities

This module provides a few functions for creating archive files, such as tarballs or zipfiles.

make_archive (base_name, forma{t, root_dir=None, base_dir=None, verbose®, dry_run=0])
Create an archive file (egip ortar). base nameis the name of the file to create, minus any format-
specific extensiorfprmatis the archive format: one @ip , tar , ztar , orgztar . root_dir is a directory
that will be the root directory of the archive; ie. we typicalliidir into root_dir before creating the
archive.base dir is the directory where we start archiving from; Ease dir will be the common prefix of
all files and directories in the archiveot_dir andbase_dir both default to the current directory. Returns
the name of the archive file.

Warning: This should be changed to support bz2 files

make_tarball (base_name, basedir[, compress¥zip’ , verbosed, dryfrun:O])
'Create an (optional compressed) archive as a tar file from all files in and bagerdir. compressnust be
'gzip’ (the default),compress’ ,’bzip2’ , or None. Bothtar and the compression utility named
by compresanust be on the default program search path, so this is probably-Specific. The output
tar file will be namedbase dir.tar’, possibly plus the appropriate compression extensigaz’(** .bz2" or
*.Z"). Return the output filename.

Warning: This should be replaced with calls to ttafile module.

make_zipfile (base_.name, basedir[, verbose®), dry,run:O])
Create a zip file from all files in and undease_dir. The output zip file will be namebase dir + *.zip’.
Uses either theipfile Python module (if available) or the InfoZIRip’ utility (if installed and found on
the default search path). If neither tool is available, raiBistutilsExecError . Returns the name of
the output zip file.

10.10 distutils.dep _util — Dependency checking

44 Chapter 10. API Reference

This module provides functions for performing simple, timestamp-based dependency of files and groups of files;
also, functions based entirely on such timestamp dependency analysis.

newer (source, target
Return true ifsourceexists and is more recently modified thi@mnget, or if sourceexists andargetdoesn't.
Return false if both exist ant@argetis the same age or newer theource RaiseDistutilsFileError
if sourcedoes not exist.

newer _pairwise (sources, targejs
Walk two filename lists in parallel, testing if each source is newer than its corresponding target. Return a
pair of lists ourcestarget9 where source is newer than target, according to the semantiesefr()

newer _group (sources, targe{t missing=error’])
Return true iftargetis out-of-date with respect to any file listedsourcedn other words, iftarget exists
and is newer than every file sourcesreturn false; otherwise return trumissingcontrols what we do when
a source file is missing; the defaukiror’) is to blow up with arOSError from insideos.stat() ;
if it is 'ignore’ , we silently drop any missing source files; if it'ieewer’ , any missing source files
make us assume thirgetis out-of-date (this is handy in “dry-run” mode: it'll make you pretend to carry
out commands that wouldn’t work because inputs are missing, but that doesn’t matter because you're not
actually going to run the commands).

10.11 distutils.dir _util — Directory tree operations

This module provides functions for operating on directories and trees of directories.

mkpath (name[, mode=0777, verbose®d, dry,run:O])
Create a directory and any missing ancestor directories. If the directory already existsnémnéis
the empty string, which means the current directory, which of course exists), then do nothing. Raise
DistutilsFileError if unable to create some directory along the way (eg. some sub-path exists,
but is a file rather than a directory). Yerboseis true, print a one-line summary of each mkdir to stdout.
Return the list of directories actually created.

create _tree (base.dir, files[, mode=777, verbose®d, dryfrun=0])
Create all the empty directories undsse dir needed to putilesthere. base dir is just the a name of a
directory which doesn’t necessarily exist yiesis a list of filenames to be interpreted relativébase _dir.
base dir + the directory portion of every file ifileswill be created if it doesn’t already exishode verbose
anddry_run flags are as fomkpath()

copy _tree (src, ds[preservemodezi, preservetimes=1, preservesymlinks, update=f, verbose®,

dry_run=0 |)
Copy an entire directory tresrc to a new locatiordst Both src anddstmust be directory names. $fcis
not a directory, rais®istutilsFileError . If dstdoes not exist, it is created withkpath() . The

end result of the copy is that every filesrcis copied tadst, and directories underc are recursively copied

to dst Return the list of files that were copied or might have been copied, using their output name. The
return value is unaffected hypdateor dry_run: it is simply the list of all files undesrc, with the names
changed to be undeist

preserve modeandpreservetimesare the same as faopy _file in distutils.file _util ; note

that they only apply to regular files, not to directoriespiéserve symlinkss true, symlinks will be copied

as symlinks (on platforms that support them!); otherwise (the default), the destination of the symlink will
be copiedupdateandverboseare the same as faopy _file()

remove _tree (directory[verboseré), dry_run=0])
Recursively removeirectoryand all files and directories underneath it. Any errors are ignored (apart from
being reported tays.stdout if verbosds true).

*Some of this could be replaced with the shutil module?**

10.12 distutils.file _util — Single file operations

10.11. distutils.dir _util — Directory tree operations 45

This module contains some utility functions for operating on individual files.

copy _file (src, ds[preservemodezl, preservetimes=1, update=0, link=None, verbose®, dry,run:O])
Copy filesrcto dst If dstis a directory, thersrc is copied there with the same name; otherwise, it must
be a filename. (If the file exists, it will be ruthlessly clobbered.priéserve modeis true (the default),
the file’s mode (type and permission bits, or whatever is analogous on the current platform) is copied. If
preservetimesis true (the default), the last-modified and last-access times are copied as wptlatéis
true,srcwill only be copied ifdstdoes not exist, or iflstdoes exist but is older thasrc.

link allows you to make hard links (usings.link) or symbolic links (usingos.symlink) instead

of copying: set it tohard’ or’sym’ ; if it is None (the default), files are copied. Don't siatk on
systems that don't support itppy _file() doesn’t check if hard or symbolic linking is available. It uses
_copy _file _contents() to copy file contents.

Return a tuple(dest _name, copied) ' dest.nameis the actual name of the output file, aoopied
is true if the file was copied (or would have been copiedyyf_run true).

move_file (src, ds[verbose, dryrun])
Move file srcto dst If dstis a directory, the file will be moved into it with the same name; othervgisas
just renamed talst Returns the new full name of the fil&/arning: Handles cross-device moves on Unix
usingcopy _file() . What about other systems???

write _file (filename, conten}s
Create a file callefilenameand writecontentga sequence of strings without line terminators) to it.

10.13 distutils.util — Miscellaneous other utility functions

This module contains other assorted bits and pieces that don't fit into any other utility module.

get _platform ()
Return a string that identifies the current platform. This is used mainly to distinguish platform-specific
build directories and platform-specific built distributions. Typically includes the OS name and version and
the architecture (as supplied by 'os.uname()’), although the exact information included depends on the OS;
eg. for IRIX the architecture isn’t particularly important (IRIX only runs on SGI hardware), but for Linux
the kernel version isn't particularly important.

Examples of returned values:

elinux-i586
elinux-alpha
esolaris-2.6-sun4u
eirix-5.3
eirix64-6.2

For non-POSIX platforms, currently just retursys.platform

convert _path (pathnamg
Return 'pathname’ as a hame that will work on the native filesystem, i.e. split it on '/’ and put it back
together again using the current directory separator. Needed because filenames in the setup script are always
supplied in Unix style, and have to be converted to the local convention before we can actually use them
in the filesystem. RaiségalueError on non-WNix-ish systems ipathnameeither starts or ends with a

slash.

change _root (new_root, pathnamg
Return pathname with new_root prepended. If pathname is relative, this is equivalent to
‘o0s.path.join(new _root,pathname) ' Otherwise, it requires makingathnamerelative and then

joining the two, which is tricky on DOS/Windows.

check _environ ()
Ensure that 'os.environ’ has all the environment variables we guarantee that users can use in config files,
command-line options, etc. Currently this includes:

46 Chapter 10. API Reference

eHOME - user’s home directory (WX only)
oPLAT - description of the current platform, including hardware and OSdsee platform())

subst _vars (s, local.varg)
Perform shell/Perl-style variable substitution®rEvery occurrence d followed by a name is considered
a variable, and variable is substituted by the value found itabe_varsdictionary, or inos.environ
if it's not in local_vars os.environis first checked/augmented to guarantee that it contains certain val-
ues: seeheck _environ() . RaiseValueError for any variables not found in eithémcal_vars or
0s.environ

Note that this is not a fully-fledged string interpolation function. A v@iciriable can consist only of
upper and lower case letters, numbers and an underscorg } WD style quoting is available.

grok _environment _error (ex<{, prefix="error: ’ ’])
Generate a useful error message fronEarironmentError (IOError or OSError) exception ob-
ject. Handles Python 1.5.1 and later styles, and does what it can to deal with exception objects that don't
have a filename (which happens when the error is due to a two-file operation, svehaase() or
link()). Returns the error message as a string prefixed pvéfix

split _quoted ()
Split a string up according to Unix shell-like rules for quotes and backslashes. In short: words are delimited

by spaces, as long as those spaces are not escaped by a backslash, or inside a quoted string. Single and
double quotes are equivalent, and the quote characters can be backslash-escaped. The backslash is stripped
from any two-character escape sequence, leaving only the escaped character. The quote characters are

stripped from any quoted string. Returns a list of words.

execute (func, args{, msg=None, verbose$, dry,run:O])
Perform some action that affects the outside world (for instance, writing to the filesystem). Such actions are
special because they are disabled bydhe run flag. This method takes care of all that bureaucracy for
you; all you have to do is supply the function to call and an argument tuple for it (to embody the “external
action” being performed), and an optional message to print.

strtobool (val)
Convert a string representation of truth to true (1) or false (0).

True values arg/, yes, t, true , on andl; false values ar@, no, f, false , off and0. Raises
ValueError if valis anything else.

byte _compile (py,files[, optimize=9, force=0, prefix=None, base dir=None, verbose-, dry_run=0, di-
rect=None |)
Byte-compile a collection of Python source files to eithpyd’ or ‘.pyo’ files in the same directoryy._files

is a list of files to compile; any files that don’t end ipy’ are silently skippedoptimizemust be one of the
following:

o0 - don't optimize (generategyc’)
¢1 - normal optimization (likepython -O)
o2 - extra optimization (likepython -OO)

If forceis true, all files are recompiled regardless of timestamps.

The source filename encoded in each bytecode file defaults to the filenames ligtediles you can
modify these withprefixandbasedir prefixis a string that will be stripped off of each source filename, and
base dir is a directory name that will be prepended (afiegfixis stripped). You can supply either or both
(or neither) ofprefixandbase_dir, as you wish.

If dry_runis true, doesn'’t actually do anything that would affect the filesystem.

Byte-compilation is either done directly in this interpreter process with the stapglarcompile module,
or indirectly by writing a temporary script and executing it. Normally, you shoul@yét _compile()
figure out to use direct compilation or not (see the source for details)diféet flag is used by the script
generated in indirect mode; unless you know what you're doing, leave it bktrte.

rfc822 _escape (headej
Return a version dfieaderescaped for inclusion in an RFC 822 header, by ensuring there are 8 spaces space
after each newline. Note that it does no other modification of the string.

10.13. distutils.util — Miscellaneous other utility functions 47

10.14 distutils.dist — The Distribution class

This module provides theDistribution class, which represents the module distribution being
built/installed/distributed.

10.15 distutils.extension — The Extension class

This module provides thExtension class, used to describe G/€ extension modules in setup scripts.

10.16 distutils.debug — Distutils debug mode

This module provides the DEBUG flag.

10.17 distutils.errors — Distutils exceptions

Provides exceptions used by the Distutils modules. Note that Distutils modules may raise standard exceptions; in
particular, SystemExit is usually raised for errors that are obviously the end-user’s fault (eg. bad command-line
arguments).

This module is safe to use ifrom ... import * " mode; it only exports symbols whose names start with
Distutils and end withError .

10.18 distutils.fancy _getopt — Wrapper around the standard
getopt module

This module provides a wrapper around the standgtpt module that provides the following additional
features:

e short and long options are tied together
e options have help strings, $ancy _getopt could potentially create a complete usage summary
e options set attributes of a passed-in object

e boolean options can have “negative aliases” — eg--gtiiet is the “negative alias” of-verbose then
--quiet on the command line seterboseo false.

Should be replaced with optik (which is also now known asptparse in Python 2.3 and later).

fancy _getopt (options, negativeopt, object, args
Wrapper functionoptionsis a list of ‘(long _option, short _option, help _string) ' 3-tuples
as described in the constructor féancyGetopt . negative opt should be a dictionary mapping option
names to option names, both the key and value should be ptienslist. objectis an object which will
be used to store values (see gatopt() method of thdcancyGetopt class).argsis the argument list.
Will use sys.argv[1:] if you passNone asargs

wrap _text (text, width
Wrapstextto less tharwidth wide.

Warning: Should be replaced wittextwrap (which is available in Python 2.3 and later).

classFancyGetopt ([optiorLtabIe:None])
The option_table is a list of 3-tuples:(fong _option, short _option, help _string)

48 Chapter 10. API Reference

If an option takes an argument, ifsng_option should have=" appendedshort_option should just be
a single character, no in any case.short_option should beNone if a long_option doesn’'t have a
correspondinghort_option All option tuples must have long options.

TheFancyGetopt class provides the following methods:

getopt ([args:None, object:None])
Parse command-line options in args. Store as attributebjaact
If argsis None or not supplied, usesys.argv[1:] . If objectis None or not supplied, creates a new
OptionDummy instance, stores option values there, and returns a t(goigs, object) ". If object
is supplied, it is modified in place argktopt() just returnsargs in both cases, the returnedgsis a
modified copy of the passed-argslist, which is left untouched.

get _option _order ()
Returns the list of (option, value) " tuples processed by the previous rung#topt() Raises
RuntimeError if getopt() hasn’t been called yet.

generate _help ([header:None])
Generate help text (a list of strings, one per suggested line of output) from the option table for this
FancyGetopt object.

If supplied, prints the suppliekeaderat the top of the help.

10.19 distutils.filelist — The FileList class

This module provides thEileList class, used for poking about the filesystem and building lists of files.

10.20 distutils.log — Simple PEP 282-style logging

Warning: Should be replaced with standdodjging module.

10.21 distutils.spawn — Spawn a sub-process

This module provides thepawn() function, a front-end to various platform-specific functions for launching an-
other program in a sub-process. Also provified _executable() to search the path for a given executable
name.

10.22 distutils.sysconfig — System configuration information

The distutils.sysconfig module provides access to Python’s low-level configuration information. The
specific configuration variables available depend heavily on the platform and configuration. The specific variables
depend on the build process for the specific version of Python being run; the variables are those found in the
‘Makefile’ and configuration header that are installed with Python onXdUsystems. The configuration header is
called ‘pyconfig.h’ for Python versions starting with 2.2, ancbhfig.h’ for earlier versions of Python.

Some additional functions are provided which perform some useful manipulations for other parts of the
distutils package.

PREFIX
The result ofos.path.normpath(sys.prefix)

EXEC PREFIX
The result ofos.path.normpath(sys.exec _prefix)

get _config _var (nam¢
Return the value of a single variable. This is equivalergeb _config _vars().get(name .

10.19. distutils.filelist — The FileList class 49

get _config _vars (..)
Return a set of variable definitions. If there are no arguments, this returns a dictionary mapping names of
configuration variables to values. If arguments are provided, they should be strings, and the return value
will be a sequence giving the associated values. If a given name does not have a correspondiNgnalue,
will be included for that variable.

get _config _h_filename ()
Return the full path name of the configuration header. Farx) this will be the header generated by
the configure script; for other platforms the header will have been supplied directly by the Python source
distribution. The file is a platform-specific text file.

get _makefile _filename ()
Return the full path name of théakefile’ used to build Python. For Nix, this will be a file generated by
the configure script; the meaning for other platforms will vary. The file is a platform-specific text file, if it
exists. This function is only useful on POSIX platforms.

get _python _inc ([pIaLspecifi({, prefix]])
Return the directory for either the general or platform-dependent C include fildat Ispecificis true, the

platform-dependent include directory is returned; if false or omitted, the platform-independent directory is
returned. Ifprefixis given, it is used as either the prefix insteadP&EFIX, or as the exec-prefix instead of
EXEC_PREFIX if plat_specificis true.

get _python _lib ([pIaLspecifi({, standarcLIib[, prefix]]])
Return the directory for either the general or platform-dependent library installatiplat Ispecifids true,
the platform-dependent include directory is returned; if false or omitted, the platform-independent directory
is returned. Ifprefixis given, it is used as either the prefix insteadP&EFIX, or as the exec-prefix instead
of EXEC PREFIX if plat_specificis true. If standard_lib is true, the directory for the standard library is
returned rather than the directory for the installation of third-party extensions.

The following function is only intended for use within tidestutils package.

customize _compiler (compilen
Do any platform-specific customization ofléstutils.ccompiler.CCompiler instance.

This function is only needed onNux at this time, but should be called consistently to support forward-
compatibility. It inserts the information that varies acrossiXJflavors and is stored in Python'siakefile’.

This information includes the selected compiler, compiler and linker options, and the extension used by the
linker for shared objects.

This function is even more special-purpose, and should only be used from Python’s own build procedures.

set _python _build ()
Inform thedistutils.sysconfig module that it is being used as part of the build process for Python.
This changes a lot of relative locations for files, allowing them to be located in the build area rather than in
an installed Python.

10.23 distutils.text _file — The TextFile class

This module provides th&extFile class, which gives an interface to text files that (optionally) takes care of
stripping comments, ignoring blank lines, and joining lines with backslashes.

classTextFile ([filename:None, file=None, **options])
This class provides a file-like object that takes care of all the things you commonly want to do when process-
ing a text file that has some line-by-line syntax: strip comments (as lo#gsagour comment character),
skip blank lines, join adjacent lines by escaping the newline (ie. backslash at end of line), strip leading
and/or trailing whitespace. All of these are optional and independently controllable.

The class provides warn() method so you can generate warning messages that report physical line
number, even if the logical line in question spans multiple physical lines. Also prouitteadline()
for implementing line-at-a-time lookahead.

TextFile instances are create with eitifdename file, or both. RuntimeError s raised if both are
None. filenameshould be a string, anfile a file object (or something that providesadline() and

50 Chapter 10. API Reference

close() methods). Itis recommended that you supply at lé&stame so thafTextFile can include it
in warning messages. fie is not suppliedTextFile creates its own using tha@pen() built-in function.

The options are all boolean, and affect the values returneddnjine()

option name | description
strip_comments| strip from #’ to end-of-line, as well as any whitespace leading up to #tie-unless it is escaped by :

Istrip_ws strip leading whitespace from each line before returning it

rstrip_ws strip trailing whitespace (including line terminator!) from each line before returning it.
skip_blanks | skip lines that are empty *after* stripping comments and whitespace. (If both_Istsignd rstripws a
join_lines if a backslash is the last non-newline character on a line after stripping comments and whitespa

collapsejoin | strip leading whitespace from lines that are joined to their predecessor; only mattg@iif ‘ _lines a

Note that sincestrip_ws can strip the trailing newline, the semanticsredline() must differ from
those of the builtin file object'seadline() method! In particularreadline() returnsNone for
end-of-file: an empty string might just be a blank line (or an all-whitespace lingtrip_ws s true but
skip_blanksis not.

open (filenamé
Open a new fildilename This overrides anfile or filenameconstructor arguments.

close ()
Close the current file and forget everything we know about it (including the filename and the current
line number).

warn (msg{,line:None])
Print (to stderr) a warning message tied to the current logical line in the current file. If the current
logical line in the file spans multiple physical lines, the warning refers to the whole range, such as
“"lines 3-5" ". If lineis supplied, it overrides the current line number; it may be a list or tuple to
indicate a range of physical lines, or an integer for a single physical line.

readline ()
Read and return a single logical line from the current file (or from an internal buffer if lines have
previously been “unread” withinreadline()). If the join_lines option is true, this may involve
reading multiple physical lines concatenated into a single string. Updates the current line number, so
callingwarn() afterreadline() emits a warning about the physical line(s) just read. Returns
None on end-of-file, since the empty string can occusifip_wsis true butstrip_blanksis not.

readlines ()
Read and return the list of all logical lines remaining in the current file. This updates the current line
number to the last line of the file.

unreadline (line)
Pushline (a string) onto an internal buffer that will be checked by futteadline() calls. Handy
for implementing a parser with line-at-a-time lookahead. Note that lines that are “unread” with
unreadline are not subsequently re-cleansed (whitespace stripped, or whatever) when read with
readline . If multiple calls are made tanreadline before a call taeadline , the lines will
be returned most in most recent first order.

10.24 distutils.version — Version number classes

10.25 distutils.cmd — Abstract base class for Distutils commands

This module supplies the abstract base cassimand

classCommand dist)
Abstract base class for defining command classes, the “worker bees” of the Distutils. A useful analogy for
command classes is to think of them as subroutines with local variables optieds The options are de-
clared ininitialize _options() and defined (given their final values)finalize _options()
both of which must be defined by every command class. The distinction between the two is necessary be-
cause option values might come from the outside world (command line, config file, ...), and any options
dependent on other options must be computed after these outside influences have been processed — hence

10.24. distutils.version — Version number classes 51

finalize _options() . The body of the subroutine, where it does all its work based on the values of its

options, is theun()

method, which must also be implemented by every command class.

The class constructor takes a single argunakésit a Distribution instance.

52

Chapter 10. API Reference

10.26 distutils.command — Individual Distutils commands

10.27 distutils.command.bdist — Build a binary installer

10.28 distutils.command.bdist _packager — Abstract base
class for packagers

10.29 distutils.command.bdist _dumb — Build a “dumb” in-
staller

10.30 distutils.command.bdist _rpm — Build a binary distribu-
tion as a Redhat RPM and SRPM

10.31 distutils.command.bdist _wininst — Build a Windows
installer

10.32 distutils.command.sdist — Build a source distribution

10.33 distutils.command.build — Build all files of a package

10.34 distutils.command.build _clib — Build any C libraries
in a package

10.35 distutils.command.build _ext — Build any extensions in
a package

10.36 distutils.command.build _py — Build the .py/.pyc files of
a package

10.37 distutils.command.build _scripts — Build the scripts
of a package

10.38 distutils.command.clean — Clean a package build area

10.39 distutils.command.config — Perform package configu-
ration

10.40 distutils.command.install — Install a package

10.41 distutils.command.install _data — Install data files
from a package

124 Mistis aatigaed mnratidiiidstdlisiutls commandseqders — Install C/C+#

header files from a package

Theregister command registers the package with the Python Package Index. This is described in more detail
in PEP 301.

10.46 Creating a new Distutils command

This section outlines the steps to create a new Distutils command.

A new command lives in a module in thstutils.command package. There is a sample template in that
directory called éommand_template’. Copy this file to a new module with the same name as the new com-
mand you're implementing. This module should implement a class with the same name as the module (and
the command). So, for instance, to create the comnma®d _banana (so that users can rursetup.py

peel _banana’), you'd copy ‘command_template’ to ‘ distutils/‘command/peel_banana.py’, then edit it so that

it's implementing the claspeel _banana, a subclass ddistutils.cmd.Command

Subclasses dfommandmust define the following methods.

initialize _options() (9
et default values for all the options that this command supports. Note that these defaults may be overridden
by other commands, by the setup script, by config files, or by the command-line. Thus, this is not the place
to code dependencies between options; genenaitiglize _options() implementations are just a
bunch of self.foo = None 'assignments.

finalize _options ()
Set final values for all the options that this command supports. This is always called as late as possible, ie.
after any option assignments from the command-line or from other commands have been done. Thus, this
is the place to to code option dependenciefodfdepends otvar, then it is safe to sdbo from bar as long
asfoo still has the same value it was assignedhitialize _options()

run ()
A command’s raison d’etre: carry out the action it exists to perform, controlled by the options initialized
in initialize _options() , customized by other commands, the setup script, the command-line, and
config files, and finalized ifinalize _options() . All terminal output and filesystem interaction
should be done byun()

suh_command$ormalizes the notion of a “family” of commands, dgstall as the parent with sub-commands
install _lib ,install _headers , etc. The parent of a family of commands defiset_commandss a
class attribute; it's a list of 2-tuplegcommand_name, predicate) ', with commandnamea string and
predicatean unbound method, a string or Nongredicateis a method of the parent command that determines
whether the corresponding command is applicable in the current situation. (Egstadé _headers is only
applicable if we have any C header files to install. piédicateis None, that command is always applicable.

suh_commandss usually defined at the *end* of a class, because predicates can be unbound methods, so they
must already have been defined. The canonical example iisstad! command.

54 Chapter 10. API Reference

D

distutils.archive _util 44
distutils.bcppcompiler , 44
distutils.ccompiler , 38
distutils.cmd , 51
distutils.command , 53
distutils.command.bdist , 53
distutils.command.bdist _dumb, 53
distutils.command.bdist
distutils.command.bdist _rpm, 53
distutils.command.bdist _wininst , 53
distutils.command.build , 53
distutils.command.build _clib ,53
distutils.command.build _ext ,53
distutils.command.build _py, 53
distutils.command.build _scripts , 53
distutils.command.clean , 53
distutils.command.config , 53
distutils.command.install ,53
distutils.command.install _data , 53
distutils.command.install _headers
53
distutils.command.install
distutils.command.install
53
distutils.command.register , 53
distutils.command.sdist , 53
distutils.core , 37
distutils.cygwinccompiler , 44
distutils.debug , 48
distutils.dep _util 44
distutils.dir _util ,45
distutils.dist , 48
distutils.emxccompiler , 44
distutils.errors ,48
distutils.extension , 48
distutils.fancy _getopt , 48
distutils.file _util , 45
distutils.filelist , 49
distutils.log , 49
distutils.msvccompiler , 43
distutils.mwerkscompiler , 44
distutils.spawn , 49
distutils.sysconfig , 49
distutils.text _file ,50

_lib ,53
_scripts

_packager , 53

MODULE INDEX

distutils.unixccompiler
distutils.util , 46
distutils.version

, 51

, 43

55

56

A

add _include _dir() (CCompiler method), 39

add _library() (CCompiler method), 39

add _library _dir() (CCompiler method), 40

add _link _object() (CCompiler method), 40

add _runtime _library _dir() (CCompiler
method), 40

announce() (CCompiler method), 43

B
byte _compile()

C

CCompiler (class in distutils.ccompiler), 39
change _root() (in module distutils.util), 46
check _environ() (in module distutils.util), 46
close() (TextFile method), 51
Command
class in distutils.cmd, 51
class in distutils.core, 38
compile() (CCompiler method), 41
convert _path() (in module distutils.util), 46
copy _file() (in module distutils.file.util), 46
copy _tree() (in module distutils.dir util), 45
create _shortcut() (in module), 25
create _static _lib() (CCompiler method),
41
create _tree() (in module distutils.dirutil), 45
customize _compiler() (in module distu-
tils.sysconfig), 50

(in module distutils.util), 47

D

debug _print() (CCompiler method), 43
define _macro() (CCompiler method), 40
detect _language() (CCompiler method), 40

directory _created() (in module), 24

Distribution (class in distutils.core), 38

distutils.archive _util (standard module),
44

distutils.bcppcompiler (standard module),
44

distutils.ccompiler (standard module B8

distutils.cmd (standard moduleh1

distutils.command (standard moduleR3

INDEX

distutils.command.bdist
ule),53
distutils.command.bdist
module),53
distutils.command.bdist
(standard moduleh3
distutils.command.bdist
module),53
distutils.command.bdist
(standard moduleh3
distutils.command.build

(standard mod-
_dumb (standard
_packager
_rpm (standard
_wininst

(standard mod-

ule),53

distutils.command.build _clib (standard
module),53

distutils.command.build _ext (standard
module),53

distutils.command.build _py (standard
module),53

distutils.command.build _scripts

(standard modulep3

distutils.command.clean (standard mod-

ule),53

distutils.command.config (standard mod-
ule),53

distutils.command.install (standard
module),53

distutils.command.install _data (stan-
dard module)53

distutils.command.install _headers

(standard modulep3
distutils.command.install _lib (stan-
dard module)53

distutils.command.install _scripts
(standard modulep3

distutils.command.register (standard
module),53

distutils.command.sdist (standard mod-
ule),53

distutils.core (standard moduleB7

distutils.cygwinccompiler (standard
module),44

distutils.debug (standard module}8

distutils.dep _util (standard module}4

distutils.dir _util (standard module}5

distutils.dist (standard module}8

distutils.emxccompiler (standard module),

57

44
distutils.errors
distutils.extension
distutils.fancy

(standard module}8
(standard moduleX8
_getopt (standard module),

48
distutils.file _util (standard module}5
distutils.filelist (standard module}9
distutils.log (standard module}9
distutils.msvccompiler (standard module),
43
distutils.mwerkscompiler (standard mod-
ule),44

distutils.spawn
distutils.sysconfig

(standard module}9
(standard moduleX9

distutils.text _file (standard moduleR0

distutils.unixccompiler (standard mod-
ule),43

distutils.util (standard module}i6

distutils.version

E

environment variables
HOME, 47
PLAT, 47
EXEC_PREFIX (data in distutils.sysconfig), 49
executable _filename() (CCompiler
method), 42
execute()
CCompiler method, 43
in module distutils.util, 47
Extension (class in distutils.core), 38

F

fancy _getopt() (in

tils.fancy_getopt), 48
FancyGetopt (class in distutils.fancygetopt), 48
file _created() (in module), 25

(standard moduleh1

module distu-

finalize _options() (method), 54

find _library _file() (CCompiler method),
40

G

gen_lib _options() (in module distu-

tils.ccompiler), 38
gen _preprocess _options()
tutils.ccompiler), 39
generate _help() (FancyGetopt method), 49
get _config _h_filename() (in module distu-
tils.sysconfig), 50

(in module dis-

get _config _var() (in module distu-
tils.sysconfig), 49
get _config _vars() (in module distu-

tils.sysconfig), 50
get _default _compiler()

tils.ccompiler), 39
get _makefile _filename()

tils.sysconfig), 50

(in module distu-

(in module distu-

get _option _order()
49

get _platform() (in module distutils.util), 46

get _python _inc() (in module distu-
tils.sysconfig), 50

get _python _lib() (in
tils.sysconfig), 50

get _special _folder _path()
25

(FancyGetopt method),

module distu-

(in module),

getopt() (FancyGetopt method), 49

grok _environment _error() (in module dis-
tutils.util), 47

H

has _function() (CCompiler method), 40

HOME, 47

I

initialize _options()() (' method), 54

L

library _dir _option() (CCompiler method),

40
library _filename() (CCompiler method), 42
library _option() (CCompiler method), 40
link() (CCompiler method), 41
link _executable() (CCompiler method), 42
link _shared _lib() (CCompiler method), 42
link _shared _object() (CCompiler method),
42

M

make_archive() (in
tils.archive_util), 44
make_tarball() (in module distu-
tils.archive_util), 44
make_zipfile() (in
tils.archive_util), 44
mkpath()
CCompiler method, 43
in module distutils.dirutil, 45
move_file()
CCompiler method, 43
in module distutils.file util, 46

module distu-

module distu-

N

new_compiler() (in
tils.ccompiler), 39

newer() (in module distutils.deputil), 45

newer _group() (in module distutils.deputil),
45

newer _pairwise() (in
tils.dep_util), 45

module distu-

module distu-

O

object _filenames() (CCompiler method), 43
open() (TextFile method), 51

58

Index

P

PLAT, 47
PREFIX (data in distutils.sysconfig), 49
preprocess() (CCompiler method), 42
Python Enhancement Proposals

PEP 301, 54

PEP 314, 37

R

readline() (TextFile method), 51
readlines() (TextFile method), 51
remove _tree() (in module distutils.dirutil), 45
RFC

RFC 822, 47
rfc822 _escape() (in module distutils.util), 47
run() (method), 54
run _setup() (in module distutils.core), 37
runtime _library _dir _option() (CCom-

piler method), 40

S

set _executables() (CCompiler method), 40

set _include _dirs() (CCompiler method), 39
set _libraries() (CCompiler method), 39

set _library _dirs() (CCompiler method), 40
set _link _objects() (CCompiler method), 40
set _python _build() (in - module distu-

tils.sysconfig), 50
set _runtime _library _dirs() (CCompiler

method), 40

setup() (in module distutils.core), 37

shared _object _filename() (CCompiler
method), 43

show _compilers() (in - module distu-

tils.ccompiler), 39
spawn() (CCompiler method), 43
split _quoted() (in module distutils.util), 47
strtobool() (in module distutils.util), 47
subst _vars() (in module distutils.util), 47

T

TextFile (class in distutils.textfile), 50

U

undefine _macro() (CCompiler method), 40
unreadline() (TextFile method), 51

W

warn()
CCompiler method, 43
TextFile method, 51
wrap _text() (in module distutils.fancygetopt),
48
write _file() (in module distutils.fileutil), 46

Index

59

	1 An Introduction to Distutils
	1.1 Concepts & Terminology
	1.2 A Simple Example
	1.3 General Python terminology
	1.4 Distutils-specific terminology

	2 Writing the Setup Script
	2.1 Listing whole packages
	2.2 Listing individual modules
	2.3 Describing extension modules
	2.3.1 Extension names and packages
	2.3.2 Extension source files
	2.3.3 Preprocessor options
	2.3.4 Library options
	2.3.5 Other options

	2.4 Installing Scripts
	2.5 Installing Package Data
	2.6 Installing Additional Files
	2.7 Additional meta-data
	2.8 Debugging the setup script

	3 Writing the Setup Configuration File
	4 Creating a Source Distribution
	4.1 Specifying the files to distribute
	4.2 Manifest-related options

	5 Creating Built Distributions
	5.1 Creating dumb built distributions
	5.2 Creating RPM packages
	5.3 Creating Windows Installers
	5.3.1 The Postinstallation script

	6 Registering with the Package Index
	7 Examples
	7.1 Pure Python distribution (by module)
	7.2 Pure Python distribution (by package)
	7.3 Single extension module

	8 Extending Distutils
	8.1 Integrating new commands

	9 Command Reference
	9.1 Installing modules: the install command family
	9.1.1 install_data
	9.1.2 install_scripts

	9.2 Creating a source distribution: the sdist command

	10 API Reference
	10.1 distutils.core --- Core Distutils functionality
	10.2 distutils.ccompiler --- CCompiler base class
	10.3 distutils.unixccompiler --- Unix C Compiler
	10.4 distutils.msvccompiler --- Microsoft Compiler
	10.5 distutils.bcppcompiler --- Borland Compiler
	10.6 distutils.cygwincompiler --- Cygwin Compiler
	10.7 distutils.emxccompiler --- OS/2 EMX Compiler
	10.8 distutils.mwerkscompiler --- Metrowerks CodeWarrior support
	10.9 distutils.archive_util --- Archiving utilities
	10.10 distutils.dep_util --- Dependency checking
	10.11 distutils.dir_util --- Directory tree operations
	10.12 distutils.file_util --- Single file operations
	10.13 distutils.util --- Miscellaneous other utility functions
	10.14 distutils.dist --- The Distribution class
	10.15 distutils.extension --- The Extension class
	10.16 distutils.debug --- Distutils debug mode
	10.17 distutils.errors --- Distutils exceptions
	10.18 distutils.fancy_getopt --- Wrapper around the standard getopt module
	10.19 distutils.filelist --- The FileList class
	10.20 distutils.log --- Simple PEP 282-style logging
	10.21 distutils.spawn --- Spawn a sub-process
	10.22 distutils.sysconfig --- System configuration information
	10.23 distutils.text_file --- The TextFile class
	10.24 distutils.version --- Version number classes
	10.25 distutils.cmd --- Abstract base class for Distutils commands
	10.26 distutils.command --- Individual Distutils commands
	10.27 distutils.command.bdist --- Build a binary installer
	10.28 distutils.command.bdist_packager --- Abstract base class for packagers
	10.29 distutils.command.bdist_dumb --- Build a ``dumb'' installer
	10.30 distutils.command.bdist_rpm --- Build a binary distribution as a Redhat RPM and SRPM
	10.31 distutils.command.bdist_wininst --- Build a Windows installer
	10.32 distutils.command.sdist --- Build a source distribution
	10.33 distutils.command.build --- Build all files of a package
	10.34 distutils.command.build_clib --- Build any C libraries in a package
	10.35 distutils.command.build_ext --- Build any extensions in a package
	10.36 distutils.command.build_py --- Build the .py/.pyc files of a package
	10.37 distutils.command.build_scripts --- Build the scripts of a package
	10.38 distutils.command.clean --- Clean a package build area
	10.39 distutils.command.config --- Perform package configuration
	10.40 distutils.command.install --- Install a package
	10.41 distutils.command.install_data --- Install data files from a package
	10.42 distutils.command.install_headers --- Install C/C++ header files from a package
	10.43 distutils.command.install_lib --- Install library files from a package
	10.44 distutils.command.install_scripts --- Install script files from a package
	10.45 distutils.command.register --- Register a module with the Python Package Index
	10.46 Creating a new Distutils command

	Module Index
	Index

