Python Reference Manual
Release 2.4.1

Guido van Rossum
Fred L. Drake, Jr., editor

30 March 2005

Python Software Foundation
Email: docs@python.org

Copyright(© 2001-2004 Python Software Foundation. All rights reserved.

Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. Its high-
level built in data structures, combined with dynamic typing and dynamic binding, make it very attractive for
rapid application development, as well as for use as a scripting or glue language to connect existing components
together. Python’s simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program
maintenance. Python supports modules and packages, which encourages program modularity and code reuse. The
Python interpreter and the extensive standard library are available in source or binary form without charge for all
major platforms, and can be freely distributed.

This reference manual describes the syntax and “core semantics” of the language. It is terse, but attempts to
be exact and complete. The semantics of non-essential built-in object types and of the built-in functions and
modules are described in thg/thon Library ReferenceFor an informal introduction to the language, see the
Python Tutorial For C or C++ programmers, two additional manuals exisktending and Embedding the Python
Interpreter describes the high-level picture of how to write a Python extension module, aritiythen/C API
Reference Manualescribes the interfaces available to € rogrammers in detalil.

CONTENTS

Introduction 1

1.1 Notation e e 1
Lexical analysis 3

2.1 LINeSHUCIUre o e e 3
2.2 Othertokens. e 6
2.3 ldentifiersand keywords L e 6
2.4 Literals. e e e e e e 7
2.5 0perators e e 10
2.6 Delimiters e 10
Data model 13

3.1 Objects,valuesandtypes 13
3.2 Thestandardtype hierarchy. e 14
3.3 Specialmethodnames. e 20
Execution model 31

4.1 Namingandbinding. e e 31
4.2 EXCEPtiONS. e e e e 32
Expressions 35

5.1 Arithmetic CONVersions e e e 35
5.2 AIOMS e e 35
5.3 Primaries. 38
5.4 The power operator. o o i i i i e e 40
5.5 Unaryarithmeticoperations 41
5.6 Binary arithmeticoperations. e 41
5.7 Shiftingoperations e 42
5.8 Binary bit-wise operations e e 42
5.9 COMPariSoNS. . . . v v o v e e 42
5.10 Boolean operations. e 44
5.11 Lambdas. e e 44
5.12 EXpressionlists e e 44
5.13 Evaluationorder. 45
514 SUMMATY. o e e e e e e e e 45
Simple statements a7

6.1 Expressionstatements. e e e 47
6.2 Assertstatements. e e e 47
6.3 Assignmentstatements. L L L 48
6.4 Thepass statement. L e 50
6.5 Thedel statement e 50
6.6 Theprint statement. e 50
6.7 Thereturn statement. 51

6.8 Theyield statement. e 51
6.9 Theraise statement. e e e 52
6.10 Thebreak statement. e 52
6.11 Thecontinue statement e e e e e e 52
6.12 Theimport statement. e 53
6.13 Theglobal statement. e 54
6.14 Theexec statement. e e e e 55
7 Compound statements 57
7.1 Theif statement e e e e 58
7.2 Thewhile statement. e 58
7.3 Thefor statement e e 58
7.4 Thetry statement e 59
7.5 Functiondefinitions. e e e 60
7.6 Classdefinitions. e e 61
8 Top-level components 63
8.1 Complete Pythonprograms e e e 63
8.2 Fileinput. e e 63
8.3 Interactive INput. e e 63
8.4 EXpressioninput e 64
A History and License 65
Al Historyofthesoftware 65
A.2 Terms and conditions for accessing or otherwise using Python 66
A.3 Licenses and Acknowledgements for Incorporated Software. 68
Index 77

CHAPTER
ONE

Introduction

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, | chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but
will leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python
from this document alone, you might have to guess things and in fact you would probably end up implementing
quite a different language. On the other hand, if you are using Python and wonder what the precise rules about a
particular area of the language are, you should definitely be able to find them here. If you would like to see a more
formal definition of the language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the implementation
may change, and other implementations of the same language may work differently. On the other hand, there
is currently only one Python implementation in widespread use (although a second one now exists!), and its
particular quirks are sometimes worth being mentioned, especially where the implementation imposes additional
limitations. Therefore, you'll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are not documented
here, but in the separakg/thon Library Referencdocument. A few built-in modules are mentioned when they
interact in a significant way with the language definition.

1.1 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following
style of definition:

name: Ic_letter (Ic_letter | "_")*

LU T

Ic_letter: "a"..."z

The first line says that aame is anlc _letter followed by a sequence of zero or mdoe _letter s and
underscores. Aiic _letter in turn is any of the single charactera’ ‘through ‘z’. (This rule is actually
adhered to for the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and a colon. A vertida) lsanged to
separate alternatives; it is the least binding operator in this notation. A:3targans zero or more repetitions of

the preceding item; likewise, a plus)(means one or more repetitions, and a phrase enclosed in square brackets

([1) means zero or one occurrences (in other words, the enclosed phrase is optional)arite operators

bind as tightly as possible; parentheses are used for grouping. Literal strings are enclosed in quotes. White space
is only meaningful to separate tokens. Rules are normally contained on a single line; rules with many alternatives
may be formatted alternatively with each line after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters separated
by three dots mean a choice of any single character in the given (inclusive) rangeiotharacters. A phrase
between angular brackets.(.>) gives an informal description of the symbol defined; e.g., this could be used

to describe the notion of ‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and
syntactic definitions: a lexical definition operates on the individual characters of the input source, while a syntax
definition operates on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter
(“Lexical Analysis”) are lexical definitions; uses in subsequent chapters are syntactic definitions.

2 Chapter 1. Introduction

CHAPTER
TWO

Lexical analysis

A Python program is read bygarser Input to the parser is a streamtokens generated by thkexical analyzer
This chapter describes how the lexical analyzer breaks a file into tokens.

Python uses the 7-bitscii character set for program text. New in version 2.3: An encoding declaration can
be used to indicate that string literals and comments use an encoding different from ASCII.. For compatibility
with older versions, Python only warns if it finds 8-bit characters; those warnings should be corrected by either
declaring an explicit encoding, or using escape sequences if those bytes are binary data, instead of characters.

The run-time character set depends on the 1/0O devices connected to the program but is generally a superset of
ASCII.

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters is ISO Latin-1
(anAscii superset that covers most western languages that use the Latin alphabet), but it is possible that in the
future Unicode text editors will become common. These generally use the UTF-8 encoding, which issaso an
superset, but with very different use for the characters with ordinals 128-255. While there is no consensus on this
subject yet, it is unwise to assume either Latin-1 or UTF-8, even though the current implementation appears to
favor Latin-1. This applies both to the source character set and the run-time character set.

2.1 Line structure

A Python program is divided into a numberlogical lines

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical
line is constructed from one or mopéiysical lineshy following the explicit or implicitline joiningrules.

2.1.2 Physical lines

A physical line ends in whatever the current platform’s convention is for terminating lines. NDx, this is the
Ascll LF (linefeed) character. On Windows, it is thscil sequence CR LF (return followed by linefeed). On
Macintosh, it is theascii CR (return) character.

2.1.3 Comments

A comment starts with a hash charactg) that is not part of a string literal, and ends at the end of the physical
line. A comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments
are ignored by the syntax; they are not tokens.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression
‘coding[=:]\s*([-\w.]+) 5, this comment is processed as an encoding declaration; the first group of this
expression names the encoding of the source code file. The recommended forms of this expression are

-*- coding: <encoding-name> -*-

which is recognized also by GNU Emacs, and

vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM. In addition, if the first bytes of the file are the UTF-8 byte-order
mark (\xef\xbb\xbf’), the declared file encoding is UTF-8 (this is supported, among others, by Microsoft's
notepad).

If an encoding is declared, the encoding name must be recognized by Python. The encoding is used for all lexical
analysis, in particular to find the end of a string, and to interpret the contents of Unicode literals. String literals are

converted to Unicode for syntactical analysis, then converted back to their original encoding before interpretation

starts. The encoding declaration must appear on a line of its own.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash charadcees (follows: when a
physical line ends in a backslash that is not part of a string literal or comment, it is joined with the following
forming a single logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24\
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash
does not continue a token except for string literals (i.e., tokens other than string literals cannot be split across
physical lines using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without
using backslashes. For example:

month_names = [‘Januari’, 'Februari’, 'Maart, # These are the
"April’, 'Mer’, "Juni’, # Dutch names
"Juli, 'Augustus’, 'September’, # for the months

'Oktober’, 'November’, 'December’] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly
continued lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

4 Chapter 2. Lexical analysis

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard implementation, an entirely blank logical line (i.e. one
containing not even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of
the line, which in turn is used to determine the grouping of statements.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to
and including the replacement is a multiple of eight (this is intended to be the same rule as useck hyTbhe

total number of spaces preceding the first non-blank character then determines the line’s indentation. Indentation
cannot be split over multiple physical lines using backslashes; the whitespace up to the first backslash determines
the indentation.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to
use a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different
platforms may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations
above. Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance,
they may reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as
follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again.
The numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each
logical line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is
larger, it is pushed on the stack, and one INDENT token is generated. If it is smateistbe one of the numbers
occurring on the stack; all numbers on the stack that are larger are popped off, and for each number popped off a
DEDENT token is generated. At the end of the file, a DEDENT token is generated for each number remaining on
the stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of |
if len(l) <= 1:
return [l]
r=1]
for i in range(len(l)):
s = I[:i] + I[i+1:]
p = perm(s)
for x in p:
r.append(l[i:i+1] + x)
return r

The following example shows various indentation errors:

2.1. Line structure 5

def perm(): # error: first line indented
for i in range(len(l)): # error: not indented
s = L] + I[i+1:]
p = perm(I[:i] + I[i+1:]) # error: unexpected indent
for x in p:
r.append(l[i:i+1] + Xx)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation ofreturn r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens
Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can

be used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation
could otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens eidntifiers keywords lit-

erals operators anddelimiters Whitespace characters (other than line terminators, discussed earlier) are not
tokens, but serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that
forms a legal token, when read from left to right.

2.3 ldentifiers and keywords

Identifiers (also referred to amme$ are described by the following lexical definitions:

identifier = (letter|" _") (letter | digit | ")
letter == lowercase | uppercase

lowercase n= 0 Matlzt

uppercase n= 0 "ANLZY

digit m= """

Identifiers are unlimited in length. Case is significant.

2.3.1 Keywords

The following identifiers are used as reserved word&egwordf the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass yield
def finally in print

Note that although the identifi@s can be used as part of the syntaxrmoport statements, it is not currently a
reserved word.

In some future version of Python, the identifieis andNone will both become keywords.

6 Chapter 2. Lexical analysis

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns
of leading and trailing underscore characters:

_* Notimported by from module import * ’. The special identifier’ is used in the interactive interpreter
to store the result of the last evaluation; it is stored in_theuiltin -~ __ module. When not in interactive
mode, _’ has no special meaning and is not defined. See section 6.12jifigwt statement.”

Note: The name L’ is often used in conjunction with internationalization; refer to the documentation for
thegettext modulefor more information on this convention.

__*__ System-defined names. These names are defined by the interpreter and it's implementation (including
the standard library); applications should not expect to define additional names using this convention. The
set of names of this class defined by Python may be extended in future versions. See section 3.3, “Special
method names.”

__* Class-private names. Names in this category, when used within the context of a class definition, are re-
written to use a mangled form to help avoid name clashes between “private” attributes of base and derived
classes. See section 5.2.1, “Identifiers (Names).”

2.4 Literals
Literals are notations for constant values of some built-in types.

2.4.1 String literals

String literals are described by the following lexical definitions:

stringliteral
stringprefix

[stringprefix](shortstring | longstring)
rp "ut | Mur" | "R"] MUY | "URT MU | "uR"

shortstring = """ shortstringitem* ™" | "™ shortstringitem* ™
longstring m= " Jongstringitem* "

| ™" longstringitem* ™"
shortstringitem = shortstringchar | escapeseq

longstringitem longstringchar | escapeseq

shortstringchar <any source character except "\" or newline or the quote>
longstringchar ’= <any source character except "\">

escapeseq »= "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix and the rest of the string literal. The source character set is defined by the encoding decla-
ration; it isascil if no encoding declaration is given in the source file; see section 2.1.4.

In plain English: String literals can be enclosed in matching single quojes @double quotes'(). They can also

be enclosed in matching groups of three single or double quotes (these are generally refertdgleacasoted

stringg. The backslash\() character is used to escape characters that otherwise have a special meaning, such
as newline, backslash itself, or the quote character. String literals may optionally be prefixed with a letter *

or ‘R’; such strings are callechw stringsand use different rules for interpreting backslash escape sequences. A
prefix of ‘u’ or ‘U makes the string a Unicode string. Unicode strings use the Unicode character set as defined
by the Unicode Consortium and ISO 10646. Some additional escape sequences, described below, are available in
Unicode strings. The two prefix characters may be combined; in this eeseust appear before °.

In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
guotes in a row terminate the string. (A “quote” is the character used to open the string, i.€. @ittie)

Unless anr’ or ‘R prefix is present, escape sequences in strings are interpreted according to rules similar to those
used by Standard C. The recognized escape sequences are:

2.4. Literals 7

Escape Sequence Meaning Notes
\ newline Ignored

\\ Backslash\()

\ Single quote’()

\" Double quote'()

\a Ascli Bell (BEL)

\b Ascll Backspace (BS)

\f Ascll Formfeed (FF)

\n Ascll Linefeed (LF)

\N{ namé Character namedamein the Unicode database (Unicode only)

\r AsclI Carriage Return (CR)

\t Ascll Horizontal Tab (TAB)

\U XXXX Character with 16-bit hex valuexxx(Unicode only) (1)
AU XXXXXXXX Character with 32-bit hex valuexxxxxUnicode only) (2)
\v Ascll Vertical Tab (VT)

\ ooo Character with octal valueoo (3,5)
\x hh Character with hex valuieh (4,5)

Notes:

(1) Individual code units which form parts of a surrogate pair can be encoded using this escape sequence.

(2) Any Unicode character can be encoded this way, but characters outside the Basic Multilingual Plane (BMP)
will be encoded using a surrogate pair if Python is compiled to use 16-bit code units (the default). Individual
code units which form parts of a surrogate pair can be encoded using this escape sequence.

(3) Asin Standard C, up to three octal digits are accepted.
(4) Unlike in Standard C, at most two hex digits are accepted.

(5) In a string literal, hexadecimal and octal escapes denote the byte with the given value; it is not necessary
that the byte encodes a character in the source character set. In a Unicode literal, these escapes denote a
Unicode character with the given value.

Unlike Standard C, all unrecognized escape sequences are left in the string unchangdked baekslash is left

in the string (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output
is more easily recognized as broken.) It is also important to note that the escape sequences marked as “(Unicode
only)” in the table above fall into the category of unrecognized escapes for non-Unicode string literals.

When ant’ or ‘'R prefix is present, a character following a backslash is included in the string without change,
andall backslashes are left in the string-or example, the string litera"\n" consists of two characters: a
backslash and a lowercas®.’ String quotes can be escaped with a backslash, but the backslash remains in the
string; for exampler"\"™" is a valid string literal consisting of two characters: a backslash and a double quote;
r'\" is not a valid string literal (even a raw string cannot end in an odd number of backslashes). Specifically,
a raw string cannot end in a single backsla@ince the backslash would escape the following quote character).
Note also that a single backslash followed by a newline is interpreted as those two characters as part of the string,
notas a line continuation.

When an f’ or 'R prefix is used in conjunction with au® or ‘U prefix, then the\luXXXX escape sequence is
processed whilall other backslashes are left in the stringor example, the string literak"\u0062\n" con-

sists of three Unicode characters: ‘LATIN SMALL LETTER B’, ‘REVERSE SOLIDUS’, and ‘LATIN SMALL
LETTER N'. Backslashes can be escaped with a preceding backslash; however, both remain in the string. As a
result,\uXXXX escape sequences are only recognized when there are an odd number of backslashes.

2.4.2 String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions, are
allowed, and their meaning is the same as their concatenation. Thelg" 'world’ is equivalent to
"helloworld" . This feature can be used to reduce the number of backslashes needed, to split long strings
conveniently across long lines, or even to add comments to parts of strings, for example:

8 Chapter 2. Lexical analysis

re.compile("[A-Za-z_]" # letter or underscore
"[A-Za-z0-9_1*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+' operator must
be used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting
styles for each component (even mixing raw strings and triple quoted strings).

2.4.3 Numeric literals

There are four types of numeric literals: plain integers, long integers, floating point numbers, and imaginary num-
bers. There are no complex literals (complex numbers can be formed by adding a real number and an imaginary
number).

Note that numeric literals do not include a sign; a phrase-likés actually an expression composed of the unary
operator - ' and the literall.

2.4.4 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger = integer ("I" | "L")
integer decimalinteger | octinteger | hexinteger

decimalinteger = nonzerodigit digit* | "0"
octinteger = "0" octdigit+

hexinteger = "0" ("x" | "X") hexdigit+
nonzerodigit = "o

octdigit n=r0nLTt

hexdigit = digit | "a".."f" | "A"LF

Although both lower casé * and upper casd.’ are allowed as suffix for long integers, it is strongly recommended
to always usel'’, since the letterl'’ looks too much like the digit1’.

Plain integer literals that are above the largest representable plain integer (e.g., 2147483647 when using 32-bit
arithmetic) are accepted as if they were long integers inst&dubre is no limit for long integer literals apart from
what can be stored in available memory.

Some examples of plain integer literals (first row) and long integer literals (second and third rows):

7 2147483647 0177
3L 79228162514264337593543950336L 0377L 0x100000000L
79228162514264337593543950336 Oxdeadbeef

2.4.5 Floating point literals

Floating point literals are described by the following lexical definitions:

floathumber = pointfloat | exponentfloat
pointfloat = [intpart] fraction | intpart "."
exponentfloat = (intpart | pointfloat) exponent
intpart = digit+

fraction a= " digit+

exponent = ("e" | "E") [+ | "] digit+

1In versions of Python prior to 2.4, octal and hexadecimal literals in the range just above the largest representable plain integer but below
the largest unsigned 32-bit number (on a machine using 32-bit arithmetic), 4294967296, were taken as the negative plain integer obtained by
subtracting 4294967296 from their unsigned value.

2.4. Literals 9

Note that the integer and exponent parts of floating point numbers can look like octal integers, but are interpreted
using radix 10. For exampleQ77e010 ' is legal, and denotes the same number7a&10’. The allowed range
of floating point literals is implementation-dependent. Some examples of floating point literals:

3.14 10. .001 1e100 3.14e-10 0e0

Note that numeric literals do not include a sign; a phrase-likés actually an expression composed of the operator
- and the literall.

2.4.6 Imaginary literals

Imaginary literals are described by the following lexical definitions:
imagnumber = (floatnumber | intpart) (" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a
pair of floating point numbers and have the same restrictions on their range. To create a complex number with a
nonzero real part, add a floating point number to it, €3%4j) . Some examples of imaginary literals:

3.14) 10j 10f 001j 1e100j 3.14e-10j

2.5 Operators

The following tokens are operators:

+ - * o / I %
<< >> & | - -
< > <= >= == I= <>

The comparison operatoss and!= are alternate spellings of the same operdtoris the preferred spelling;>
is obsolescent.

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

() i] {) e

/= /= %=
>>= <<= *k=

+
1
'
1]
*
I

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special
meaning as an ellipsis in slices. The second half of the list, the augmented assignment operators, serve lexically
as delimiters, but also perform an operation.

The following printingAscii characters have special meaning as part of other tokens or are otherwise significant
to the lexical analyzer:

The following printingAscil characters are not used in Python. Their occurrence outside string literals and

10 Chapter 2. Lexical analysis

comments is an unconditional error:

2.6. Delimiters

11

12

CHAPTER
THREE

Data model

3.1 Objects, values and types

Objectsare Python’s abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer,” code
is also represented by objects.)

Every object has an identity, a type and a value. An objadéstity never changes once it has been created;
you may think of it as the object’'s address in memory. Tike' ‘operator compares the identity of two objects;
theid() function returns an integer representing its identity (currently implemented as its address). An object’s
typeis also unchangeable.An object’s type determines the operations that the object supports (e.g., “does it
have a length?”) and also defines the possible values for objects of that typéyp&(e function returns an

object’s type (which is an object itself). Tvalueof some objects can change. Objects whose value can change
are said to benutable objects whose value is unchangeable once they are created areiaiiathble (The

value of an immutable container object that contains a reference to a mutable object can change when the latter’s
value is changed; however the container is still considered immutable, because the collection of objects it contains
cannot be changed. So, immutability is not strictly the same as having an unchangeable value, it is more subtle.)
An object’s mutability is determined by its type; for instance, numbers, strings and tuples are immutable, while
dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected.
An implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implemen-
tation quality how garbage collection is implemented, as long as no objects are collected that are still reachable.
(Implementation note: the current implementation uses a reference-counting scheme with (optional) delayed de-
tection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not
guaranteed to collect garbage containing circular references. Segttlwn Library Referencier information on
controlling the collection of cyclic garbage.)

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would nor-
mally be collectable. Also note that catching an exception wittnya ‘..except ' statement may keep objects
alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that
these resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to
happen, such objects also provide an explicit way to release the external resource, usloayf)a method.

Programs are strongly recommended to explicitly close such objects.tryhe. finally ' statement provides

a convenient way to do this.

Some objects contain references to other objects; these are catisdners Examples of containers are tuples,

lists and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value
of a container, we imply the values, not the identities of the contained objects; however, when we talk about the
mutability of a container, only the identities of the immediately contained objects are implied. So, if an immutable
container (like a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

1Since Python 2.2, a gradual merging of types and classes has been started that makes this and a few other assertions made in this manual
not 100% accurate and complete: for examplis, fitow possible in some cases to change an object’s type, under certain controlled conditions.
Until this manual undergoes extensive revision, it must now be taken as authoritative only regarding “classic classes”, that are still the default,
for compatibility purposes, in Python 2.2 and 2.3.

13

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object
with the same type and value, while for mutable objects this is not allowed. E.g.,afterl; b = 1 ’, aand

b may or may not refer to the same object with the value one, depending on the implementation, bat after *

[I; d =1 ' candd are guaranteed to refer to two different, unique, newly created empty lists. (Note that

= d = [] ’assignsthe same object to battandd.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the
type hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.).

Some of the type descriptions below contain a paragraph listing ‘special attributes.” These are attributes that
provide access to the implementation and are not intended for general use. Their definition may change in the
future.

None This type has a single value. There is a single object with this value. This object is accessed through the
built-in nameNone. It is used to signify the absence of a value in many situations, e.g., it is returned from
functions that don’t explicitly return anything. Its truth value is false.

Notimplemented This type has a single value. There is a single object with this value. This object is accessed
through the built-in namBlotimplemented . Numeric methods and rich comparison methods may return
this value if they do not implement the operation for the operands provided. (The interpreter will then try
the reflected operation, or some other fallback, depending on the operator.) Its truth value is true.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the
built-in nameEllipsis . Itis used to indicate the presence of the ‘'’ syntax in a slice. Its truth value
is true.

Numbers These are created by numeric literals and returned as results by arithmetic operators and arithmetic
built-in functions. Numeric objects are immutable; once created their value never changes. Python num-
bers are of course strongly related to mathematical numbers, but subject to the limitations of numerical
representation in computers.

Python distinguishes between integers, floating point numbers, and complex numbers:

Integers These represent elements from the mathematical set of whole numbers.
There are three types of integers:

Plain integers These represent numbers in the range -2147483648 through 2147483647. (The range
may be larger on machines with a larger natural word size, but not smaller.) When the result of an
operation would fall outside this range, the result is normally returned as a long integer (in some
cases, the exceptic@verflowError is raised instead). For the purpose of shift and mask
operations, integers are assumed to have a binary, 2’s complement notation using 32 or more bits,
and hiding no bits from the user (i.e., all 4294967296 different bit patterns correspond to different
values).

Long integers These represent numbers in an unlimited range, subject to available (virtual) memory
only. For the purpose of shift and mask operations, a binary representation is assumed, and
negative numbers are represented in a variant of 2’'s complement which gives the illusion of an
infinite string of sign bits extending to the left.

Booleans These represent the truth values False and True. The two objects representing the values
False and True are the only Boolean objects. The Boolean type is a subtype of plain integers, and
Boolean values behave like the values 0 and 1, respectively, in almost all contexts, the exception
being that when converted to a string, the stritiggse” or"True" are returned, respectively.

14 Chapter 3. Data model

The rules for integer representation are intended to give the most meaningful interpretation of shift
and mask operations involving negative integers and the least surprises when switching between the
plain and long integer domains. Any operation except left shift, if it yields a result in the plain integer
domain without causing overflow, will yield the same result in the long integer domain or when using
mixed operands.

Floating point numbers These represent machine-level double precision floating point numbers. You are
at the mercy of the underlying machine architecture (and C or Java implementation) for the accepted
range and handling of overflow. Python does not support single-precision floating point numbers; the
savings in processor and memory usage that are usually the reason for using these is dwarfed by the
overhead of using objects in Python, so there is no reason to complicate the language with two kinds
of floating point numbers.

Complex numbers These represent complex numbers as a pair of machine-level double precision floating
point numbers. The same caveats apply as for floating point numbers. The real and imaginary parts of
a complex numbez can be retrieved through the read-only attribtesal andz.imag .

SequencesThese represent finite ordered sets indexed by non-negative numbers. The built-in flex@ion
returns the number of items of a sequence. When the length of a sequentieeisndex set contains the
numbers 0, 1, ...p-1. ltemi of sequenca is selected by i] .

Sequences also support slicirgf:i: j] selects all items with indek such thai <= k <j. When used as an
expression, a slice is a sequence of the same type. This implies that the index set is renumbered so that it
starts at 0.

Some sequences also support “extended slicing” with a third “step” paramagtef: k] selects all items
of awith indexxwherex = i + n*k,n>=0 andi <= x<]j.

Sequences are distinguished according to their mutability:

Immutable sequencesAn object of an immutable sequence type cannot change once it is created. (If the
object contains references to other objects, these other objects may be mutable and may be changed;
however, the collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings The items of a string are characters. There is no separate character type; a character is repre-
sented by a string of one item. Characters represent (at least) 8-bit bytes. The built-in functions
chr() andord() convert between characters and nonnegative integers representing the byte
values. Bytes with the values 0-127 usually represent the correspoading values, but the
interpretation of values is up to the program. The string data type is also used to represent arrays
of bytes, e.g., to hold data read from a file.

(On systems whose native character set isasatil, strings may use EBCDIC in their internal
representation, provided the functiocte() andord() implement a mapping betweerscii

and EBCDIC, and string comparison preservesaiell order. Or perhaps someone can propose
a better rule?)

Unicode The items of a Unicode object are Unicode code units. A Unicode code unit is represented by
a Unicode object of one item and can hold either a 16-bit or 32-bit value representing a Unicode
ordinal (the maximum value for the ordinal is givensiys.maxunicode , and depends on how
Python is configured at compile time). Surrogate pairs may be present in the Unicode object, and
will be reported as two separate items. The built-in functionghr() andord() convert
between code units and nonnegative integers representing the Unicode ordinals as defined in the
Unicode Standard 3.0. Conversion from and to other encodings are possible through the Unicode
methodencode and the built-in functiorunicode()

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by
comma-separated lists of expressions. A tuple of one item (a ‘singleton’) can be formed by affix-
ing a comma to an expression (an expression by itself does not create a tuple, since parentheses
must be usable for grouping of expressions). An empty tuple can be formed by an empty pair of
parentheses.

Mutable sequencesMutable sequences can be changed after they are created. The subscription and slicing
notations can be used as the target of assignmendeinddelete) statements.

There is currently a single intrinsic mutable sequence type:

3.2. The standard type hierarchy 15

Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated
list of expressions in square brackets. (Note that there are no special cases needed to form lists of
length O or 1.)

The extension modularray provides an additional example of a mutable sequence type.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript rajkdtion

selects the item indexed Wy from the mapping; this can be used in expressions and as the target of
assignments aitel statements. The built-in functidan() returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only types of
values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity, the reason being that the efficient implementation
of dictionaries requires a key’s hash value to remain constant. Numeric types used for keys obey the
normal rules for numeric comparison: if two numbers compare equal {eaingd1.0) then they can
be used interchangeably to index the same dictionary entry.

Dictionaries are mutable; they can be created by{the notation (see section 5.2.6, “Dictionary
Displays”).
The extension moduletbm, gdbm, bsddb provide additional examples of mapping types.

Callable types These are the types to which the function call operation (see section 5.3.4, “Calls”) can be applied:

User-defined functions A user-defined function object is created by a function definition (see section 7.5,
“Function definitions”). It should be called with an argument list containing the same number of items
as the function’s formal parameter list.

Special attributes:

Attribute Meaning

func _doc The function’s documentation string, Bione if unavailable

__doc __ Another way of spellingunc _doc

func _name The function’s name

__hame__ Another way of spellindunc _name

__module __ The name of the module the function was defined if\lone if unavailable.

func _defaults Atuple containing default argument values for those arguments that have defablts)eif nc
func _code The code object representing the compiled function body.

func _globals A reference to the dictionary that holds the function’s global variables — the global nam
func _dict The namespace supporting arbitrary function attributes.

func _closure None or atuple of cells that contain bindings for the function’s free variables.

Most of the attributes labelled “Writable” check the type of the assigned value.
Changed in version 2.4unc _nameis now writable.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to
attach metadata to functions. Regular attribute dot-notation is used to get and set such afitdiates.

that the current implementation only supports function attributes on user-defined functions. Function
attributes on built-in functions may be supported in the future.

Additional information about a function’s definition can be retrieved from its code object; see the
description of internal types below.

User-defined methodsA user-defined method object combines a class, a class instarder{e} and any
callable object (normally a user-defined function).
Special read-only attributedm _self is the class instance objedt _func is the function ob-
ject;im _class is the class ofm _self for bound methods or the class that asked for the method
for unbound methods; _doc __ is the method’s documentation (sameims_func. __doc __);
__name__ is the method name (sameias_func. __name__); __module __ is the name of the
module the method was defined in,one if unavailable. Changed in version 2ith _self used
to refer to the class that defined the method.

16

Chapter 3. Data model

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying
function object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an in-
stance of that class), if that attribute is a user-defined function object, an unbound user-defined method
object, or a class method object. When the attribute is a user-defined method object, a new method
object is only created if the class from which it is being retrieved is the same as, or a derived class of,
the class stored in the original method object; otherwise, the original method object is used as it is.

When a user-defined method object is created by retrieving a user-defined function object from a class,
itsim _self attribute isNone and the method object is said to be unbound. When one is created by
retrieving a user-defined function object from a class via one of its instancis, itelf attribute is

the instance, and the method object is said to be bound. In either case, the new nigthotiss

attribute is the class from which the retrieval takes place, anidhitfunc attribute is the original
function object.

When a user-defined method object is created by retrieving another method object from a class or
instance, the behaviour is the same as for a function object, except thiat tfignc attribute of the
new instance is not the original method object buirits func attribute.

When a user-defined method object is created by retrieving a class method object from a class or
instance, itdm _self attribute is the class itself (the same as iime_class attribute), and its
im _func attribute is the function object underlying the class method.

When an unbound user-defined method object is called, the underlying furiatiofufic) is called,
with the restriction that the first argument must be an instance of the properiatasddss) or of
a derived class thereof.

When a bound user-defined method object is called, the underlying funatiarfunc) is called,
inserting the class instancien(_self) in front of the argument list. For instance, wh€ris a class

which contains a definition for a functidf) , andx is an instance ot, callingx.f(1) is equivalent

to callingC.f(x, 1)

When a user-defined method object is derived from a class method object, the “class instance” stored
inim _self will actually be the class itself, so that calling eitbef(1) or C.f(1) is equivalent

to callingf(C,1) wheref is the underlying function.

Note that the transformation from function object to (unbound or bound) method object happens each
time the attribute is retrieved from the class or instance. In some cases, a fruitful optimization is to
assign the attribute to a local variable and call that local variable. Also notice that this transforma-

tion only happens for user-defined functions; other callable objects (and all non-callable objects) are
retrieved without transformation. It is also important to note that user-defined functions which are

attributes of a class instance are not converted to bound methodsniylsappens when the function

is an attribute of the class.

Generator functions A function or method which usestlyéeld statement (see section 6.8, “Tyield
statement”) is called generator function Such a function, when called, always returns an iterator
object which can be used to execute the body of the function: calling the iteragxt§ method
will cause the function to execute until it provides a value usingyibél statement. When the
function executes geturn statement or falls off the end,$toplteration exception is raised
and the iterator will have reached the end of the set of values to be returned.

Built-in functions A built-in function object is a wrapper around a C function. Examples of built-in func-
tionsarden() andmath.sin() (math is a standard built-in module). The number and type of the
arguments are determined by the C function. Special read-only attributdsc __is the function’s
documentation string, ddone if unavailable;__name__ is the function’s name; _self __ is set
to None (but see the next item);_module __ is the name of the module the function was defined in
or None if unavailable.

Built-in methods This is really a different disguise of a built-in function, this time containing an object
passed to the C function as an implicit extra argument. An example of a built-in mettadd is
istappend() ,assuminglistis a list object. In this case, the special read-only attributself __
is set to the object denoted bgt.

Class TypesClass types, or “new-style classes,” are callable. These objects normally act as factories for
new instances of themselves, but variations are possible for class types that ovenele__() .
The arguments of the call are passed tmew__() and, in the typical case, to_init __() to
initialize the new instance.

3.2. The standard type hierarchy 17

Classic ClasseClass objects are described below. When a class object is called, a new class instance (also
described below) is created and returned. This implies a call to the classi® __() method if
it has one. Any arguments are passed on tathi@it __() method. If thereis na_init __()
method, the class must be called without arguments.

Class instancesClass instances are described below. Class instances are callable only when the class has
a__call __() methodx(arguments) is a shorthand fox. __call __(arguments)

Modules Modules are imported by thinport statement (see section 6.12, “Theport statement”). A

module object has a namespace implemented by a dictionary object (this is the dictionary referenced by the
func_globals attribute of functions defined in the module). Attribute references are translated to lookups in
this dictionary, e.g.m.x is equivalentton. __dict __["x"] . A module object does not contain the code
object used to initialize the module (since it isn't needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, mg,= 1’ is equivalent to
‘m.__dict __['x] =1 "

Special read-only attribute:_dict __ is the module’s namespace as a dictionary object.

Predefined (writable) attributes:_name__ is the module’s name;_doc __ is the module’s documen-
tation string, oNone if unavailable;__file __ is the pathname of the file from which the module was
loaded, if it was loaded from a file. The file __ attribute is not present for C modules that are stati-
cally linked into the interpreter; for extension modules loaded dynamically from a shared library, it is the
pathname of the shared library file.

ClassesClass objects are created by class definitions (see section 7.6, “Class definitions”). A class has a names-

pace implemented by a dictionary object. Class attribute references are translated to lookups in this dic-
tionary, e.g., C.x "is translated toC. __dict __["x"] '. When the attribute nhame is not found there,

the attribute search continues in the base classes. The search is depth-first, left-to-right in the order of
occurrence in the base class list.

When a class attribute reference (for cl&@say) would yield a user-defined function object or an unbound
user-defined method object whose associated class is €ithieone of its base classes, it is transformed

into an unbound user-defined method object whoseclass attribute isC. When it would yield a class
method object, it is transformed into a bound user-defined method object wostass andim _self

attributes are bot. When it would yield a static method object, it is transformed into the object wrapped
by the static method object. See section 3.3.2 for another way in which attributes retrieved from a class may
differ from those actually contained in its_dict

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.
A class object can be called (see above) to yield a class instance (see below).

Special attributes: _name__ is the class name;_module __ is the module name in which the class was
defined;__dict __ is the dictionary containing the class’s namespacdjases __ is a tuple (possibly

empty or a singleton) containing the base classes, in the order of their occurrence in the base class list;
__doc __is the class’s documentation string, or None if undefined.

Class instancesA class instance is created by calling a class object (see above). A class instance has a namespace

implemented as a dictionary which is the first place in which attribute references are searched. When an
attribute is not found there, and the instance’s class has an attribute by that name, the search continues
with the class attributes. If a class attribute is found that is a user-defined function object or an unbound
user-defined method object whose associated class is the class (@abfithe instance for which the
attribute reference was initiated or one of its bases, it is transformed into a bound user-defined method
object whosém _class attribute isC whoseim _self attribute is the instance. Static method and class
method objects are also transformed, as if they had been retrieved fronCrisssabove under “Classes”.

See section 3.3.2 for another way in which attributes of a class retrieved via its instances may differ from
the objects actually stored in the class’sdict __. If no class attribute is found, and the object’s class has
a__getattr __() method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class
has a__setattr __() or __delattr __() method, this is called instead of updating the instance
dictionary directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special
names. See section 3.3, “Special method names.”

18

Chapter 3. Data model

Special attributes: _dict __ is the attribute dictionary; _class __ is the instance’s class.

Files A file object represents an open file. File objects are created bggle() built-in function, and also
by os.popen() , os.fdopen() , and themakefile() method of socket objects (and perhaps by
other functions or methods provided by extension modules). The olggststdin , sys.stdout
andsys.stderr are initialized to file objects corresponding to the interpreter's standard input, output
and error streams. See tRgthon Library Referencr complete documentation of file objects.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions may
change with future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects represehyte-compiledexecutable Python code, bytecode The difference
between a code object and a function object is that the function object contains an explicit reference to
the function’s globals (the module in which it was defined), while a code object contains no context;
also the default argument values are stored in the function object, not in the code object (because
they represent values calculated at run-time). Unlike function objects, code objects are immutable and
contain no references (directly or indirectly) to mutable objects.

Special read-only attributeso _name gives the function namego _argcount is the number of
positional arguments (including arguments with default values);nlocals is the number of lo-

cal variables used by the function (including arguments); varnames is a tuple containing the
names of the local variables (starting with the argument narges)¢ellvars is a tuple contain-

ing the names of local variables that are referenced by nested funationfreevars is a tuple
containing the names of free variables;_code is a string representing the sequence of bytecode
instructions;co _consts is a tuple containing the literals used by the bytecate;names is a tu-

ple containing the names used by the bytecade;filename is the filename from which the code
was compiledgo _firstlineno is the first line number of the functiorp _Inotab is a string
encoding the mapping from byte code offsets to line numbers (for details see the source code of the
interpreter)co _stacksize s the required stack size (including local variables);_flags is an
integer encoding a number of flags for the interpreter.

The following flag bits are defined foco _flags : bit 0x04 is set if the function uses the
‘*arguments ' syntax to accept an arbitrary number of positional argumentsPXo8 is set if

the function uses thé*keywords ' syntax to accept arbitrary keyword arguments;dR0 is set

if the function is a generator.

Future feature declarations frfom __future __ import division) also use bits in
co_flags to indicate whether a code object was compiled with a particular feature enabled: bit
0x2000 is set if the function was compiled with future division enabled; B&40 and0x1000
were used in earlier versions of Python.

Other bits inco _flags are reserved for internal use.

If a code object represents a function, the first iteradn_consts is the documentation string of the
function, orNone if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects (see be-
low).
Special read-only attributes: _back is to the previous stack frame (towards the caller)None
if this is the bottom stack framef _code is the code object being executed in this frame;
f _locals is the dictionary used to look up local variablés;globals is used for global variables;
f _builtins is used for built-in (intrinsic) names$;_restricted is a flag indicating whether the
function is executing in restricted execution motlejasti gives the precise instruction (this is an
index into the bytecode string of the code object).
Special writable attributes: _trace , if not None, is a function called at the start of each source code
line (this is used by the debuggef); exc _type ,f _exc _value ,f _exc _traceback represent
the most recent exception caught in this frafelineno is the current line number of the frame —
writing to this from within a trace function jumps to the given line (only for the bottom-most frame).
A debugger can implement a Jump command (aka Set Next Statement) by writidgnem®.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object is created
when an exception occurs. When the search for an exception handler unwinds the execution stack, at
each unwound level a traceback object is inserted in front of the current traceback. When an exception
handler is entered, the stack trace is made available to the program. (See section 7, “Biate-
ment.”) It is accessible ag/s.exc _traceback , and also as the third item of the tuple returned by

3.2. The standard type hierarchy 19

sys.exc _info() . The latter is the preferred interface, since it works correctly when the program
is using multiple threads. When the program contains no suitable handler, the stack trace is written
(nicely formatted) to the standard error stream; if the interpreter is interactive, it is also made available
to the user asys.last _traceback

Special read-only attributesb _next is the next level in the stack trace (towards the frame where
the exception occurred), &tone if there is no next leveltb _frame points to the execution frame

of the current leveltb _lineno gives the line number where the exception occurtbd;lasti

indicates the precise instruction. The line number and last instruction in the traceback may differ from
the line number of its frame object if the exception occurred tnya statement with no matching
except clause or with a finally clause.

Slice objects Slice objects are used to represent slices wddanded slice syntag used. This is a slice

using two colons, or multiple slices or ellipses separated by commasajgjgstep] , afiij,

kAl ,oral.., ii]] . They are also created by the builtslice() ~ function.

Special read-only attributestart is the lower boundstop is the upper boundstep is the step

value; each idNone if omitted. These attributes can have any type.

Slice objects support one method:

indices (self, length
This method takes a single integer arguniengthand computes information about the extended
slice that the slice object would describe if applied to a sequenieagthitems. It returns a tuple
of three integers; respectively these aregtet andstopindices and thetepor stride length of
the slice. Missing or out-of-bounds indices are handled in a manner consistent with regular slices.
New in version 2.3.

Static method objects Static method objects provide a way of defeating the transformation of function
objects to method objects described above. A static method object is a wrapper around any other
object, usually a user-defined method object. When a static method object is retrieved from a class
or a class instance, the object actually returned is the wrapped object, which is not subject to any
further transformation. Static method objects are not themselves callable, although the objects they
wrap usually are. Static method objects are created by the butaiitmethod() constructor.

Class method objectsA class method object, like a static method object, is a wrapper around another ob-
ject that alters the way in which that object is retrieved from classes and class instances. The behaviour
of class method objects upon such retrieval is described above, under “User-defined methods”. Class
method objects are created by the buileiassmethod() constructor.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or
subscripting and slicing) by defining methods with special names. This is Python’s appragmérator over-

loading, allowing classes to define their own behavior with respect to language operators. For instance, if a
class defines a method namedgetitem __() , andx is an instance of this class, thgfi] is equivalent to

X. __getitem __(i) . Exceptwhere mentioned, attempts to execute an operation raise an exception when no
appropriate method is defined.

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented
to the degree that it makes sense for the object being modelled. For example, some sequences may work well with
retrieval of individual elements, but extracting a slice may not make sense. (One example of thisodeheést

interface in the W3C’s Document Object Model.)

3.3.1 Basic customization

—_new__(cls[,])
Called to create a new instance of clats __new__() is a static method (special-cased so you need
not declare it as such) that takes the class of which an instance was requested as its first argument. The
remaining arguments are those passed to the object constructor expression (the call to the class). The return
value of__new__() should be the new object instance (usually an instancéspf

20 Chapter 3. Data model

Typical implementations create a new instance of the class by invoking the superclassw__()
method usingsuper(currentclass cls). __new__(clg, ...]) " with appropriate arguments and
then modifying the newly-created instance as necessary before returning it.

If __new__() returns an instance als, then the new instance’s_init __() method will be invoked
like ‘__init __(self], ...]) ', where self is the new instance and the remaining arguments are the
same as were passedtonew__() .

If __new__() does not return an instance ds, then the new instance’s_init __() method will not
be invoked.

__new__() isintended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize
instance creation.

_init __(self[, ...])
Called when the instance is created. The arguments are those passed to the class constructor expres-
sion. If a base class has aninit __() method, the derived class’s_init __() method, if any,
must explicitly call it to ensure proper initialization of the base class part of the instance; for example:
‘BaseClass. __init __(self, [args..]) . As a special constraint on constructors, no value may
be returned; doing so will causelgpeError to be raised at runtime.

__del __(self)

Called when the instance is about to be destroyed. This is also called a destructor. If a base class has
a__del __() method, the derived class’s del __() method, if any, must explicitly call it to ensure
proper deletion of the base class part of the instance. Note that it is possible (though not recommended!)
for the __del __() method to postpone destruction of the instance by creating a new reference to it. It
may then be called at a later time when this new reference is deleted. It is not guaranteedi#état ()

methods are called for objects that still exist when the interpreter exits.

Note: ‘del x ’doesn’tdirectly calx. __del __() — the former decrements the reference counkfby

one, and the latter is only called wheis reference count reaches zero. Some common situations that may
prevent the reference count of an object from going to zero include: circular references between objects (e.g.,
a doubly-linked list or a tree data structure with parent and child pointers); a reference to the object on the
stack frame of a function that caught an exception (the traceback stosgd.exc _traceback keeps

the stack frame alive); or a reference to the object on the stack frame that raised an unhandled exception in
interactive mode (the traceback storedys.last _traceback keeps the stack frame alive). The first
situation can only be remedied by explicitly breaking the cycles; the latter two situations can be resolved
by storingNone in sys.exc _traceback orsys.last _traceback . Circular references which are
garbage are detected when the option cycle detector is enabled (it's on by default), but can only be cleaned up
if there are no Python-level_del __() methods involved. Refer to the documentation forghenodule

for more information about how_del __() methods are handled by the cycle detector, particularly the
description of thegarbage value.

Warning: Due to the precarious circumstances under whicdel __() methods are invoked, ex
ceptions that occur during their execution are ignored, and a warning is pringyg.giderr in-

stead. Also, when_del __() isinvoked in response to a module being deleted (e.g., when execjition

of the program is done), other globals referenced by théel __() method may already have bedn
deleted. For this reason, del __() methods should do the absolute minimum needed to mairjtain
external invariants. Starting with version 1.5, Python guarantees that globals whose name beging with a
single underscore are deleted from their module before other globals are deleted:; if no other refgrences
to such globals exist, this may help in assuring that imported modules are still available at thp time
when the__del __() method is called.

__repr __(self)
Called by theepr() built-in function and by string conversions (reverse quotes) to compute the “official”
string representation of an object. If at all possible, this should look like a valid Python expression that
could be used to recreate an object with the same value (given an appropriate environment). If this is not
possible, a string of the fornx:..some useful descriptior»’.should be returned. The return value must
be a string object. If a class definesrepr __() butnot__str __() ,then__repr __() is also used
when an “informal” string representation of instances of that class is required.

This is typically used for debugging, so it is important that the representation is information-rich and unam-
biguous.

3.3. Special method names 21

__str __(self)
Called by thestr() built-in function and by therint statement to compute the “informal” string rep-
resentation of an object. This differs from_repr __() in that it does not have to be a valid Python
expression: a more convenient or concise representation may be used instead. The return value must be a
string object.

__It __(self, othe}

__le __(self, othe}

__eq__(self, othe}

__ne__(self, othe}

__gt __(self, othe}

__ge__(self, othe}
New in version 2.1. These are the so-called “rich comparison” methods, and are called for comparison
operators in preference ta cmp__() below. The correspondence between operator symbols and method
names is as followsx<y callsx. __It __(y), x<=ycallsx. __le __(y), x==ycallsx. __eq__(Vy),
Xl=yandx<>y call x. __ne__(y), x>ycallsx. __gt __(y), andx>=y callsx. __ge__(y). These
methods can return any value, but if the comparison operator is used in a Boolean context, the return value
should be interpretable as a Boolean value, el$gmeError will be raised. By conventiorkalse is
used for false andrue for true.

There are no implied relationships among the comparison operators. The trathyadloes not imply that
x!=yis false. Accordingly, when defining_eq__, one should also define_ne __ so that the operators
will behave as expected.

There are no reflected (swapped-argument) versions of these methods (to be used when the left argument
does not support the operation but the right argument does); rathiér,__() and__gt __() are each

other’s reflection,__le __() and__ge__() are each other’sreflection, andeq__() and__ne__()

are their own reflection.

Arguments to rich comparison methods are never coerced. A rich comparison method may return
Notimplemented if it does not implement the operation for a given pair of arguments.

__cmp__(self, othej
Called by comparison operations if rich comparison (see above) is not defined. Should return a nega-
tive integer ifself < other , zero ifself == other , a positive integer ibelf > other . Ifno
__cmp__() ,__eq__() or__ne__() operation is defined, class instances are compared by object iden-
tity (“address”). See also the description_.ofhash __() for some important notes on creating objects
which support custom comparison operations and are usable as dictionary keys. (Note: the restriction that
exceptions are not propagated bycmp__() has been removed since Python 1.5.)

__rcmp __(self, othe}
Changed in version 2.1: No longer supported.

__hash __(self)
Called for the key object for dictionary operations, and by the built-in fundtash() . Should return a
32-bit integer usable as a hash value for dictionary operations. The only required property is that objects
which compare equal have the same hash value; it is advised to somehow mix together (e.g., using exclusive
or) the hash values for the components of the object that also play a part in comparison of objects. If a class
does not define a_cmp__() method it should not define a_hash __() operation either; if it defines
__cmp__() or__eq__() butnot__hash __() , its instances will not be usable as dictionary keys. If a
class defines mutable objects and implementsemp__() or __eq__() method, it should not imple-
ment__hash __() , since the dictionary implementation requires that a key’s hash value is immutable (if
the object’s hash value changes, it will be in the wrong hash bucket).

__nonzero __(self)
Called to implement truth value testing, and the built-in operatiool() ; should returrFalse or True ,
or their integer equivalen or 1. When this method is not defined, len __() is called, if it is defined
(see below). If a class defines neitheden __() nor__nonzero __() , all its instances are considered
true.

__unicode __(self)
Called to implementinicode() builtin; should return a Unicode object. When this method is not defined,
string conversion is attempted, and the result of string conversion is converted to Unicode using the system

22 Chapter 3. Data model

default encoding.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or
deletion ofx.name) for class instances.

__getattr __(self, namg
Called when an attribute lookup has not found the attribute in the usual places (i.e. it is not an instance
attribute nor is it found in the class tree feglf). name s the attribute name. This method should return

the (computed) attribute value or raise/AtributeError exception.

Note that if the attribute is found through the normal mechanisngetattr __() is not called. (This
is an intentional asymmetry betweengetattr __() and __setattr __() .) This is done both
for efficiency reasons and because otherwissetattr __() would have no way to access other at-

tributes of the instance. Note that at least for instance variables, you can fake total control by not insert-
ing any values in the instance attribute dictionary (but instead inserting them in another object). See the
__getattribute __() method below for a way to actually get total control in new-style classes.

__setattr __(self, name, valye
Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store
the value in the instance dictionarylameis the attribute name/alueis the value to be assigned to it.

If __setattr __() wants to assign to an instance attribute, it should not simply exesele * name

= value ’— this would cause a recursive call to itself. Instead, it should insert the value in the dictionary

of instance attributes, e.gself. __dict __[namd = value ’'. For new-style classes, rather than
accessing the instance dictionary, it should call the base class method with the same name, for example,
‘object. __setattr __(self, name, value) '

__delattr __(self, namg
Like __setattr __() but for attribute deletion instead of assignment. This should only be implemented
if ‘del obj. nameis meaningful for the object.

More attribute access for new-style classes

The following methods only apply to new-style classes.

__getattribute __(self, namg
Called unconditionally to implement attribute accesses for instances of the class. If the class also defines
__getattr __, itwill never be called (unless called explicitly). This method should return the (computed)
attribute value or raise attributeError exception. In order to avoid infinite recursion in this method,
its implementation should always call the base class method with the same name to access any attributes it
needs, for examplepbject. __getattribute __(self, name)

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a saieatiggtor
class) appears in the class dictionary of another new-style class, known awrikeclass. In the examples
below, “the attribute” refers to the attribute whose name is the key of the property in the owner cldiss’ __.
Descriptors can only be implemented as new-style classes themselves.

__get __(self, instance, owngr
Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance
attribute access)owneris always the owner class, whilastanceis the instance that the attribute was
accessed through, dlone when the attribute is accessed throughdivmer. This method should return the
(computed) attribute value or raise AttributeError exception.

__set __(self, instance, valye
Called to set the attribute on an instamestanceof the owner class to a new valualue

3.3. Special method names 23

__delete __(self, instanck
Called to delete the attribute on an instantstanceof the owner class.

Invoking Descriptors

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been over-
ridden by methods in the descriptor protocol:get () , —_set __() ,and__delete __() . Ifany of those
methods are defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For
instancea.x has a lookup chain starting with __dict __['x] ,thentype(a). __dict __[x] ,and
continuing through the base classes$ygfe(a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on
which descriptor methods were defined and how they were called. Note that descriptors are only invoked for new
style objects or classes (ones that subotdgsct() ortype()).

The starting point for descriptor invocation is a bindiags . How the arguments are assembled depends on

Direct Call The simplest and least common call is when user code directly invokes a descriptor method:

X. __get __(a) .
Instance Binding If binding to a new-style object instancea.x is transformed into the call:

type(a). __dict __[X]. __get __(a, type(a))

Class Binding If binding to a new-style clagsx is transformed into the calA. __dict __['X]. __get __(None,
A).

SuperBinding If a is an instance of super , then the binding super(B, obj).m() searches
obj. __class __. __mro__ for the base clas®\ immediately precedind® and then invokes the
descriptor with the callA. __dict __['m’]. __get __(obj, A)

For instance bindings, the precedence of descriptor invocation depends on the which descriptor methods are
defined. Data descriptors define bathget () and __set __() . Non-data descriptors have just the
__get __() method. Data descriptors always override a redefinition in an instance dictionary. In contrast,
non-data descriptors can be overridden by instances.

Python methods (includingtaticmethod() andclassmethod()) are implemented as non-data descrip-
tors. Accordingly, instances can redefine and override methods. This allows individual instances to acquire
behaviors that differ from other instances of the same class.

The property() function is implemented as a data descriptor. Accordingly, instances cannot override the
behavior of a property.

__slots__

By default, instances of both old and new-style classes have a dictionary for attribute storage. This wastes space
for objects having very few instance variables. The space consumption can become acute when creating large
numbers of instances.

The default can be overridden by definingslots__ in a new-style class definition. The_slots__ declaration
takes a sequence of instance variables and reserves just enough space in each instance to hold a value for each
variable. Space is saved becauselict__ is not created for each instance.

__slots __
This class variable can be assigned a string, iterable, or sequence of strings with variable names used by
instances. If defined in a new-style classslots__ reserves space for the declared variables and prevents
the automatic creation of_dict__ and__weakref _ for each instance. New in version 2.2.

Notes on using _slots__

24 Chapter 3. Data model

e Withouta__dict__ variable, instances cannot be assigned new variables not listed.in $hets _ defini-

tion. Attempts to assign to an unlisted variable name raisbuteError . If dynamic assignment of
new variables is desired, then add_dict __’' to the sequence of strings in the slots__ declaration.
Changed in version 2.3: Previously, adding_dict __’ to the__slots__ declaration would not enable

the assignment of new attributes not specifically listed in the sequence of instance variable names.

e Without a__weakref _ variable for each instance, classes defininglots__ do not support weak refer-
ences to its instances. If weak reference support is needed, thén adeakref __' to the sequence of
strings in the__slots__ declaration. Changed in version 2.3: Previously, addingweakref __’' to the
__slots__ declaration would not enable support for weak references.

e __slots _ are implemented at the class level by creating descriptors (3.3.2) for each variable name. As
a result, class attributes cannot be used to set default values for instance variables definshbisy_;
otherwise, the class attribute would overwrite the descriptor assignment.

¢ If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is
inaccessible (except by retrieving its descriptor directly from the base class). This renders the meaning of
the program undefined. In the future, a check may be added to prevent this.

e The action of a__slots__ declaration is limited to the class where it is defined. As a result, subclasses will
have a__dict__ unless they also define_slots__.

e __slots__ do not work for classes derived from “variable-length” built-in types sucloag , str and
tuple

e Any non-string iterable may be assigned toslots . Mappings may also be used; however, in the future,
special meaning may be assigned to the values corresponding to each key.

3.3.3 Customizing class creation

By default, new-style classes are constructed usipg() . A class definition is read into a separate namespace
and the value of class name is bound to the resulffpé(name, bases, dict)

When the class definition is read, if metaclass_ is defined then the callable assigned to it will be called instead
of type() . The allows classes or functions to be written which monitor or alter the class creation process:
¢ Modifying the class dictionary prior to the class being created.

e Returning an instance of another class — essentially performing the role of a factory function.

__metaclass __
This variable can be any callable accepting argumentadare, bases , anddict . Upon class creation,
the callable is used instead of the builttype() . New in version 2.2.

The appropriate metaclass is determined by the following precedence rules:

e If dict __metaclass __"] exists, itis used.

e Otherwise, if there is at least one base class, its metaclass is used (this looks fdass _ attribute first
and if not found, uses its type).

e Otherwise, if a global variable named metaclass_ exists, it is used.
e Otherwise, the old-style, classic metaclass (types.ClassType) is used.
The potential uses for metaclasses are boundless. Some ideas that have been explored including logging, inter-

face checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource
locking/synchronization.

3.3. Special method names 25

3.3.4 Emulating callable objects

_call __(self[, args...])
Called when the instance is “called” as a function; if this method is defi{adgl, arg2, ...) isa
shorthand fox. __call __(argl, argz2, ...)

3.3.5 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such
as lists or tuples) or mappings (like dictionaries), but can represent other containers as well. The first set of
methods is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence,
the allowable keys should be the integkrfor whichO <= k < N whereN is the length of the sequence, or

slice objects, which define a range of items. (For backwards compatibility, the metlysdslice __() (see

below) can also be defined to handle simple, but not extended slices.) It is also recommended that mappings
provide the methodgeys() , values() ,items() , has_key() , get() , clear() , setdefault() ,
iterkeys() , itervalues() , iteritems() ,pop() , popitem() ,copy() ,andupdate() behaving

similar to those for Python's standard dictionary objects. UkerDict module provides ®ictMixin class

to help create those methods from a base set gfetitem __() , __setitem __() , __delitem __() ,
andkeys() . Mutable sequences should provide methagpend() , count() , index() , extend() ,

insert() ,pop() ,remove() ,reverse() andsort() ,like Python standard listobjects. Finally, sequence
types should implement addition (meaning concatenation) and multiplication (meaning repetition) by defining the
methods__add __() , —_radd __() , —_jadd __() , ——mul__() , ——_rmul __() and __imul __() de-

scribed below; they should not define coerce __() or other numerical operators. It is recommended that

both mappings and sequences implement theontains __() method to allow efficient use of thie oper-

ator; for mappingsin should be equivalent dfas _key() ; for sequences, it should search through the values.

It is further recommended that both mappings and sequences implementitee __() method to allow ef-

ficient iteration through the container; for mappings,jter __() should be the same d@erkeys() ; for
sequences, it should iterate through the values.

__len __(self)
Called to implement the built-in functiolen() . Should return the length of the object, an integer0.
Also, an object that doesn't define_anonzero __() method and whose_len __() method returns
zero is considered to be false in a Boolean context.

__getitem __(self, key
Called to implement evaluation @klf| key] . For sequence types, the accepted keys should be integers
and slice objects. Note that the special interpretation of negative indexes (if the class wishes to emulate a
sequence type) is up to the getitem __() method. Ifkeyis of an inappropriate typ&lypeError
may be raised; if of a value outside the set of indexes for the sequence (after any special interpretation of
negative values)indexError should be raisedNote: for loops expect that amdexError will be
raised for illegal indexes to allow proper detection of the end of the sequence.

__setitem __(self, key, valug
Called to implement assignmentself| key] . Same note as far_getitem __() . This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added,
or for sequences if elements can be replaced. The same exceptions should be raised for kepvajuers
as for the__getitem __() method.

__delitem __(self, key
Called to implement deletion cfelf[key] . Same note as for_getitem __() . This should only be
implemented for mappings if the objects support removal of keys, or for sequences if elements can be
removed from the sequence. The same exceptions should be raised for imggppalues as for the
__getitem __() method.

__iter __(self)
This method is called when an iterator is required for a container. This method should return a new iterator
object that can iterate over all the objects in the container. For mappings, it should iterate over the keys of
the container, and should also be made available as the migthioelys()

Iterator objects also need to implement this method; they are required to return themselves. For more
information on iterator objects, se&érator Typesin the Python Library Reference

26 Chapter 3. Data model

The membership test operatons (andnot in) are normally implemented as an iteration through a sequence.
However, container objects can supply the following special method with a more efficient implementation, which
also does not require the object be a sequence.

__contains __(self, iten)
Called to implement membership test operators. Should return titesrifs in self, false otherwise. For
mapping objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

3.3.6 Additional methods for emulation of sequence types

The following optional methods can be defined to further emulate sequence objects. Immutable sequences meth-
ods should at most only define getslice __() ; mutable sequences might define all three methods.

__getslice __(self,i,)
Deprecated since release 2.@upport slice objects as parameters to_thgetitem __() method.

Called to implement evaluation afelff i: j] . The returned object should be of the same typesels
Note that missing or j in the slice expression are replaced by zersys.maxint , respectively. If
negative indexes are used in the slice, the length of the sequence is added to that index. If the instance

does not implement the_len __() method, arAttributeError is raised. No guarantee is made
that indexes adjusted this way are not still negative. Indexes which are greater than the length of the se-
guence are not modified. If no_getslice __() isfound, a slice object is created instead, and passed to
__getitem __() instead.

__setslice __(self, i, j, sequenge
Called to implement assignmentdelf i: j] . Same notes farandj as for__getslice __() .
This method is deprecated. If no_setslice __() is found, or for extended slicing of the form
self[i: j: K], a slice object is created, and passed tsetitem __() , instead of__setslice __()
being called.

__delslice __(self,i,)
Called to implement deletion aklf| i: j] . Same notes fdrandj as for__getslice __() . This method
is deprecated. If na_delslice __() is found, or for extended slicing of the forself] i: j: k] , a slice
object is created, and passed todelitem __() , instead of__delslice __() being called.

Notice that these methods are only invoked when a single slice with a single colon is used, and the slice
method is available. For slice operations involving extended slice notation, or in absence of the slice methods,
__getitem __() ,__setitem __() or__delitem __() is called with a slice object as argument.

The following example demonstrate how to make your program or module compatible with earlier versions of
Python (assuming that methods getitem __() , __setitem __() and__delitem __() support slice
objects as arguments):

3.3. Special method names 27

class MyClass:
def __ getitem__(self, index):
def _ setitem__(self, index, value):

def __ delitem__(self, index):

if sys.version_info < (2, 0):
They won't be defined if version is at least 2.0 final

def _ getslice__(self, i, j):

return selffmax(0, i):max(0, j):]
def __ setslice__(self, i, j, seq):

selffmax(0, i):max(0, j);] = seq
def _ delslice__(self, i, j):

del selffmax(0, i):max(0, j):]

Note the calls tomax() ; these are necessary because of the handling of negative indices before the
__*slice __() methods are called. When negative indexes are used, ttieem __() methods receive

them as provided, but the *slice __() methods get a “cooked” form of the index values. For each negative

index value, the length of the sequence is added to the index before calling the method (which may still result

in a negative index); this is the customary handling of negative indexes by the built-in sequence types, and the
__*item __() methods are expected to do this as well. However, since they should already be doing that, neg-
ative indexes cannot be passed in; they must be constrained to the bounds of the sequence before being passed to
the__*item __() methods. Callingnax(0, i) conveniently returns the proper value.

3.3.7 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are
not supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers)
should be left undefined.

__add __(self, othe}

__sub __(self, othe}

__mul __(self, othe}

__floordiv __(self, othe}

__mod__(self, othe}

__divmod __(self, othe}

__pow__(self, othef, modulo])

__lIshift __(self, othe}

__rshift __(self, othe}

__and __(self, othe}

__Xxor __(self, othe}

__or __(self, othe}
These methods are called to implement the binary arithmetic operatigns ¢, // , % divmod() |,
pow() ,** ,<<,>> & ", |). Forinstance, to evaluate the expressity, wherex is an instance of a class
thathasan_add __() methodx. __add__(y) is called. The__divmod __() method should be the
equivalent to using__floordiv. __() and__mod__() ; it should not be related ta_truediv __()
(described below). Note that pow__() should be defined to accept an optional third argument if the
ternary version of the built-ipow() function is to be supported.

__div __(self, othe}

__truediv __(self, othe}
The division operator/() is implemented by these methods. Thetruediv. __() method is used when
__future __.division is in effect, otherwise__div __() is used. If only one of these two methods

28 Chapter 3. Data model

is defined, the object will not support division in the alternate confiepeError will be raised instead.

__radd __(self, othe}

__rsub __(self, othe}

__rmul __(self, othe}

__rdiv __(self, othe}

__rtruediv __(self, othe}

__rfloordiv __(self, othey

__rmod __(self, othe}

__rdivmod __(self, othe}

__rpow __(self, othe}

__rlshift __(self, othe}

__rrshift __(self, othe}

__rand __(self, othe}

__rxor __(self, othe}

__ror __(self, othe}
These methods are called to implement the binary arithmetic operations*(,/ , % divmod() , pow() ,
<<, >>, &, 7, |) with reflected (swapped) operands. These functions are only called if the left operand
does not support the corresponding operation. For instance, to evaluate the expeegsidmerey is an
instance of aclassthathasanrsub __() methody. __rsub __(X) is called. Note that ternagow()
will not try calling __rpow __() (the coercion rules would become too complicated).

__iadd __(self, othe}

__isub __(self, othe}

__imul __(self, othe}

__idiv __(self, othe}

__itruediv __(self, othe}

__ifloordiv __(self, othey

__imod __(self, othe

__ipow __(self, othe{, modulo])

__ilshift __(self, othe}

__irshift __(self, othe}

__iand __(self, othe}

__ixor __(self, othe}

__lior __(self, othe)
These methods are called to implement the augmented arithmetic operatigns (*=, /=, %= **=
<<=, >>=, &=, "=, |=). These methods should attempt to do the operation in-place (modigifiy
and return the result (which could be, but does not have tedl®, If a specific method is not defined,
the augmented operation falls back to the normal methods. For instance, to evaluate the expregsion
wherex is an instance of a class that has.anadd __() methodx. __iadd __(y) is called. Ifxis an
instance of a class that does not define g&add() methodx. __add __(y) andy. __radd __(x) are
considered, as with the evaluationxafy.

__neg__(self)
__pos __(self)
__abs __(self)
__invert __(self)

Called to implement the unary arithmetic operations#, abs() and™).

__complex __(self)

__int __(self)

__long __(self)

__float __(self)
Called to implement the built-in functiormomplex() ,int() ,long() ,andfloat() . Should return
a value of the appropriate type.

__oct __(self)

__hex __(self)

Called to implement the built-in functiormct() andhex() . Should return a string value.

__coerce __(self, othe}

3.3. Special method names 29

Called to implement “mixed-mode” numeric arithmetic. Should either return a 2-tuple contailirend
otherconverted to a common numeric type,None if conversion is impossible. When the common type
would be the type obther , it is sufficient to returrNone, since the interpreter will also ask the other
object to attempt a coercion (but sometimes, if the implementation of the other type cannot be changed, it
is useful to do the conversion to the other type here). A return vallNotdfnplemented is equivalent

to returningNone.

3.3.8 Coercion rules

This section used to document the rules for coercion. As the language has evolved, the coercion rules have become
hard to document precisely; documenting what one version of one particular implementation does is undesirable.
Instead, here are some informal guidelines regarding coercion. In Python 3.0, coercion will not be supported.

e If the left operand of a % operator is a string or Unicode object, no coercion takes place and the string
formatting operation is invoked instead.

e It is no longer recommended to define a coercion operation. Mixed-mode operations on types that don’t
define coercion pass the original arguments to the operation.

e New-style classes (those derived frofject) never invoke the _coerce __() method in response to
a binary operator; the only time_coerce __() is invoked is when the built-in functioooerce() is
called.

e For most intents and purposes, an operator that reNiotisnplemented s treated the same as one that
is not implemented at all.

e Below, __op__() and__rop __() are used to signify the generic method names corresponding to
an operator;__iop __ is used for the corresponding in-place operator. For example, for the operator
‘+', __add__() and__radd __() are used for the left and right variant of the binary operator, and
__iadd __ for the in-place variant.

e For objectxandy, firstx. __op__(y) istried. If this is not implemented or returh®timplemented
y. __rop __(x) is tried. If this is also not implemented or retuNstimplemented , a TypeError
exception is raised. But see the following exception:

e Exception to the previous item: if the left operand is an instance of a built-in type or a new-style class, and
the right operand is an instance of a proper subclass of that type or class, the right operaopl’'s ()
method is triedeforethe left operand’s._op__() method. This is done so that a subclass can completely
override binary operators. Otherwise, the left operand’sp__ method would always accept the right
operand: when an instance of a given class is expected, an instance of a subclass of that class is always
acceptable.

e When either operand type defines a coercion, this coercion is called before that tyjpgs () or
__rop __() method is called, but no sooner. If the coercion returns an object of a different type for
the operand whose coercion is invoked, part of the process is redone using the new object.

e When an in-place operator (like-=’) is used, if the left operand implements.iop __() , it is invoked
without any coercion. When the operation falls back tmp__() and/or__rop __() , the normal coer-
cion rules apply.

e In x+y, if Xis a sequence that implements sequence concatenation, sequence concatenation is invoked.

e In x*y, if one operator is a sequence that implements sequence repetition, and the other is anrmteger (
orlong), sequence repetition is invoked.

e Rich comparisons (implemented by methadseq__() and so on) never use coercion. Three-way com-
parison (implemented by_cmp__()) does use coercion under the same conditions as other binary oper-
ations use it.

¢ In the current implementation, the built-in numeric types , long andfloat do not use coercion;
the typecomplex however does use it. The difference can become apparent when subclassing these
types. Over time, the typeomplex may be fixed to avoid coercion. All these types implement a
__coerce __() method, for use by the built-icoerce() function.

30 Chapter 3. Data model

CHAPTER
FOUR

Execution model

4.1 Naming and binding

Namesrefer to objects. Names are introduced by name binding operations. Each occurrence of a name in the
program text refers to thginding of that name established in the innermost function block containing the use.

A blockis a piece of Python program text that is executed as a unit. The following are blocks: a module, a function
body, and a class definition. Each command typed interactively is a block. A script file (a file given as standard
input to the interpreter or specified on the interpreter command line the first argument) is a code block. A script
command (a command specified on the interpreter command line withcttegption) is a code block. The file

read by the built-in functiorexecfile() is a code block. The string argument passed to the built-in function
eval() and to theexec statement is a code block. The expression read and evaluated by the built-in function
input() is acode block.

A code block is executed in aexecution frame A frame contains some administrative information (used for
debugging) and determines where and how execution continues after the code block’s execution has completed.

A scopedefines the visibility of a name within a block. If a local variable is defined in a block, its scope includes
that block. If the definition occurs in a function block, the scope extends to any blocks contained within the
defining one, unless a contained block introduces a different binding for the name. The scope of names defined in
a class block is limited to the class block; it does not extend to the code blocks of methods.

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes
visible to a code block is called the bloclkésvironment

If a name is bound in a block, it is a local variable of that block. If a name is bound at the module level, it is a
global variable. (The variables of the module code block are local and global.) If a variable is used in a code block
but not defined there, it isfeee variable

When a name is not found at all, NameError exception is raised. If the name refers to a local variable that
has not been bound, @nboundLocalError exception is raisedUnboundLocalError is a subclass of
NameError .

The following constructs bind names: formal parameters to functiomsprt statements, class and function
definitions (these bind the class or function name in the defining block), and targets that are identifiers if occurring
in an assignmentpr loop header, or in the second position ofextept clause header. Thmport statement

of the form “from ...import * binds all names defined in the imported module, except those beginning
with an underscore. This form may only be used at the module level.

A target occurring in alel statement is also considered bound for this purpose (though the actual semantics are
to unbind the name). It is illegal to unbind a name that is referenced by an enclosing scope; the compiler will
report aSyntaxError

Each assignment or import statement occurs within a block defined by a class or function definition or at the
module level (the top-level code block).

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated
as references to the current block. This can lead to errors when a name is used within a block before it is bound.
This rule is subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code
block. The local variables of a code block can be determined by scanning the entire text of the block for name

31

binding operations.

If the global statement occurs within a block, all uses of the name specified in the statement refer to the binding

of that name in the top-level namespace. Names are resolved in the top-level namespace by searching the global
namespace, i.e. the namespace of the module containing the code block, and the builtin namespace, the namespace
of the module__builtin ~ __. The global namespace is searched first. If the name is not found there, the builtin
namespace is searched. The global statement must precede all uses of the name.

The built-in namespace associated with the execution of a code block is actually found by looking up the name

__builtins __in its global namespace; this should be a dictionary or a module (in the latter case the mod-
ule’s dictionary is used). Normally, the_builtins ~ __ namespace is the dictionary of the built-in module
__builtin __ (note: no ‘'s’). If itisn't, restricted execution mode is in effect.

The namespace for a module is automatically created the first time a module is imported. The main module for a
script is always called _main __.

The global statement has the same scope as a name binding operation in the same block. If the nearest enclosing
scope for a free variable contains a global statement, the free variable is treated as a global.

A class definition is an executable statement that may use and define names. These references follow the normal
rules for name resolution. The namespace of the class definition becomes the attribute dictionary of the class.
Names defined at the class scope are not visible in methods.

4.1.1 Interaction with dynamic features

There are several cases where Python statements are illegal when used in conjunction with nested scopes that
contain free variables.

If a variable is referenced in an enclosing scope, it is illegal to delete the name. An error will be reported at
compile time.

If the wild card form of import — tmport * ' —is used in a function and the function contains or is a nested
block with free variables, the compiler will raise a SyntaxError.

If exec is used in a function and the function contains or is a nested block with free variables, the compiler will
raise aSyntaxError unless the exec explicitly specifies the local namespace fogxtbe . (In other words,
‘exec obj ’'would be illegal, but exec obj in ns ' would be legal.)

Theeval() , execfile() , andinput() functions and thesxec statement do not have access to the full
environment for resolving names. Names may be resolved in the local and global namespaces of the caller.
Free variables are not resolved in the nearest enclosing namespace, but in the global nam&sgaeec
statement and theval() andexecfile() functions have optional arguments to override the global and local
namespace. If only one namespace is specified, it is used for both.

4.2 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle errors or
other exceptional conditions. An exceptionragsedat the point where the error is detected; it mayhbadledby

the surrounding code block or by any code block that directly or indirectly invoked the code block where the error
occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A Python
program can also explicitly raise an exception with thise statement. Exception handlers are specified with
thetry ... except statement. Théry ... finally statement specifies cleanup code which does not handle
the exception, but is executed whether an exception occurred or not in the preceding code.

Python uses the “termination” model of error handling: an exception handler can find out what happened and
continue execution at an outer level, but it cannot repair the cause of the error and retry the failing operation
(except by re-entering the offending piece of code from the top).

1This limitation occurs because the code that is executed by these operations is not available at the time the module is compiled.

32 Chapter 4. Execution model

When an exception is not handled at all, the interpreter terminates execution of the program, or returns to its
interactive main loop. In either case, it prints a stack backtrace, except when the exceptistemExit

Exceptions are identified by class instances. Selection of a matching except clause is based on object identity. The
except clause must reference the same class or a base class of it.

When an exception is raised, an object (maMoae) is passed as the exceptiom&ue this object does not affect
the selection of an exception handler, but is passed to the selected exception handler as additional information.
For class exceptions, this object must be an instance of the exception class being raised.

Warning: Messages to exceptions are not part of the Python API. Their contents may change frgm one
version of Python to the next without warning and should not be relied on by code which will run gnder
multiple versions of the interpreter.

See also the description of thiy statement in section 7.4 angise statement in section 6.9.

4.2. Exceptions 33

34

CHAPTER
FIVE

Expressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not
lexical analysis. When (one alternative of) a syntax rule has the form

name := othername

and no semantics are given, the semantics of this formaofe are the same as fathername .

5.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted to a
common type,” the arguments are coerced using the coercion rules listed at the end of chapter 3. If both arguments
are standard numeric types, the following coercions are applied:

e If either argument is a complex number, the other is converted to complex;

e otherwise, if either argument is a floating point number, the other is converted to floating point;

e otherwise, if either argument is a long integer, the other is converted to long integer;

e otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string left argument to the ‘%’ operator). Extensions can
define their own coercions.

5.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed
in reverse quotes or in parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for
atoms is:

atom = identifier | literal | enclosure
enclosure = parenth _form | list _display
| generator _expression | dict _display

| string _conversion

5.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See section 4.1 for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an
attempt to evaluate it raised\NmmeError exception.

35

Private name mangling: When an identifier that textually occurs in a class definition begins with two or more
underscore characters and does not end in two or more underscores, it is consfutératt amameof that class.

Private names are transformed to a longer form before code is generated for them. The transformation inserts
the class name in front of the name, with leading underscores removed, and a single underscore inserted in front
of the class name. For example, the identifieispam occurring in a class namddamwill be transformed to
_Ham__spam. This transformation is independent of the syntactical context in which the identifier is used. If the
transformed name is extremely long (longer than 255 characters), implementation defined truncation may happen.
If the class name consists only of underscores, no transformation is done.

5.2.2 Literals

Python supports string literals and various numeric literals:

literal = stringliteral | integer | longinteger
| floathumber | imagnumber

Evaluation of a literal yields an object of the given type (string, integer, long integer, floating point number,
complex number) with the given value. The value may be approximated in the case of floating point and imaginary
(complex) literals. See section 2.4 for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value.
Multiple evaluations of literals with the same value (either the same occurrence in the program text or a different
occurrence) may obtain the same object or a different object with the same value.

5.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:
parenth _form == "(" [expression _list] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma,
it yields a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the rules for literals apply
(i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma operator. The exception is
the empty tuple, for which parenthesae required — allowing unparenthesized “nothing” in expressions would
cause ambiguities and allow common typos to pass uncaught.

5.2.4 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

test = and_test ("or" and _test)* | lambda _form
testlist test (" test)* [")]

list _display = "[" [listmaker] "]"

listmaker = expression (list _for | ("," expression)* [',"])
list _iter n= list _for | list _if

list _for n= "for" expression _list "in" testlist [list _iter]
list _if n= i test [list _iter]

A list display yields a new list object. Its contents are specified by providing either a list of expressions or a list
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to
right and placed into the list object in that order. When a list comprehension is supplied, it consists of a single
expression followed by at least ofer clause and zero or mofer orif clauses. In this case, the elements of

the new list are those that would be produced by considering each fofrther if clauses a block, nesting from

left to right, and evaluating the expression to produce a list element each time the innermost block ig reached

lIn Python 2.3, a list comprehension "leaks” the control variables of efach™it contains into the containing scope. However, this
behavior is deprecated, and relying on it will not work once this bug is fixed in a future release

36 Chapter 5. Expressions

5.2.5 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator _expression n= "(" test genexpr _for ""

genexpr _for = "for" expression _list "in" test [genexpr _iter]
genexpr _iter = genexpr _for | genexpr _if

genexpr _if m= if" test [genexpr _iter]

A generator expression yields a new generator object. It consists of a single expression followed by at least one
for clause and zero or mofer orif clauses. The iterating values of the new generator are those that would
be produced by considering each of tbe orif clauses a block, nesting from left to right, and evaluating the
expression to yield a value that is reached the innermost block for each iteration.

Variables used in the generator expression are evaluated lazily whaestt{® method is called for generator

object (in the same fashion as normal generators). However, the leftonostlause is immediately evaluated

so that error produced by it can be seen before any other possible error in the code that handles the generator
expression. Subsequefor clauses cannot be evaluated immediately since they may depend on the previous
for loop. For example:(x*y for x in range(10) for y in bar(x)) '

The parentheses can be omitted on calls with only one argument. See section 5.3.4 for the detail.

5.2.6 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict _display = "{" [key _datum _list] "}"
key _datum _list = key _datum ("," key _datum)* [","]
key _datum ;= expression ™" expression

A dictionary display yields a new dictionary object.

The key/datum pairs are evaluated from left to right to define the entries of the dictionary: each key object is used
as a key into the dictionary to store the corresponding datum.

Restrictions on the types of the key values are listed earlier in section 3.2. (To summarize, the key type should be
hashable, which excludes all mutable objects.) Clashes between duplicate keys are not detected; the last datum
(textually rightmost in the display) stored for a given key value prevalils.

5.2.7 String conversions

A string conversion is an expression list enclosed in reverse (a.k.a. backward) quotes:

string _conversion i= expression _list

A string conversion evaluates the contained expression list and converts the resulting object into a string according
to rules specific to its type.

If the object is a string, a numbeXone, or a tuple, list or dictionary containing only objects whose type is one
of these, the resulting string is a valid Python expression which can be passed to the built-in fewalfpn to
yield an expression with the same value (or an approximation, if floating point numbers are involved).

(In particular, converting a string adds quotes around it and converts “funny” characters to escape sequences that
are safe to print.)

Recursive objects (for example, lists or dictionaries that contain a reference to themselves, directly or indirectly)
use ... ' to indicate a recursive reference, and the result cannot be passs@lfp) to get an equal value
(SyntaxError will be raised instead).

The built-in functionrepr() performs exactly the same conversion in its argument as enclosing it in parentheses
and reverse quotes does. The built-in funcstnf) performs a similar but more user-friendly conversion.

5.2. Atoms 37

5.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary = atom | attributeref | subscription | slicing | call

5.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref @= primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, e.g., a module, list, or an
instance. This object is then asked to produce the attribute whose name is the identifier. If this attribute is not
available, the exceptioAttributeError is raised. Otherwise, the type and value of the object produced is
determined by the object. Multiple evaluations of the same attribute reference may yield different objects.

5.3.2 Subscriptions

A subscription selects an item of a sequence (string, tuple or list) or mapping (dictionary) object:
subscription = primary "[" expression _list ""
The primary must evaluate to an object of a sequence or mapping type.

If the primary is a mapping, the expression list must evaluate to an object whose value is one of the keys of the
mapping, and the subscription selects the value in the mapping that corresponds to that key. (The expression list
is a tuple except if it has exactly one item.)

If the primary is a sequence, the expression (list) must evaluate to a plain integer. If this value is negative, the
length of the sequence is added to it (so that, &[¢l] selects the last item of.) The resulting value must be

a nonnegative integer less than the number of items in the sequence, and the subscription selects the item whose
index is that value (counting from zero).

A string’s items are characters. A character is not a separate data type but a string of exactly one character.

5.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as
expressions or as targets in assignment or del statements. The syntax for a slicing:

slicing = simple _slicing | extended _slicing
simple _slicing = primary "[" short _slice ""
extended _slicing = primary "[" slice _list ""

slice _list = slice _item ("," slice _item)* [*,"]
slice _item = expression | proper _slice | ellipsis
proper _slice = short _slice | long _slice

short _slice = [lower _bound] ™" [upper _bound]
long _slice = short _slice ":" [stride]

lower _bound 1= expression

upper _bound = expression

stride 1= expression

ellipsis =L

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice
list, so any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is
disambiguated by defining that in this case the interpretation as a subscription takes priority over the interpretation
as a slicing (this is the case if the slice list contains no proper slice nor ellipses). Similarly, when the slice list has
exactly one short slice and no trailing comma, the interpretation as a simple slicing takes priority over that as an
extended slicing.

38 Chapter 5. Expressions

The semantics for a simple slicing are as follows. The primary must evaluate to a sequence object. The lower
and upper bound expressions, if present, must evaluate to plain integers; defaults are zergymohthént
respectively. If either bound is negative, the sequence’s length is added to it. The slicing now selects all items
with indexk such that <= k < jwherei andj are the specified lower and upper bounds. This may be an empty
sequence. It is not an erroriifor j lie outside the range of valid indexes (such items don't exist so they aren’t
selected).

The semantics for an extended slicing are as follows. The primary must evaluate to a mapping object, and it is
indexed with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma,
the key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice item
is the key. The conversion of a slice item that is an expression is that expression. The conversion of an ellipsis
slice item is the built-irEllipsis object. The conversion of a proper slice is a slice object (see section 3.2)
whosestart , stop andstep attributes are the values of the expressions given as lower bound, upper bound
and stride, respectively, substitutifpne for missing expressions.

5.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call = primary "(" [argument _list [
primary "(" [argument.list [*,"] — test genexpr_for] ”)” argument _list := positional _arguments [")" key
["," ™" expression]
[, "**" expression]
| keyword _arguments [')" "*" e
[, "**" expression]
| ™" expression [",)" "**" express
| "**" expression
positional ~ _arguments = expression ("," expression)*
keyword _arguments = keyword _item ("," keyword
keyword _item = identifier "=" expression

A trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in

objects, class objects, methods of class instances, and certain class instances themselves are callable; extensions

may define additional callable object types). All argument expressions are evaluated before the call is attempted.
Please refer to section 7.5 for the syntax of formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of
unfilled slots is created for the formal parameters. If there are N positional arguments, they are placed in the
first N slots. Next, for each keyword argument, the identifier is used to determine the corresponding slot (if the
identifier is the same as the first formal parameter name, the first slot is used, and so on). If the slot is already
filled, aTypeError exception is raised. Otherwise, the value of the argument is placed in the slot, filling it (even

if the expression idlone, it fills the slot). When all arguments have been processed, the slots that are still unfilled
are filled with the corresponding default value from the function definition. (Default values are calculated, once,
when the function is defined; thus, a mutable object such as a list or dictionary used as default value will be shared
by all calls that don't specify an argument value for the corresponding slot; this should usually be avoided.) If
there are any unfilled slots for which no default value is specifi@dpeError exception is raised. Otherwise,

the list of filled slots is used as the argument list for the call.

If there are more positional arguments than there are formal parameter slgtseBrror exception is raised,

unless a formal parameter using the syntadentifier " is present; in this case, that formal parameter re-
ceives a tuple containing the excess positional arguments (or an empty tuple if there were no excess positional
arguments).

If any keyword argument does not correspond to a formal parameter nahype&rror exception is raised,

unless a formal parameter using the synt&xdentifier " is present; in this case, that formal parameter
receives a dictionary containing the excess keyword arguments (using the keywords as keys and the argument
values as corresponding values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression ' appears in the function callexpression ' must evaluate to a sequence. El-

5.3. Primaries 39

ements from this sequence are treated as if they were additional positional arguments; if there are postional ar-
gumentsxl,...xN , and expression ' evaluates to a sequengé,...yM, this is equivalent to a call with M+N
positional argumentsl,... XxN,y1,...yM.

A consequence of this is that although thiexpression ' syntax appearsfter any keyword arguments, it is
processetheforethe keyword arguments (and th&éxpression ' argument, if any — see below). So:

>>> def f(a, b):
print a, b

>>> f(b=1, *(2,))
21
>>> f(a=1, *(2,)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: f() got multiple values for keyword argument 'a’
>>> (1, *(2,))
12

It is unusual for both keyword arguments and thexpression ' syntax to be used in the same call, so in
practice this confusion does not arise.

If the syntax **expression ' appears in the function callekpression ' must evaluate to a (subclass of)
dictionary, the contents of which are treated as additional keyword arguments. In the case of a keyword appearing
in both ‘expression ' and as an explicit keyword argumentTgpeError exception is raised.

Formal parameters using the syntaxientifier " or ‘**jdentifier ’ cannot be used as positional argu-

ment slots or as keyword argument names. Formal parameters using the éyultdist) ' cannot be used as

keyword argument names; the outermost sublist corresponds to a single unnamed argument slot, and the argument
value is assigned to the sublist using the usual tuple assignment rules after all other parameter processing is done.

A call always returns some value, possiNpne, unless it raises an exception. How this value is computed
depends on the type of the callable object.

Ifitis—
a user-defined function: The code block for the function is executed, passing it the argument list. The first thing

the code block will do is bind the formal parameters to the arguments; this is described in section 7.5. When
the code block executegeturn statement, this specifies the return value of the function call.

a built-in function or method: The result is up to the interpreter; see thghon Library Referenctor the de-
scriptions of built-in functions and methods.

a class object: A new instance of that class is returned.

a class instance method:The corresponding user-defined function is called, with an argument list that is one
longer than the argument list of the call: the instance becomes the first argument.

a class instance:The class must define a_call __() method; the effect is then the same as if that method
was called.

5.4 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators
on its right. The syntax is:

power = primary ["™**" u _expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left
(this does not constrain the evaluation order for the operands).

40 Chapter 5. Expressions

The power operator has the same semantics as the bpittvnd) function, when called with two arguments: it
yields its left argument raised to the power of its right argument. The numeric arguments are first converted to a
common type. The result type is that of the arguments after coercion.

With mixed operand types, the coercion rules for binary arithmetic operators apply. For int and long int operands,
the result has the same type as the operands (after coercion) unless the second argument is negative; in that case,
all arguments are converted to float and a float result is delivered. For exdidpi2, returns100, but10**-2

returns0.01 . (This last feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of
integer types and the second argument was negative, an exception was raised).

Raising0.0 to a negative power results inZeeroDivisionError . Raising a negative number to a fractional
power results in &alueError

5.5 Unary arithmetic operations

All unary arithmetic (and bit-wise) operations have the same priority:

u_expr = power | """ u _expr | "+" u _expr | u _expr
The unary- (minus) operator yields the negation of its numeric argument.
The unary+ (plus) operator yields its numeric argument unchanged.

The unary™ (invert) operator yields the bit-wise inversion of its plain or long integer argument. The bit-wise
inversion ofx is defined as(x+1) . It only applies to integral numbers.

In all three cases, if the argument does not have the proper typgekrror exception is raised.

5.6 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also
apply to certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative
operators and one for additive operators:

m_expr = u_expr | m _expr ™" u _expr | m _expr "/[" u _expr | m _expr "/" u _expr
| m_expr "%" u _expr
a_expr = mexpr | a _expr "+" m _expr | a _expr "-" m _expr

The* (multiplication) operator yields the product of its arguments. The arguments must either both be numbers,
or one argument must be an integer (plain or long) and the other must be a sequence. In the former case, the
numbers are converted to a common type and then multiplied together. In the latter case, sequence repetition is
performed; a negative repetition factor yields an empty sequence.

The/ (division) and// (floor division) operators yield the quotient of their arguments. The numeric arguments
are first converted to a common type. Plain or long integer division yields an integer of the same type; the
result is that of mathematical division with the ‘floor’ function applied to the result. Division by zero raises the
ZeroDivisionError exception.

The %(modulo) operator yields the remainder from the division of the first argument by the second. The numeric
arguments are first converted to a common type. A zero right argument raiggs tfizvisionError excep-

tion. The arguments may be floating point numbers, 8.§4%0.7 equals0.34 (since3.14 equals4*0.7

+ 0.34 .) The modulo operator always yields a result with the same sign as its second operand (or zero); the
absolute value of the result is strictly smaller than the absolute value of the second éperand

The integer division and modulo operators are connected by the following identity (X/y)*y + (x%y)
Integer division and modulo are also connected with the built-in funaiemod() : divmod(x, y) ==

2While abs(x%y) < abs(y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and
assuming a platform on which a Python float is an IEEE 754 double-precision number, in ordéeth@0 %1e100 have the same sign
as1el00, the computed result isle-100 + 1e100 , which is numerically exactly equal tbe1l00. Functionfmod() in the math
module returns a result whose sign matches the sign of the first argument instead, and seletl@ds in this case. Which approach is
more appropriate depends on the application.

5.5. Unary arithmetic operations 41

(xly, x%y) . These identities don't hold for floating point numbers; there similar identities hold approximately
wherex/ly is replaced byloor(x/y) orfloor(xty) - 1 3,

Deprecated since release 2.3he floor division operator, the modulo operator, anddivenod() function are
no longer defined for complex numbers. Instead, convert to a floating point number usatgsthe function if
appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both
sequences of the same type. In the former case, the numbers are converted to a common type and then added
together. In the latter case, the sequences are concatenated.

The- (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to
a common type.

5.7 Shifting operations

The shifting operations have lower priority than the arithmetic operations:
shift _expr = a_expr | shift _expr (("<<" | ">>") a _expr

These operators accept plain or long integers as arguments. The arguments are converted to a common type. They
shift the first argument to the left or right by the number of bits given by the second argument.

A right shift by n bits is defined as division byow(2, n) . A left shift by n bits is defined as multiplication with
pow(2, n);for plain integers there is no overflow check so in that case the operation drops bits and flips the sign
if the result is not less thaoow(2,31) in absolute value. Negative shift counts raidésdueError exception.

5.8 Binary bit-wise operations

Each of the three bitwise operations has a different priority level:

and _expr = shift _expr | and _expr "&" shift _expr
Xor _expr = and_expr | xor _expr " and _expr
or _expr = Xxor _expr | or _expr "|" xor _expr

The & operator yields the bitwise AND of its arguments, which must be plain or long integers. The arguments are
converted to a common type.

The” operator yields the bitwise XOR (exclusive OR) of its arguments, which must be plain or long integers. The
arguments are converted to a common type.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be plain or long integers. The
arguments are converted to a common type.

5.9 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic,
shifting or bitwise operation. Also unlike C, expressions bke< b < ¢ have the interpretation that is conven-
tional in mathematics:

comparison
comp_operator

or _expr (comp _operator or _expr)*
ll<ll | II>II | II::lI | II>:II | II<:lI | II<>II | ll!:Il
| "iS" ["not"] | ["I"]Ot"] llinll

Comparisons yield boolean valuégue or False .

3If x is very close to an exact integer multiple of y, it's possible flopr(x/y) to be one larger thafx-x%y)/y due to rounding. In
such cases, Python returns the latter result, in order to presengivtivetd(x,y)[0] * y + X % y be very close to.

42 Chapter 5. Expressions

Comparisons can be chained arbitrarily, exgs y <= z isequivalenttx < y and y <= z , except that
y is evaluated only once (but in both cageis not evaluated at all when < y is found to be false).

Formally, ifa, b, c, ...,y, zare expressions arapa opb, ..., opyare comparison operators, thempa b opb ¢
...y opy zis equivalent taa opa band b opb cand ...y opy z except that each expression is evaluated at most
once.

Note thata opa b opb aoesn’t imply any kind of comparison betwearandc, so that, e.g.x <y > z is
perfectly legal (though perhaps not pretty).

The forms<> and!= are equivalent; for consistency with I, is preferred; wheré= is mentioned below> is
also accepted. The> spelling is considered obsolescent.

The operators, >, ==, >=, <=, and!= compare the values of two objects. The objects need not have the same
type. If both are numbers, they are converted to a common type. Otherwise, objects of differeralyges
compare unequal, and are ordered consistently but arbitrarily.

(This unusual definition of comparison was used to simplify the definition of operations like sorting aind the
andnot in operators. In the future, the comparison rules for objects of different types are likely to change.)

Comparison of objects of the same type depends on the type:

e Numbers are compared arithmetically.

e Strings are compared lexicographically using the numeric equivalents (the result of the built-in function
ord()) of their characters. Unicode and 8-bit strings are fully interoperable in this behavior.

e Tuples and lists are compared lexicographically using comparison of corresponding elements. This means
that to compare equal, each element must compare equal and the two sequences must be of the same type
and have the same length.

If not equal, the sequences are ordered the same as their first differing elements. For example,
cmp([1,2,x], [1,2,y]) returns the same asmp(x,y) . If the corresponding element does not
exist, the shorter sequence is ordered first (for exanip/2] < [1,2,3]).

e Mappings (dictionaries) compare equal if and only if their sorted (key, value) lists compare* eQuiai.
comes other than equality are resolved consistently, but are not otherwise defined.

e Most other types compare unequal unless they are the same object; the choice whether one object is con-
sidered smaller or larger than another one is made arbitrarily but consistently within one execution of a
program.

The operatorén andnot in test for set membershig. in sevaluates to true ¥ is a member of the sefand

false otherwisex not in sreturns the negation of in s. The set membership test has traditionally been

bound to sequences; an object is a member of a set if the set is a sequence and contains an element equal to that
object. However, it is possible for an object to support membership tests without being a sequence. In particular,
dictionaries support membership testing as a nicer way of spédéingn dict; other mapping types may follow

suit.

For the list and tuple types, in yis true if and only if there exists an indésuch thax == y[i] is true.

For the Unicode and string types, in y is true if and only ifx is a substring ofy. An equivalent test is
y.find(x) 1= -1 . Note,x andy need not be the same type; consequenthb’ in 'abc’ will return
True . Empty strings are always considered to be a substring of any other stritig,iso"abc” will return
True . Changed in version 2.3: Previouskwas required to be a string of length

For user-defined classes which define thecontains __() method, x in y is true if and only if
y. __contains __(X) is true.

For user-defined classes which do not defineontains __() and do define__getitem __() ,x in yis
true if and only if there is a non-negative integer indexch thaik == y[i] , and all lower integer indices do not

raiselndexError exception. (If any other exception is raised, it is asifraised that exception).

4The implementation computes this efficiently, without constructing lists or sorting.

SEarlier versions of Python used lexicographic comparison of the sorted (key, value) lists, but this was very expensive for the common case
of comparing for equality. An even earlier version of Python compared dictionaries by identity only, but this caused surprises because people
expected to be able to test a dictionary for emptiness by comparing}it.to

5.9. Comparisons 43

The operatonot in is defined to have the inverse true valuerof

The operatorss andis not test for object identityx is vy is true if and only ifx andy are the same object.
X is not yyields the inverse truth value.

5.10 Boolean operations

Boolean operations have the lowest priority of all Python operations:

expression = or _test | lambda _form

or _test = and_test | or _test "or" and _test
and _test = not _test | and _test "and" not _test
not _test ’= comparison | "not" not _test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following
values are interpreted as falddone, numeric zero of all types, empty sequences (strings, tuples and lists), and
empty mappings (dictionaries). All other values are interpreted as true.

The operatonot yieldsTrue if its argument is false-alse otherwise.

The expressiox and v first evaluates; if x is false, its value is returned; otherwiseis evaluated and the
resulting value is returned.

The expressiorn or yfirst evaluates; if xis true, its value is returned; otherwisas evaluated and the resulting
value is returned.

(Note that neitheand noror restrict the value and type they returnRalse andTrue , but rather return the
last evaluated argument. This is sometimes useful, e.g.isifa string that should be replaced by a default value
if it is empty, the expressios or 'foo’ yields the desired value. Becausa has to invent a value anyway,

it does not bother to return a value of the same type as its argument, swé.goo’ yieldsFalse , not”)

5.11 Lambdas

lambda _form = “lambda" [parameter _list]: expression

Lambda forms (lambda expressions) have the same syntactic position as expressions. They are a shorthand to
create anonymous functions; the expressmnbda arguments expressioryields a function object. The
unnamed object behaves like a function object defined with

def name(arguments):
return expression

See section 7.5 for the syntax of parameter lists. Note that functions created with lambda forms cannot contain
statements.

5.12 Expression lists

expression _list = expression ("," expression)* [")"]
An expression list containing at least one comma yields a tuple. The length of the tuple is the number of expres-
sions in the list. The expressions are evaluated from left to right.

The trailing comma is required only to create a single tuple (a.ksingletor); it is optional in all other cases. A
single expression without a trailing comma doesn't create a tuple, but rather yields the value of that expression.
(To create an empty tuple, use an empty pair of parenthések:

44 Chapter 5. Expressions

5.13 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is
evaluated before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

exprl, expr2, expr3, exprd
(exprl, expr2, expr3, exprd)
{exprl: expr2, expr3: expr4}
exprl + expr2 * (expr3 - exprd)
func(exprl, expr2, *expr3, **expr4)
expr3, exprd = exprl, expr2

5.14 Summary

The following table summarizes the operator precedences in Python, from lowest precedence (least binding) to
highest precedence (most binding). Operators in the same box have the same precedence. Unless the syntax
is explicitly given, operators are binary. Operators in the same box group left to right (except for comparisons,
including tests, which all have the same precedence and chain from left to right — see section 5.9 — and exponen-
tiation, which groups from right to left).

Operator Description
lambda Lambda expression
or Boolean OR
and Boolean AND
not x Boolean NOT
in , notin Membership tests
is ,is not Identity tests
<, <=,>,>=, <> 1= == Comparisons
| Bitwise OR
- Bitwise XOR
& Bitwise AND
<<, >> Shifts
+, - Addition and subtraction
* I, % Multiplication, division, remainder
+X, - X Positive, negative
X Bitwise not
* Exponentiation
X. attribute Attribute reference
X[indeX Subscription
X[index indexq Slicing
f(arguments.) Function call
(expressions.) Binding or tuple display
[expressions.] List display
{ key datum..} Dictionary display
‘ expressions.* String conversion

5.13. Evaluation order 45

46

CHAPTER
SIX

Simple statements

Simple statements are comprised within a single logical line. Several simple statements may occur on a single line
separated by semicolons. The syntax for simple statements is:

simple _stmt = expression _stmt

assert _stmt

assignment _stmt
augmented _assignment _stmt

pass _stmt

del _stmt

print _stmt
return _stmt
yield _stmt
raise _stmt
break _stmt

continue _stmt
import _stmt
global _stmt
exec _stmt

6.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a proce-
dure (a function that returns no meaningful result; in Python, procedures return theNvalag Other uses of
expression statements are allowed and occasionally useful. The syntax for an expression statement is:

expression _stmt = expression _list
An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is nblione, it is converted to a string using the builtfi@pr() function and the
resulting string is written to standard output (see section 6.6) on a line by itself. (Expression statements yielding
None are not written, so that procedure calls do not cause any output.)

6.2 Assert statements

Assert statements are a convenient way to insert debugging assertions into a program:

assert _stmt = “assert" expression ["," expression]
The simple form, assert expression ', is equivalent to
if _ debug__:

if not expression: raise AssertionError

47

The extended formassert expressionl, expression2 ', is equivalent to

if _debug__:
if not expressionl: raise AssertionError, expression2

These equivalences assume thatlebug __ andAssertionError refer to the built-in variables with those
names. In the current implementation, the built-in variablelebug __ is True under normal circumstances,

False when optimization is requested (command line option -O). The current code generator emits no code for
an assert statement when optimization is requested at compile time. Note that it is unnecessary to include the
source code for the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments ta__debug __ are illegal. The value for the built-in variable is determined when the interpreter
starts.

6.3 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

assignment _stmt (target _list)+ expression _list

target _list = target ("," target)* [","]
target = identifier

| "(" target _list ")"

"[" target _list ""

|
| attributeref
| subscription
| slicing

(See section 5.3 for the syntax definitions for the last three symbols.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-
separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left
to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable
object (an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment
and decide about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by
various types and the exceptions raised are given with the definition of the object types (see section 3.2).

Assignment of an object to a target list is recursively defined as follows.

e If the target list is a single target: The object is assigned to that target.

o Ifthe target listis a comma-separated list of targets: The object must be a sequence with the same number of
items as there are targets in the target list, and the items are assigned, from left to right, to the corresponding
targets. (This rule is relaxed as of Python 1.5; in earlier versions, the object had to be a tuple. Since strings
are sequences, an assignment likke b = "xy" ’'is now legal as long as the string has the right length.)

Assignment of an object to a single target is recursively defined as follows.

e If the target is an identifier (name):

— If the name does not occur inggobal statement in the current code block: the name is bound to the
object in the current local namespace.

— Otherwise: the name is bound to the object in the current global namespace.

The name is rebound if it was already bound. This may cause the reference count for the object previously
bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be
called.

48 Chapter 6. Simple statements

o Ifthe targetis a target list enclosed in parentheses or in square brackets: The object must be a sequence with
the same number of items as there are targets in the target list, and its items are assigned, from left to right,
to the corresponding targets.

¢ If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield
an object with assignable attributes; if this is not the cagpeError s raised. That object is then asked
to assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception
(usually but not necessaripttributeError).

e If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a
mutable sequence object (e.g., a list) or a mapping object (e.g., a dictionary). Next, the subscript expression
is evaluated.

If the primary is a mutable sequence object (e.g., a list), the subscript must yield a plain integer. If it is
negative, the sequence’s length is added to it. The resulting value must be a nonnegative integer less than
the sequence’s length, and the sequence is asked to assign the assigned object to its item with that index.
If the index is out of rangdndexError s raised (assignment to a subscripted sequence cannot add new
items to a list).

If the primary is a mapping object (e.g., a dictionary), the subscript must have a type compatible with the
mapping’s key type, and the mapping is then asked to create a key/datum pair which maps the subscript to
the assigned object. This can either replace an existing key/value pair with the same key value, or insert a
new key/value pair (if no key with the same value existed).

e If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable
sequence object (e.g., a list). The assigned object should be a sequence object of the same type. Next,
the lower and upper bound expressions are evaluated, insofar they are present; defaults are zero and the
sequence’s length. The bounds should evaluate to (small) integers. If either bound is negative, the sequence’s
length is added to it. The resulting bounds are clipped to lie between zero and the sequence’s length,
inclusive. Finally, the sequence object is asked to replace the slice with the items of the assigned sequence.
The length of the slice may be different from the length of the assigned sequence, thus changing the length
of the target sequence, if the object allows it.

(In the current implementation, the syntax for targets is taken to be the same as for expressions, and invalid syntax
is rejected during the code generation phase, causing less detailed error messages.)

WARNING: Although the definition of assignment implies that overlaps between the left-hand side and the right-
hand side are ‘safe’ (e.g.a, b = b, a ’swaps two variables), overlapgithin the collection of assigned-to
variables are not safe! For instance, the following program prifits2]

6.3.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment state-
ment:

augmented _assignment _stmt
augop

target augop expression _list
||+:|l | n_—n | k1 | u/:u | ||%:|| | Tk —1
| II>>:II | II<<:II | Il&:II | II":II | II|:II

(See section 5.3 for the syntax definitions for the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpack-
ing) and the expression list, performs the binary operation specific to the type of assignment on the two operands,
and assigns the result to the original target. The target is only evaluated once.

6.3. Assignment statements 49

An augmented assignment expression kke= 1 can be rewritten ag = x + 1 to achieve a similar, but not
exactly equal effect. In the augmented versioig only evaluated once. Also, when possible, the actual operation

is performedn-place meaning that rather than creating a new object and assigning that to the target, the old object
is modified instead.

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by
augmented assignment statements is handled the same way as normal assignments. Similarly, with the exception
of the possibldan-place behavior, the binary operation performed by augmented assignment is the same as the
normal binary operations.

For targets which are attribute references, the initial value is retrieved vgétadtr() and the result is as-
signed with asetattr() . Notice that the two methods do not necessarily refer to the same variable. When
getattr() refers to a class variablegetattr() still writes to an instance variable. For example:

class A:
x =3 # class variable
a = AQ
ax += 1 # writes a.x as 4 leaving Ax as 3

6.4 The pass statement

pass _stmt = '"pass"

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement
is required syntactically, but no code needs to be executed, for example:

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

6.5 The del statement

del _stmt = "del" target _list

Deletion is recursively defined very similar to the way assignment is defined. Rather that spelling it out in full
details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether
the name occurs inglobal statement in the same code block. If the name is unbouNédn@eError exception
will be raised.

Itis illegal to delete a name from the local namespace if it occurs as a free variable in a nested block.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a
slicing is in general equivalent to assignment of an empty slice of the right type (but even this is determined by
the sliced object).

6.6 The print statement

print _stmt = "print" ([expression ("," expression)* []]
| ">>" expression [(expression)+ []])

print evaluates each expression in turn and writes the resulting object to standard output (see below). If an

50 Chapter 6. Simple statements

object is not a string, it is first converted to a string using the rules for string conversions. The (resulting or
original) string is then written. A space is written before each object is (converted and) written, unless the output
system believes it is positioned at the beginning of a line. This is the case (1) when no characters have yet been
written to standard output, (2) when the last character written to standard output,isr (3) when the last write
operation on standard output was ngirant statement. (In some cases it may be functional to write an empty
string to standard output for this reasoildte: Objects which act like file objects but which are not the built-in

file objects often do not properly emulate this aspect of the file object’s behavior, so it is best not to rely on this.

A ‘\n ’ character is written at the end, unless grent statement ends with a comma. This is the only action if
the statement contains just the keywepréht

Standard output is defined as the file object nastddut in the built-in modulesys . If no such object exists,
or if it does not have avrite() method, ERuntimeError exception is raised.

print also has an extended form, defined by the second portion of the syntax described above. This form is
sometimes referred to apfint chevron.” In this form, the first expression after tiie must evaluate to a “file-

like” object, specifically an object that haswaite() = method as described above. With this extended form, the
subsequent expressions are printed to this file object. If the first expression evaliddas tthensys.stdout

is used as the file for output.

6.7 Thereturn statement

return _stmt = ‘"return" [expression _list]
return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, &lsae is substituted.
return leaves the current function call with the expression listNone) as return value.

Whenreturn passes control out oftay statement with éinally clause, thafinally clause is executed
before really leaving the function.

In a generator function, theturn statement is not allowed to include expression _list . In that context,
a barereturn indicates that the generator is done and will cabplteration to be raised.

6.8 Theyield statement

yield _stmt = ‘yield" expression _list

Theyield statement is only used when defining a generator function, and is only used in the body of the
generator function. Usingydeld statement in a function definition is sufficient to cause that definition to create
a generator function instead of a normal function.

When a generator function is called, it returns an iterator known as a generator iterator, or more commonly, a
generator. The body of the generator function is executed by calling the genenatds method repeatedly
until it raises an exception.

When ayield statement is executed, the state of the generator is frozen and the vakpredsion _list

is returned tanext() ’s caller. By “frozen” we mean that all local state is retained, including the current bindings

of local variables, the instruction pointer, and the internal evaluation stack: enough information is saved so that
the next timenext() is invoked, the function can proceed exactly as ifyfedd statement were just another
external call.

Theyield statement is not allowed in thtey clause of ary ... finally construct. The difficulty is that
there’s no guarantee the generator will ever be resumed, hence no guaranteefitiatyhe block will ever get
executed.

Note: In Python 2.2, thesield statement is only allowed when tigenerators feature has been enabled. It
will always be enabled in Python 2.3. Thisfuture __ import statement can be used to enable the feature:

6.7. Thereturn statement 51

from __ future__ import generators

See Also:

PEP 0255, Simple Generatofs
The proposal for adding generators andyled statement to Python.

6.9 Theraise statement

raise _stmt = ‘“raise" [expression ['," expression ["," expression]]]

If no expressions are presemgise re-raises the last expression that was active in the current scope. If no
exception is active in the current scope, an exception is raised indicating this error.

Otherwiseraise evaluates the expressions to get three objects, Nmg as the value of omitted expressions.
The first two objects are used to determinetipeandvalueof the exception.

If the first object is an instance, the type of the exception is the class of the instance, the instance itself is the value,
and the second object must Nene.

If the first object is a class, it becomes the type of the exception. The second object is used to determine the
exception value: If it is an instance of the class, the instance becomes the exception value. If the second object is a
tuple, itis used as the argument list for the class constructor; iNbise, an empty argument list is used, and any

other object is treated as a single argument to the constructor. The instance so created by calling the constructor is
used as the exception value.

If a third object is present and nibne, it must be a traceback object (see section 3.2), and it is substituted instead

of the current location as the place where the exception occurred. If the third object is present and not a traceback
object orNone, aTypeError exception is raised. The three-expression formaige is useful to re-raise an
exception transparently in an except clause,rbige with no expressions should be preferred if the exception

to be re-raised was the most recently active exception in the current scope.

Additional information on exceptions can be found in section 4.2, and information about handling exceptions is
in section 7.4.

6.10 The break statement

break _stmt = "break"

break may only occur syntactically nested iica orwhile loop, but not nested in a function or class definition
within that loop.

It terminates the nearest enclosing loop, skipping the optielsal clause if the loop has one.
If afor loop is terminated bypreak , the loop control target keeps its current value.

Whenbreak passes control out oftay statement with dinally clause, thafinally clause is executed
before really leaving the loop.

6.11 The continue statement

continue _stmt ;= "continue"

continue may only occur syntactically nested iff@a or while loop, but not nested in a function or class
definition ortry statement within that looplt continues with the next cycle of the nearest enclosing loop.

it may occur within anexcept or else clause. The restriction on occurring in thrg clause is implementor’s laziness and will
eventually be lifted.

52 Chapter 6. Simple statements

6.12 The import statement

import _stmt = ‘“import" module ['as" name] (", module ['as" name])*
| "from" module "import" identifier ["as" name]

("," identifier ["as" name])*

| "from" module "import" "(" identifier ['as" name]

(") identifier ["as" name])* [","] ")"

| "“from" module "import" "*"

(identifier ".")* identifier

module

Import statements are executed in two steps: (1) find a module, and initialize it if necessary; (2) define a name or
names in the local namespace (of the scope whernerpert statement occurs). The first form (withdudbm)

repeats these steps for each identifier in the list. The formfnoth performs step (1) once, and then performs

step (2) repeatedly.

In this context, to “initialize” a built-in or extension module means to call an initialization function that the module
must provide for the purpose (in the reference implementation, the function’s name is obtained by prepending
string “init” to the module’s name); to “initialize” a Python-coded module means to execute the module’s body.

The system maintains a table of modules that have been or are being initialized, indexed by module name. This
table is accessible &ys.modules . When a module name is found in this table, step (1) is finished. If not, a
search for a module definition is started. When a module is found, it is loaded. Details of the module searching
and loading process are implementation and platform specific. It generally involves searching for a “built-in”
module with the given name and then searching a list of locations giveysgsath

If a built-in module is found, its built-in initialization code is executed and step (1) is finished. If no matching file

is found,ImportError is raised. If a file is found, it is parsed, yielding an executable code block. If a syntax
error occursSyntaxError is raised. Otherwise, an empty module of the given name is created and inserted
in the module table, and then the code block is executed in the context of this module. Exceptions during this
execution terminate step (1).

When step (1) finishes without raising an exception, step (2) can begin.

The first form ofimport statement binds the module name in the local namespace to the module object, and then
goes on to import the next identifier, if any. If the module name is followeddythe name followingas is used
as the local name for the module.

Thefrom form does not bind the module name: it goes through the list of identifiers, looks each one of them up
in the module found in step (1), and binds the name in the local namespace to the object thus found. As with the
first form of import , an alternate local name can be supplied by specifyagylocalname”. If a name is not
found,ImportError s raised. If the list of identifiers is replaced by a star), all public names defined in the
module are bound in the local namespace ofitgort statement..

Thepublic nameslefined by a module are determined by checking the module’s namespace for a variable named
__all __;if defined, it must be a sequence of strings which are names defined or imported by that module. The
names given in__all __ are all considered public and are required to exist__1&ll __ is not defined, the

set of public names includes all names found in the module’s namespace which do not begin with an underscore
character (*'). __all __ should contain the entire public API. It is intended to avoid accidentally exporting
items that are not part of the API (such as library modules which were imported and used within the module).

Thefrom form with “*" may only occur in a module scope. If the wild card form of import #aport * ' —
is used in a function and the function contains or is a nested block with free variables, the compiler will raise a
SyntaxError

Hierarchical module names: when the module names contains one or more dots, the module search path
is carried out differently. The sequence of identifiers up to the last dot is used to find a “package”; the fi-
nal identifier is then searched inside the package. A package is generally a subdirectory of a directory on
sys.path that has a file ‘_init__.py’. [XXX Can't be bothered to spell this out right now; see the URL
http://www.python.org/doc/essays/packages.html for more details, also about how the module search works from
inside a package.]

The built-in function__import __() is provided to support applications that determine which modules need to
be loaded dynamically; refer 8uilt-in Functionsin the Python Library Referencior additional information.

6.12. The import statement 53

6.12.1 Future statements

A future statemenis a directive to the compiler that a particular module should be compiled using syntax or
semantics that will be available in a specified future release of Python. The future statement is intended to ease
migration to future versions of Python that introduce incompatible changes to the language. It allows use of the
new features on a per-module basis before the release in which the feature becomes standard.

future _statement w= “"from" " __future __" "import" feature ['as" name] ("," feature ['as" name]
| "from™ " __future __" "import" (" feature ['as" name] ("," feature ['as"

feature = identifier

name = identifier

A future statement must appear near the top of the module. The only lines that can appear before a future statement
are:

the module docstring (if any),

comments,

blank lines, and

other future statements.

The features recognized by Python 2.3 amgererators °, ‘division ' and ‘nested _scopes .
‘generators 'and ‘nested _scopes ’are redundant in 2.3 because they are always enabled.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs
are often implemented by generating different code. It may even be the case that a new feature introduces new
incompatible syntax (such as a new reserved word), in which case the compiler may need to parse the module
differently. Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error
if a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard nfotlule __,
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.
Note that there is nothing special about the statement:

import __ future__ [as name]

That is not a future statement; it's an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by an exec statement or calls to the builtin functtiongpile() andexecfile() that occur

in a moduleMcontaining a future statement will, by default, use the new syntax or semantics associated with the
future statement. This can, starting with Python 2.2 be controlled by optional argumeotapde() — see

the documentation of that function in the library reference for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session.
If an interpreter is started with thé option, is passed a script name to execute, and the script includes a future
statement, it will be in effect in the interactive session started after the script is executed.

6.13 The global statement

global _stmt = ‘"global" identifier ("," identifier)*

Theglobal statement is a declaration which holds for the entire current code block. It means that the listed
identifiers are to be interpreted as globals. It would be impossible to assign to a global variable glibalt ,
although free variables may refer to globals without being declared global.

54 Chapter 6. Simple statements

Names listed in global statement must not be used in the same code block textually precedirgotbait
statement.

Names listed in global statement must not be defined as formal parameters ofdan doop control target,
class definition, function definition, oimport statement.

(The current implementation does not enforce the latter two restrictions, but programs should not abuse this free-
dom, as future implementations may enforce them or silently change the meaning of the program.)

Programmer’s note: theglobal is a directive to the parser. It applies only to code parsed at the same time as
theglobal statement. In particular, global statement contained in @xec statement does not affect the
code blockcontainingthe exec statement, and code contained inexec statement is unaffected tgfobal
statements in the code containing #eec statement. The same applies to thal() , execfile() and
compile() functions.

6.14 The exec statement

exec _stmt = ‘"exec" expression ['in" expression [',)" expression]]

This statement supports dynamic execution of Python code. The first expression should evaluate to either a string,
an open file object, or a code object. If it is a string, the string is parsed as a suite of Python statements which is
then executed (unless a syntax error occurs). If it is an open file, the file is parseslardihd executed. Ifitis a

code object, it is simply executed.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only the first expression
afterin is specified, it should be a dictionary, which will be used for both the global and the local variables. If
two expressions are given, they are used for the global and local variables, respectively. If plocaledan be

any mapping object. Changed in version 2.4: formébalswas required to be a dictionary.

As a side effect, an implementation may insert additional keys into the dictionaries given besides those correspond-
ing to variable names set by the executed code. For example, the current implementation may add a reference to
the dictionary of the built-in module_builtin ~ __ under the key__builtins __ (!).

Programmer’s hints: dynamic evaluation of expressions is supported by the built-in funei@l() . The
built-in functionsglobals() andlocals() return the current global and local dictionary, respectively, which
may be useful to pass around for usedxgc .

6.14. The exec statement 55

56

CHAPTER
SEVEN

Compound statements

Compound statements contain (groups of) other statements; they affect or control the execution of those other
statements in some way. In general, compound statements span multiple lines, although in simple incarnations a
whole compound statement may be contained in one line.

Theif , while andfor statements implement traditional control flow construaty. specifies exception
handlers and/or cleanup code for a group of statements. Function and class definitions are also syntactically
compound statements.

Compound statements consist of one or more ‘clauses.” A clause consists of a header and a ‘suite.” The clause
headers of a particular compound statement are all at the same indentation level. Each clause header begins with
a uniquely identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause.

A suite can be one or more semicolon-separated simple statements on the same line as the header, following the
header’s colon, or it can be one or more indented statements on subsequent lines. Only the latter form of suite can
contain nested compound statements; the following is illegal, mostly because it wouldn't be clear tafwhich
clause a followingelse clause would belong:

if testl: if test2: print x

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either
all or none of theprint statements are executed:

if X <y < z print x; print y; print z

Summarizing:

compound _stmt if _stmt
| while _stmt
| for _stmt
| try _stmt
| funcdef
| classdef
suite stmt _list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement stmt _list NEWLINE | compound _stmt

stmt _list = simp|e _stmt (";" Simple ,Stmt)* [";--]

Note that statements always end ilNEWLINEpossibly followed by eDEDENT Also note that optional con-
tinuation clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the
‘danglingelse ' problem is solved in Python by requiring nestéd statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

57

7.1 Theif statement

Theif statement is used for conditional execution:

if _stmt = "if* expression "" suite
("elif" expression ":" suite)*
['else" ™" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see
section 5.10 for the definition of true and false); then that suite is executed (and no other pait ostaeement
is executed or evaluated). If all expressions are false, the suite efdhe clause, if present, is executed.

7.2 The while statement

Thewhile statement is used for repeated execution as long as an expression is true:

while _stmt = "while" expression suite

['else" ™" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may
be the first time it is tested) the suite of thise clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executietstheclause’s suite. A
continue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

7.3 The for statement

Thefor statementis used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

for _stmt = “for" target _list "in" expression _list ™" suite
['else™ ™" suite]

The expression list is evaluated once; it should yield an iterable object. An iterator is created for the result of
theexpression _list . The suite is then executed once for each item provided by the iterator, in the order of
ascending indices. Each item in turn is assigned to the target list using the standard rules for assignments, and
then the suite is executed. When the items are exhausted (which is immediately when the sequence is empty), the
suite in theelse clause, if present, is executed, and the loop terminates.

A break statement executed in the first suite terminates the loop without executiegstheclause’s suite. A
continue statement executed in the first suite skips the rest of the suite and continues with the next item, or with
theelse clause if there was no next item.

The suite may assign to the variable(s) in the target list; this does not affect the next item assigned to it.

The target list is not deleted when the loop is finished, but if the sequence is empty, it will not have been assigned
to at all by the loop. Hint: the built-in functiorange() returns a sequence of integers suitable to emulate the
effect of Pascal'$or i := a to b do ; e.g.,range(3) returns the lisf0, 1, 2]

Warning: There is a subtlety when the sequence is being modified by the loop (this can only occur for mutable
sequences, i.e. lists). An internal counter is used to keep track of which item is used next, and this is incremented
on each iteration. When this counter has reached the length of the sequence the loop terminates. This means that
if the suite deletes the current (or a previous) item from the sequence, the next item will be skipped (since it gets
the index of the current item which has already been treated). Likewise, if the suite inserts an item in the sequence
before the current item, the current item will be treated again the next time through the loop. This can lead to
nasty bugs that can be avoided by making a temporary copy using a slice of the whole sequence, e.g.,

for x in a[]:
if x < 0: a.remove(x)

58 Chapter 7. Compound statements

7.4 The try statement

Thetry statement specifies exception handlers and/or cleanup code for a group of statements:

try _stmt n= try _exc_stmt | try _fin _stmt

try _exc _stmt = try" ™" suite
("except" [expression [',* target]] ":" suite)+
[‘else™ ™" suite]

try _fin _stmt = "try" ™" suite "finally" ":" suite

There are two forms afy statementtry ..except andtry ..finally . These forms cannot be mixed (but
they can be nested in each other).

Thetry ...except form specifies one or more exception handlers @keept clauses). When no exception

occurs in thery clause, no exception handler is executed. When an exception occurgiy theuite, a search

for an exception handler is started. This search inspects the except clauses in turn until one is found that matches
the exception. An expression-less except clause, if present, must be last; it matches any exception. For an except
clause with an expression, that expression is evaluated, and the clause matches the exception if the resulting object
is “compatible” with the exception. An object is compatible with an exception if it is either the object that identifies

the exception, or (for exceptions that are classes) it is a base class of the exception, or it is a tuple containing an
item that is compatible with the exception. Note that the object identities must match, i.e. it must be the same
object, not just an object with the same value.

If no except clause matches the exception, the search for an exception handler continues in the surrounding code
and on the invocation stack.

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a
handler is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is
treated as if the entiney statement raised the exception).

When a matching except clause is found, the exception’s parameter is assigned to the target specified in that
except clause, if present, and the except clause’s suite is executed. All except clauses must have an executable
block. When the end of this block is reached, execution continues normally after the entire try statement. (This
means that if two nested handlers exist for the same exception, and the exception occurs in the try clause of the
inner handler, the outer handler will not handle the exception.)

Before an except clause’s suite is executed, details about the exception are assigned to three variables in the
sys module: sys.exc _type receives the object identifying the excepti@ys.exc _value receives the
exception’s parametesys.exc _traceback receives a traceback object (see section 3.2) identifying the point

in the program where the exception occurred. These details are also available throsgheixe _info()

function, which returns a tupleexc_type exc valug exc tracebach . Use of the corresponding variables is
deprecated in favor of this function, since their use is unsafe in a threaded program. As of Python 1.5, the variables
are restored to their previous values (before the call) when returning from a function that handled an exception.

The optionaklse clause is executed if and when control flows off the end otihe clauset Exceptions in the
else clause are not handled by the precedigept clauses.

Thetry ..finally form specifies a ‘cleanup’ handler. Thrg clause is executed. When no exception occurs,
thefinally clause is executed. When an exception occurs itrheclause, the exception is temporarily saved,
thefinally clause is executed, and then the saved exception is re-raisedfiifdte ~ clause raises another
exception or executesraturn or break statement, the saved exception is lostcéntinue statement is
illegal in thefinally clause. (The reason is a problem with the current implementation — this restriction may be
lifted in the future). The exception information is not available to the program during executionfofathg

clause.

When areturn , break orcontinue statementis executed in thry suite of atry .. finally statement,
thefinally clause is also executed ‘on the way out.téntinue statementis illegal in thénally clause.
(The reason is a problem with the current implementation — this restriction may be lifted in the future).

Additional information on exceptions can be found in section 4.2, and information on usirgjthe statement
to generate exceptions may be found in section 6.9.

1Currently, control “flows off the end” except in the case of an exception or the executiaetfra |, continue , orbreak statement.

7.4. The try statement 59

7.5 Function definitions

A function definition defines a user-defined function object (see section 3.2):

funcdef = [decorators] "def' funcname "(" [parameter _list] ™M™ ™" suite
decorators := decorator+
decorator = "@" dotted _name ['(" [argument _list [*,"]] ")"] NEWLINE

parameter _list (defparameter ",")*

(™" identifier [, "*" identifier]

| "+ identifier

| defparameter [","])
defparameter = parameter ['=" expression]
sublist = parameter ("," parameter)* [","]
parameter = identifier | "(" sublist ")"
funcname = identifier

A function definition is an executable statement. Its execution binds the function name in the current local names-
pace to a function object (a wrapper around the executable code for the function). This function object contains a
reference to the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function body; this gets executed only when the function is called.

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated
when the function is defined, in the scope that contains the function definition. The result must be a callable,
which is invoked with the function object as the only argument. The returned value is bound to the function name
instead of the function object. Multiple decorators are applied in nested fashion. For example, the following code:

@fl(arg)
@f2

def func(): pass

is equivalent to:

def func(): pass
func = fl(arg)(f2(func))

When one or more top-level parameters have the frmrameter= expressionthe function is said to have “default
parameter values.” For a parameter with a default value, the corresponding argument may be omitted from a call, in
which case the parameter’s default value is substituted. If a parameter has a default value, all following parameters
must also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated when the function definition is executed@his means that the expres-

sion is evaluated once, when the function is defined, and that that same “pre-computed” value is used for each
call. This is especially important to understand when a default parameter is a mutable object, such as a list or a
dictionary: if the function modifies the object (e.g. by appending an item to a list), the default value is in effect
modified. This is generally not what was intended. A way around this is tdlaee as the default, and explicitly

test for it in the body of the function, e.g.:

def whats_on_the_telly(penguin=None):
if penguin is None:
penguin =]
penguin.append("property of the zoo")
return penguin

Function call semantics are described in more detail in section 5.3.4. A function call always assigns values to
all parameters mentioned in the parameter list, either from position arguments, from keyword arguments, or from
default values. If the form*identifier " is present, it is initialized to a tuple receiving any excess positional

60 Chapter 7. Compound statements

parameters, defaulting to the empty tuple. If the forffidentifier " is present, it is initialized to a new
dictionary receiving any excess keyword arguments, defaulting to a new empty dictionary.

Itis also possible to create anonymous functions (functions not bound to a name), forimmediate use in expressions.
This uses lambda forms, described in section 5.11. Note that the lambda form is merely a shorthand for a simplified
function definition; a function defined in a@&f " statement can be passed around or assigned to another name just
like a function defined by a lambda form. Thaef ” form is actually more powerful since it allows the execution

of multiple statements.

Programmer’s note: Functions are first-class objects. 8¢f " form executed inside a function definition defines
a local function that can be returned or passed around. Free variables used in the nested function can access the
local variables of the function containing the def. See section 4.1 for details.

7.6 Class definitions

A class definition defines a class object (see section 3.2):

classdef = "class" classname [inheritance] ":" suite
inheritance = "(" expression _list ™"
classname i= identifier

A class definition is an executable statement. It first evaluates the inheritance list, if present. Each item in the
inheritance list should evaluate to a class object or class type which allows subclassing. The class’s suite is then
executed in a new execution frame (see section 4.1), using a newly created local namespace and the original global
namespace. (Usually, the suite contains only function definitions.) When the class’s suite finishes execution, its
execution frame is discarded but its local namespace is saved. A class object is then created using the inheritance
list for the base classes and the saved local namespace for the attribute dictionary. The class name is bound to this
class object in the original local namespace.

Programmer’s note: Variables defined in the class definition are class variables; they are shared by all instances.
To define instance variables, they must be given a value intlwt __() method or in another method. Both

class and instance variables are accessible through the nots¢gilbmdme ", and an instance variable hides a

class variable with the same name when accessed in this way. Class variables with immutable values can be used
as defaults for instance variables. For new-style classes, descriptors can be used to create instance variables with
different implementation details.

7.6. Class definitions 61

62

CHAPTER
EIGHT

Top-level components

The Python interpreter can get its input from a number of sources: from a script passed to it as standard input or
as program argument, typed in interactively, from a module source file, etc. This chapter gives the syntax used in
these cases.

8.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have
a notion of a complete Python program. A complete Python program is executed in a minimally initialized
environment: all built-in and standard modules are available, but none have been initialized, exayst for
(various system services), builtin ~ __ (built-in functions, exceptions arldone) and__main __. The latter

is used to provide the local and global namespace for execution of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a complete
program but reads and executes one statement (possibly compound) at a time. The initial environment is identical
to that of a complete program; each statement is executed in the namespaceaih __.

Under UNIX, a complete program can be passed to the interpreter in three forms: withstii@g command line
option, as a file passed as the first command line argument, or as standard input. If the file or standard input is a
tty device, the interpreter enters interactive mode; otherwise, it executes the file as a complete program.

8.2 File input

All input read from non-interactive files has the same form:
file _input = (NEWLINE | statement)*

This syntax is used in the following situations:

e when parsing a complete Python program (from a file or from a string);
e when parsing a module;

e when parsing a string passed to theec statement;

8.3 Interactive input

Input in interactive mode is parsed using the following grammar:
interactive _input n= [stmt _list] NEWLINE | compound _stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this is needed
to help the parser detect the end of the input.

63

8.4 Expression input

There are two forms of expression input. Both ignore leading whitespace. The string arguenad{)to must
have the following form:

eval _input = expression _list NEWLINE*
The input line read bynput() must have the following form:
input _input = expression _list NEWLINE

Note: to read ‘raw’ input line without interpretation, you can use the built-in funatéom _input() or the
readline() method of file objects.

64 Chapter 8. Top-level components

APPENDIX
A

History and License

A.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
seehttp://www.zope.com/). In 2001, the Python Software Foundation (PSF, lsge//www.python.org/psf/) was

formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (s&g//www.opensource.org/ for the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

Release Derived from Year Owner GPL compatible?
0.9.0thru1.2 n/a 1991-1995 CWwiI yes
1.3thru1.5.2 1.2 1995-1999 CNRI yes

1.6 15.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
16.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
201 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 211 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
221 2.2 2002 PSF yes
2.2.2 221 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes
231 2.3 2002-2003 PSF yes
2.3.2 231 2003 PSF yes
233 232 2003 PSF yes
234 2.3.3 2004 PSF yes
235 234 2005 PSF yes
2.4 2.3 2004 PSF yes
24.1 2.4 2005 PSF yes

Note: GPL-compatible doesn’'t mean that we're distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible

65

licenses make it possible to combine Python with other software that is released under the GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

A.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.4.1

. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or

Organization (“Licensee”) accessing and otherwise using Python 2.4.1 software in source or binary form
and its associated documentation.

. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.4.1 alone or in any derivative version, provided, however,
that PSF's License Agreement and PSF’s notice of copyright, i.e., “Copy@gR001-2004 Python Soft-

ware Foundation; All Rights Reserved” are retained in Python 2.4.1 alone or in any derivative version
prepared by Licensee.

. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.4.1 or any part

thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.4.1.

. PSF is making Python 2.4.1 available to Licensee on an “AS 1S” basis. PSF MAKES NO REPRESEN-

TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-

TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-

CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.4.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.4.1 FOR ANY

INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.4.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or

joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

. By copying, installing or otherwise using Python 2.4.1, Licensee agrees to be bound by the terms and

conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga

Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-

censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-

RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

66

Appendix A. History and License

. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. This License Agreement shall be governed by and interpreted in all respects by the law of the State of

California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available at http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and

conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an

office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI"), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-

sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI's License Agreement and CNRI’s notice of copyright, i.e., “Copy@giB95-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI's License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL.: http://hdl.handle.net/1895.22/1013.”

. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part

thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

. CNRI is making Python 1.6.1 available to Licensee on an “AS I1S” basis. CNRI MAKES NO REPRESEN-

TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

. CNRISHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY

INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. This License Agreement shall be governed by the federal intellectual property law of the United States, in-

cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-

ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to

A.2.

Terms and conditions for accessing or otherwise using Python 67

create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, INNO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

A.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incor-
porated in the Python distribution.

A.3.1 Mersenne Twister

The _random module includes code based on a download frémmp:/www.math.keio.ac.jp/ matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

68 Appendix A. History and License

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS 1S" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

A.3.2 Sockets

The socket module uses the functiongetaddrinfo , andgetnameinfo , which are coded in separate
source files from the WIDE Projedtitp://www.wide.ad.jp/about/index.html.

A.3. Licenses and Acknowledgements for Incorporated Software 69

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS “AS IS” AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

A.3.3 Floating point exception control

The source for thépectl module includes the following notice:

70

Appendix A. History and License

/ Copyright (c) 1996.
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for |
any purpose without fee is hereby granted, provided that this en- [
tire notice is included in all copies of any software which is or |
includes a copy or modification of this software and in all |
copies of the supporting documentation for such software. |

This work was produced at the University of California, Lawrence |
Livermore National Laboratory under contract no. W-7405-ENG-48 |
between the U.S. Department of Energy and The Regents of the
University of California for the operation of UC LLNL. |

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States |
Government nor the University of California nor any of their em- |
ployees, makes any warranty, express or implied, or assumes any |
liability or responsibility for the accuracy, completeness, or |
usefulness of any information, apparatus, product, or process |
disclosed, or represents that its use would not infringe |
privately-owned rights. Reference herein to any specific commer- |
cial products, process, or service by trade name, trademark, |
manufacturer, or otherwise, does not necessarily constitute or |
imply its endorsement, recommendation, or favoring by the United |
States Government or the University of California. The views and |
opinions of authors expressed herein do not necessarily state or |
reflect those of the United States Government or the University |
of California, and shall not be used for advertising or product |

\ endorsement purposes.

A.3.4 MD5 message digest algorithm

The source code for thed5module contains the following notice:

A.3. Licenses and Acknowledgements for Incorporated Software

Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm" in all material mentioning or referencing this software
or this function.

License is also granted to make and use derivative works provided
that such works are identified as "derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm™ in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"

without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.

A.3.5 Asynchronous socket services

Theasynchat andasyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior

permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN

NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

A.3.6 Cookie management

TheCookie module contains the following notice:

72 Appendix A. History and License

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’Malley BE LIABLE FOR

ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

A.3.7 Profiling

Theprofile andpstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software

without specific, written prior permission. This permission is

explicitly restricted to the copying and modification of the software

to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

A.3.8 Execution tracing

Thetrace module contains the following notice:

A.3. Licenses and Acknowledgements for Incorporated Software

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.

Author: Zooko O’Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

A.3.9 UUencode and UUdecode functions

Theuu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.
All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with python standard

74 Appendix A. History and License

A.3.10 XML Remote Procedure Calls

Thexmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and

its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written

prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

A.3. Licenses and Acknowledgements for Incorporated Software

76

Symbols

__abs__() (numeric object method), 29
__add__() (numeric object method), 28
__add__() (sequence object method), 26
__all __ (optional module attribute), 53
__and__() (numeric object method), 28
__bases __ (class attribute), 18

__builtin __ (built-in module), 55, 63
__builtins __,55

__call __() (object method), 26

__call __() (object method), 40

__class __ (instance attribute), 19
__cmp__() (object method), 22

__cmp__() (object method), 22

__coerce __() (numeric object method), 29
__coerce __() (numeric object method), 26
__complex __() (numeric object method), 29

__contains __() (container object method), 27
__contains __() (mapping object method), 26

__contains __() (sequence object method), 26
__debug __, 48

__del __() (object method), 21

__delattr __() (object method), 23

__delete __() (object method), 24
__delitem __() (container object method), 26
__delslice __() (sequence object method), 27
__dict __ (class attribute), 18

__dict __ (function attribute), 16

__dict __ (instance attribute), 19, 23

__dict __ (module attribute), 18

__div __() (numeric object method), 28
__divmod __() (numeric object method), 28
__doc __ (class attribute), 18

__doc __ (function attribute), 16

__doc __ (method attribute), 16

__doc __ (module attribute), 18

__eq__() (object method), 22

__file __ (module attribute), 18

__float __() (numeric object method), 29
__floordiv. __() (numeric object method), 28
__ge__() (object method), 22

__get __() (object method), 23

__getattr __() (object method), 23
__getattribute __() (object method), 23
__getitem __() (container object method), 26

INDEX

__getitem __() (mapping object method), 20
__getslice __() (sequence object method), 27
__gt __() (object method), 22

__hash __() (object method), 22

__hex __() (numeric object method), 29

__add __() (numeric object method), 29
__dadd __() (sequence object method), 26
__iand __() (numeric object method), 29
__idiv. __() (numeric object method), 29
__ifloordiv _—((numeric object method), 29
__ilshift __() (numeric object method), 29
__imod __() (numeric object method), 29
__import __() (built-in function), 53

__imul __() (numeric object method), 29
__imul __() (sequence object method), 26
__init __() (object method), 21

__init __() (object method), 18

—_init __.py ,53
__int __() (numeric object method), 29
__invert __() (numeric object method), 29

__ior __() (numeric object method), 29
__ipow __() (numeric object method), 29
__irshift _ () (numeric object method), 29
__isub __() (numeric object method), 29
__iter __() (container object method), 26
__iter __() (sequence object method), 26
__itruediv. __() (numeric object method), 29
__ixor __() (numeric object method), 29
__le __() (object method), 22

__len __() (container object method), 26
__len __() (mapping object method), 22
__long __() (numeric object method), 29
__lIshift __() (numeric object method), 28
__It __((object method), 22

__main __ (built-in module), 32, 63
__metaclass __ (datain), 25

__mod__() (numeric object method), 28
__module __ (class attribute), 18

__module __ (function attribute), 16
__module __ (method attribute), 16
__mul__() (numeric object method), 28
__mul__() (sequence object method), 26
__name__ (class attribute), 18

__name__ (function attribute), 16
__name__ (method attribute), 16

__name__ (module attribute), 18

77

__ne__() (object method), 22

__neg__() (numeric object method), 29
__new__() (object method), 20

__nonzero __() (object method), 22
__nonzero __() (object method), 26

__oct __() (numeric object method), 29
__or __() (numeric object method), 28
__pos __() (numeric object method), 29
__pow__() (numeric object method), 28
__radd __() (numeric object method), 29
__radd __() (sequence object method), 26
__rand __() (numeric object method), 29
__rcmp__() (object method), 22

__rdiv. __() (numeric object method), 29
__rdivmod __() (numeric object method), 29
__repr __() (object method), 21

__rfloordiv __() (numeric object method), 29
__rishift ~ __() (numeric object method), 29
__rmod__() (numeric object method), 29
__rmul __() (numeric object method), 29
__rmul __() (sequence object method), 26
__ror __() (numeric object method), 29
__rpow __() (numeric object method), 29

__rrshift - __() (numeric object method), 29
__rshift __() (numeric object method), 28
__rsub __() (numeric object method), 29
__rtruediv. __() (numeric object method), 29

__rxor __() (numeric object method), 29
__set __() (object method), 23

__setattr __() (object method), 23
__setattr __() (object method), 23
__setitem __() (container object method), 26
__setslice __() (sequence object method), 27

__slots __(datain), 24

__str __() (object method), 22

__sub__() (numeric object method), 28
__truediv __() (numeric object method), 28
__unicode __() (object method), 22

__xor __() (numeric object method), 28

A

abs() (built-in function), 29
addition, 42
and
bit-wise, 42
and
operator, 44
anonymous
function, 44
append() (sequence object method), 26
argument
function, 16
arithmetic
conversion, 35
operation, binary, 41
operation, unary, 41
array (standard module), 16
Ascll,1,7,8,11,15

assert
statement, 47
AssertionError
exception, 48
assertions
debugging, 47
assignment
attribute, 48, 49
augmented, 49
class attribute, 18
class instance attribute, 18
slicing, 49
statement, 15, 48
subscription, 49
target list, 48
atom, 35
attribute, 14
assignment, 48, 49
assignment, class, 18
assignment, class instance, 18
class, 18
class instance, 18
deletion, 50
generic special, 14
reference, 38
special, 14
AttributeError
exception, 38
augmented
assignment, 49

B

back-quotes, 21, 37
backslash character, 4
backward
guotes, 21, 37
binary
arithmetic operation, 41
bit-wise operation, 42
binding
global name, 54
name, 31, 48, 53, 60, 61
bit-wise
and, 42
operation, binary, 42
operation, unary, 41
or, 42
xor, 42
blank line, 5
block, 31
code, 31
BNF, 1, 35
Boolean
object, 14
operation, 44
break
statement, 52, 58, 59
bsddb (standard module), 16

78

Index

built-in
method, 17
module, 53
built-in function
call, 40
object, 17, 40
built-in method
call, 40
object, 17, 40
byte, 15
bytecode, 19

C

C,7
language, 14, 15, 17, 42
call, 39
built-in function, 40
built-in method, 40
class instance, 40
class object, 18, 40
function, 16, 40
instance, 26, 40
method, 40
procedure, 47
user-defined function, 40
callable
object, 16, 39
chaining
comparisons, 43
character, 15, 38
character set, 15
chr() (built-in function), 15
class
attribute, 18
attribute assignment, 18
constructor, 21
definition, 51, 61
instance, 18
name, 61
object, 18, 40, 61
class
statement, 61
class instance
attribute, 18
attribute assignment, 18
call, 40
object, 18, 40
class object
call, 18, 40
clause, 57
clear() (mapping object method), 26
cmp() (built-in function), 22
co _argcount (code object attribute), 19
co_cellvars (code object attribute), 19
co _code (code object attribute), 19
co_consts (code object attribute), 19
co _filename (code object attribute), 19

co _firstlineno (code object attribute), 19

co_flags (code object attribute), 19
co _freevars (code object attribute), 19
co _Inotab (code object attribute), 19
co _name (code object attribute), 19
co _names (code object attribute), 19
co_nlocals (code object attribute), 19
co _stacksize (code object attribute), 19
co _varnames (code object attribute), 19
code

block, 31

object, 19
code block, 53
comma, 36

trailing, 44, 51
command line, 63
comment, 3
comparison, 42

string, 15
comparisons, 22

chaining, 43
compile() (built-in function), 55
complex

literal, 9

number, 15

object, 15
complex() (built-in function), 29
compound

statement, 57
comprehensions

list, 36
constant, 7
constructor

class, 21
container, 14, 18
continue

statement, 52, 58, 59
conversion

arithmetic, 35

string, 21, 37, 47
copy() (mapping object method), 26
count() (sequence object method), 26

D

dangling

else, 57
data, 13

type, 14

type, immutable, 36
datum, 37
dbm (standard module), 16
debugging

assertions, 47
decimal literal, 9
DEDENT token, 5, 57
def

statement, 60
default

parameter value, 60

Index

definition

class, 51, 61
function, 51, 60
del
statement, 15, 21, 50
delete, 15
deletion
attribute, 50
target, 50

target list, 50
delimiters, 10
destructor, 21, 48
dictionary
display, 37
object, 16, 18, 22, 37, 38, 49
display
dictionary, 37
list, 36
tuple, 36
division, 41
divmod() (built-in function), 28, 29
documentation string, 19

E

EBCDIC, 15
elif
keyword, 58
Ellipsis
object, 14
else
dangling, 57
else
keyword, 52, 58, 59
empty
list, 36
tuple, 15, 36
encodings, 4
environment, 31
error handling, 32
errors, 32
escape sequence, 7
eval() (built-in function), 55, 64
evaluation
order, 45
exc _info (in module sys), 20
exc _traceback (in module sys), 20, 59
exc _type (in module sys), 59
exc _value (in module sys), 59
except
keyword, 59
exception, 32, 52
AssertionError , 48
AttributeError , 38
handler, 20
ImportError , 53
NameError , 35
raising, 52
RuntimeError , 51

Stoplteration , 51
SyntaxError , 53
TypeError , 41
ValueError , 42
ZeroDivisionError , 41
exception handler, 32
exclusive
or, 42
exec
statement, 55
execfile() (built-in function), 55
execution
frame, 31, 61
restricted, 32
stack, 20
execution model, 31
expression, 35
generator, 37
lambda, 44
list, 44, 47, 48
statement, 47
extend() (sequence object method), 26
extended
slicing, 38
extended print statement, 51
extended slicing, 15

extension
filename, 53
module, 14
F

f _back (frame attribute), 19
f _builtins (frame attribute), 19
f _code (frame attribute), 19
f _exc _traceback (frame attribute), 19
f _exc _type (frame attribute), 19
f _exc _value (frame attribute), 19
f _globals (frame attribute), 19
f _lasti (frame attribute), 19
f _lineno (frame attribute), 19
f _locals (frame attribute), 19
f _restricted (frame attribute), 19
f _trace (frame attribute), 19
False , 14
file

object, 19, 64
filename

extension, 53
finally

keyword, 51, 52, 59
float() (built-in function), 29
floating point

number, 15

object, 15
floating point literal, 9
for

statement, 52, 58
form

80

Index

lambda, 44, 61
frame

execution, 31, 61

object, 19
free

variable, 31, 50
from

keyword, 53

statement, 31, 53
func _closure (function attribute), 16
func _code (function attribute), 16
func _defaults (function attribute), 16
func _dict (function attribute), 16
func _doc (function attribute), 16
func _globals (function attribute), 16
function

anonymous, 44

argument, 16

call, 16, 40

call, user-defined, 40

definition, 51, 60

generator, 51

name, 60

object, 16, 17, 40, 60

user-defined, 16
future

statement, 54

G

garbage collection, 13
gdbm (standard module), 16
generator
expression, 37
function, 17, 51
iterator, 17, 51
object, 19, 37
generator expression
object, 37
generic
special attribute, 14
get() (mapping object method), 26
global
name binding, 54
namespace, 16
global
statement, 48, 50, 54
globals() (built-in function), 55
grammar, 1
grouping, 5

H

handle an exception, 32
handler
exception, 20
has _key() (mapping object method), 26
hash() (built-in function), 22
hash character, 3
hex() (built-in function), 29

hexadecimal literal, 9
hierarchical

module names, 53
hierarchy

type, 14

id() (built-in function), 13
identifier, 6, 35
identity

test, 44
identity of an object, 13
if

statement, 58
im _class (method attribute), 17
im _func (method attribute), 16, 17
im _self (method attribute), 16, 17
imaginary literal, 9
immutable

data type, 36

object, 15, 36, 37
immutable object, 13
immutable sequence

object, 15
import

statement, 18, 53
ImportError

exception, 53
in

keyword, 58

operator, 44
inclusive

or, 42
INDENT token, 5
indentation, 5
index operation, 15
index() (sequence object method), 26
indices() (slice method), 20
inheritance, 61
initialization

module, 53
input, 64

raw, 64
input() (built-in function), 64
insert() (sequence object method), 26
instance

call, 26, 40

class, 18

object, 18, 40
int) (built-in function), 29
integer, 15

object, 14

representation, 15
integer literal, 9
interactive mode, 63
internal type, 19
interpreter, 63
inversion, 41

Index

81

invocation, 16
is
operator, 44
is not
operator, 44
item
sequence, 38
string, 38
item selection, 15
items() (mapping object method), 26

iteritems() (mapping object method), 26
iterkeys() (mapping object method), 26

itervalues() (mapping object method), 26
J
Java
language, 15
K
key, 37

key/datum pair, 37
keys() (mapping object method), 26
keyword, 6

elif ,58

else , 52,58, 59

except , 59

finally ,51,52,59

from , 53

in , 58

L

lambda
expression, 44
form, 44, 61
language
C, 14, 15,17, 42
Java, 15
Pascal, 58
last _traceback (in module sys), 20
leading whitespace, 5
len() (built-in function), 15, 16, 26
lexical analysis, 3
lexical definitions, 1
line continuation, 4
line joining, 3, 4
line structure, 3
list
assignment, target, 48
comprehensions, 36
deletion target, 50
display, 36
empty, 36
expression, 44, 47, 48
object, 16, 36, 38, 49
target, 48, 58
literal, 7, 36
locals() (built-in function), 55
logical line, 3

long() (built-in function), 29
long integer
object, 14
long integer literal, 9
loop
over mutable sequence, 58
statement, 52, 58
loop control
target, 52

M

makefile() (socket method), 19
mangling
name, 36
mapping
object, 16, 18, 38, 49
membership
test, 44
method
built-in, 17
call, 40
object, 16, 17, 40
user-defined, 16
minus, 41
module
built-in, 53
extension, 14
importing, 53
initialization, 53
name, 53
names, hierarchical, 53
namespace, 18
object, 18, 38
search path, 53
user-defined, 53
modules (in module sys), 53
modulo, 41
multiplication, 41
mutable
object, 15, 48, 49
mutable object, 13
mutable sequence
loop over, 58
object, 15

N

name, 6, 31, 35
binding, 31, 48, 53, 60, 61
binding, global, 54
class, 61
function, 60
mangling, 36
module, 53
rebinding, 48
unbinding, 50
NameError
exception, 35
NameError (built-in exception), 31

82

Index

names
hierarchical module, 53
private, 36
namespace, 31
global, 16
module, 18
negation, 41
newline
suppression, 51
NEWLINE token, 3, 57
None
object, 14, 47
not
operator, 44
not in
operator, 44
notation, 1
Notimplemented
object, 14
null
operation, 50
number, 9
complex, 15
floating point, 15
numeric
object, 14, 18
numeric literal, 9

O

object, 13
Boolean, 14
built-in function, 17, 40
built-in method, 17, 40
callable, 16, 39
class, 18, 40, 61
class instance, 18, 40
code, 19
complex, 15

dictionary, 16, 18, 22, 37, 38, 49

Ellipsis, 14

file, 19, 64

floating point, 15
frame, 19

function, 16, 17, 40, 60
generator, 19, 37

generator expression, 37

immutable, 15, 36, 37

immutable sequence, 15

instance, 18, 40
integer, 14

list, 16, 36, 38, 49

long integer, 14
mapping, 16, 18, 38, 49
method, 16, 17, 40
module, 18, 38
mutable, 15, 48, 49
mutable sequence, 15
None, 14, 47

Notlmplemented, 14
numeric, 14, 18
plain integer, 14
recursive, 37

sequence, 15, 18, 38, 44, 49, 58

slice, 26

string, 15, 38
traceback, 20, 52, 59
tuple, 15, 38, 44
unicode, 15

user-defined function, 16, 40, 60
user-defined method, 16

oct() (built-in function), 29
octal literal, 9

open() (built-in function), 19

operation
binary arithmetic, 41
binary bit-wise, 42

Boolean, 44
null, 50
shifting, 42

unary arithmetic, 41

unary bit-wise, 41
operator

and, 44

in , 44

is , 44

is not ,44

not , 44

not in ,44

or,44

overloading, 20

precedence, 45
operators, 10

or
bit-wise, 42
exclusive, 42
inclusive, 42
or

operator, 44
ord() (built-in function), 15
order

evaluation, 45
output, 47, 51

standard, 47, 51

OverflowError (built-in exception), 14

overloading
operator, 20

P

packages, 53
parameter

value, default, 60
parenthesized form, 36
parser, 3
Pascal

language, 58
pass

Index

83

statement, 50
path
module search, 53
physical line, 3, 4, 7
plain integer
object, 14
plain integer literal, 9
plus, 41
pop()
mapping object method, 26
sequence object method, 26
popen() (in module os), 19
popitem() (mapping object method), 26
pow() (built-in function), 28, 29
precedence
operator, 45
primary, 38
print
statement, 22, 50
private
names, 36
procedure
call, 47
program, 63
Python Enhancement Proposals
PEP 0255, 52

Q

guotes
backward, 21, 37
reverse, 21, 37

R

raise
statement, 52
raise an exception, 32
raising
exception, 52
range() (built-in function), 58
raw input, 64
raw string, 7
raw _input() (built-in function), 64
readline() (file method), 64
rebinding
name, 48
recursive
object, 37
reference
attribute, 38
reference counting, 13
remove() (sequence object method), 26
repr() (built-in function), 21, 37, 47
representation
integer, 15
reserved word, 6
restricted
execution, 32
return

statement, 51, 59
reverse

quotes, 21, 37
reverse() (sequence object method), 26
RuntimeError

exception, 51

S

scope, 31
search
path, module, 53
seguence
item, 38
object, 15, 18, 38, 44, 49, 58

setdefault() (mapping object method), 26

shifting
operation, 42
simple
statement, 47
singleton
tuple, 15
slice, 38
object, 26
slice() (built-in function), 20
slicing, 15, 38
assignment, 49
extended, 38
sort() (sequence object method), 26
source character set, 4
space, 5
special
attribute, 14
attribute, generic, 14
stack
execution, 20
trace, 20
standard
output, 47, 51
Standard C, 7
standard input, 63
start (slice object attribute), 20, 39
statement
assert , 47
assignment, 15, 48
assignment, augmented, 49
break , 52, 58, 59
class , 61
compound, 57
continue , 52,58, 59
def , 60
del , 15, 21,50
exec, 55
expression, 47
for , 52,58
from , 31, 53
future, 54
global , 48, 50, 54
if ,58

84

Index

import , 18, 53
loop, 52, 58
pass , 50
print , 22,50
raise ,52
return , 51,59
simple, 47
try , 20,59
while , 52,58
yield ,51
statement grouping, 5
stderr (in module sys), 19
stdin (in module sys), 19
stdio, 19
stdout (in module sys), 19, 51
step (slice object attribute), 20, 39
stop (slice object attribute), 20, 39
Stoplteration
exception, 51
str() (built-in function), 22, 37
string
comparison, 15
conversion, 21, 37, 47
item, 38
object, 15, 38
Unicode, 7
string literal, 7
subscription, 15, 16, 38
assignment, 49
subtraction, 42
suite, 57
suppression
newline, 51
syntax, 1, 35
SyntaxError
exception, 53
sys (built-in module), 51, 53, 59, 63
sys.exc _info ,20
sys.exc _traceback , 20
sys.last _traceback , 20
sys.modules , 53
sys.stderr 19
sys.stdin , 19
sys.stdout , 19
SystemExit (built-in exception), 33

T

tab, 5

target, 48
deletion, 50
list, 48, 58

list assignment, 48

list, deletion, 50

loop control, 52
tb _frame (traceback attribute), 20
tb _lasti (traceback attribute), 20
tb _lineno (traceback attribute), 20
tb _next (traceback attribute), 20

termination model, 32

test

identity, 44

membership, 44
token, 3
trace

stack, 20
traceback

object, 20, 52, 59
trailing

comma, 44, 51
triple-quoted string, 7
True , 14
try

statement, 20, 59
tuple

display, 36

empty, 15, 36

object, 15, 38, 44

singleton, 15
type, 14

data, 14

hierarchy, 14

immutable data, 36
type() (built-in function), 13
type of an object, 13
TypeError

exception, 41
types, internal, 19

U

unary
arithmetic operation, 41
bit-wise operation, 41
unbinding
name, 50
UnboundLocalError 31
unichr() (built-in function), 15
Unicode, 15
unicode
object, 15
unicode() (built-in function), 15, 22
Unicode Consortium, 7
UNIX, 63
unreachable object, 13
unrecognized escape sequence, 8
update() (mapping object method), 26
user-defined
function, 16
function call, 40
method, 16
module, 53
user-defined function
object, 16, 40, 60
user-defined method
object, 16

Index

85

Vv

value
default parameter, 60
value of an object, 13
ValueError
exception, 42
values
writing, 47, 51
values() (mapping object method), 26
variable
free, 31, 50

W

while
statement, 52, 58
whitespace, 5

writing

values, 47, 51
X
Xor

bit-wise, 42
Y
yield

statement, 51

Z

ZeroDivisionError
exception, 41

86

Index

	1 Introduction
	1.1 Notation

	2 Lexical analysis
	2.1 Line structure
	2.1.1 Logical lines
	2.1.2 Physical lines
	2.1.3 Comments
	2.1.4 Encoding declarations
	2.1.5 Explicit line joining
	2.1.6 Implicit line joining
	2.1.7 Blank lines
	2.1.8 Indentation
	2.1.9 Whitespace between tokens

	2.2 Other tokens
	2.3 Identifiers and keywords
	2.3.1 Keywords
	2.3.2 Reserved classes of identifiers

	2.4 Literals
	2.4.1 String literals
	2.4.2 String literal concatenation
	2.4.3 Numeric literals
	2.4.4 Integer and long integer literals
	2.4.5 Floating point literals
	2.4.6 Imaginary literals

	2.5 Operators
	2.6 Delimiters

	3 Data model
	3.1 Objects, values and types
	3.2 The standard type hierarchy
	3.3 Special method names
	3.3.1 Basic customization
	3.3.2 Customizing attribute access
	More attribute access for new-style classes
	Implementing Descriptors
	Invoking Descriptors
	__slots__

	3.3.3 Customizing class creation
	3.3.4 Emulating callable objects
	3.3.5 Emulating container types
	3.3.6 Additional methods for emulation of sequence types
	3.3.7 Emulating numeric types
	3.3.8 Coercion rules

	4 Execution model
	4.1 Naming and binding
	4.1.1 Interaction with dynamic features

	4.2 Exceptions

	5 Expressions
	5.1 Arithmetic conversions
	5.2 Atoms
	5.2.1 Identifiers (Names)
	5.2.2 Literals
	5.2.3 Parenthesized forms
	5.2.4 List displays
	5.2.5 Generator expressions
	5.2.6 Dictionary displays
	5.2.7 String conversions

	5.3 Primaries
	5.3.1 Attribute references
	5.3.2 Subscriptions
	5.3.3 Slicings
	5.3.4 Calls

	5.4 The power operator
	5.5 Unary arithmetic operations
	5.6 Binary arithmetic operations
	5.7 Shifting operations
	5.8 Binary bit-wise operations
	5.9 Comparisons
	5.10 Boolean operations
	5.11 Lambdas
	5.12 Expression lists
	5.13 Evaluation order
	5.14 Summary

	6 Simple statements
	6.1 Expression statements
	6.2 Assert statements
	6.3 Assignment statements
	6.3.1 Augmented assignment statements

	6.4 The pass statement
	6.5 The del statement
	6.6 The print statement
	6.7 The return statement
	6.8 The yield statement
	6.9 The raise statement
	6.10 The break statement
	6.11 The continue statement
	6.12 The import statement
	6.12.1 Future statements

	6.13 The global statement
	6.14 The exec statement

	7 Compound statements
	7.1 The if statement
	7.2 The while statement
	7.3 The for statement
	7.4 The try statement
	7.5 Function definitions
	7.6 Class definitions

	8 Top-level components
	8.1 Complete Python programs
	8.2 File input
	8.3 Interactive input
	8.4 Expression input

	A History and License
	A.1 History of the software
	A.2 Terms and conditions for accessing or otherwise using Python
	A.3 Licenses and Acknowledgements for Incorporated Software
	A.3.1 Mersenne Twister
	A.3.2 Sockets
	A.3.3 Floating point exception control
	A.3.4 MD5 message digest algorithm
	A.3.5 Asynchronous socket services
	A.3.6 Cookie management
	A.3.7 Profiling
	A.3.8 Execution tracing
	A.3.9 UUencode and UUdecode functions
	A.3.10 XML Remote Procedure Calls

	Index

