Capítulo III - QoS em Redes ATM

Prof. José Marcos C. Brito

Introdução

- O ATM é uma tecnologia para rede multiserviço.
- O ATM define classes de serviço que contemplam as aplicações atuais e aplicações futuras.
- O ATM utiliza o conceito de contrato de tráfego entre a aplicação e a rede

Contrato de tráfego

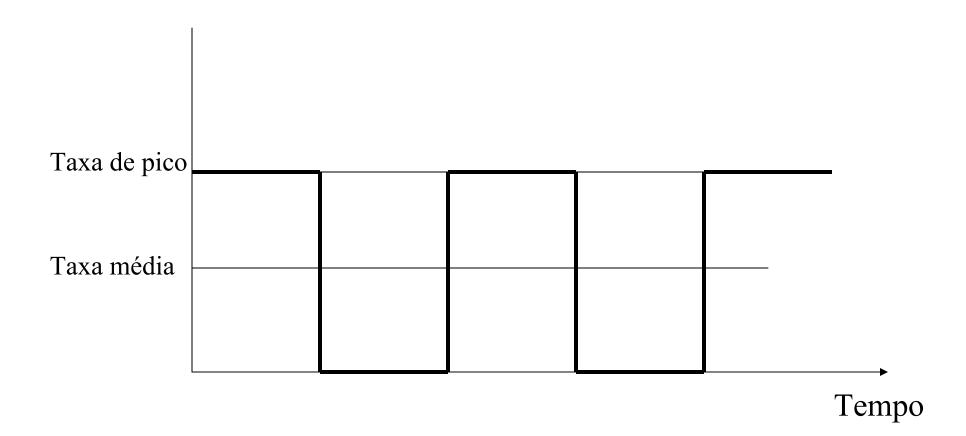
- Um contrato de tráfego entre a aplicação e a rede é estabelecido para cada conexão
- Componentes do contrato de tráfego
 - Categoria de serviço
 - QoS requerida
 - Características do tráfego da conexão
 - Definição de como o tráfego deve se comportar (definição de conformidade)

Categorias de Serviço

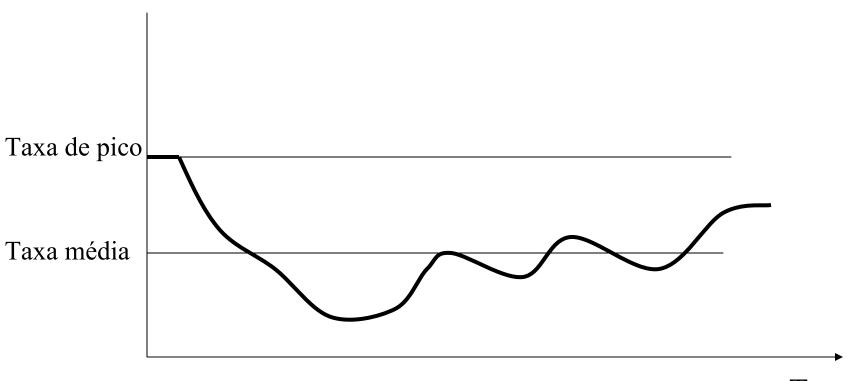
- Constant Bit Rate (CBR)
- Variable Bit Rate (VBR)
 - Real Time e Non-Real Time
- Available Bit Rate (ABR)
- Guaranteed Frame Rate (GFR)
- Unspecified Bit Rate (UBR)

Constant Bit Rate - CBR

- Aplicações em tempo real.
- Características da conexão
 - Banda dedicada
 - Baixa probabilidade de perda de célula
 - Atraso reduzido e previsível


Variable Bit Rate - VBR

- Aplicações:
 - Dados Frame-Relay
 - Áudio/Vídeo sem taxa constante
 - Outras com características de tráfego em burst conhecidas ou previsíveis
- Caracterização do tráfego:
 - Sustained Cell Rate (SCR)
 - Peak Cell Rate (PCR)


Variable Bit Rate - VBR

- Ganho estatístico
 - Alocação de recursos menor que a taxa de pico
 - Uso de buffer para manusear picos
- Real-Time VBR
 - Restritivo quanto aos requisitos de atraso
- Non-Real-Time VBR
 - Não garante limite para o atraso

nrt-VBR - comportamento ON/OFF - Exemplo

rt-VBR - comportamento com taxa dinâmica - exemplo

Tempo

Serviços de banda sob demanda

- Características das aplicações (dados):
 - características de tráfego não conhecidas a priori
 - sem requisitos de atraso em tempo real
 - moderadamente sensíveis a perda
- Tipos de serviços de banda sob demanda:
 - Serviço ABR
 - Serviço GFR
 - Serviço UBR

Availabre Bit Rate - ABR

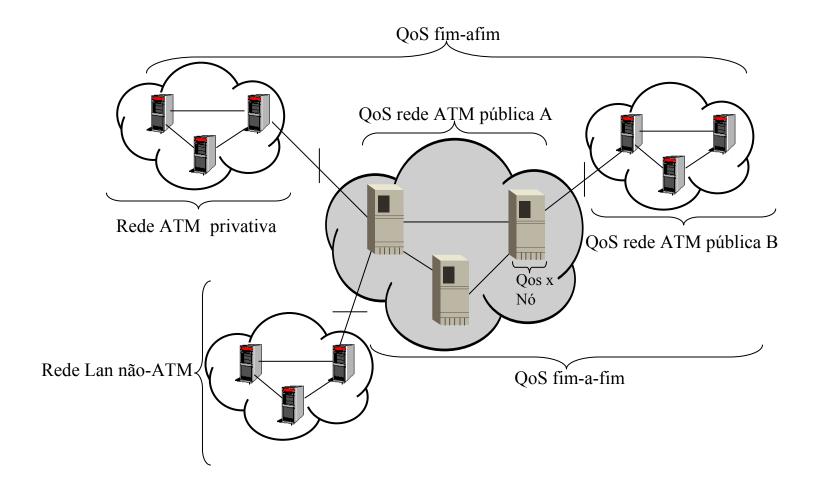
• Características:

- quantidade mínima de banda garantida
- taxa de emissão de pico limitada
- ajuste de banda é feito através de um mecanismo de controle de fluxo baseado em taxa (fonte ABR utiliza este mecanismo para minimizar as perdas de células na rede)
- congestionamento é deslocado da rede para a borda

Guaranteed Frame Rate - GFR

• Características:

- não requer um protocolo de controle de fluxo
- banda mínima é garantida, mas não há contrato sob a quantidade de perda quando a fonte excede o mínimo
- a rede busca descartar PDUs completas ao invés de descartar células aleatoriamente sob congestinamento


Unspecified Bit Rate - UBR

- Características:
 - serviço tipo "melhor esforço"
 - conexões compartilham a banda restante sem qualquer mecanismo de realimentação
 - aplicações acessam a banda que a rede puder prover e estão dispostas a tolerar qualquer nível (não especificado) de perda de células
 - QoS pode ser gerenciada, por exemplo,
 limitando-se o número de conexões que podem
 compartilhar a banda restante

Parâmetros de QoS

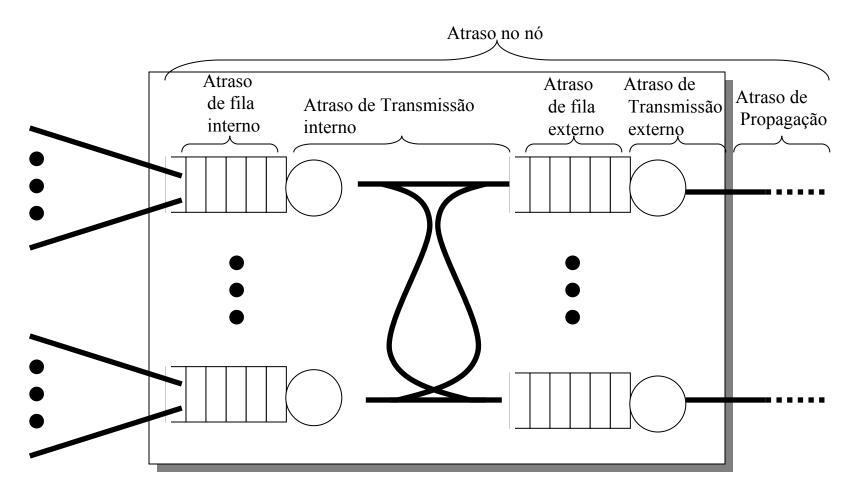
- Quantificam os requisitos de performance da rede na camada ATM.
- Os objetivos de QoS são fim-a-fim, isto é, entre os limites da rede ATM (excluíndo-se apenas os sistemas terminais).

Modelo de referência

Parâmetros de QoS

- Negociáveis no contrato de tráfego
 - Cell Loss Ratio (CLR)
 - Maximum Cell Tranfer Delay (Max-CTD)
 - Peak-to-peak Cell Delay Variation (P2P-CDV)
- Não negociáveis
 - Cell Error Ratio (CER)
 - Severely Errored Cell Block Ratio (SECBR)
 - Cell Misinsertion Rate (CMR)

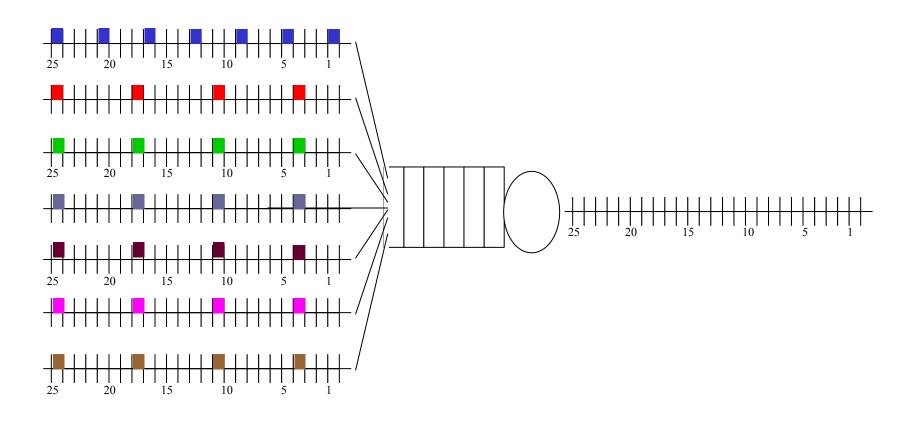
Cell Loss Ratio - CLR

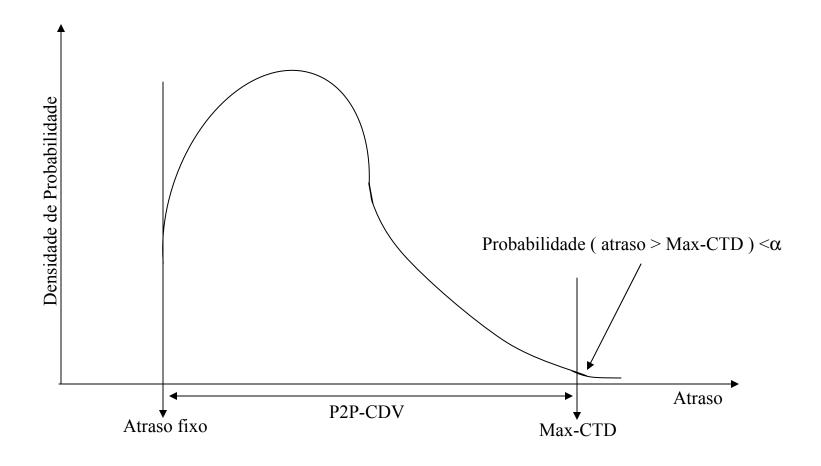

$$CLR = \frac{\text{C\'elulas perdidas}}{\text{Total de c\'elulas transmitidas}}$$

- Fatores que causam perda de células
 - Estouro dos buffers
 - Falha de componentes e proteção de comutação
 - Erros de transmissão

Cell Transfer Delay - CTD

- Tempo transcorrido entre a partida de uma célula do sistema final de origem e a chegada da mesma no destino.
- Componentes do CTD em cada nó:
 - Atraso de transmissão e enfileiramento internos
 - Atraso de transmissão e enfileiramento externos
 - Tempo de propagação
 - Tempo de processamento da célula


Componentes de atraso


Cell Transfer Delay - CTD

- Valor mínimo é composto pelos elementos não variáveis do CTD.
- Variação do atraso (CDV): surge devido à natureza estatística do ATM
- Valor máximo é associado ao tamanho máximo do buffer e à taxa de serviço da fila

Ilustração do CDV em um nó

Função densidade de probabilidade do CTD

CTD - Parâmetros de QoS

- Maximum Cell Transfer Delay (Max-CTD)
 - Células que ultrapassam este atraso são consideradas perdidas ou inúteis.
 - A probabilidade de uma célula ultrapassar o Max-CTD não pode exceder o CLR
- Peak-to-peak Cell Delay Variation (P2P-CDV)
 - Representa a diferença entre o máximo e o mínimo
 CTD

Severely Errored Cell Block Ratio (SECBR)

- Um bloco de células é uma sequência de N células transmitidas consecutivamente em uma conexão
- Um bloco severamente errado ocorre quando mais de M células erradas, perdidas, ou inseridas indevidamente são observadas no bloco recebido

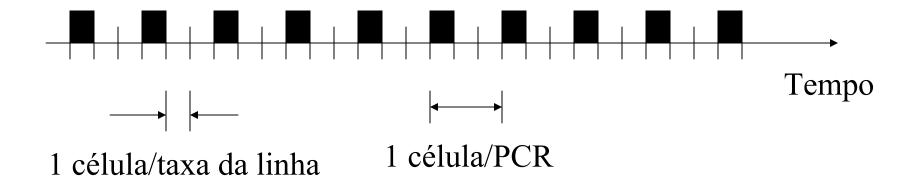
Cell Misinsertion Rate - CMR

- Uma célula inserida indevidamente é aquela enviada a uma conexão à qual não pertence.
- A principal razão para inserção indevida de células é a ocorrência de erros não detectáveis e não corrigíveis no cabeçalho.

Cell Error Ratio - CER

- Uma célula errada é aquela que tem o seu conteúdo (header ou payload) modificado e que não pode ser recuperado por técnicas de correção de erro.
- A CER é influenciada pelo tipo de meio e pelas características de erro do mesmo.

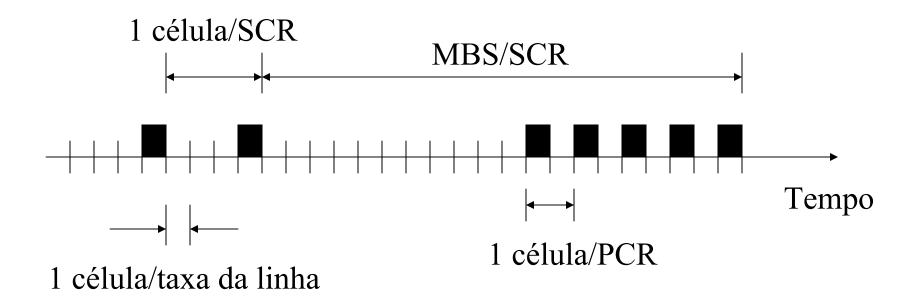
Parâmetros descritores de tráfego

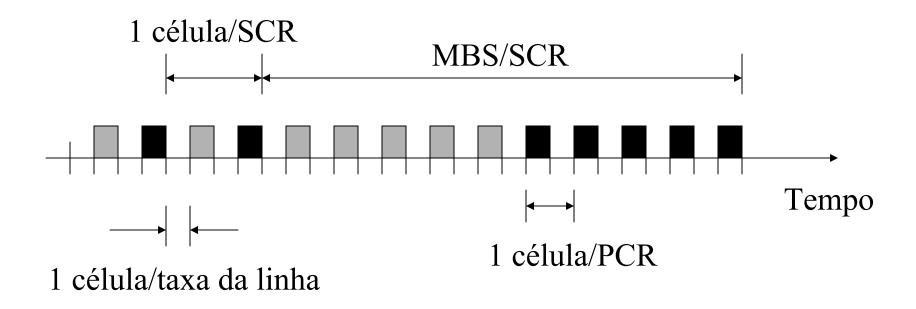

- Utilizados para caracterizar o tráfego (um conjunto para cada direção).
- A alocação de recursos é feita com base no comportamento do tráfego, descrito pelos parâmetros.
- O conjunto de parâmetros que descrevem o tráfego de uma conexão depende da categoria de serviço associada à conexão

Parâmetros descritores de tráfego

- Descritores de tráfego da fonte
 - Peak Cell Rate (PCR)
 - Sustainable Cell Rate (SCR)
 - Maximum Burst Size (MBS)
 - Minimum Cell Rate (MCR)
 - Maximum Frame Size (MFS)
- Descritores de tráfego da conexão
 - Descritores da fonte + Cell Delay Variation Tolerance (CDVT)

Peak Cell Rate - PCR


- Representa a taxa de emissão de pico da fonte.
- O inverso de PCR representa o intervalo mínimo teórico entre células de uma conexão.
- É expresso em células por segundo.


Sustainable Bit Rate - SCR Maximum Burst Size - MBS

- O SCR representa um limite superior na taxa de transmissão média de células conformes de uma conexão ATM.
- Junto com o SCR é especificado o MBS
 - O MBS representa o fator de burst do tráfego.
 - O MBS especifica o tamanho do burst de células que podem ser transmitidas à taxa PCR sem ferir o SCR negociado

SCR e MBS - Exemplo

SCR e MBS - exemplo

Células com CLP = 1

Células com CLP = 0

Minimum Cell Rate - MCR

- Define a largura de faixa mínima alocada para a conexão.
- É utilizado pelos serviços de banda sob demanda (ABR e GFR)

Maximum Frame Size - MFS

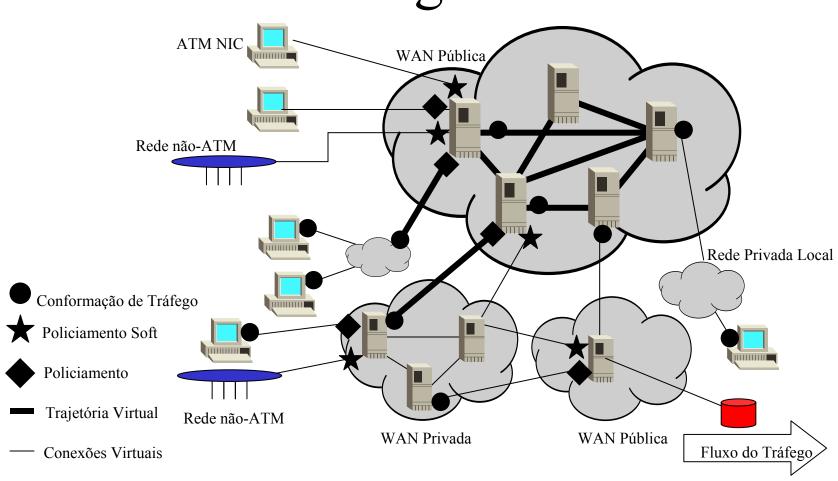
- Define o tamanho máximo de uma PDU-AAL que pode ser enviada por uma conexão GFR.
- PDUs que excedam este tamanho não são elegíveis para receber os objetivos de QoS GFR.

Descritores de tráfego e QoS

Atributos	CBR	RT-VBR	NRT-VBR	ABR	GFR	UBR
PCR	Especif.	Especif.	Especif.	Especif.	Especif.	Especif.
SCR MBS	N/A	Especif.	Especif.	N/A	N/A	N/A
MCR	N/A	N/A	N/A	Opcional	N/A	N/A
MCR, MBS,MFS	N/A	N/A	N/A	N/A	Especif.	N/A
CLR	Contrat.	Contrat.	Contrat.	Sem alvo	Sem alvo	Sem alvo
Max- CTD	Contrat.	Contrat.	Sem alvo	Sem alvo	Sem alvo	Sem alvo
P2P- CDV	Contrat.	Contrat.	Sem alvo	Sem alvo	Sem alvo	Sem alvo

Classes de Serviço

- Para uma dada categoria de serviço (CBR, VBR, ABR,...), a rede pode oferecer uma ou mais classes de serviço.
- Uma classe de serviço oferece um conjunto de alvos de QoS e pode limitar a faixa de alguns dos descritores de tráfego, por ex.:
 - Serviço CBR Premium : CLR = 10E-10
 - Serviço CBR Normal: CLR = 10E-7


Conformação e policiamento de tráfego

- A rede deve garantir que as conexões se comportem de acordo com os parâmetros de contrato de tráfego. Para tal são utilizados mecanismos de
 - Conformação de tráfego
 - Policiamento de tráfego

Generic Cell Rate Algorithm - GCRA

- Utilizado para verificar se as células de uma conexão estão em conformidade com o contrato de tráfego.
- As células não-conformes podem ser:
 - Descartadas
 - Marcadas com CLP = 1 e transmitidas
 - Processadas (atrasadas) para ficar em conformidade com o contratado (Soft Policing).

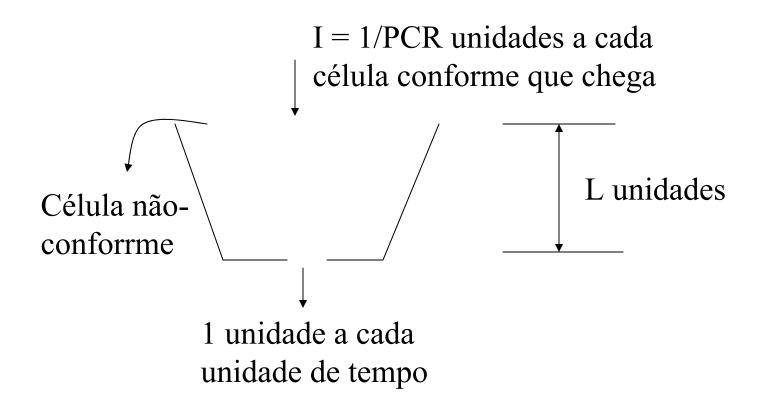
Conformação e Policiamento de tráfego

Definição de conformidade

- Incluída como parte do contrato de tráfego.
- Determina os tipos de células (CLP = 0 ou CLP = 0+1) para as quais os descritores de tráfego e QoS são definidos e qual a ação da rede sobre as células não-conformes.

Definição de conformidade

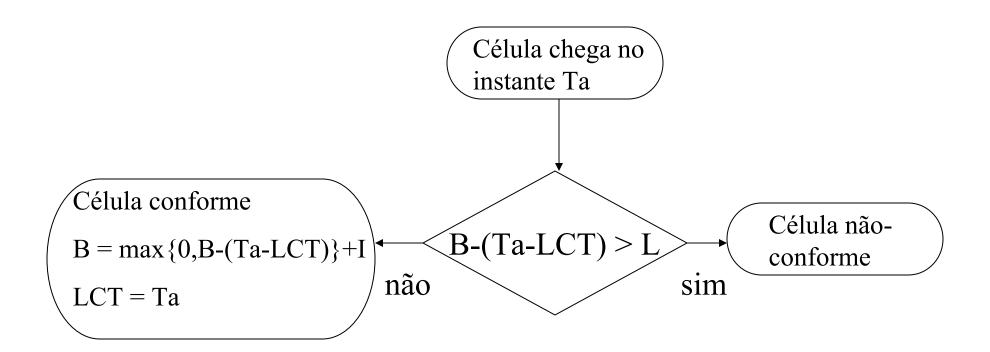
	Categoria de	Fluxo	Fluxo	Fluxo	Células não-		Max-CTD
Nome	serviço	PCR	SCR	MCR	conformes	CLR	P2P-CDV
CBR.1	CBR	0+1	N/A	N/A	Descartadas	0+1	0+1
VBR.1	rt e nrt-VBR	0+1	0+1	N/A	Descartadas	0+1	0+1(rt)
VBR.2	rt e nrt-VBR	0+1	0	N/A	Descartadas	0	0(rt)
VBR.3	rt e nrt-VBR	0+1	0	N/A	Marcadas	0	0(rt)
ABR.1	ABR	0	N/A	0	Descartadas	0	N/A
GFR.1	GFR	0+1	N/A	0	Descartadas	0	N/A
GFR.2	GFR	0+1	N/A	0	Marcadas	0	N/A
UBR.1	UBR	0+1	N/A	N/A	Descartadas	N/A	N/A
UBR.2	UBR	0+1	N/A	N/A	Marcadas	N/A	N/A


Policiamento de tráfego

- Generic Cell Rate Algorithm (GCRA)
 - Monitoração do parâmetro PCR ou dos parâmetros SCR e PCR
 - Pode ser expresso como um algoritmo Leaky
 Bucket ou como um algoritmo Virtual Scheduling [I.371 e TM4.0]
 - Ambos os algoritmos resultam no mesmo conjunto de células não conformes.

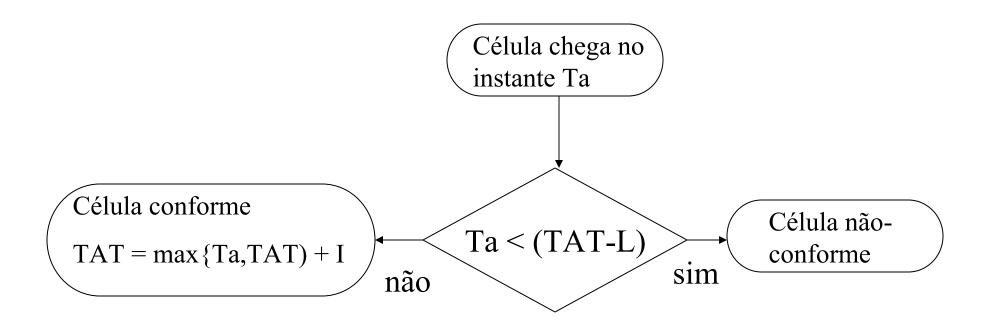
GCRA - monitoração de PCR

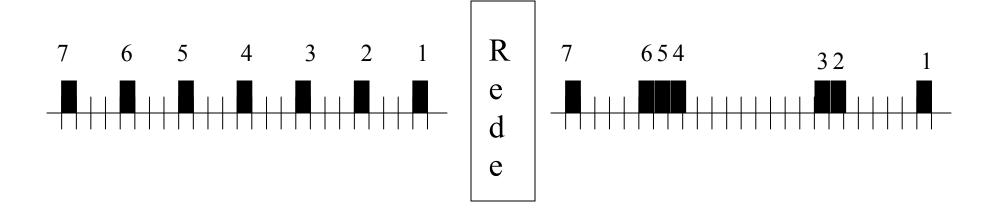
- Aplica-se aos tráfegos CBR e UBR.
- Monitora apenas o parâmetro PCR
- Um fator de tolerância, devido ao jitter, é especificado: Cell Delay Variation Tolerance (CDVT)
- Define-se um incremento I = 1/PCR e um limite L = CDVT.


Leaky Bucket

Leaky Bucket

- LCT (Last Conformance Time): instante de chegada da última célula conforme
- Ta: instante de chegada de uma célula
- Chegada da primeira célula no instante Ta
 - -B=0
 - -LCT = Ta
- Para as demais células aplica-se o algoritmo da próxima transparência.


Leaky Bucket


Virtual Scheduling

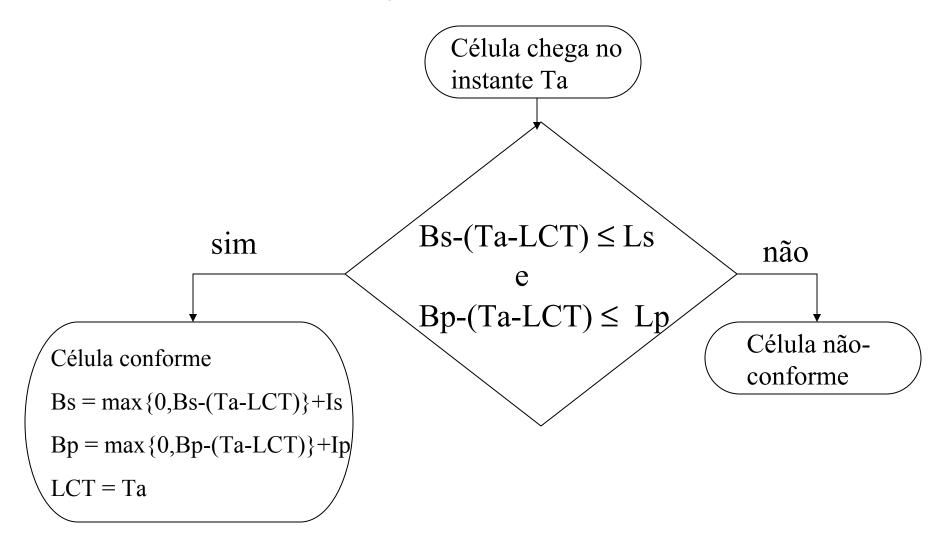
- TAT (Theoretical Arrival Time): Instante esperado de chegada de uma célula conforme
- Ta: Instante real de chegada da célula
 - Se Ta ≥ TAT L a célula é conforme
- Primeira célula: TAT = Ta
- Células subsequentes: vide próxima transp.

Virtual Scheduling

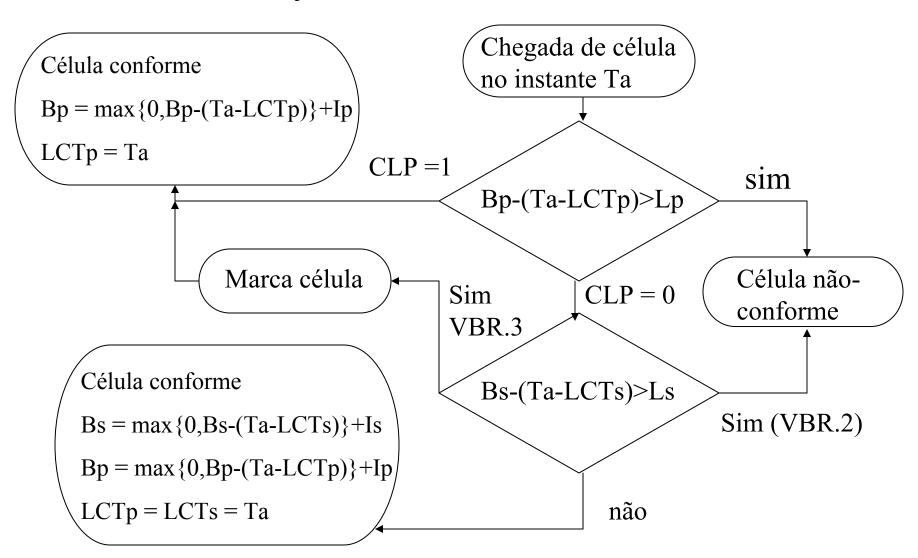
Exemplo

Exemplo CDVT = 2 unidades de tempo

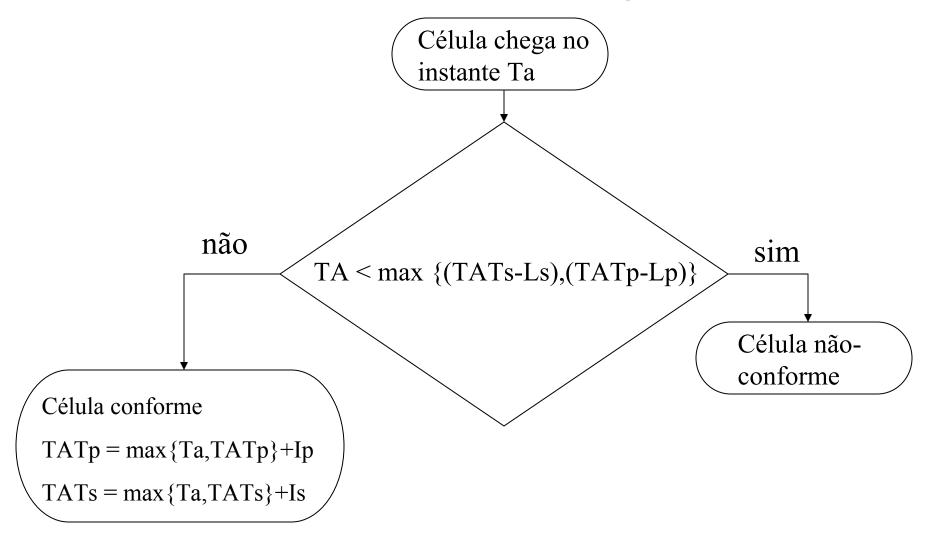
Célula	ta	TAT	TAT-ta	В	LCT	B-(ta-LCT)	Conformidade
1	1	1	0	0	1	0	Sim
2	8	5	-3	4	1	-3	Sim
3	9	12	3	4	8	3	Não
4	19	12	-7	4	8	-7	Sim
5	20	23	3	4	19	3	Não
6	21	23	2	4	19	2	Sim

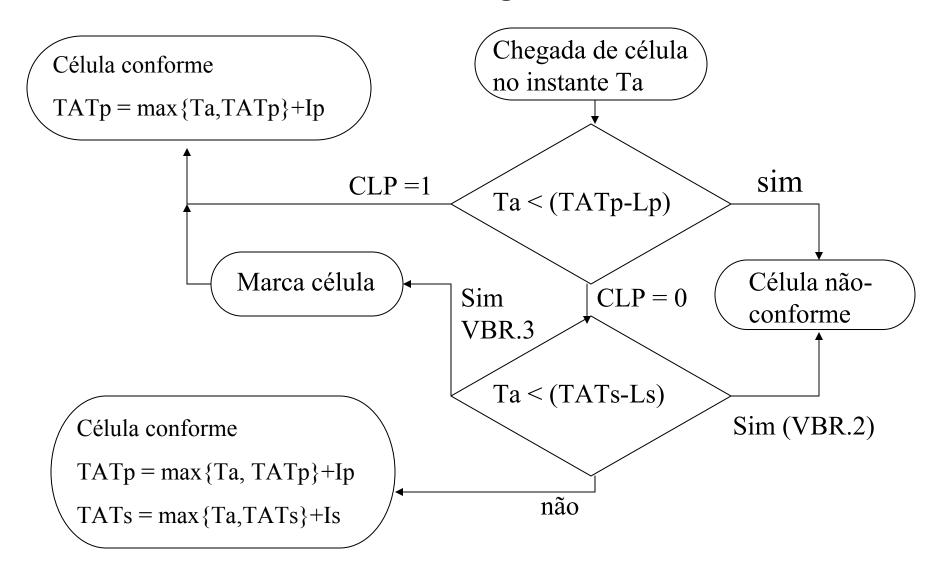

Exemplo CDVT = 3 unidades de tempo

Célula	ta	TAT	TAT-ta	В	LCT	B-(ta-LCT)	Conformidade	
1	1	1	0	0	1	0	Sim	
2	8	5	-3	4	1	-3	Sim	
3	9	12	3	4	8	3	Sim	
4	19	16	-3	7	9	-3	Sim	
5	20	23	3	4	19	3	Sim	
6	21	27	6	7	20	6	Não	


GCRA - monitoração de SCR e PCR

- Aplica-se ao tráfego VBR.
- Monitora os parâmetros SCR e PCR
- Um fator de tolerância é definido: Burst Tolerance (BT)
 - $-BT = (MBS 1) \times (1/SCR 1/PCR)$
- Para o SCR: I = 1/SCR; L = BT + CDVT
- 1a célula: Bp = Bs = 0 e LCT = Ta


Dual Leaky Bucket - VBR.1


Dual Leaky Bucket - VBR.2 e VBR.3

Dual Virtual Scheduling - VBR.1

Dual Virtual Scheduling - VBR.2 e VBR.3

Exemplo

- Contrato de tráfego
 - PCR = 1/2 da taxa da linha e SCR = 1/4 da taxa da linha
 - MBS = 4 células e CDVT = 1 unidade de tempo
- Parâmetros
 - -BT = 6 unidades de tempo
 - Is = 4; Ip = 2
 - -Ls = 7; Lp = 1

Exemplo 1 - VBR.1 e VBR.2

Célula	Ta	TATs	TATp	Bs	Вр	LCT	TATs-Ta= Bs - (Ta - LCT)	TATp-Ta= Bp - (Ta - LCT)	Conforme
1	1	1	1	0	0	1	0	0	Sim
2	2	5	3	4	2	1	3	1	Sim
3	3	9	5	7	3	2	6	2	Não
4	4	9	5	7	3	2	5	1	Sim
5	5	13	7	9	3	4	8	2	Não
6	6	13	7	9	3	4	7	1	Sim
7	7	17	9	11	3	6	10	2	Não
8	8	17	9	11	3	6	9	1	Não
9	9	17	9	11	3	6	8	0	Não
10	10	17	9	11	3	6	7	-1	Sim

Exemplo 2 - VBR.3

Célula CLP	Та	TATs	ТАТр	Bs	Вр	LCTs	LCTp	TATs-Ta= Bs - (Ta - LCT)	TATp-Ta= Bp - (Ta - LCT)	Conf CLP
1/0	1	1	1	0	0	1	1	0	0	Sim/0
2/0	2	5	3	4	2	1	1	3	1	Sim/0
3/0	3	9	5	7	3	2	2	6	2	Não/0
4/0	4	9	5	7	3	2	2	5	1	Sim/1
5/1	5		7		3		4		2	Não/1
6/0	6	9	7	7	3	2	4	3	1	Sim/0
7/1	7		9		3		6	5	2	Não/1
8/0	8	13	9	7	3	6	6	5	1	Sim/1
9/1	9		11		3		8	0	2	Não/1
10/0	10	13	11	7	3	6	8	3	2	Sim/0

Controle de Admissão de Conexão - CAC

- Conjunto de regras ou procedimentos que determinam a admissibilidade de uma conexão em um comutador ATM.
- Com base nos descritores de tráfego e modelos de tráfego e de fila, o CAC verifica se há recursos suficientes para aceitar a conexão com os níveis de QoS desejados.

CAC

- Algoritmo mais adequado depende da arquitetura do comutador, tipo de fila, algoritmo de scheduling, etc.
- Os algoritmos não são padronizados pelo ITU-T ou ATM-Fórum.
- Não é necessário ter o mesmo algoritmo de CAC em todos os comutadores para se alcançar o nível de QoS desejado.

Ganho estatístico

Ganho estatístico = No de conexões admitidas com multiplexagem estatística

No de conexões admitidas com alocação pela taxa de pico

• É uma função que varia com o tamanho do buffer, características do tráfego e objetivos de QoS das conexões que estão sendo multiplexadas.

CAC para tráfego CBR

- Alocação pela taxa de pico
- Método com CDV negligenciável
- Método com CDV não-negligenciável

Alocação pela taxa de pico

$$\sum_{i} PCR_{i} \leq capacidade \quad do \quad enlace$$

• A presença de jitter e a chegada simultânea de células nos fluxos multiplexados pode resultar em perda de célula, tipicamente se o buffer é pequeno.

Métodos com CDV negligenciável

$$\sum_{i} PCR_{i} \leq \rho \times capacidade \quad do \quad enlace$$

• Dados um buffer de comprimento B, a capacidade do enlace C, e taxa de pico de célula da conexão PCR, o método determina uma carga ρ tal que a probabilidade do comprimento da fila exceder B seja menor que ε, onde ε é um número pequeno (como 10E-10). A conexão será admitida se a condição acima for satisfeita.

Probabilidade da fila exceder um dado valor

Modelo M/D/1

$$P(comp. do buffer > x) \cong -\frac{1-\rho}{\ln(\rho)} \cdot \exp[-x(1-\rho - \ln(\rho))]$$

Modelo nD/D/1

$$P(comp.\ do\ buffer > x) \cong -\frac{1-\rho}{\ln(\rho)} \cdot \exp[-x(\frac{2x}{n} + 1 - \rho - \ln(\rho))]$$

Métodos com CDV não negligenciável

$$\sum_{i} PCR_{i} \leq capacidade \quad do \quad enlace$$

$$\sum BS_i \leq B \equiv tamanho\ do\ buffer\ da\ fila$$

$$BS = 1 + \left\lfloor \frac{CDVT}{T - \delta} \right\rfloor \qquad T = 1/PCR \qquad \delta = 1/R$$

CAC para tráfego VBR

- Rate Envelope Multiplexing (REM)
 - Assume que n\(\tilde{a}\) existe buffer ou que ele \(\tilde{e}\)
 muito pequeno
- Rate Sharing (RS)
 - Assume que o buffer é muito grande (infinito)
- Banda Efetiva
 - Assume a existência de buffer finito
 - Método mais importante

Banda efetiva

- Os parâmetros de tráfego de cada conexão são mapeados para um número c, chamado de banda efetiva da conexão, onde SCR ≤ c ≤ PCR.
- A conexão é aceita se:

$$\sum_{i} c_{i} \leq capacidade \ do \ enlace$$

Banda efetiva - modelo de perdas (Kesidis)

$$c = \alpha + \sqrt{\alpha^2 + \beta} \qquad \alpha = \frac{1}{2} \left(\lambda - \frac{1}{\delta T_{on}} - \frac{1}{\delta T_{off}} \right)$$

$$\exp(-b\delta) = CLR$$
 $\lambda = PCR$ $\beta = \frac{\lambda}{\delta T_{off}}$

$$T_{on} = \frac{1}{3} \frac{MBS}{PCR}$$
 $T_{off} = \frac{1}{3} MBS \left(\frac{1}{SCR} - \frac{1}{PCR} \right)$

Banda efetiva - modelo de atraso

$$c = \max \left\{ SCR, \frac{MBS}{PCR^{-1}MBS + \Delta} \right\}$$

$$\Delta = \min \left\{ MaxCTD - t_{fixo}; P2PCDV \right\}$$

t_{fixo} é o atraso fixo de propagação do enlace