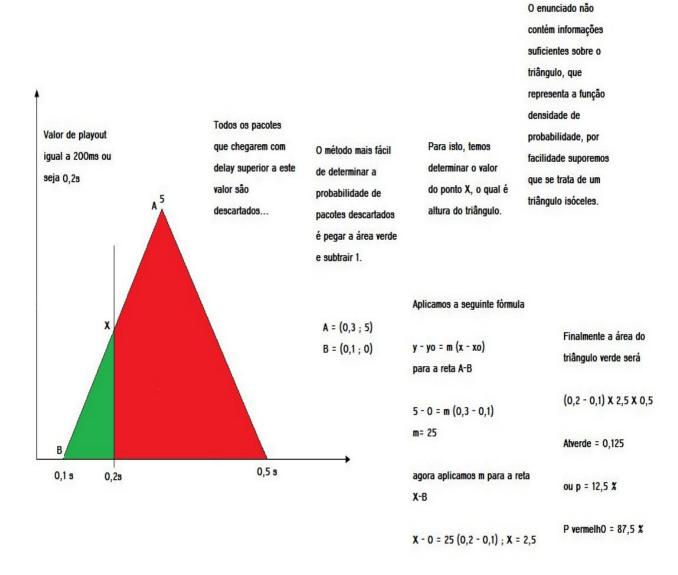
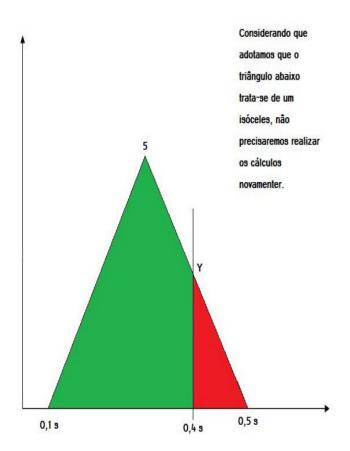

1) A função densidade de probabilidade do atraso de uma rede é dada pela figura abaixo. Deseja-se que o atraso total (após a dejitter buffer) não ultrapasse 200 ms e a perda de pacotes no dejitter buffer não ultrapasse 5 %. Isto é possível? Caso não seja possível, tolera-se um atraso máximo de 400ms e uma perda de 10%. Isto é possível? Defina o playout delay mínimo de modo que a perda de pacotes não ultrapasse 5%.

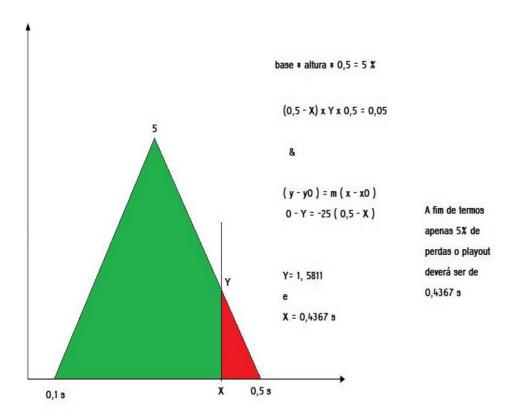



Probabilidade total é área do triângulo como esperado a soma das probabilidades de todos os eventos deve ser 100% ou p=1

p = (base X altura) X 0,5 p= [(0,5 - 0,1) X 5) X 0,5 p = 1 ou 100 %

> Assim que eu determino o valor do playout, todos os pacotes com delay superior ao mesmo são descartados, ou seja perdas

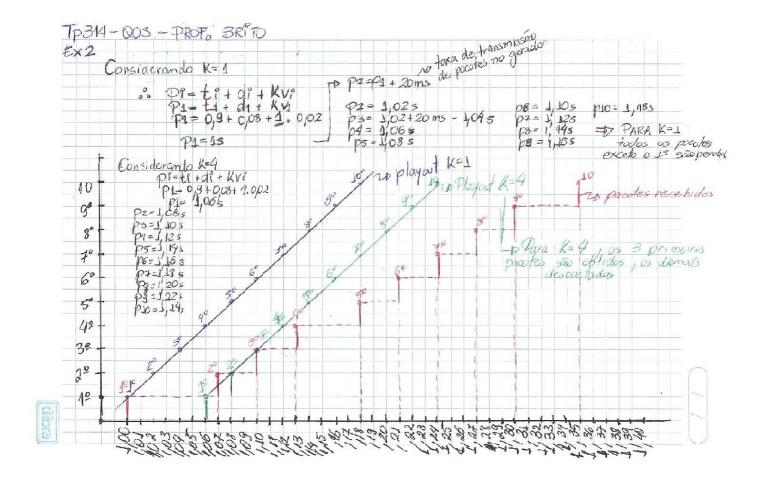
SENDO ASSIM É IMPOSSIVEL O COMPROMISSO DE UM PLAYOUT 200ms E UMA PROBABILIDADE DE PERDAS INFERIOR A 5%. MAS SIM ESTIPULANDO UM PLAYOUT DE 200ms TEREMOS PERDA DE 87,5% DOS PACOTES...



A figura que temos agora é o simétrico inverso do triângulo obtido no item 1, sendo assim o valore que antes era da área vermelha, agora é a área verde e viceversa...

Sendo assim a área vermelha
é igual a 0,125 ou 12,5 %

Sendo assim o compromisso de 400ms e 10% de perde, mais uma vez não pode ser alcançado.

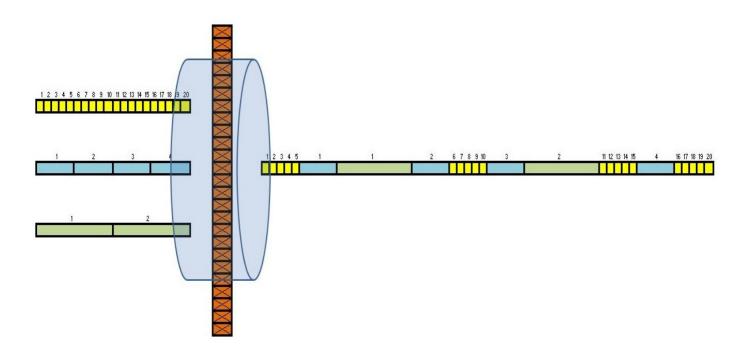

Para este valor de atraso teremos sim 12.5% dos pacotes sendo descartados e não apenas 10%

2) Um transmissor gera pacotes de voz a cada 20 ms. O 1º pacote de um talk-spurt foi gerado no instante 0,9 seg. e é recebido no instante 1 seg.. Os demais pacotes são recebidos nos instantes: 2º) 1,07 seg. ; 3º) 1,10 seg. ; 4º) 1,13 seg. ; 5º) 1,18 seg. ; 6º) 1,21 seg. ; 7º) 1,24 seg. ; 8º) 1,27 seg. ; 9º) 1,30 seg. ; 10º) 1,35 seg. .

A estimativa do receptor no instante do 1° pacote era: di = 80ms e Vi = 20 ms.

Calcular quantos pacotes são perdidos se o playout delay, que é fixado no instante de recebimento do 1º pacote com base na estimativa corrente considerando K=1. Repetir para K=4. A seguir calcular as novas estimativas de di e Vi após o recebimento do último pacote, considerando U=0,05.

				di	X			
1	0,05				Di= (1 - u)*Di-1 + u*(ri - ti)	Módulo de ri -ti - di	Vi=(1	-u)*Vi-1+u*(X)
			ri-	-ti d0	0,0800	xxxxx	V0	0,02
1	1	t1	0,9	0,1 d1	0,0810	0,019	V1	0,01995
2	1,07	t2	0,92	0,15 d2	0,0845	0,06555	V2	0,02223
3	1,1	t3	0,94	0,16 d3	0,0882	0,0717725	V3	0,024707125
4	1,13	t4	0,96	0,17 d4	0,0923	0,077683875	V4	0,027355963
5	1,18	t5	0,98	0,2 d5	0,0977	0,102299681	V5	0,031103148
6	1,21	t6	1	0,21 d6	0,1033	0,106684697	V6	0,034882226
7	1,24	t7	1,02	0,22 d7	0,1091	0,110850462	V7	0,038680638
8	1,27	t8	1,04	0,23 d8	0,1152	0,114807939	V8	0,042487003
9	1,3	t9	1,06	0,24 d9	0,1214	0,118567542	V9	0,04629103
10	1,35	t10	1,08	0,27 d10	0,1289	0,141139165	V10	0,051033437


- 3) Um roteador possui filas com três classes de prioridade. Alta, média e baixa. Em um dado instante tem-se:
 - Fila de alta prioridade (peso 5) 20 pacotes de 20 bytes
 - Fila de média prioridade (peso 3) 4 pacotes de 100 bytes

- Fila de baixa prioridade (peso 2) – 2 pacotes de 200 bytes.

Determine os três primeiros pacotes transmitidos se o algoritmo WFQ é utilizado.

Conforme ilustrado na figura abaixo os 3 primeiros pacotes transmitidos serão os da fila de alta prioridade

Quando o primeiro pacote chega a fronteira de decisão é dada prioridade ao pacote 20 do fluxo amarelo, após a transmissão desse pacote e, é verificado os próximos pacotes. Para as duas outras classes ainda não há necessidade de transmitir. Essa necessidade só virá a tona quando a decisão de dar-lhes privilégio ou não influenciará o troughput dessa classe. Ou seja, para a classe azul só haverá necessidade absoluta de transmissão quando a classe amarela já houver transmitido os seus 5 pacotes, após este instante caso azul não transmita a sua parte de 30% da banda será afetada. A mesma análise cabe a classe verde.

4) O contrato de tráfego entre uma fonte rt-VBR e uma rede ATM possui os seguintes parâmetros: SCR = 100 cps, PCR = 200 cps, MBS = 3 células. O CDVT utilizado para a conexão é de 1 ms. A fonte gera o seguinte padrão de tráfego: 4 células espaçadas de 3 ms, seguidas de um intervalo de 11 ms sem células, e assim sucessivamente. Cada célula tem duração de 2 ms. Todas as células são geradas com CLP = 0. Aplique o algoritmo GCRA (mostre todos os cálculos da aplicação do algoritmo) e indique na tabela abaixo os parâmetros solicitados e quais células são consideradas conformes.

Célula	Та	TATs	ТАТр	TATs - Ta	TATp - Ta	Conforme?
1	0	0	0	0	0	Conf
2	5	18	6	13	1	Conf
3	10	36	12	26	2	Conf
4	15	54	18	39	3	N. Conf
5	28	72	24	44	-4	Conf
6	33	90	30	57	-3	Conf
7	38	108	36	70	-2	N conf
8	43	126	48	83	5	Conf

Foi empregado o seguinte algoritmo.

Dual Leaky Bucket - VBR.1

Onde

Para a primeira célula.

Bp=Bs=0; LCT=Ta; Is=
$$1/SCR = 0.01 = 10 \text{ ms}$$
; Ip= $1/PCR = 0.005 = 5 \text{ ms}$

$$Bt=(MBS - 1)(1/scr - 1/pcr) = Bts = 0.01 = 10 \text{ ms}$$

L= BT + CDVT = Ls=0,01 + 0,001 = 0,011 = 11ms
LCT1 = 0
Bs1 - (Ta1 - LCT1) =< Ls

$$0 - (0 - 0) = < 11$$
 ms Ok

$$Bp1 - (Ta1 - LCT1) = < Lp$$

0 - (0 - 0) = < 11ms OK

Uma vez que ambas as condições acima foram satisfeitas <u>a célula 1 é conforme</u>. Agora precisamos calcular os novos valores de Bs e BP, os quais chamaremos Bs2 e Bp2 uma vez que serão os atributos do segundo loop para próxima célula da seqüência.

$$Bs2 = Max \{ 0 ; Bs1 - (Ta1 - LCT1) \} + Is$$

$$Bs2 = máx \{ 0 ; 0 - (0 - 0) \} + 10 ms$$

$$Bs2 = 10 ms$$

$$Bp2 = máx \{ 0 ; Bp1 - (Ta1 - LCT1) \} + Ip$$

$$Bp2 = máx \{ 0 ; 0 - (0 - 0) \} + 5ms$$

$$Bp2 = 5 ms$$

$$LCT2 = Ta1 = 0$$

Segunda Célula

0 = < 11 ms ok

$$Bs2 - (Ta2 - LCT2) = < Ls$$

 $10ms - (5ms - 0) = < 11ms$
 $5ms = < 11ms OK$
 $Bp2 - (Ta2 - LCT2) = < Lp$
 $5ms - (5ms - 0) = < 11ms$

Uma vez que as condições acima conferem, célula 2 é conforme

Terceira Célula

$$Bp3 - (Ta3 - LCT3) = < Lp$$

 $5ms - (10ms - 5ms) = < 11ms$
 $0 = < 11 ms$ Ok

Ambas as condições acima forams satisfeitas a célula 3 também é conforme.

Quarta célula

Apenas uma das condições foi satisfeita sendo assim célula não conforme

$$Bs5 = Bs4 = 20ms$$

 $Bp5 = Bp4 = 5ms$
 $LCT5 = LCT4 = 10 ms$

Quinta célula

Ambas as sentenças foram satisfeitas, sendo assim quinta célula conforme.

$$Bp6 = 5ms$$

$$LCT6=28ms$$

Sexta célula

Célula conforme

Sétima célula

Como as apenas uma sentença é satisfeita célula não conforme

$$Bs8 = Bs7$$

 $Bp8 = Bp7$
 $LCT8 = LCT7$

Oitava célula

Célula conforme.

- 5) Marque as alternativas corretas.
- a) A arquitetura DiffServ reserva recurso para cada fluxo na rede e, por isto, é a arquitetura mais adequada para se prover QoS em backbones.

Falso - Realmente essa arquitetura é mais adequado a backbones, contudo não há reserva de recursos para cada fluxo, esta é uma característica da serviços integrados

b) O protocolo RSVP é utilizado para reservar recursos na rede. A mensagem de PATH é a responsável por efetivar a reserva de recurso.`

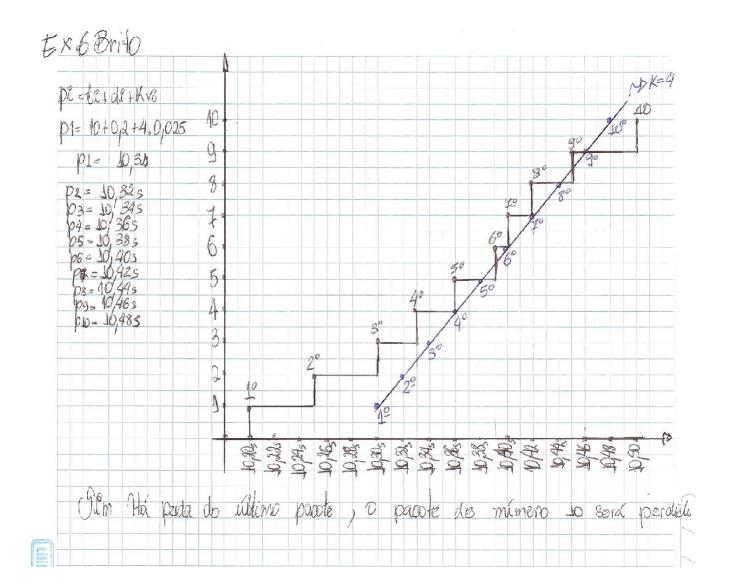
Falso- A mensagem responsável pela reserva de recursos é a mensagem RESV

c) A fragmentação de longos pacotes de dados em pacotes menores uniformiza o tamanho dos pacotes em redes VoIP e, em função disto, diminui o atraso médio e o jitter dos pacotes de voz

Verdadeiro

d) O dejitter buffer tem por função eliminar o jitter experimentado pelos pacotes. Para que o jitter seja completamente eliminado, o atraso total (incluindo o dejitter buffer) experimentado por todos os pacotes deve ser igual ao máximo atraso introduzido pela rede.

Verdadeiro, mas essa é uma implementação um tanto drástica, uma vez que caso o atraso seja muito elevado pode comprometer a aplicação em sim, tal como o algoritmo de processamento de imagem.


e) Pacotes de voz em um serviço de telefonia sobre IP podem experimentar atrasos de até 1 segundo, sem perda de qualidade pelo ponto de vista do usuário.

Falso

f) O sinal de vídeo é mais sensível a perda de pacotes do que o sinal de voz. **Verdadeiro**

6. A estimativa do atraso (d_i) em uma rede multimídia é de 200 ms e estimativa do desvio (v_i) é de 25 ms. O playout time do primeiro pacote de um talk spurt recebido é fixado com base nestas estimativas, utilizando o parâmetro k = 4. A tabela abaixo ilustra os instantes de transmissão e chegada de todos os pacotes do talkspurt. Há perda de pacotes? Caso positivo, quais pacotes serão perdidos por excesso de atraso?

Pacote	Instante Transmissão	Instante Recepção
1	10 segundos	10.2
2	10.02	10.25
3	10.04	10.3
4	10.06	10.33
5	10.08	10.36
6	10.1	10.39
7	10.12	10.4
8	10.14	10.42
9	10.16	10.45
10	10.18	10.5

