
(a) Two states of a switch

(b) Symbol for a switch

Figure 2.1 A binary switch

(a) Simple connection to a battery

(b) Using a ground connection as the return path

Figure 2.2 A light controlled by a switch

(a) The logical AND function (series connection)

(b) The logical OR function (parallel connection)

Figure 2.3 Two basic functions

Figure 2.4 A series-parallel connection

Figure 2.5 An inverting circuit

x_{1}	x_{2}	$x_{1} \cdot x_{2}$	$x_{1}+x_{2}$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1
AND			
OR			

Figure 2.6 A truth table for AND and OR

x_{1}	x_{2}	x_{3}	$x_{1} \cdot x_{2} \cdot x_{3}$	$x_{1}+x_{2}+x_{3}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Figure 2.7 Three-input AND and OR

(a) AND gates

(b) OR gates

(c) NOT gate

Figure 2.8 The basic gates

Figure 2.9 An OR-AND function

(a) Network that implements $\quad f=\bar{x}_{1}+x_{1} \cdot x_{2}$

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

(b) Truth table for f

Figure 2.10 a Logic network

Figure 2.10 b Logic network

x	y	$x \cdot y$	$\overline{x \cdot y}$	\bar{x}	\bar{y}	$\bar{x}+\bar{y}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	$\underbrace{}_{\text {LHS }}$	$\underbrace{}_{\text {RHS }}$	0
0						

Figure 2.11 Proof of DeMorgan's theorem

Please see "portrait orientation" PowerPoint file for Chapter 2

Figure 2.12 The Venn diagram representation

Please see "portrait orientation" PowerPoint file for Chapter 2

Figure 2.13 Verification of the distributive property

Please see "portrait orientation" PowerPoint file for Chapter 2

Figure 2.14 Verification example

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

Figure 2.15 A function to be synthesized

(a) Canonical sum-of-products

(b) Minimal-cost realization

Figure 2.16 Two implementations of a function

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

Figure 2.17 Three-variable Minterms and Maxterms

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Figure 2.18 A three-variable function

(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization

Figure 2.19 Two realizations of a function

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Figure 2.20 Truth table for a three-way light controller

Figure 2.21 SOP implementation of the three-way light controller

(b) Product-of-sums realization

Figure 2.21 POS implementation of the three-way light controller

s	x_{1}	x_{2}	$f\left(s, x_{1}, x_{2}\right)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

(a)Truth table

(c) Graphical symbol

(b) Circuit

(d) More compact truth-table representation

Figure 2.22 Multiplexer

Figure 2.23 Screen capture of the Waveform Editor

Figure 2.24 Screen capture of the Graphic Editor

Please see "portrait orientation" PowerPoint file for Chapter 2

Figure 2.25 The first stages of a CAD system

ENTITY example1 IS
PORT ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$: IN BIT ; f : OUT BIT) ;
END example1;
ARCHITECTURE LogicFunc OF example1 IS BEGIN
$\mathrm{f}<=(\mathrm{x} 1$ AND x2) OR (NOT x2 AND x3) ; END LogicFunc ;

Figure 2.26 A simple logic function and corresponding VHDL code

```
ENTITY example2 IS
    PORT ( x1, x2, x3, x4 : IN BIT ;
    f,g :OUT BIT );
END example2 ;
```

ARCHITECTURE LogicFunc OF example2 IS
BEGIN
$\mathrm{f}<=$ (x 1 AND x 3) OR (NOT x3 AND x 2) ;
$\mathrm{g}<=($ NOT x3 OR x1) AND (NOT x3 OR x4) ;
END LogicFunc ;

Figure 2.30 VHDL code for a four-input function

Figure 2.31 Logic circuit for four-input function

(a)

(b)

Figure P2. 1 Two attempts to draw a four-variable Venn diagram

Figure P2.2 A four-variable Venn diagram

Figure P2.3 A timing diagram representing a logic function

Figure P2.4 A timing diagram representing a logic function

