

(a) Two states of a switch

(b) Symbol for a switch

(b) Using a ground connection as the return path

Figure 2.2 A light controlled by a switch

(a) The logical AND function (series connection)

(b) The logical OR function (parallel connection)

Figure 2.4 A series-parallel connection

x_1	x_2	$x_1 \cdot x_2$	$x_1 + x_2$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1
		AND	\mathbf{OR}

x_1	x_2	x_3	$x_1 \cdot x_2 \cdot x_3$	$x_1 + x_2 + x_3$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Figure 2.7 Three-input AND and OR

(b) OR gates

(c) NOT gate

Figure 2.9 An OR-AND function

(b) Truth table for f

Figure 2.10 a Logic network

Figure 2.10 b Logic network

x	y	$x \cdot y$	$\overline{x\cdot y}$	\overline{x}	\overline{y}	$\overline{x} + \overline{y}$	
0	0	0	1	1	1	1	
0	1	0	1	1	0	1	
1	0	0	1	0	1	1	
1	1	1	0	0	0	0	
		\mathbf{L}		RI	HS		

Figure 2.11 Proof of DeMorgan's theorem

Figure 2.12 The Venn diagram representation

Figure 2.13 Verification of the distributive property

Figure 2.14 Verification example

x_1	x_2	$\int f(x_1, x_2)$
$0 \\ 0 \\ 1 \\ 1$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$	$\begin{vmatrix} 1\\1\\0\\1 \end{vmatrix}$

Figure 2.15 A function to be synthesized

Figure 2.16 Two implementations of a function

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{ccc} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$	0 0 0 1 1 1 1	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$

Figure 2.17 Three-variable Minterms and Maxterms

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Figure 2.18 A three-variable function

(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization

Figure 2.19 Two realizations of a function

x_1	x_2	x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Figure 2.20 Truth table for a three-way light controller

(a) Sum-of-products realization

Figure 2.21 SOP implementation of the three-way light controller

(b) Product-of-sums realization

Figure 2.21 POS implementation of the three-way light controller

(c) Graphical symbol

(d) More compact truth-table representation

Figure 2.22 Multiplexer

Name:	_Type: _	a	100.0ns	Ş	200.0ns	300.0ns	400
∎>– x1	INPUT						
i i i - x2	INPUT						
- 💽 f	СОМВ						
			Sec. 1				

Figure 2.23 Screen capture of the Waveform Editor

Figure 2.24 Screen capture of the Graphic Editor

•

Figure 2.25 The first stages of a CAD system

Figure 2.26 A simple logic function and corresponding VHDL code

ARCHITECTURE LogicFunc OF example2 IS BEGIN

 $\label{eq:gamma} \begin{array}{l} f <= \ (x1 \ AND \ x3) \ OR \ (NOT \ x3 \ AND \ x2) \ ; \\ g <= \ (NOT \ x3 \ OR \ x1) \ AND \ (NOT \ x3 \ OR \ x4) \ ; \\ END \ LogicFunc \ ; \end{array}$

Figure 2. 31 Logic circuit for four-input function

Figure P2. 1 Two attempts to draw a four-variable Venn diagram

Figure P2. 2 A four-variable Venn diagram

Figure P2. 3 A timing diagram representing a logic function

Figure P2.4 A timing diagram representing a logic function