

Figure 3.1 Logic values as voltage levels

(a) A simple switch controlled by the inputx

(b) NMOS transistor

(c) Simplified symbol for an NMOS transistor

Figure 3.2 NMOS transistor as a switch

$$
x=\text { "low" }
$$

(a) A switch with the opposite behavior of Figure 3.2 a

(b) PMOS transistor

(c) Simplified symbol for an PMOS transistor

Figure 3.3 PMOS transistor as a switch

$$
\begin{aligned}
& \text { Closed switch } \\
& \text { when } V_{G}=V_{D D}
\end{aligned}
$$

Open switch when $V_{G}=0 \mathrm{~V}$
(a) NMOS transistor

Open switch when $V_{G}=V_{D D}$

Closed switch
when $V_{G}=0 \mathrm{~V}$
(b) PMOS transistor

Figure 3.4 NMOS and PMOS transistors in logic circuits

Figure 3.5 A NOT gate built using NMOS technology

(a) Circuit

(c) Graphical symbols

Figure 3.6 NMOS realization of a NAND gate

Figure 3.7 NMOS realization of a NOR gate

Figure 3.8 NMOS realization of an AND gate

Figure 3.9 NMOS realization of an OR gate

Figure 3.10 Structure of an NMOS circuit

Figure 3.11 Structure of a CMOS circuit

(a) Circuit

(b) Truth table and transistor states

Figure 3.12 CMOS realization of a NOT gate

(a) Circuit

(b) Truth table and transistor states

Figure 3.13 CMOS realization of a NAND gate

(a) Circuit

x_{1}	x_{2}	T_{1}	T_{2}	T_{3}	T_{4}	f
0	0	on	on	off	off	1
0	1	on off	off	on	0	
1	0	off	on	on	off	0
1	1	off off	on	on	0	

(b) Truth table and transistor states

Figure 3.14 CMOS realization of a NOR gate

Figure 3.15 CMOS realization of an AND gate

Figure 3.16 A CMOS complex gate

Figure 3.17 A CMOS complex gate

(a) Circuit
(b) Voltage levels

Figure 3.18 Voltage levels in a CMOS circuit
(a) Voltage levels

x_{1}	x_{2}	f
0	0	1
0	1	1
1	0	1
1	1	0

(b) Positive logic truth table and gate symbol

x_{1}	x_{2}	f
1	1	0
1	0	0
0	1	0
0	0	1

(c) Negative logic truth table and gate symbol

Figure 3.19 Interpretation of voltage levels

$V_{x_{1}}$	$V_{x_{2}}$	V_{f}
L	L	L
L	H	L
H	L	L
H	H	H

x_{1}	x_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

(a) Voltage levels

(c) Negative logic

Figure 3.20 Interpretation of voltage levels

Figure 3.21 A 7400-series chip

Figure 3.22 Implementation of $\mathrm{f}=\mathrm{x}_{1} \overline{\mathrm{x}}_{2}+\mathrm{x}_{2} \mathrm{x}_{3}$

Figure 3.23 The 74244 buffer chip

Figure 3.24 Programmable logic device as a black box

Figure 3.25 General structure of a PLA

Figure 3.27 Customary schematic of a PLA

Figure 3.28 An example of a PLA

Figure 3.29 Output circuitry

Figure 3.30 A PLD programming unit

Figure 3.31 A PLCC package with socket

Figure 3.32 Structure of a CPLD

Figure 3.33 A section of a CPLD

(a) CPLD in a Quad Flat Pack (QFP) package

Printed

(b) JTAG programming

Figure 3.34 CPLD packaging and programming

Figure 3.35 Structure of an FPGA

(a) Circuit for a two-input LUT

x_{1}	x_{2}	f_{1}
0	0	1
0	1	0
1	0	0
1	1	1

(b) $f_{1}=\bar{x}_{1} \bar{x}_{2}+x_{1} x_{2}$

(c) Storage cell contents in the LUT

Figure 3.36 A two-input lookup table

Figure 3.37 A three-input LUT

Figure 3.38 Inclusion of a flip-flop with a LUT

Figure 3.39 A section of a programmed FPGA

Figure 3.40 A section of two rows in a standard-cell chip

Figure 3.41 A sea-of-gates gate array

Figure 3.42 An example of a logic function in a gate array

(a) When $V_{G S}=0 \mathrm{~V}$, the transistor is off

Figure 3.43 a NMOS transistor when turned off

(b) When $V_{G S}=5 \mathrm{~V}$, the transistor is on

Figure 3.43 b NMOS transistor when turned on

Figure 3.44 Current-voltage relationship in the NMOS transistor

Figure 3.45 Voltage levels in the NMOS inverter

Figure 3.46 Voltage transfer characteristics for the CMOS inverter

(a) A NOT gate driving another NOT gate

(b) The capacitive load at node A

Figure 3.47 Parasitic capacitance in integrated circuits

Figure 3.48 Voltage waveforms for logic gates

(a) Small transistor

(b) Larger transistor

(a) Current flow when input V_{x} changes from 0 V to 5 V

(b) Current flow when input V_{x} changes from 5 V to 0 V

Figure 3.50 Dynamic current flow in CMOS circuits

Figure 3.51 Poor use of NMOS and PMOS transistors

(a) An AND gate circuit
$\left.\begin{array}{c|c|c}\begin{array}{c}\text { Logic } \\ \text { value }\end{array} & \text { Voltage } & \begin{array}{c}\text { Logic } \\ \text { value }\end{array} \\ \hline x_{1} & x_{2} & V_{f}\end{array}\right] f$
(b) Truth table and voltage levels

Figure 3.52 Poor implementation of a CMOS AND gate

Figure 3.54 High fan-in NMOS NOR gate

To inputs of n other inverters
(a) Inverter that drives n other inverters

(b) Equivalent circuit for timing purposes

(c) Propagation times for different values of n

Figure 3.55 The effect of fan-out on propagation delay

(a) Implementation of a buffer

(b) Graphical symbol

Figure 3.56 A noninverting buffer

Figure 3.57 Tri-state buffer

Figure 3.58 Four types of tri-state buffers

Figure 3.59 An application of tri-state buffers

Figure 3.60 A transmission gate

x_{1}	x_{2}	$f=x_{1} \oplus x_{2}$
0	0	0
0	1	1
1	0	1
1	1	0

(a) Truth table

(b) Graphical symbol

(c) Sum-of-products implementation

Figure 3.61 a Exclusive-OR gate

(d) CMOS implementation

Figure 3.61 b CMOS Exclusive-OR gate

Figure 3.62 A 2-to-1 multiplexer built using transmission gates

Figure 3.63 An example of a NOR-NOR PLA

Please see "portrait orientation" PowerPoint file for Chapter 3

Figure 3.64 A programmable NOR plane

Figure 3.65 A programmable version of a NOR-NOR PLA

Figure 3.67 PAL programmed to implement two functions

Figure 3.68 Pass-transistor switches in FPGAs

Figure 3.69 Restoring a high voltage level

Figure P3.1 A sum-of-products CMOS circuit

Figure P3.2 A CMOS circuit built with multiplexers

Figure P3.3 Circuit for problem 3.3

Figure P3.4 A three-input CMOS circuit

Figure P3.5 A four-input CMOS circuit

Figure P3.6 The pull-down network in a CMOS circuit

Figure P3.7 The pull-up network in a CMOS circuit

Figure P3.8 The pseudo-NMOS inverter

Figure P3.9 A gate-array logic cell

Figure P3.10 Circuit for problem 3.54

Figure P3.11 Circuit for problem 3.55

