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The study of logic circuits is motivated mostly by their use in digital computers. But such circuits also form
the foundation of many other digital systems where performing arithmetic operations on numbers is not of
primary interest. For example, in a myriad of control applications actions are determined by some simple
logical operations on input information, without having to do extensive numerical computations.

Logic circuits perform operations on digital signals and are usually implemented as electronic circuits
where the signal values are restricted to a few discrete values. Inbinary logic circuits there are only two
values, 0 and 1. In decimallogic circuits there are 10 values, from 0 to 9. Since each signal value is naturally
represented by a digit, such logic circuits are referred to asdigital circuits. In contrast, there existanalog
circuits where the signals may take on a continuous range of values between some minimum and maximum
levels.

In this book we deal with binary circuits, which have the dominant role in digital technology. We hope to
provide the reader with an understanding of how these circuits work, how are they represented in mathematical
notation, and how are they designed using modern design automation techniques. We begin by introducing
some basic concepts pertinent to the binary logic circuits.

2.1 Variables and Functions

The dominance of binary circuits in digital systems is a consequence of their simplicity,
which results from constraining the signals to assume only two possible values. The simplest
binary element is a switch that has two states. If a given switch is controlled by an input
variablex, then we will say that the switch is open ifx = 0 and closed ifx = 1, as illustrated
in Figure 2.1a. We will use the graphical symbol in Figure 2.1b to represent such switches
in the diagrams that follow. Note that the control inputx is shown explicitly in the symbol.
In Chapter 3 we will explain how such switches are implemented with transistors.

Consider a simple application of a switch, where the switch turns a small lightbulb
on or off. This action is accomplished with the circuit in Figure 2.2a. A battery provides
the power source. The lightbulb glows when sufficient current passes through its filament,
which is an electrical resistance. The current flows when the switch is closed, that is, when
x = 1. In this example the input that causes changes in the behavior of the circuit is the

x 1=x 0=

(a) Two states of a switch

S

x

(b) Symbol for a switch

Figure 2.1 A binary switch.
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(a) Simple connection to a battery

S

x

(b) Using a ground connection as the return path

LBattery Light

x
Power
supply

S

L

Figure 2.2 A light controlled by a switch.

switch controlx. The output is defined as the state (or condition) of the lightL. If the light
is on, we will say thatL = 1. If the the light is off, we will say thatL = 0. Using this
convention, we can describe the state of the lightL as a function of the input variablex.
SinceL = 1 if x = 1 andL = 0 if x = 0, we can say that

L(x) = x

This simplelogic expressiondescribes the output as a function of the input. We say that
L(x) = x is a logic functionand thatx is aninput variable.

The circuit in Figure 2.2a can be found in an ordinary flashlight, where the switch is a
simple mechanical device. In an electronic circuit the switch is implemented as a transistor
and the light may be a light-emitting diode (LED). An electronic circuit is powered by
a power supply of a certain voltage, perhaps 5 volts. One side of the power supply is
connected to ground, as shown in Figure 2.2b. The ground connection may also be used as
the return path for the current, to close the loop, which is achieved by connecting one side
of the light to ground as indicated in the figure. Of course, the light can also be connected
by a wire directly to the grounded side of the power supply, as in Figure 2.2a.

Consider now the possibility of using two switches to control the state of the light. Let
x1 andx2 be the control inputs for these switches. The switches can be connected either
in series or in parallel as shown in Figure 2.3. Using a series connection, the light will be
turned on only if both switches are closed. If either switch is open, the light will be off.
This behavior can be described by the expression

L(x1, x2) = x1 · x2

where L = 1 if x1 = 1 andx2 = 1,
L = 0 otherwise.

The “·” symbol is called theAND operator, and the circuit in Figure 2.3a is said to implement
a logical AND function.
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(a) The logical AND function (series connection)
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(b) The logical OR function (parallel connection)

Light

Light

Figure 2.3 Two basic functions.

The parallel connection of two switches is given in Figure 2.3b. In this case the light
will be on if eitherx1 or x2 switch is closed. The light will also be on if both switches are
closed. The light will be off only if both switches are open. This behavior can be stated as

L(x1, x2) = x1+ x2

where L = 1 if x1 = 1 orx2 = 1 or if x1 = x2 = 1,
L = 0 if x1 = x2 = 0.

The+ symbol is called theOR operator, and the circuit in Figure 2.3b is said to implement
a logical OR function.

In the above expressions for AND and OR, the outputL(x1, x2) is a logic function with
input variablesx1 andx2. The AND and OR functions are two of the most important logic
functions. Together with some other simple functions, they can be used as building blocks

S

x1

L
Power
supply S

x2

Light

S

x3

Figure 2.4 A series-parallel connection.



April 5, 1999 14:05 g02-ch2 Sheet number 5 Page number 21 black

2.2 Inversion 21

for the implementation of all logic circuits. Figure 2.4 illustrates how three switches can be
used to control the light in a more complex way. This series-parallel connection of switches
realizes the logic function

L(x1, x2, x3) = (x1+ x2) · x3

The light is on ifx3 = 1 and, at the same time, at least one of thex1 or x2 inputs is equal
to 1.

2.2 Inversion

So far we have assumed that some positive action takes place when a switch is closed, such
as turning the light on. It is equally interesting and useful to consider the possibility that a
positive action takes place when a switch is opened. Suppose that we connect the light as
shown in Figure 2.5. In this case the switch is connected in parallel with the light, rather
than in series. Consequently, a closed switch will short-circuit the light and prevent the
current from flowing through it. Note that we have included an extra resistor in this circuit
to ensure that the closed switch does not short-circuit the power supply. The light will be
turned on when the switch is opened. Formally, we express this functional behavior as

L(x) = x
where L = 1 if x = 0,

L = 0 if x = 1

The value of this function is the inverse of the value of the input variable. Instead of
using the wordinverse, it is more common to use the termcomplement. Thus we say that
L(x) is a complement ofx in this example. Another frequently used term for the same
operation is theNOT operation. There are several commonly used notations for indicating
the complementation. In the preceding expression we placed an overbar on top ofx. This
notation is probably the best from the visual point of view. However, when complements
are needed in expressions that are typed using a computer keyboard, which is often done
when using CAD tools, it is impractical to use overbars. Instead, either an apostrophe is

Sx L

Power
supply

R

Figure 2.5 An inverting circuit.



April 5, 1999 14:05 g02-ch2 Sheet number 6 Page number 22 black

22 C H A P T E R 2 • Introduction to Logic Circuits

placed after the variable, or the exclamation mark or the word NOT is placed in front of the
variable to denote the complementation. Thus the following are equivalent:

x = x′ = !x = NOT x

The complement operation can be applied to a single variable or to more complex
operations. For example, if

f (x1, x2) = x1+ x2

then the complement off is

f (x1, x2) = x1+ x2

This expression yields the logic value 1 only when neitherx1 nor x2 is equal to 1, that is,
whenx1 = x2 = 0. Again, the following notations are equivalent:

x1+ x2 = (x1+ x2)
′ =!(x1+ x2) = NOT (x1+ x2)

2.3 Truth Tables

We have introduced the three most basic logic operations—AND, OR, and complement—by
relating them to simple circuits built with switches. This approach gives these operations a
certain “physical meaning.” The same operations can also be defined in the form of a table,
called atruth table, as shown in Figure 2.6. The first two columns (to the left of the heavy
vertical line) give all four possible combinations of logic values that the variablesx1 andx2

can have. The next column defines the AND operation for each combination of values ofx1

andx2, and the last column defines the OR operation. Because we will frequently need to
refer to “combinations of logic values” applied to some variables, we will adopt a shorter
term,valuation, to denote such a combination of logic values.

The truth table is a useful aid for depicting information involving logic functions. We
will use it in this book to define specific functions and to show the validity of certain func-
tional relations. Small truth tables are easy to deal with. However, they grow exponentially
in size with the number of variables. A truth table for three input variables has eight rows
because there are eight possible valuations of these variables. Such a table is given in Figure
2.7, which defines three-input AND and OR functions. For four-input variables the truth
table has 16 rows, and so on.

x1 x2 x1 · x2 x1+ x2

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

AND OR

Figure 2.6 A truth table for the AND and OR operations.
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x1 x2 x3 x1 · x2 · x3 x1+ x2 + x3

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 2.7 Three-input AND and OR operations.

The AND and OR operations can be extended ton variables. An AND function
of variablesx1, x2, · · · , xn has the value 1 only if alln variables are equal to 1. An OR
function of variablesx1, x2, · · · , xn has the value 1 if at least one, or more, of the variables
is equal to 1.

2.4 Logic Gates and Networks

The three basic logic operations introduced in the previous sections can be used to implement
logic functions of any complexity. A complex function may require many of these basic
operations for its implementation. Each logic operation can be implemented electronically
with transistors, resulting in a circuit element called alogic gate. A logic gate has one or
more inputs and one output that is a function of its inputs. It is often convenient to describe
a logic circuit by drawing a circuit diagram, orschematic, consisting of graphical symbols
representing the logic gates. The graphical symbols for the AND, OR, and NOT gates are
shown in Figure 2.8. The figure indicates on the left side how the AND and OR gates are
drawn when there are only a few inputs. On the right side it shows how the symbols are
augmented to accommodate a greater number of inputs. We will show how logic gates are
built using transistors in Chapter 3.

A larger circuit is implemented by anetworkof gates. For example, the logic function
from Figure 2.4 can be implemented by the network in Figure 2.9. The complexity of a
given network has a direct impact on its cost. Because it is always desirable to reduce
the cost of any manufactured product, it is important to find ways for implementing logic
circuits as inexpensively as possible. We will see shortly that a given logic function can
be implemented with a number of different networks. Some of these networks are simpler
than others, hence searching for the solutions that entail minimum cost is prudent.

In technical jargon a network of gates is often called alogic networkor simply alogic
circuit. We will use these terms interchangeably.
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x1
x2
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x1 x2 … xn+ + +
x1
x2

x1 x2+

x1
x2

xn

x1
x2

x1 x2⋅ x1 x2 … xn⋅ ⋅ ⋅

(a) AND gates

(b) OR gates

x x

(c) NOT gate

Figure 2.8 The basic gates.

2.4.1 Analysis of a Logic Network

A designer of digital systems is faced with two basic issues. For an existing logic network,
it must be possible to determine the function performed by the network. This task is referred
to as theanalysisprocess. The reverse task of designing a new network that implements a
desired functional behavior is referred to as thesynthesisprocess. The analysis process is
rather straightforward and much simpler than the synthesis process.

Figure 2.10a shows a simple network consisting of three gates. To determine its
functional behavior, we can consider what happens if we apply all possible input signals to
it. Suppose that we start by makingx1 = x2 = 0. This forces the output of the NOT gate

x1
x2
x3

f x1 x2+( ) x3⋅=

Figure 2.9 The function from Figure 2.4.
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(a) Network that  implements f x1 x1 x2⋅+=
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(c) Timing diagram

1 1 0 0→ → →0 0 1 1→ → →

1 1 0 1→ → →
0 1 0 1→ → → g

x1

x2

(d) Network that implements g x1 x2+=

Figure 2.10 An example of logic networks.

to be equal to 1 and the output of the AND gate to be 0. Because one of the inputs to the
OR gate is 1, the output of this gate will be 1. Therefore,f = 1 if x1 = x2 = 0. If we let
x1 = 0 andx2 = 1, then no change in the value off will take place, because the outputs of
the NOT and AND gates will still be 1 and 0, respectively. Next, if we applyx1 = 1 and
x2 = 0, then the output of the NOT gate changes to 0 while the output of the AND gate
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remains at 0. Both inputs to the OR gate are then equal to 0; hence the value off will be 0.
Finally, letx1 = x2 = 1. Then the output of the AND gate goes to 1, which in turn causes
f to be equal to 1. Our verbal explanation can be summarized in the form of the truth table
shown in Figure 2.10b.

Timing Diagram
We have determined the behavior of the network in Figure 2.10aby considering the four

possible valuations of the inputsx1 andx2. Suppose that the signals that correspond to these
valuations are applied to the network in the order of our discussion; that is,(x1, x2) = (0, 0)
followed by(0, 1), (1, 0), and(1, 1). Then changes in the signals at various points in the
network would be as indicated in blue in the figure. The same information can be presented
in graphical form, known as atiming diagram, as shown in Figure 2.10c. The time runs
from left to right, and each input valuation is held for some fixed period. The figure shows
the waveforms for the inputs and output of the network, as well as for the internal signals
at the points labeledA andB.

Timing diagrams are used for many purposes. They depict the behavior of a logic
circuit in a form that can be observed when the circuit is tested using instruments such as
logic analyzers and oscilloscopes. Also, they are often generated by CAD tools to show
the designer how a given circuit is expected to behave before it is actually implemented
electronically. We will introduce the CAD tools later in this chapter and will make use of
them throughout the book.

Functionally Equivalent Networks
Now consider the network in Figure 2.10d. Going through the same analysis procedure,

we find that the outputg changes in exactly the same way asf does in part (a) of the figure.
Therefore,g(x1, x2) = f (x1, x2), which indicates that the two networks are functionally
equivalent; the output behavior of both networks is represented by the truth table in Figure
2.10b. Since both networks realize the same function, it makes sense to use the simpler
one, which is less costly to implement.

In general, a logic function can be implemented with a variety of different networks,
probably having different costs. This raises an important question: How does one find the
best implementation for a given function? Many techniques exist for synthesizing logic
functions. We will discuss the main approaches in Chapter 4. For now, we should note that
some manipulation is needed to transform the more complex network in Figure 2.10a into
the network in Figure 2.10d. Sincef (x1, x2) = x1 + x1 · x2 andg(x1, x2) = x1 + x2, there
must exist some rules that can be used to show the equivalence

x1+ x1 · x2 = x1+ x2

We have already established this equivalence through detailed analysis of the two circuits and
construction of the truth table. But the same outcome can be achieved through algebraic
manipulation of logic expressions. In the next section we will discuss a mathematical
approach for dealing with logic functions, which provides the basis for modern design
techniques.
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2.5 Boolean Algebra

In 1849 George Boole published a scheme for the algebraic description of processes involved
in logical thought and reasoning [1]. Subsequently, this scheme and its further refinements
became known asBoolean algebra. It was almost 100 years later that this algebra found
application in the engineering sense. In the late 1930s Claude Shannon showed that Boolean
algebra provides an effective means of describing circuits built with switches [2]. The
algebra can, therefore, be used to describe logic circuits. We will show that this algebra
is a powerful tool that can be used for designing and analyzing logic circuits. The reader
will come to appreciate that it provides the foundation for much of our modern digital
technology.

Axioms of Boolean Algebra
Like any algebra, Boolean algebra is based on a set of rules that are derived from a

small number of basic assumptions. These assumptions are calledaxioms. Let us assume
that Boolean algebraB involves elements that take on one of two values, 0 and 1. Assume
that the following axioms are true:

1a. 0 · 0= 0

1b. 1+ 1= 1

2a. 1 · 1= 1

2b. 0+ 0= 0

3a. 0 · 1= 1 · 0= 0

3b. 1+ 0= 0+ 1= 1

4a. If x = 0, thenx = 1

4b. If x = 1, thenx = 0

Single-Variable Theorems
From the axioms we can define some rules for dealing with single variables. These

rules are often calledtheorems. If x is a variable inB, then the following theorems hold:

5a. x · 0= 0

5b. x+ 1= 1

6a. x · 1= x

6b. x+ 0= x

7a. x · x = x

7b. x+ x = x

8a. x · x = 0

8b. x+ x = 1

9. x = x

It is easy to prove the validity of these theorems by perfect induction, that is, by substituting
the valuesx = 0 andx = 1 into the expressions and using the axioms given above. For
example, in theorem 5a, if x = 0, then the theorem states that 0· 0 = 0, which is true
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according to axiom 1a. Similarly, if x = 1, then theorem 5a states that 1· 0 = 0, which
is also true according to axiom 3a. The reader should verify that theorems 5a to 9 can be
proven in this way.

Duality
Notice that we have listed the axioms and the single-variable theorems in pairs. This

is done to reflect the importantprinciple of duality. Given a logic expression, itsdual is
obtained by replacing all+ operators with· operators, and vice versa, and by replacing
all 0s with 1s, and vice versa. The dual of any true statement (axiom or theorem) in
Boolean algebra is also a true statement. At this point in the discussion, the reader will
not appreciate why duality is a useful concept. However, this concept will become clear
later in the chapter, when we will show that duality implies that at least two different ways
exist to express every logic function with Boolean algebra. Often, one expression leads to
a simpler physical implementation than the other and is thus preferable.

Two- and Three-Variable Properties
To enable us to deal with a number of variables, it is useful to define some two- and

three-variable algebraic identities. For each identity, its dual version is also given. These
identities are often referred to asproperties. They are known by the names indicated below.
If x, y, andz are the variables inB, then the following properties hold:

10a. x · y= y · x Commutative

10b. x+ y= y+ x

11a. x · ( y · z) = (x · y) · z Associative

11b. x+ ( y+ z) = (x+ y)+ z

12a. x · ( y+ z) = x · y+ x · z Distributive

12b. x+ y · z= (x+ y) · (x+ z)

13a. x+ x · y= x Absorption

13b. x · (x+ y) = x

14a. x · y+ x · y= x Combining

14b. (x+ y) · (x+ y) = x

15a. x · y= x+ y DeMorgan’s theorem

15b. x+ y= x · y
16a. x+ x · y= x+ y

16b. x · (x+ y) = x · y
Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.11 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the+ and· operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.
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x y x · y x · y x y x+ y

0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0︸ ︷︷ ︸ ︸ ︷︷ ︸

LHS RHS

Figure 2.11 Proof of DeMorgan’s theorem in 15a.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

Example 2.1Let us prove the validity of the logic equation

(x1+ x3) · (x1+ x3) = x1 · x3+ x1 · x3

The left-hand side can be manipulated as follows. Using the distributive property, 12a,
gives

LHS= (x1+ x3) · x1+ (x1+ x3) · x3

Applying the distributive property again yields

LHS= x1 · x1+ x3 · x1+ x1 · x3+ x3 · x3

Note that the distributive property allows ANDing the terms in parenthesis in a way analo-
gous to multiplication in ordinary algebra. Next, according to theorem 8a, the termsx1 · x1

andx3 · x3 are both equal to 0. Therefore,

LHS= 0+ x3 · x1+ x1 · x3+ 0

From 6b it follows that

LHS= x3 · x1+ x1 · x3

Finally, using the commutative property, 10a and 10b, this becomes

LHS= x1 · x3+ x1 · x3

which is the same as the right-hand side of the initial equation.

Example 2.2Consider the logic equation

x1 · x3+ x2 · x3+ x1 · x3+ x2 · x3 = x1 · x2 + x1 · x2 + x1 · x2

The left-hand side can be manipulated as follows

LHS= x1 · x3+ x1 · x3+ x2 · x3+ x2 · x3 using 10b
= x1 · (x3+ x3)+ x2 · (x3+ x3) using 12a
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= x1 · 1+ x2 · 1 using 8b
= x1+ x2 using 6a

The right-hand side can be manipulated as

RHS= x1 · x2 + x1 · (x2 + x2) using 12a
= x1 · x2 + x1 · 1 using 8b
= x1 · x2 + x1 using 6a
= x1+ x1 · x2 using 10b
= x1+ x2 using 16a

Being able to manipulate both sides of the initial equation into identical expressions estab-
lishes the validity of the equation. Note that the same logic function is represented by either
the left- or the right-hand side of the above equation; namely

f (x1, x2, x3) = x1 · x3+ x2 · x3+ x1 · x3+ x2 · x3

= x1 · x2 + x1 · x2 + x1 · x2

As a result of manipulation, we have found a much simpler expression

f (x1, x2, x3) = x1+ x2

which also represents the same function. This simpler expression would result in a lower-
cost logic circuit that could be used to implement the function.

Examples 2.1 and 2.2 illustrate the purpose of the axioms, theorems, and properties
as a mechanism for algebraic manipulation. Even these simple examples suggest that it is
impractical to deal with highly complex expressions in this way. However, these theorems
and properties provide the basis for automating the synthesis of logic functions in CAD
tools. To understand what can be achieved using these tools, the designer needs to be aware
of the fundamental concepts.

2.5.1 The Venn Diagram

We have suggested that perfect induction can be used to verify the theorems and properties.
This procedure is quite tedious and not very informative from the conceptual point of view.
A simple visual aid that can be used for this purpose also exists. It is called the Venn
diagram, and the reader is likely to find that it provides for a more intuitive understanding
of how two expressions may be equivalent.

The Venn diagram has traditionally been used in mathematics to provide a graphical
illustration of various operations and relations in the algebra of sets. A sets is a collection
of elements that are said to be the members ofs. In the Venn diagram the elements of
a set are represented by the area enclosed by a contour such as a square, a circle, or an
ellipse. For example, in a universeN of integers from 1 to 10, the set of even numbers is
E = {2, 4, 6, 8, 10}. A contour representingE encloses the even numbers. The odd numbers
form the complement ofE; hence the area outside the contour representsE = {1, 3, 5, 7, 9}.
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Since in Boolean algebra there are only two values (elements) in the universe,B =
{0, 1}, we will say that the area within a contour corresponding to a setsdenotes thats= 1,
while the area outside the contour denotess = 0. In the diagram we will shade the area
wheres= 1. The concept of the Venn diagram is illustrated in Figure 2.12. The universeB
is represented by a square. Then the constants 1 and 0 are represented as shown in parts (a)
and (b) of the figure. A variable, say,x, is represented by a circle, such that the area inside
the circle corresponds tox = 1, while the area outside the circle corresponds tox = 0.
This is illustrated in part (c). An expression involving one or more variables is depicted by

x y

z

x y

x y x y

x x xx

(a) Constant 1 (b) Constant 0

(c) Variable x (d)

(e) (f)

(g) (h)

x

x y⋅ x y+

x y z+⋅x y⋅

Figure 2.12 The Venn diagram representation.
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shading the area where the value of the expression is equal to 1. Part (d) indicates how the
complement ofx is represented.

To represent two variables,x andy, we draw two overlapping circles. Then the area
where the circles overlap represents the case wherex = y = 1, namely, the AND ofx and
y, as shown in part (e). Since this common area consists of the intersecting portions ofx
andy, the AND operation is often referred to formally as theintersectionof x andy. Part
( f ) illustrates the OR operation, wherex+ y represents the total area within both circles,
namely, where at least one ofx or y is equal to 1. Since this combines the areas in the
circles, the OR operation is formally often called theunionof x andy.

Part (g) depicts the product termx · y, which is represented by the intersection of the
area forx with that fory. Part (h) gives a three-variable example; the expressionx · y+ z
is the union of the area forz with that of the intersection ofx andy.

To see how we can use Venn diagrams to verify the equivalence of two expressions,
let us demonstrate the validity of the distributive property, 12a, in section 2.5. Figure 2.13
gives the construction of the left and right sides of the identity that defines the property

x · ( y+ z) = x · y+ x · z
Part (a) shows the area wherex = 1. Part (b) indicates the area fory+ z. Part (c) gives the
diagram forx · ( y+ z), the intersection of shaded areas in parts (a) and (b). The right-hand
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x y
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x y

z

x y

z

x y

z

x x y⋅

x y⋅ x+ z⋅x y z+( )⋅

(a) (d)

(c) (f)

x z⋅y z+(b) (e)

Figure 2.13 Verification of the distributive property x · ( y+ z) = x · y+ x · z.
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side is constructed in parts (d ), (e), and (f ). Parts (d ) and (e) describe the termsx · y and
x · z, respectively. The union of the shaded areas in these two diagrams then corresponds
to the expressionx · y+ x · z, as seen in part (f ). Since the shaded areas in parts (c) and (f )
are identical, it follows that the distributive property is valid.

As another example, consider the identity

x · y+ x · z+ y · z= x · y+ x · z
which is illustrated in Figure 2.14. Notice that this identity states that the termy · z is fully
covered by the termsx · y andx · z; therefore, this term can be omitted.

The reader should use the Venn diagram to prove some other identities. It is particularly
instructive to prove the validity of DeMorgan’s theorem in this way.

x y

z

yx

z

x y

z

x y⋅

y z⋅ x y⋅ x+ z⋅

x z⋅

x y

z

x y⋅

x y

z

x z⋅

x y⋅ x+ z y z⋅+⋅

x y

z

x y

z

Figure 2.14 Verification of x · y+ x · z+ y · z= x · y+ x · z.
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2.5.2 Notation and Terminology

Boolean algebra is based on the AND and OR operations. We have adopted the symbols
· and+ to denote these operations. These are also the standard symbols for the familiar
arithmetic multiplication and addition operations. Considerable similarity exists between
the Boolean operations and the arithmetic operations, which is the main reason why the
same symbols are used. In fact, when single digits are involved there is only one significant
difference; the result of 1+ 1 is equal to 2 in ordinary arithmetic, whereas it is equal to 1
in Boolean algebra as defined by theorem 7b in section 2.5.

When dealing with digital circuits, most of the time the+ symbol obviously represents
the OR operation. However, when the task involves the design of logic circuits that perform
arithmetic operations, some confusion may develop about the use of the+ symbol. To
avoid such confusion, an alternative set of symbols exists for the AND and OR operations.
It is quite common to use the∧ symbol to denote the AND operation, and the∨ symbol for
the OR operation. Thus, instead ofx1 · x2, we can writex1 ∧ x2, and instead ofx1+ x2, we
can writex1 ∨ x2.

Because of the similarity with the arithmetic addition and multiplication operations,
the OR and AND operations are often called thelogical sumandproductoperations. Thus
x1+ x2 is the logical sum ofx1 andx2, andx1 · x2 is the logical product ofx1 andx2. Instead
of saying “logical product” and “logical sum,” it is customary to say simply “product” and
“sum.” Thus we say that the expression

x1 · x2 · x3+ x1 · x4 + x2 · x3 · x4

is a sum of three product terms, whereas the expression

(x1+ x3) · (x1+ x3) · (x2 + x3+ x4)

is a product of three sum terms.

2.5.3 Precedence of Operations

Using the three basic operations—AND, OR, and NOT—it is possible to construct an infinite
number of logic expressions. Parentheses can be used to indicate the order in which the
operations should be performed. However, to avoid an excessive use of parentheses, another
convention defines the precedence of the basic operations. It states that in the absence of
parentheses, operations in a logic expression must be performed in the order: NOT, AND,
and then OR. Thus in the expression

x1 · x2 + x1 · x2

it is first necessary to generate the complements ofx1 andx2. Then the product termsx1 · x2

andx1 · x2 are formed, followed by the sum of the two product terms. Observe that in the
absence of this convention, we would have to use parentheses to achieve the same effect as
follows:

(x1 · x2)+ ((x1) · (x2))
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Finally, to simplify the appearance of logic expressions, it is customary to omit the·
operator when there is no ambiguity. Therefore, the preceding expression can be written as

x1x2 + x1x2

We will use this style throughout the book.

2.6 Synthesis Using AND, OR, and NOT Gates

Armed with some basic ideas, we can now try to implement arbitrary functions using the
AND, OR, and NOT gates. Suppose that we wish to design a logic circuit with two inputs,
x1 andx2. Assume thatx1 andx2 represent the states of two switches, either of which may
be open (0) or closed (1). The function of the circuit is to continuously monitor the state
of the switches and to produce an output logic value 1 whenever the switches(x1, x2) are
in states(0, 0), (0, 1), or (1, 1). If the state of the switches is(1, 0), the output should be
0. Another way of stating the required functional behavior of this circuit is that the output
must be equal to 0 if the switchx1 is closed andx2 is open; otherwise, the output must be
1. We can express the required behavior using a truth table, as shown in Figure 2.15.

A possible procedure for designing a logic circuit that implements the truth table is to
create a product term that has a value of 1 for each valuation for which the output function
f has to be 1. Then we can take a logical sum of these product terms to realizef . Let us
begin with the fourth row of the truth table, which corresponds tox1 = x2 = 1. The product
term that is equal to 1 for this valuation isx1 · x2, which is just the AND ofx1 andx2. Next
consider the first row of the table, for whichx1 = x2 = 0. For this valuation the value 1 is
produced by the product termx1 · x2. Similarly, the second row leads to the termx1 · x2.
Thusf may be realized as

f (x1, x2) = x1x2 + x1x2 + x1x2

The logic network that corresponds to this expression is shown in Figure 2.16a.
Although this network implementsf correctly, it is not the simplest such network. To

find a simpler network, we can manipulate the obtained expression using the theorems and

x1 x2 f (x1, x2)

0 0 1
0 1 1
1 0 0
1 1 1

Figure 2.15 A function to be synthesized.
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f

(a) Canonical sum-of-products

f

(b) Minimal-cost realization

x2

x1

x1

x2

Figure 2.16 Two implementations of the function in Figure 2.15.

properties from section 2.5. According to theorem 7b, we can replicate any term in a logical
sum expression. Replicating the third product term, the above expression becomes

f (x1, x2) = x1x2 + x1x2 + x1x2 + x1x2

Using the commutative property 10b to interchange the second and third product terms
gives

f (x1, x2) = x1x2 + x1x2 + x1x2 + x1x2

Now the distributive property 12a allows us to write

f (x1, x2) = (x1+ x1)x2 + x1(x2 + x2)

Applying theorem 8b we get

f (x1, x2) = 1 · x2 + x1 · 1
Finally, theorem 6a leads to

f (x1, x2) = x2 + x1

The network described by this expression is given in Figure 2.16b. Obviously, the cost of
this network is much less than the cost of the network in part (a) of the figure.

This simple example illustrates two things. First, a straightforward implementation of
a function can be obtained by using a product term (AND gate) for each row of the truth
table for which the function is equal to 1. Each product term contains all input variables,
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and it is formed such that if the input variablexi is equal to 1 in the given row, thenxi is
entered in the term; ifxi = 0, thenxi is entered. The sum of these product terms realizes
the desired function. Second, there are many different networks that can realize a given
function. Some of these networks may be simpler than others. Algebraic manipulation can
be used to derive simplified logic expressions and thus lower-cost networks.

The process whereby we begin with a description of the desired functional behavior
and then generate a circuit that realizes this behavior is calledsynthesis. Thus we can
say that we “synthesized” the networks in Figure 2.16 from the truth table in Figure 2.15.
Generation of AND-OR expressions from a truth table is just one of many types of synthesis
techniques that we will encounter in this book.

2.6.1 Sum-of-Products and Product-of-Sums Forms

Having introduced the synthesis process by means of a very simple example, we will now
present it in more formal terms using the terminology that is encountered in the technical
literature. We will also show how the principle of duality, which was introduced in section
2.5, applies broadly in the synthesis process.

If a functionf is specified in the form of a truth table, then an expression that realizes
f can be obtained by considering either the rows in the table for whichf = 1, as we have
already done, or by considering the rows for whichf = 0, as we will explain shortly.

Minterms
For a function ofn variables, a product term in which each of then variables appears

once is called aminterm. The variables may appear in a minterm either in uncomplemented
or complemented form. For a given row of the truth table, the minterm is formed by
includingxi if xi = 1 and by includingxi if xi = 0.

To illustrate this concept, consider the truth table in Figure 2.17. We have num-
bered the rows of the table from 0 to 7, so that we can refer to them easily. (The
reader who is already familiar with the binary number representation will realize that the
row numbers chosen are just the numbers represented by the bit patterns of variablesx1,
x2, andx3; we will discuss number representation in Chapter 5.) The figure shows all
minterms for the three-variable table. For example, in the first row the variables have
the valuesx1 = x2 = x3 = 0, which leads to the mintermx1x2x3. In the second row
x1 = x2 = 0 andx3 = 1, which gives the mintermx1x2x3, and so on. To be able to
refer to the individual minterms easily, it is convenient to identify each minterm by an
index that corresponds to the row numbers shown in the figure. We will use the nota-
tion mi to denote the minterm for row numberi. Thusm0 = x1x2x3, m1 = x1x2x3, and
so on.

Sum-of-Products Form
A functionf can be represented by an expression that is a sum of minterms, where each

minterm is ANDed with the value off for the corresponding valuation of input variables.
For example, the two-variable minterms arem0 = x1x2, m1 = x1x2, m2 = x1x2, and
m3 = x1x2. The function in Figure 2.15 can be represented as
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Row
number x1 x2 x3 Minterm Maxterm

0 0 0 0 m0 = x1x2x3 M0 = x1+ x2 + x3

1 0 0 1 m1 = x1x2x3 M1 = x1+ x2 + x3

2 0 1 0 m2 = x1x2x3 M2 = x1+ x2 + x3

3 0 1 1 m3 = x1x2x3 M3 = x1+ x2 + x3

4 1 0 0 m4 = x1x2x3 M4 = x1+ x2 + x3

5 1 0 1 m5 = x1x2x3 M5 = x1+ x2 + x3

6 1 1 0 m6 = x1x2x3 M6 = x1+ x2 + x3

7 1 1 1 m7 = x1x2x3 M7 = x1+ x2 + x3

Figure 2.17 Three-variable minterms and maxterms.

f = m0 · 1+m1 · 1+m2 · 0+m3 · 1
= m0 +m1+m3

= x1x2 + x1x2 + x1x2

which is the form that we derived in the previous section using an intuitive approach. Only
the minterms that correspond to the rows for whichf = 1 appear in the resulting expression.

Any function f can be represented by a sum of minterms that correspond to the rows
in the truth table for whichf = 1. The resulting implementation is functionally correct and
unique, but it is not necessarily the lowest-cost implementation off . A logic expression
consisting of product (AND) terms that are summed (ORed) is said to be of thesum-of-
productsform. If each product term is a minterm, then the expression is called acanonical
sum-of-productsfor the functionf . As we have seen in the example of Figure 2.16, the first
step in the synthesis process is to derive a canonical sum-of-products expression for the
given function. Then we can manipulate this expression, using the theorems and properties
of section 2.5, with the goal of finding a functionally equivalent sum-of-products expression
that has a lower cost.

As another example, consider the three-variable functionf (x1, x2, x3), specified by the
truth table in Figure 2.18. To synthesize this function, we have to include the mintermsm1,
m4, m5, andm6. Copying these minterms from Figure 2.17 leads to the following canonical
sum-of-products expression forf

f (x1, x2, x3) = x1x2x3+ x1x2x3+ x1x2x3+ x1x2x3

This expression can be manipulated as follows

f = (x1+ x1)x2x3+ x1(x2 + x2)x3

= 1 · x2x3+ x1 · 1 · x3

= x2x3+ x1x3

This is the minimum-cost sum-of-products expression forf . It describes the circuit shown
in Figure 2.19a. A good indication of thecostof a logic circuit is the total number of gates
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Row
number x1 x2 x3 f (x1, x2, x3)

0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Figure 2.18 A three-variable function.

plus the total number of inputs to all gates in the circuit. Using this measure, the cost of
the network in Figure 2.19a is 13, because there are five gates and eight inputs to the gates.
By comparison, the network implemented on the basis of the canonical sum-of-products
would have a cost of 27; from the preceding expression, the OR gate has four inputs, each
of the four AND gates has three inputs, and each of the three NOT gates has one input.

f

(a) A minimal sum-of-products realization

f

(b) A minimal product-of-sums realization

x1

x2

x3

x2

x1

x3

Figure 2.19 Two realizations of the function in Figure 2.18.
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Minterms, with their row-number subscripts, can also be used to specify a given function
in a more concise form. For example, the function in Figure 2.18 can be specified as

f (x1, x2, x3) =
∑

(m1,m4,m5,m6)

or even more simply as

f (x1, x2, x3) =
∑

m(1, 4, 5, 6)

The
∑

sign denotes the logical sum operation. This shorthand notation is often used in
practice.

Maxterms
The principle of duality suggests that if it is possible to synthesize a functionf by

considering the rows in the truth table for whichf = 1, then it should also be possible to
synthesizef by considering the rows for whichf = 0. This alternative approach uses the
complements of minterms, which are calledmaxterms. All possible maxterms for three-
variable functions are listed in Figure 2.17. We will refer to a maxtermMj by the same row
number as its corresponding mintermmj as shown in the figure.

Product-of-Sums Form
If a given functionf is specified by a truth table, then its complementf can be rep-

resented by a sum of minterms for whichf = 1, which are the rows wheref = 0. For
example, for the function in Figure 2.15

f (x1, x2) = m2

= x1x2

If we complement this expression using DeMorgan’s theorem, the result is

f = f = x1x2

= x1+ x2

Note that we obtained this expression previously by algebraic manipulation of the canonical
sum-of-products form for the functionf . The key point here is that

f = m2 = M2

whereM2 is the maxterm for row 2 in the truth table.
As another example, consider again the function in Figure 2.18. The complement of

this function can be represented as

f (x1, x2, x3)=m0 +m2 +m3+m7

= x1x2x3+ x1x2x3+ x1x2x3+ x1x2x3

Thenf can be expressed as

f =m0 +m2 +m3+m7

=m0 ·m2 ·m3 ·m7
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=M0 ·M2 ·M3 ·M7

= (x1+ x2 + x3)(x1+ x2 + x3)(x1+ x2 + x3)(x1+ x2 + x3)

This expression representsf as a product of maxterms.
A logic expression consisting of sum (OR) terms that are the factors of a logical product

(AND) is said to be of theproduct-of-sumsform. If each sum term is a maxterm, then the
expression is called acanonical product-of-sumsfor the given function. Any functionf can
be synthesized by finding its canonical product-of-sums. This involves taking the maxterm
for each row in the truth table for whichf = 0 and forming a product of these maxterms.

Returning to the preceding example, we can attempt to reduce the complexity of the
derived expression that comprises a product of maxterms. Using the commutative property
10b and the associative property 11b from section 2.5, this expression can be written as

f = ((x1+ x3)+ x2)((x1+ x3)+ x2)(x1+ (x2 + x3))(x1+ (x2 + x3))

Then, using the combining property 14b, the expression reduces to

f = (x1+ x3)(x2 + x3)

The corresponding network is given in Figure 2.19b. The cost of this network is 13. While
this cost happens to be the same as the cost of the sum-of-products version in Figure 2.19a,
the reader should not assume that the cost of a network derived in the sum-of-products form
will in general be equal to the cost of a corresponding circuit derived in the product-of-sums
form.

Using the shorthand notation, an alternative way of specifying our sample function is

f (x1, x2, x3) = 5(M0,M2,M3,M7)

or more simply

f (x1, x2, x3) = 5M(0, 2, 3, 7)

The5 sign denotes the logical product operation.
The preceding discussion has shown how logic functions can be realized in the form

of logic circuits, consisting of networks of gates that implement basic functions. A given
function may be realized with circuits of a different structure, which usually implies a
difference in cost. An important objective for a designer is to minimize the cost of the
designed circuit. We will discuss the most important techniques for finding minimum-cost
implementations in Chapter 4.

2.7 Design Examples

Logic circuits provide a solution to a problem. They implement functions that are needed to
carry out specific tasks. Within the framework of a computer, logic circuits provide complete
capability for execution of programs and processing of data. Such circuits are complex and
difficult to design. But regardless of the complexity of a given circuit, a designer of logic
circuits is always confronted with the same basic issues. First, it is necessary to specify the
desired behavior of the circuit. Second, the circuit has to be synthesized and implemented.
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Finally, the implemented circuit has to be tested to verify that it meets the specifications.
The desired behavior is often initially described in words, which then must be turned into
a formal specification. In this section we give two simple examples of design.

2.7.1 Three-Way Light Control

Assume that a large room has three doors and that a switch near each door controls a light
in the room. It has to be possible to turn the light on or off by changing the state of any one
of the switches.

As a first step, let us turn this word statement into a formal specification using a truth
table. Letx1, x2, andx3 be the input variables that denote the state of each switch. Assume
that the light is off if all switches are open. Closing any one of the switches will turn the
light on. Then turning on a second switch will have to turn off the light. Thus the light
will be on if exactly one switch is closed, and it will be off if two (or no) switches are
closed. If the light is off when two switches are closed, then it must be possible to turn
it on by closing the third switch. Iff (x1, x2, x3) represents the state of the light, then the
required functional behavior can be specified as shown in the truth table in Figure 2.20.
The canonical sum-of-products expression for the specified function is

f =m1+m2 +m4 +m7

= x1x2x3+ x1x2x3+ x1x2x3+ x1x2x3

This expression cannot be simplified into a lower-cost sum-of-products expression. The
resulting circuit is shown in Figure 2.21a.

An alternative realization for this function is in the product-of-sums forms. The canon-
ical expression of this type is

f =M0 ·M3 ·M5 ·M6

= (x1+ x2 + x3)(x1+ x2 + x3)(x1+ x2 + x3)(x1+ x2 + x3)

The resulting circuit is depicted in Figure 2.21b. It has the same cost as the circuit in part
(a) of the figure.

x1 x2 x3 f

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Figure 2.20 Truth table for the three-way light control.



April 5, 1999 14:05 g02-ch2 Sheet number 27 Page number 43 black

2.7 Design Examples 43

f

(a) Sum-of-products realization

(b) Product-of-sums realization

x1

x2

x3

f

x1

x2

x3

Figure 2.21 Implementation of the function in Figure 2.20.

When the designed circuit is implemented, it can be tested by applying the various
input valuations to the circuit and checking whether the output corresponds to the values
specified in the truth table. A straightforward approach is to check that the correct output
is produced for all eight possible input valuations.

2.7.2 Multiplexer Circuit

In computer systems it is often necessary to choose data from exactly one of a number
of possible sources. Suppose that there are two sources of data, provided as input signals
x1 andx2. The values of these signals change in time, perhaps at regular intervals. Thus
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sequences of 0s and 1s are applied on each of the inputsx1 andx2. We want to design a
circuit that produces an output that has the same value as eitherx1 or x2, dependent on the
value of a selection control signals. Therefore, the circuit should have three inputs:x1,
x2, ands. Assume that the output of the circuit will be the same as the value of inputx1 if
s= 0, and it will be the same asx2 if s= 1.

Based on these requirements, we can specify the desired circuit in the form of a truth
table given in Figure 2.22a. From the truth table, we derive the canonical sum of products

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

(a)  Truth table

f

x1

x2

s
f

s

x1

x2

0

1

(c) Graphical symbol(b) Circuit

0

1

(d)  More compact truth-table representation

Figure 2.22 Implementation of a multiplexer.
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f (s, x1, x2) = sx1x2 + sx1x2 + sx1x2 + sx1x2

Using the distributive property, this expression can be written as

f = sx1(x2 + x2)+ s(x1+ x1)x2

Applying theorem 8b yields

f = sx1 · 1+ s · 1 · x2

Finally, theorem 6a gives

f = sx1+ sx2

A circuit that implements this function is shown in Figure 2.22b. Circuits of this type are
used so extensively that they are given a special name. A circuit that generates an output
that exactly reflects the state of one of a number of data inputs, based on the value of one
or more selection control inputs, is called amultiplexer. We say that a multiplexer circuit
“multiplexes” input signals onto a single output.

In this example we derived a multiplexer with two data inputs, which is referred to
as a “2-to-1 multiplexer.” A commonly used graphical symbol for the 2-to-1 multiplexer
is shown in Figure 2.22c. The same idea can be extended to larger circuits. A 4-to-1
multiplexer has four data inputs and one output. In this case two selection control inputs
are needed to choose one of the four data inputs that is transmitted as the output signal. An
8-to-1 multiplexer needs eight data inputs and three selection control inputs, and so on.

Note that the statement “f = x1 if s = 0, andf = x2 if s = 1” can be presented in a
more compact form of a truth table, as indicated in Figure 2.22d. In later chapters we will
have occasion to use such representation.

We showed how a multiplexer can be built using AND, OR, and NOT gates. In Chap-
ter 3 we will show other possibilities for constructing multiplexers. In Chapter 6 we will
discuss the use of multiplexers in considerable detail.

Designers of logic circuits rely heavily on CAD tools. We want to encourage the reader
to become familiar with the CAD tool support provided with this book as soon as possible.
We have reached a point where an introduction to these tools is useful. The next section
presents some basic concepts that are needed to use these tools. We will also introduce, in
section 2.9, a special language for describing logic circuits, called VHDL. This language
is used to describe the circuits as an input to the CAD tools, which then proceed to derive
a suitable implementation.

2.8 Introduction to CAD Tools

The preceding sections introduced a basic approach for synthesis of logic circuits. A
designer could use this approach manually for small circuits. However, logic circuits
found in complex systems, such as today’s computers, cannot be designed manually—they
are designed using sophisticated CAD tools that automatically implement the synthesis
techniques.

To design a logic circuit, a number of CAD tools are needed. They are usually packaged
together into aCAD system, which typically includes tools for the following tasks: design
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entry, synthesis and optimization, simulation, and physical design. We will introduce some
of these tools in this section and will provide additional discussion in later chapters.

2.8.1 Design Entry

The starting point in the process of designing a logic circuit is the conception of what the
circuit is supposed to do and the formulation of its general structure. This step is done
manually by the designer because it requires design experience and intuition. The rest
of the design process is done with the aid of CAD tools. The first stage of this process
involves entering into the CAD system a description of the circuit being designed. This
stage is calleddesign entry. We will describe three design entry methods: using truth tables,
using schematic capture, and writing source code in a hardware description language.

Design Entry with Truth Tables
We have already seen that any logic function of a few variables can be described

conveniently by a truth table. Many CAD systems allow design entry using truth tables,
where the table is specified as a plain text file. Alternatively, it may also be possible to
specify a truth table as a set of waveforms in a timing diagram. We illustrated the equivalence
of these two ways of representing truth tables in the discussion of Figure 2.10. The CAD
system provided with this book supports both methods of using truth tables for design entry.
Figure 2.23 shows an example in which theWaveform Editoris used to draw the timing
diagram in Figure 2.10. The CAD system is capable of transforming this timing diagram
automatically into a network of logic gates equivalent to that shown in Figure 2.10d.

Because truth tables are practical only for functions with a small number of variables,
this design entry method is not appropriate for large circuits. It can, however, be applied
for a small logic function that is part of a larger circuit. In this case the truth table becomes
a subcircuit that can be interconnected to other subcircuits and logic gates. The most
commonly used type of CAD tool for interconnecting such circuit elements is called a
schematic capturetool. The wordschematicrefers to a diagram of a circuit in which circuit
elements, such as logic gates, are depicted as graphical symbols and connections between
circuit elements are drawn as lines.

Schematic Capture
A schematic capture tool uses the graphics capabilities of a computer and a computer

mouse to allow the user to draw a schematic diagram. To facilitate inclusion of basic gates
in the schematic, the tool provides a collection of graphical symbols that represent gates

Figure 2.23 Screen capture of the Waveform Editor.



April 5, 1999 14:05 g02-ch2 Sheet number 31 Page number 47 black

2.8 Introduction to CAD Tools 47

of various types with different numbers of inputs. This collection of symbols is called a
library. The gates in the library can be imported into the user’s schematic, and the tool
provides a graphical way of interconnecting the gates to create a logic network.

Any subcircuits that have been previously created, using either different design entry
methods or the schematic capture tool itself, can be represented as graphical symbols and
included in the schematic. In practice it is common for a CAD system user to create a circuit
that includes within it other smaller circuits. This methodology is known ashierarchical
designand provides a good way of dealing with the complexities of large circuits.

Figure 2.24 gives an example of a hierarchical design created with the schematic capture
tool, provided with the CAD system, called theGraphic Editor. The circuit includes a
subcircuit represented as a rectangular graphical symbol. This subcircuit represents the
logic function entered by way of the timing diagram in Figure 2.23. Note that the complete
circuit implements the functionf = x1+ x2x3.

In comparison to design entry with truth tables, the schematic-capture facility is more
amenable for dealing with larger circuits. A disadvantage of using schematic capture is that
every commercial tool of this type has a unique user interface and functionality. Therefore,
extensive training is often required for a designer to learn how to use such a tool, and this
training must be repeated if the designer switches to another tool at a later date. Another
drawback is that the graphical user interface for schematic capture becomes awkward to use
when the circuit being designed is large. A useful method for dealing with large circuits is
to write source code using a hardware description language to represent the circuit.

Hardware Description Languages
A hardware description language (HDL)is similar to a typical computer programming

language except that an HDL is used to describe hardware rather than a program to be exe-
cuted on a computer. Many commercial HDLs are available. Some are proprietary, meaning
that they are provided by a particular company and can be used to implement circuits only
in the technology provided by that company. We will not discuss the proprietary HDLs in
this book. Instead, we will focus on a language that is supported by virtually all vendors
that provide digital hardware technology and is officially endorsed as anInstitute of Elec-
trical and Electronics Engineers (IEEE)standard. The IEEE is a worldwide organization
that promotes technical activities to the benefit of society in general. One of its activities
involves the development of standards that define how certain technological concepts can
be used in a way that is suitable for a large body of users.

Figure 2.24 Screen capture of the Graphic Editor.
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Two HDLs are IEEE standards:VHDL (Very High Speed Integrated Circuit Hardware
Description Language)and Verilog HDL. Both languages are in widespread use in the
industry. We use VHDL in this book because it is more popular than Verilog HDL. Although
the two languages differ in many ways, the choice of using one or the other when studying
logic circuits is not particularly important, because both offer similar features. Concepts
illustrated in this book using VHDL can be directly applied when using Verilog HDL.

In comparison to performing schematic capture, using VHDL offers a number of ad-
vantages. Because it is supported by most companies that offer digital hardware technology,
VHDL provides designportability. A circuit specified in VHDL can be implemented in dif-
ferent types of chips and with CAD tools provided by different companies, without having
to change the VHDL specification. Design portability is an important advantage because
digital circuit technology changes rapidly. By using a standard language, the designer can
focus on the required functionality of the desired circuit without being overly concerned
about the details of the technology that will eventually be used for implementation.

Design entry of a logic circuit is done by writing VHDL code. Signals in the circuit are
represented as variables in the source code, and logic functions are expressed by assigning
values to these variables. VHDL source code is plain text, which makes it easy for the
designer to include within the code documentation that explains how the circuit works.
This feature, coupled with the fact that VHDL is widely used, encourages sharing and reuse
of VHDL-described circuits. This allows faster development of new products in cases
where existing VHDL code can be adapted for use in the design of new circuits.

Similar to the way in which large circuits are handled in schematic capture, VHDL
code can be written in a modular way that facilitates hierarchical design. Both small and
large logic circuit designs can be efficiently represented in VHDL code. VHDL has been
used to define circuits such as microprocessors with millions of transistors.

VHDL design entry can be combined with other methods. For example, a schematic-
capture tool can be used in which a subcircuit in the schematic is described using VHDL.
We will introduce VHDL in section 2.9.

2.8.2 Synthesis

In section 2.4.1 we said that synthesis is the process of generating a logic circuit from a
truth table. Synthesis CAD tools perform this process automatically. However, the synthesis
tools also handle many other tasks. The process oftranslating, or compiling, VHDL code
into a network of logic gates is part of synthesis.

When the VHDL code representing a circuit is passed through initial synthesis tools,
the output is a lower-level description of the circuit. For simplicity we will assume that
this process produces a set of logic expressions that describe the logic functions needed to
realize the circuit. These expressions are then manipulated further by the synthesis tools.
If the design entry is performed using schematic capture, then the synthesis tools produce
a set of logic equations representing the circuit from the schematic diagram. Similarly, if
truth tables are used for design entry, then the synthesis tools generate expressions for the
logic functions represented by the truth tables.

Regardless of what type of design entry is used, the initial logic expressions produced
by the synthesis tools are not likely to be in an optimal form. Because these expressions
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reflect the designer’s input to the CAD tools, it is difficult for a designer to manually produce
optimal results, especially for large circuits. One of the most important tasks of the synthesis
tools is to manipulate the user’s design to automatically produce an equivalent but better
circuit. This step of synthesis is calledlogic synthesis, or logic optimization.

The measure of what makes one circuit better than another depends on the particular
needs of a design project and the technology chosen for implementation. In section 2.6
we suggested that a good circuit might be one that has the lowest cost. There are other
possible optimization goals, which are motivated by the type of hardware technology used
for implementation of the circuit. We will discuss implementation technologies in Chap-
ter 3 and return to the issue of optimization goals in Chapter 4.

After logic synthesis the optimized circuit is still represented in the form of logic
equations. The final task in the synthesis process is to determine exactly how the circuit will
be realized in a specific hardware technology. This task involves deciding how each logic
function, represented by an expression, should be implemented using whatever physical
resources are available in the technology. The task involves two steps calledtechnology
mapping, followed by layout synthesis, or physical design. We will discuss these steps in
detail in Chapter 4.

2.8.3 Functional Simulation

Once the design entry and synthesis are complete, it is useful to verify that the designed
circuit functions as expected. The tool that performs this task is called afunctional simulator,
and it uses two types of information. First, the user’s initial design is represented by the logic
equations generated during synthesis. Second, the user specifies valuations of the circuit’s
inputs that should be applied to these equations during simulation. For each valuation, the
simulator evaluates the outputs produced by the equations. The output of the simulation is
provided either in truth-table form or as a timing diagram. The user examines this output
to verify that the circuit operates as required.

The logic equations used by the simulator are those produced by the synthesis tools
before any optimizations are applied during logic synthesis. There would be no advantage
in using the optimized form of the equations, because the intent is to evaluate the basic
functionality of the design, which does not change as a result of optimization. The functional
simulator assumes that the time needed for signals to propagate through the logic gates is
negligible. In real logic gates this assumption is not realistic, regardless of the hardware
technology chosen for implementation of the circuit. However, the functional simulation
provides a first step in validating the basic operation of a design without concern for the
effects of implementation technology. Accurate simulations that account for the timing
details related to technology can be obtained by using atiming simulator. We will discuss
timing simulation in Chapter 4.

2.8.4 Summary

The CAD tools discussed in this section form a part of a CAD system. A typical design flow
that the user follows is illustrated in Figure 2.25. After the design entry, initial synthesis tools
perform various steps. For a function described by a truth table, the synthesis approach
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Design conception

Truth tableTruth table VHDLSchematic capture

Simple synthesis
(see section 2.8.2)

Translation

Merge

Boolean equationsINITIAL SYNTHESIS TOOLS

DESIGN ENTRY

Design correct?

Logic synthesis, physical design, timing simulation

Functional simulation

No

Yes

(see section 4.12)

Figure 2.25 The first stages of a typical CAD system.

discussed in section 2.6 is applied to produce a logic expression for the function. For
VHDL the translation process turns the VHDL source code into logic functions, which can
be represented as logic expressions. As mentioned earlier, the designer can use a mixture of
design entry methods. In Figure 2.25 this flexibility is reflected by the step labeled Merge,
in which the components produced using any of the design entry methods are automatically
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merged into a single design. At this point the circuit is represented in the CAD system as
a set of logic equations.

After the initial synthesis the correct operation of the designed circuit can be verified by
using functional simulation. As shown in Figure 2.25, this step is not a requirement in the
CAD flow and can be skipped at the designer’s discretion. In practice, however, it is wise to
verify that the designed circuit works as expected as early in the design process as possible.
Any problems discovered during the simulation are fixed by returning to the design entry
stage. Once errors are no longer apparent, the designer proceeds with the remaining tools
in the CAD flow. These include logic synthesis, layout synthesis, timing simulation, and
others. We have mentioned these tools only briefly thus far. The remaining CAD steps will
be described in Chapter 4.

At this point the reader should have some appreciation for what is involved when using
CAD tools. However, the tools can be fully appreciated only when they are used firsthand.
In Appendexes B to D, we provide step-by-step tutorials that illustrate how to use the
MAX+plusII CAD system, which is included with this book. The tutorial in Appendix B
covers design entry with both schematic capture and VHDL, as well as functional simulation.
We strongly encourage the reader to work through the hands-on material. Because the
tutorial uses VHDL for design entry, we provide an introduction to VHDL in the following
section.

2.9 Introduction to VHDL

In the 1980s rapid advances in integrated circuit technology lead to efforts to develop
standard design practices for digital circuits. VHDL was developed as a part of that effort.
VHDL has become the industry standard language for describing digital circuits, largely
because it is an official IEEE standard. The original standard for VHDL was adopted in
1987 and called IEEE 1076. A revised standard was adopted in 1993 and called IEEE 1164.

VHDL was originally intended to serve two main purposes. First, it was used as a
documentation language for describing the structure of complex digital circuits. As an
official IEEE standard, VHDL provided a common way of documenting circuits designed
by numerous designers. Second, VHDL provided features for modeling the behavior of a
digital circuit, which allowed its use as input to software programs that were then used to
simulate the circuit’s operation.

In recent years, in addition to its use for documentation and simulation, VHDL has
also become popular for use in design entry in CAD systems. The CAD tools are used to
synthesize the VHDL code into a hardware implementation of the described circuit. In this
book our main use of VHDL will be for synthesis.

VHDL is an extremely complex, sophisticated language. Learning all of its features is
a daunting task. However, for use in synthesis only a subset of these features is important.
To avoid confusion in learning this complex language, we will discuss only the features of
VHDL that are actually used in the examples in the book. The material presented should
be sufficient to allow the reader to design a wide range of circuits. The reader who wishes
to learn the complete VHDL language can refer to one of the specialized texts [4–8].

To further simplify the task of learning VHDL, we will introduce the language in
several stages throughout the book. Our general approach will be to introduce particular
features only when they are relevant to the design topics covered in that part of the text. For
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convenience, in Appendix A we provide a complete listing of the VHDL features covered in
the book. The reader may wish to refer to that material from time to time. In the remainder
of this section, we discuss the most basic concepts needed to write simple VHDL code.

2.9.1 Representation of Digital Signals in VHDL

When using CAD tools to synthesize a logic circuit, the designer can provide the initial
description of the circuit in several different ways, as we explained in section 2.8.1. One
convenient way is to write this description in the form of VHDL source code. The VHDL
compiler translates this code into a logic circuit. Each logic signal in the circuit is represented
in VHDL code as a data object. Just as the variables declared in any high-level programming
language have associated types, such as integers or characters, data objects in VHDL can be
of various types. The original VHDL standard, IEEE 1076, includes a data type calledBIT.
An object of this type is well suited for representing digital signals because BIT objects can
have only two values, 0 and 1. In this chapter all signals in our examples will be of type
BIT. Other data types are introduced in section 4.11 and are listed in Appendix A.

2.9.2 Writing Simple VHDL Code

We will use an example to illustrate how to write simple VHDL source code. Consider the
logic circuit in Figure 2.26. If we wish to write VHDL code to represent this circuit, the
first step is to declare the input and output signals. This is done using a construct called
anentity. An appropriate entity for this example appears in Figure 2.27. An entity must

f

x3

x1

x2

Figure 2.26 A simple logic function.

ENTITY example1 IS
PORT ( x1, x2, x3 : IN BIT ;

f : OUT BIT ) ;
END example1 ;

Figure 2.27 VHDL entity declaration for the circuit in Figure 2.26.
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be assigned a name; we have chosen the nameexample1for this first example. The input
and output signals for the entity are called itsports, and they are identified by the keyword
PORT. This name derives from the electrical jargon in which the wordport refers to an
input or output connection to an electronic circuit. Each port has an associatedmodethat
specifies whether it is an input (IN) to the entity or an output (OUT) from the entity. Each
port represents a signal, hence it has an associated type. The entityexample1has four ports
in total. The first three,x1, x2, andx3, are input signals of type BIT. The port namedf is an
output of type BIT.

In Figure 2.27 we have used simple signal namesx1, x2, x3, andf for the entity’s ports.
Similar to most computer programming languages, VHDL has rules that specify which
characters are allowed in signal names. A simple guideline is that signal names can include
any letter or number, as well as the underscore character ‘_’. There are two caveats: a
signal name must begin with a letter, and a signal name cannot be a VHDL keyword.

An entity specifies the input and output signals for a circuit, but it does not give any
details as to what the circuit represents. The circuit’s functionality must be specified with a
VHDL construct called anarchitecture. An architecture for our example appears in Figure
2.28. It must be given a name, and we have chosen the nameLogicFunc. Although the name
can be any text string, it is sensible to assign a name that is meaningful to the designer.
In this case we have chosen the nameLogicFuncbecause the architecture specifies the
functionality of the design using a logic expression. VHDL has built-in support for the
following Boolean operators: AND, OR, NOT, NAND, NOR, XOR, and XNOR. (So far
we have introduced only AND, OR, and NOT operators; the others will be presented in
Chapter 3.) Following the BEGIN keyword, our architecture specifies, using the VHDL
signal assignment operator<=, that outputf should be assigned the result of the logic
expression on the right-hand side of the operator. Because VHDL does not assume any
precedence of logic operators, parentheses are used in the expression. One might expect
that an assignment statement such as

f <= x1 AND x2 OR NOTx2 AND x3

would have implied parentheses

f <= (x1 AND x2) OR ((NOT x2) AND x3)

But for VHDL code this assumption is not true. In fact, without the parentheses the VHDL
compiler would produce a compile-time error for this expression.

Complete VHDL code for our example is given in Figure 2.29. This example has
illustrated that a VHDL source code file has two main sections: an entity and an architecture.

ARCHITECTURE LogicFunc OF example1 IS
BEGIN

f <= (x1 AND x2) OR (NOT x2 AND x3) ;
END LogicFunc ;

Figure 2.28 VHDL architecture for the entity in Figure 2.27.
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ENTITY example1 IS
PORT ( x1, x2, x3 : IN BIT ;

f : OUT BIT ) ;
END example1 ;

ARCHITECTURE LogicFunc OF example1 IS
BEGIN

f <= (x1 AND x2) OR (NOT x2 AND x3) ;
END LogicFunc ;

Figure 2.29 Complete VHDL code for the circuit in Figure 2.26.

A simple analogy for what each section represents is that the entity is equivalent to a symbol
in a schematic diagram and the architecture specifies the logic circuitry inside the symbol.

A second example of VHDL code is given in Figure 2.30. This circuit has four input
signals, calledx1,x2,x3, andx4, and two output signals, namedf andg. A logic expression
is assigned to each output. A logic circuit produced by the VHDL compiler for this example
is shown in Figure 2.31.

The preceding two examples indicate that one way to assign a value to a signal in
VHDL code is by means of a logic expression. In VHDL terminology a logic expression
is called asimple assignment statement. We will see later that VHDL also supports several
other types of assignment statements and many other features that are useful for describing
circuits that are much more complex.

2.9.3 How NOT to Write VHDL Code

When learning how to use VHDL or other hardware description languages, the tendency for
the novice is to write code that resembles a computer program, containing many variables

ENTITY example2 IS
PORT ( x1, x2, x3, x4 : IN BIT ;

f, g : OUT BIT ) ;
END example2 ;

ARCHITECTURE LogicFunc OF example2 IS
BEGIN

f <= (x1 AND x3) OR (NOT x3 AND x2) ;
g<= (NOT x3 OR x1) AND (NOT x3 OR x4) ;

END LogicFunc ;

Figure 2.30 VHDL code for a four-input function.



April 5, 1999 14:05 g02-ch2 Sheet number 39 Page number 55 black

2.10 Concluding Remarks 55

f

g

x3

x1

x2

x4

Figure 2.31 Logic circuit for the code in Figure 2.30.

and loops. It is difficult to determine what logic circuit the CAD tools will produce when
synthesizing such code. This book contains more than 100 examples of complete VHDL
code that represent a wide range of logic circuits. In these examples the code is easily
related to the described logic circuit. The reader is advised to adopt the same style of code.
A good general guideline is to assume that if the designer cannot readily determine what
logic circuit is described by the VHDL code, then the CAD tools are not likely to synthesize
the circuit that the designer is trying to describe.

Once complete VHDL code is written for a particular design, the reader is encour-
aged to analyze the resulting circuit synthesized by the CAD tools. Much can be learned
about VHDL, logic circuits, and logic synthesis by studying the circuits that are produced
automatically by the CAD tools.

2.10 Concluding Remarks

In this chapter we introduced the concept of logic circuits. We showed that such circuits can
be implemented using logic gates and that they can be described using a mathematical model
called Boolean algebra. Because practical logic circuits are often large, it is important to
have good CAD tools to help the designer. This book is accompanied by the MAX+PlusII
software, which is a CAD tool provided by Altera Corporation. We introduced a few basic
features of this tool and urge the reader to start using this software as soon as possible.

Our discussion so far has been quite elementary. We will deal with both the logic
circuits and the CAD tools in much more depth in the chapters that follow. But first, in
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Chapter 3 we will examine the most important electronic technologies used to construct
logic circuits. This material will give the reader an appreciation of practical constraints that
a designer of logic circuits must face.

Problems

2.1 Use algebraic manipulation to prove thatx+ yz= (x+ y) · (x+ z). Note that this is the
distributive rule, as stated in identity 12b in section 2.5.

2.2 Use algebraic manipulation to prove that(x+ y) · (x+ y) = x.

2.3 Use the Venn diagram to prove the identity in problem 1.

2.4 Use the Venn diagram to prove DeMorgan’s theorem, as given in expressions 15a and 15b
in section 2.5.

2.5 Use the Venn diagram to prove

(x1+ x2 + x3) · (x1+ x2 + x3) = x1+ x2

2.6 Determine whether or not the following expressions are valid, i.e., whether the left- and
right-hand sides represent same function.
(a)x1x3+ x1x2x3+ x1x2 + x1x2 = x2x3+ x1x3+ x2x3+ x1x2x3

(b) x1x3+ x2x3+ x2x3 = (x1+ x2 + x3)(x1+ x2 + x3)(x1+ x2 + x3)

(c) (x1+ x3)(x1+ x2 + x3)(x1+ x2) = (x1+ x2)(x2 + x3)(x1+ x3)

2.7 Draw a timing diagram for the circuit in Figure 2.19a. Show the waveforms that can be
observed on all wires in the circuit.

2.8 Repeat problem 2.7 for the circuit in Figure 2.19b.

2.9 Use algebraic manipulation to show that for three input variablesx1, x2, andx3∑
m(1, 2, 3, 4, 5, 6, 7) = x1+ x2 + x3

2.10 Use algebraic manipulation to show that for three input variablesx1, x2, andx3

5 M(0, 1, 2, 3, 4, 5, 6) = x1x2x3

2.11 Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tion f = x1x3+ x1x2 + x1x2x3+ x1x2x3.

2.12 Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tion f = x1x2x3+ x1x2x4 + x1x2x3x4.

2.13 Use algebraic manipulation to find the minimum product-of-sums expression for the func-
tion f = (x1+ x3+ x4) · (x1+ x2 + x3) · (x1+ x2 + x3+ x4).

2.14 Use algebraic manipulation to find the minimum product-of-sums expression for the func-
tion f = (x1+ x2 + x3) · (x1+ x2 + x3) · (x1+ x2 + x3) · (x1+ x2 + x3).

2.15 (a) Show the location of all minterms in a three-variable Venn diagram.
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(b) Show a separate Venn diagram for each product term in the functionf = x1x2x3+x1x2+
x1x3. Use the Venn diagram to find the minimal sum-of-products form off.

2.16 Represent the function in Figure 2.18 in the form of a Venn diagram and find its minimal
sum-of-products form.

2.17 Figure P2.1 shows two attempts to draw a Venn diagram for four variables. For parts (a)
and (b) of the figure, explain why the Venn diagram is not correct. (Hint: the Venn diagram
must be able to represent all 16 minterms of the four variables.)

x1 x2

x3

x4

(a)

x1 x2

x3

x4

(b)

Figure P2.1 Two attempts to draw a four-variable Venn diagram.

2.18 Figure P2.2 gives a representation of a four-variable Venn diagram and shows the location
of mintermsm0,m1, andm2. Show the location of the other minterms in the diagram.
Represent the functionf = x1x2x3x4 + x1x2x3x4 + x1x2 on this diagram.

x3

x2x1

x4

x3

x2x1

m0

m1m2

Figure P2.2 A four-variable Venn diagram.

2.19 Design the simplest sum-of-products circuit that implements the functionf (x1, x2, x3) =∑
m(3, 4, 6, 7).

2.20 Design the simplest sum-of-products circuit that implements the functionf (x1, x2, x3) =∑
m(1, 3, 4, 6, 7).
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2.21 Design the simplest product-of-sums circuit that implements the functionf (x1, x2, x3) =
5 M (0, 2, 5).

2.22 Design the simplest product-of-sums expression for the functionf (x1, x2, x3) =
5 M (0, 1, 5, 7).

2.23 Design the simplest circuit that has three inputs,x1, x2, andx3, which produces an output
value of 1 whenever two or more of the input variables have the value 1; otherwise, the
output has to be 0.

2.24 For the timing diagram in Figure P2.3, synthesize the functionf (x1, x2, x3) in the simplest
sum-of-products form.

1
0

1
0

1
0

1
0

x1

x2

Time

x3

f

Figure P2.3 A timing diagram representing a logic function.

2.25 For the timing diagram in Figure P2.4, synthesize the functionf (x1, x2, x3) in the simplest
sum-of-products form.

1
0

1
0

1
0

1
0

x1

x2

Time

x3

f

Figure P2.4 A timing diagram representing a logic function.
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2.26 Design a circuit with outputf and inputsx1, x0, y1, andy0. Let X = x1x0 be a number,
where the four possible values ofX, namely, 00, 01, 10, and 11, represent the four numbers
0, 1, 2, and 3, respectively. (We discuss representation of numbers in Chapter 5.) Similarly,
let Y = y1y0 represent another number with the same four possible values. The outputf
should be 1 if the numbers represented byX andYare not equal. Otherwise,f should be 0.
(a) Show the truth table forf.
(b) Synthesize the simplest possible product-of-sums expression forf.

2.27 Repeat problem 2.26 for the case wheref should be 1 only ifX ≥ Y.
(a) Show the truth table forf.
(b) Show the canonical sum-of-products expression forf.
(c) Show the simplest possible sum-of-products expression forf.

2.28 (a) Use the Graphic Editor in MAX+plusII to draw schematics for the following functions

f1 = x2x3x4 + x1x2x4 + x1x2x3+ x1x2x3

f2 = x2x4 + x1x2 + x2x3

(b) Use functional simulation in MAX+plusII to prove thatf1 = f2.

2.29 (a) Use the Graphic Editor in MAX+plusII to draw schematics for the following functions

f1 = (x1+ x2 + x4) · (x2 + x3+ x4) · (x1+ x3+ x4) · (x1+ x3+ x4)

f2 = (x2 + x4) · (x3+ x4) · (x1+ x4)

(b) Use functional simulation in MAX+plusII to prove thatf1 = f2.

2.30 (a) Using the Text Editor in MAX+plusII, write VHDL code to describe the following
functions

f1 = x1x3+ x2x3+ x3x4 + x1x2 + x1x4

f2 = (x1+ x3) · (x1+ x2 + x4) · (x2 + x3+ x4)

(b) Use functional simulation in MAX+plusII to prove thatf1 = f2.

2.31 Consider the following VHDL assignment statements

f1 <= ((x1 AND x3) OR (NOT x1 AND NOT x3)) AND ((x2 AND x4) OR
(NOT x2 AND NOT x4)) ;

f2 <= (x1 AND x2 AND NOT x3 AND NOT x4) OR (NOT x1 AND NOT x2 AND x3 AND x4)
OR (x1 AND NOT x2 AND NOT x3 AND x4) OR
(NOT x1 AND x2 AND x3 AND NOT x4) ;

(a) Write complete VHDL code to implement f1 and f2.
(b) Use functional simulation in MAX+plusII to prove thatf 1= f 2.
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