
April 5, 1999 14:26 g02-ch3 Sheet number 1 Page number 61 black

61

c h a p t e r

3
Implementation Technology

3. Nb1–c3, d5xe4



April 5, 1999 14:26 g02-ch3 Sheet number 2 Page number 62 black

62 C H A P T E R 3 • Implementation Technology

In section 1.2 we said that logic circuits are implemented using transistors and that a number of different
technologies exist. We now explore technology issues in more detail.

Let us first consider how logic variables can be physically represented as signals in electronic circuits.
Our discussion will be restricted to binary variables, which can take on only the values 0 and 1. In a circuit
these values can be represented either as levels of voltage or current. Both alternatives are used in different
technologies. We will focus on the simplest and most popular representation, using voltage levels.

The most obvious way of representing two logic values as voltage levels is to define athresholdvoltage;
any voltage below the threshold represents one logic value, and voltages above the threshold correspond to
the other logic value. It is an arbitrary choice as to which logic value is associated with the low and high
voltage levels. Usually, logic 0 is represented by the low voltage levels and logic 1 by the high voltages. This
is known as apositive logicsystem. The opposite choice, in which the low voltage levels are used to represent
logic 1 and the higher voltages are used for logic 0 is known as anegative logicsystem. In this book we use
only the positive logic system, but negative logic is discussed briefly in section 3.4.

Using the positive logic system, the logic values 0 and 1 are referred to simply as “low” and “high.”
To implement the threshold-voltage concept, a range of low and high voltage levels is defined, as shown in
Figure 3.1. The figure gives the minimum voltage, calledVSS, and the maximum voltage, calledVDD, that can
exist in the circuit. We will assume thatVSS is 0 volts, corresponding to electrical ground, denotedGnd. The
voltageVDD represents the power supply voltage. The most common level forVDD is 5 volts, but 3.3 volts is
also popular. In this chapter we will usually assume thatVDD = 5 V. Figure 3.1 indicates that voltages in the
rangeGnd to V0,max represent logic value 0. The nameV0,max means the maximum voltage level that a logic
circuit must recognize as low. Similarly, the range fromV1,min to VDD corresponds to logic value 1, andV1,min

is the minimum voltage level that a logic circuit must interpret as high. The exact levels ofV0,max andV1,min

Logic value 1

Undefined

Logic value 0

Voltage

VDD

V1,min

V0,max

VSS (Gnd)

Figure 3.1 Representation of logic values by voltage levels.



April 5, 1999 14:26 g02-ch3 Sheet number 3 Page number 63 black

3.1 Transistor Switches 63

depend on the particular technology used; a typical example might setV0,max to 40 percent ofVDD andV1,min

to 60 percent ofVDD. The range of voltages betweenV0,max andV1,min is undefined. Logic signals do not
normally assume voltages in this range except in transition from one logic value to the other. We will discuss
the voltage levels used in logic circuits in more depth in section 3.8.3.

3.1 Transistor Switches

Logic circuits are built with transistors. A full treatment of transistor behavior is beyond
the scope of this text; it can be found in electronics textbooks, such as [1] and [2]. For
the purpose of understanding how logic circuits are built, we can assume that a transistor
operates as a simple switch. Figure 3.2ashows a switch controlled by a logic signal,x. When
x is low, the switch is open, and whenx is high, the switch is closed. The most popular type
of transistor for implementing a simple switch is themetal oxide semiconductor field-effect
transistor (MOSFET).There are two different types of MOSFETs, known asn-channel,
abbreviatedNMOS, andp-channel, denotedPMOS.

Figure 3.2b gives a graphical symbol for an NMOS transistor. It has four electrical
terminals, called thesource, drain, gate, andsubstrate. In logic circuits the substrate (also

DrainSource

x = “low” x = “high”

(a) A simple switch controlled by the input x

VDVS

(b) NMOS transistor

Gate

(c) Simplified symbol for an NMOS transistor

VG

Substrate (body)

Figure 3.2 NMOS transistor as a switch.



April 5, 1999 14:26 g02-ch3 Sheet number 4 Page number 64 black

64 C H A P T E R 3 • Implementation Technology

calledbody) terminal is connected toGnd. We will use the simplified graphical symbol in
Figure 3.2c, which omits the substrate node. There is no physical difference between the
source and drain terminals. They are distinguished in practice by the voltage levels applied
to the transistor; by convention, the terminal with the lower voltage level is deemed to be
the source.

A detailed explanation of how the transistor operates will be presented in section 3.8.1.
For now it is sufficient to know that it is controlled by the voltageVG at the gate terminal.
If VG is low, then there is no connection between the source and drain, and we say that
the transistor isturned off. If VG is high, then the transistor isturned onand acts as a
closed switch that connects the source and drain terminals. In section 3.8.2 we show how
to calculate the resistance between the source and drain terminals when the transistor is
turned on, but for now assume that the resistance is 0�.

PMOS transistors have the opposite behavior of NMOS transistors. The former are
used to realize the type of switch illustrated in Figure 3.3a, where the switch is open when
the control inputx is high and closed whenx is low. A symbol is shown in Figure 3.3b.
In logic circuits the substrate of the PMOS transistor is always connected toVDD, leading
to the simplified symbol in Figure 3.3c. If VG is high, then the PMOS transistor is turned
off and acts like an open switch. WhenVG is low, the transistor is turned on and acts as a
closed switch that connects the source and drain. In the PMOS transistor the source is the
node with the higher voltage.

Gate

x = “high” x = “low”

(a) A switch with the opposite behavior of Figure 3.2(a)

VG

VDVS

(b) PMOS transistor

(c) Simplified symbol for an PMOS transistor

VDD

Drain Source

Substrate (body)

Figure 3.3 PMOS transistor as a switch.



April 5, 1999 14:26 g02-ch3 Sheet number 5 Page number 65 black

3.2 NMOS Logic Gates 65

(a) NMOS transistor

VG

VD

VS = 0 V

VS = VDD

VD

VG

Closed switch
when VG = VDD

VD = 0 V

Open switch
when VG = 0 V

VD

Open switch
when VG = VDD

VD

VDD

Closed switch
when VG = 0 V

VD = VDD

VDD

(b) PMOS transistor

Figure 3.4 NMOS and PMOS transistors in logic circuits.

Figure 3.4 summarizes the typical use of NMOS and PMOS transistors in logic circuits.
An NMOS transistor is turned on when its gate terminal is high, while a PMOS transistor
is turned on when its gate is low. When the NMOS transistor is turned on, its drain is
pulled downto Gnd, and when the PMOS transistor is turned on, its drain ispulled upto
VDD. Because of the way the transistors operate, an NMOS transistor cannot be used to
pull its drain terminal completely up toVDD. Similarly, a PMOS transistor cannot be used
to pull its drain terminal completely down toGnd. We discuss the operation of MOSFETs
in considerable detail in section 3.8.

3.2 NMOS Logic Gates

The first schemes for building logic gates with MOSFETs became popular in the 1970s and
relied on either PMOS or NMOS transistors, but not both. Since the early 1980s, a combi-
nation of both NMOS and PMOS transistors has been used. We will first describe how logic
circuits can be built using NMOS transistors because these circuits are easier to understand.



April 5, 1999 14:26 g02-ch3 Sheet number 6 Page number 66 black

66 C H A P T E R 3 • Implementation Technology

Such circuits are known as NMOS circuits. Then we will show how NMOS and PMOS tran-
sistors are combined in the presently popular technology known ascomplementary MOS,
or CMOS.

In the circuit in Figure 3.5a, whenVx = 0 V, the NMOS transistor is turned off. No
current flows through the resistorR, andVf = 5 V. On the other hand, whenVx = 5 V, the
transistor is turned on and pullsVf to a low voltage level. The exact voltage level ofVf in
this case depends on the amount of current that flows through the resistor and transistor.
Typically, Vf is about 0.2 V (see section 3.8.3). IfVf is viewed as a function ofVx, then the
circuit is an NMOS implementation of a NOT gate. In logic terms this circuit implements
the functionf = x. Figure 3.5b gives a simplified circuit diagram in which the connection
to the positive terminal on the power supply is indicated by an arrow labeledVDD and the
connection to the negative power-supply terminal is indicated by theGndsymbol. We will
use this simplified style of circuit diagram throughout this chapter.

The purpose of the resistor in the NOT gate circuit is to limit the amount of current that
flows whenVx = 5 V. Rather than using a resistor for this purpose, a transistor is normally
used. We will discuss this issue in more detail in section 3.8.3. In subsequent diagrams
a dashed box is drawn around the resistorR as a reminder that it is implemented using a
transistor.

Figure 3.5c presents the graphical symbols for a NOT gate. The left symbol shows the
input, output, power, and ground terminals, and the right symbol is simplified to show only

(b) Simplified circuit diagram

Vx

Vf

VDD

x f

(c) Graphical symbols

x f

R

Vx

Vf

R

+

-

(a) Circuit diagram

5 V

Figure 3.5 A NOT gate built using NMOS technology.



April 5, 1999 14:26 g02-ch3 Sheet number 7 Page number 67 black

3.2 NMOS Logic Gates 67

the input and output terminals. In practice only the simplified symbol is used. Another
name often used for the NOT gate isinverter. We use both names interchangeably in this
book.

In section 2.1 we saw that a series connection of switches corresponds to the logic AND
function, while a parallel connection represents the OR function. Using NMOS transistors,
we can implement the series connection as depicted in Figure 3.6a. If Vx1 = Vx2 = 5 V,
both transistors will be on andVf will be close to 0 V. But if eitherVx1 or Vx2 is 0, then no
current will flow through the series-connected transistors andVf will be pulled up to 5 V.
The resulting truth table forf , provided in terms of logic values, is given in Figure 3.6b.
The realized function is the complement of the AND function, called theNAND function,
for NOT-AND. The circuit realizes a NAND gate. Its graphical symbols are shown in Fig-
ure 3.6c.

The parallel connection of NMOS transistors is given in Figure 3.7a. Here, if either
Vx1 = 5 V or Vx2 = 5 V, thenVf will be close to 0 V. Only if bothVx1 andVx2 are 0 willVf

be pulled up to 5 V. A corresponding truth table is given in Figure 3.7b. It shows that the
circuit realizes the complement of the OR function, called theNORfunction, for NOT-OR.
The graphical symbols for the NOR gate appear in Figure 3.7c.

Vf

VDD

(a) Circuit

(c) Graphical symbols

(b) Truth table

f f

0
0
1
1

0
1
0
1

1
1
1
0

x1 x2 f

Vx2

Vx1

x1

x2

x1

x2

Figure 3.6 NMOS realization of a NAND gate.



April 5, 1999 14:26 g02-ch3 Sheet number 8 Page number 68 black

68 C H A P T E R 3 • Implementation Technology

Vx1
Vx2

Vf

VDD

(a) Circuit

(c) Graphical symbols

(b) Truth table

f

0
0
1
1

0
1
0
1

1
0
0
0

x1 x2 f

f
x1

x2

x1

x2

Figure 3.7 NMOS realization of a NOR gate.

Instead of the NAND and NOR gates just described, the reader would naturally be
interested in the AND and OR gates that were used extensively in the previous chapter.
Figure 3.8 indicates how an AND gate is built in NMOS technology by following a NAND
gate with an inverter. NodeA realizes the NAND of inputsx1 andx2, andf represents the
AND function. In a similar fashion an OR gate is realized as a NOR gate followed by an
inverter, as depicted in Figure 3.9.

3.3 CMOS Logic Gates

So far we have considered how to implement logic gates using NMOS transistors. For
each of the circuits that has been presented, it is possible to derive an equivalent circuit
that uses PMOS transistors. However, it is more interesting to consider how both NMOS
and PMOS transistors can be used together. The most popular such approach is known as
CMOS technology. We will see in section 3.8 that CMOS technology offers some attractive
practical advantages in comparison to NMOS technology.

In NMOS circuits the logic functions are realized by arrangements of NMOS transistors,
combined with a pull-up device that acts as a resistor. We will refer to the part of the circuit



April 5, 1999 14:26 g02-ch3 Sheet number 9 Page number 69 black

3.3 CMOS Logic Gates 69

(a) Circuit

(c) Graphical symbols

(b) Truth table

f f

0
0
1
1

0
1
0
1

0
0
0
1

x1 x2 f

Vf

VDD

A

Vx1

Vx2

x1

x2

x1

x2

VDD

Figure 3.8 NMOS realization of an AND gate.

that involves NMOS transistors as thepull-down network (PDN).Then the structure of the
circuits in Figures 3.5 through 3.9 can be characterized by the block diagram in Figure
3.10. The concept of CMOS circuits is based on replacing the pull-up device with apull-up
network (PUN)that is built using PMOS transistors, such that the functions realized by the
PDN and PUN networks are complements of each other. Then a logic circuit, such as a
typical logic gate, is implemented as indicated in Figure 3.11. For any given valuation of
the input signals, either the PDN pullsVf down toGndor the PUN pullsVf up toVDD. The
PDN and the PUN have equal numbers of transistors, which are arranged so that the two
networks aredualsof one another. Wherever the PDN has NMOS transistors in series, the
PUN has PMOS transistors in parallel, and vice versa.

The simplest example of a CMOS circuit, a NOT gate, is shown in Figure 3.12. When
Vx = 0 V, transistorT2 is off and transistorT1 is on. This makesVf = 5 V, and sinceT2 is



April 5, 1999 14:26 g02-ch3 Sheet number 10 Page number 70 black

70 C H A P T E R 3 • Implementation Technology

(a) Circuit

(c) Graphical symbols

(b) Truth table

f

0
0
1
1

0
1
0
1

0
1
1
1

x1 x2 f

f

Vf

VDD

Vx2
Vx1

x1

x2

x1

x2

VDD

Figure 3.9 NMOS realization of an OR gate.

off, no current flows through the transistors. WhenVx = 5 V, T2 is on andT1 is off. Thus
Vf = 0 V, and no current flows becauseT1 is off.

A key point is that no current flows in a CMOS inverter when the input is either low or
high. This is true for all CMOS circuits; no current flows, and hence no power is dissipated
under steady state conditions. This property has led to CMOS becoming the most popular
technology in use today for building logic circuits. We will discuss current flow and power
dissipation in detail in section 3.8.

Figure 3.13 provides a circuit diagram of a CMOS NAND gate. It is similar to the
NMOS circuit presented in Figure 3.6 except that the pull-up device has been replaced by
the PUN with two PMOS transistors connected in parallel. The truth table in the figure
specifies the state of each of the four transistors for each logic valuation of inputsx1 and
x2. The reader can verify that the circuit properly implements the NAND function. Under
static conditions no path exists for current flow fromVDD to Gnd.

The circuit in Figure 3.13 can be derived from the logic expression that defines the
NAND operation,f = x1x2. This expression specifies the conditions for whichf = 1;
hence it defines the PUN. Since the PUN consists of PMOS transistors, which are turned
on when their control (gate) inputs are set to 0, an input variablexi turns on a transistor if



April 5, 1999 14:26 g02-ch3 Sheet number 11 Page number 71 black

3.3 CMOS Logic Gates 71

Vf

VDD

Pull-down network
Vx1

Vxn

(PDN)

Figure 3.10 Structure of an NMOS circuit.

xi = 0. From DeMorgan’s law, we have

f = x1x2 = x1+ x2

Thusf = 1 wheneitherinputx1 or x2 has the value 0, which means that the PUN must have
two PMOS transistors connected in parallel. The PDN must implement the complement of
f , which is

f = x1x2

Vf

VDD

Pull-down network

Pull-up network

Vx1

Vxn

(PUN)

(PDN)

Figure 3.11 Structure of a CMOS circuit.



April 5, 1999 14:26 g02-ch3 Sheet number 12 Page number 72 black

72 C H A P T E R 3 • Implementation Technology

(a) Circuit

Vf

VDD

Vx

(b) Truth table and transistor states

on
off

off
on

1
0

0
1

fx

T 1

T 2

T 1 T 2

Figure 3.12 CMOS realization of a NOT gate.

Sincef = 1 whenboth x1 andx2 are 1, it follows that the PDN must have two NMOS
transistors connected in series.

The circuit for a CMOS NOR gate is derived from the logic expression that defines the
NOR operation

f = x1+ x2 = x1x2

Sincef = 1 only if bothx1 andx2 have the value 0, then the PUN consists of two PMOS
transistors connected in series. The PDN, which realizesf = x1 + x2, has two NMOS
transistors in parallel, leading to the circuit shown in Figure 3.14.

(a) Circuit

Vf

VDD

(b) Truth table and transistor states

on
on

on
off

0
1

0
0
1
1

0
1

off

off

on

off

off
on

f

off

on

1
1
1
0

off
off
on

on

Vx1

Vx2

T 1 T 2

T 3

T 4

x1 x2 T 1 T 2 T 3 T 4

Figure 3.13 CMOS realization of a NAND gate.



April 5, 1999 14:26 g02-ch3 Sheet number 13 Page number 73 black

3.3 CMOS Logic Gates 73

(a) Circuit

Vf

VDD

(b) Truth table and transistor states

on
on

on
off

0
1

0
0
1
1

0
1

off

off

on

off

off
on

f

off

on

1
0
0
0

off
off
on

on

Vx1

Vx2

T 1

T 2

T 3 T 4

x1 x2 T 1 T 2 T 3 T 4

Figure 3.14 CMOS realization of a NOR gate.

A CMOS AND gate is built by connecting a NAND gate to an inverter, as illustrated
in Figure 3.15. Similarly, an OR gate is constructed with a NOR gate followed by a NOT
gate.

The above procedure for deriving a CMOS circuit can be applied to more general logic
functions to createcomplex gates. This process is illustrated in the following two examples.

Vf

VDD

Vx1

Vx2

VDD

Figure 3.15 CMOS realization of an AND gate.



April 5, 1999 14:26 g02-ch3 Sheet number 14 Page number 74 black

74 C H A P T E R 3 • Implementation Technology

Example 3.1 Consider the function

f = x1+ x2x3

Since all variables appear in their complemented form, we can directly derive the PUN.
It consists of a PMOS transistor controlled byx1 in parallel with a series combination of
PMOS transistors controlled byx2 andx3. For the PDN we have

f = x1+ x2x3 = x1(x2 + x3)

This expression gives the PDN that has an NMOS transistor controlled byx1 in series with
a parallel combination of NMOS transistors controlled byx2 andx3. The circuit is shown
in Figure 3.16.

Example 3.2 Consider the function

f = x1+ (x2 + x3)x4

Then

f = x1(x2x3+ x4)

These expressions lead directly to the circuit in Figure 3.17.

Vf

VDD

Vx1

Vx2

Vx3

Figure 3.16 The circuit for Example 3.1.



April 5, 1999 14:26 g02-ch3 Sheet number 15 Page number 75 black

3.3 CMOS Logic Gates 75

Vf

VDD

Vx1

Vx2

Vx3

Vx4

Figure 3.17 The circuit for Example 3.2.

The circuits in Figures 3.16 and 3.17 show that it is possible to implement fairly complex
logic functions using combinations of series and parallel connections of transistors (acting
as switches), without implementing each series or parallel connection as a complete AND
(using the structure introduced in Figure 3.15) or OR gate.

3.3.1 Speed of Logic Gate Circuits

In the preceding sections we have assumed that transistors operate as ideal switches that
present no resistance to current flow. Hence, while we have derived circuits that realize
the functionality needed in logic gates, we have ignored the important issue of the speed of
operation of the circuits. In reality transistor switches have a significant resistance when
turned on. Also, transistor circuits include capacitors, which are created as a side effect
of the manufacturing process. These factors affect the amount of time required for signal
values to propagate through logic gates. We provide a detailed discussion of the speed of
logic circuits, as well as a number of other practical issues, in section 3.8.



April 5, 1999 14:26 g02-ch3 Sheet number 16 Page number 76 black

76 C H A P T E R 3 • Implementation Technology

3.4 Negative Logic System

At the beginning of this chapter, we said that logic values are represented as two distinct
ranges of voltage levels. We are using the convention that the higher voltage levels represent
logic value 1 and the lower voltages represent logic value 0. This convention is known as the
positive logic system, and it is the one used in most practical applications. In this section we
briefly consider the negative logic system in which the association between voltage levels
and logic values is reversed.

Let us reconsider the CMOS circuit in Figure 3.13, which is reproduced in Figure
3.18a. Part(b) of the figure gives a truth table for the circuit, but the table shows voltage
levels instead of logic values. In this table,L refers to the low voltage level in the circuit,
which is 0 V, andH represents the high voltage level, which isVDD. This is the style of
truth table that manufacturers of integrated circuits often use in data sheets to describe the
functionality of the chips. It is entirely up to the user of the chip as to whetherL andH are
interpreted in terms of logic values such thatL = 0 andH = 1, orL = 1 andH = 0.

Figure 3.19a illustrates the positive logic interpretation in whichL = 0 andH = 1.
As we already know from the discussions of Figure 3.13, the circuit represents a NAND
gate under this interpretation. The opposite interpretation is shown in Figure 3.19b. Here
negative logic is used so thatL = 1 andH = 0. The truth table specifies that the circuit
represents a NOR gate in this case. Note that the truth table rows are listed in the opposite
order from what we normally use, to be consistent with theL andH values in Figure 3.18b.
Figure 3.19b also gives the logic gate symbol for the NOR gate, which includes small
triangles on the gate’s terminals to indicate that the negative logic system is used.

As another example, consider again the circuit in Figure 3.15. Its truth table, in terms
of voltage levels, is given in Figure 3.20a. Using the positive logic system, this circuit

(a) Circuit

Vf

VDD

(b) Voltage levels

L
H

L
L
H
H

L
H

H
H
H
L

Vx1

Vx2

V x1
V x2

V f

Figure 3.18 Voltage levels in the circuit in Figure 3.13.



April 5, 1999 14:26 g02-ch3 Sheet number 17 Page number 77 black

3.5 Standard Chips 77

(a) Positive logic truth table and gate symbol

f
0
0
1
1

0
1
0
1

1
1
1
0

x1 x2 f

x1

x2

(b) Negative logic truth table and gate symbol

1
1
0
0

1
0
1
0

0
0
0
1

x1 x2 f

f
x1

x2

Figure 3.19 Interpretation of the circuit in Figure 3.18.

represents an AND gate, as indicated in Figure 3.20b. But using the negative logic system,
the circuit represents an OR gate, as depicted in Figure 3.20c.

It is possible to use a mixture of positive and negative logic in a single circuit, which
is known as amixed logic system. In practice, the positive logic system is used in most
applications. We will not consider the negative logic system further in this book.

3.5 Standard Chips

In Chapter 1 we mentioned that several different types of integrated circuit chips are available
for implementation of logic circuits. We now discuss the available choices in some detail.

3.5.1 7400-Series Standard Chips

An approach used widely until the mid-1980s was to connect together multiple chips, each
containing only a few logic gates. A wide assortment of chips, with different types of logic
gates, is available for this purpose. They are known as 7400-series parts because the chip
part numbers always begin with the digits 74. An example of a 7400-series part is given
in Figure 3.21. Part(a) of the figure shows a type of package that the chip is provided in,
called adual-inline package (DIP).Part(b) illustrates the 7404 chip, which comprises six
NOT gates. The chip’s external connections are calledpins or leads. Two pins are used
to connect toVDD andGnd, and other pins provide connections to the NOT gates. Many



April 5, 1999 14:26 g02-ch3 Sheet number 18 Page number 78 black

78 C H A P T E R 3 • Implementation Technology

(b) Positive logic

f
0
0
1
1

0
1
0
1

0
0
0
1

x1 x2 f

x1

x2

(c) Negative logic

1
1
0
0

1
0
1
0

1
1
1
0

x1 x2 f

f
x1

x2

(a) Voltage levels

L
H

L
L
H
H

L
H

L
L
L
H

V x1
V x2

V f

Figure 3.20 Interpretation of the circuit in Figure 3.15.

7400-series chips exist, and they are described in the data books produced by manufacturers
of these chips [3–7]. Diagrams of some of the chips are also included in several textbooks,
such as [8–12].

The 7400-series chips are produced in standard forms by a number of integrated circuit
manufacturers, using agreed-upon specifications. Competition among various manufac-
turers works to the designer’s advantage because it tends to lower the price of chips and
ensures that parts are always readily available. For each specific 7400-series chip, several
variants are built with different technologies. For instance, the part called 74LS00 is built
with a technology called transistor-transistor logic (TTL), which is described in Appendix
E, whereas the 74HC00 is fabricated using CMOS technology. In general, the most popular
chips used today are the CMOS variants.

As an example of how a logic circuit can be implemented using 7400-series chips,
consider the functionf = x1x2 + x2x3, which is shown in the form of a logic diagram in



April 5, 1999 14:26 g02-ch3 Sheet number 19 Page number 79 black

3.5 Standard Chips 79

(a) Dual-inline package

(b) Structure of 7404 chip

VDD

Gnd

Figure 3.21 A 7400-series chip.

Figure 2.26. A NOT gate is required to producex2, as well as 2 two-input AND gates
and a two-input OR gate. Figure 3.22 shows three 7400-series chips that can be used to
implement the function. We assume that the three input signalsx1, x2, andx3 are produced
as outputs by some other circuitry that can be connected by wires to the three chips. Notice
that power and ground connections are included for all three chips. This example makes
use of only a portion of the gates available on the three chips, hence the remaining gates
can be used to realize other functions.

Because of their low logic capacity, the standard chips are seldom used in practice
today, with one exception. Many modern products include standard chips that contain
buffers. Buffers are logic gates that are usually used to improve the speed of circuits. An
example of a buffer chip is depicted in Figure 3.23. It is the 74244 chip, which comprises
eighttri-state buffers. We describe how tri-state buffers work in section 3.8.8. Rather than
showing how the buffers are arranged inside the chip package, as we did for the NOT gates
in Figure 3.21, we show only the pin numbers of the package pins that are connected to the
buffers. The package has 20 pins, and they are numbered in the same manner as shown for
Figure 3.21;GndandVDD connections are provided on pins 10 and 20, respectively. Many
other buffer chips also exist. For example, the 162244 chip has 16 tri-state buffers. It is
part of a family of devices that are similar to the 7400-series chips but with twice as many
gates in each chip. These chips are available in multiple types of packages, with the most
popular being asmall-outline integrated circuit (SOIC)package. An SOIC package has a
similar shape to a DIP, but the SOIC is considerably smaller in physical size.



April 5, 1999 14:26 g02-ch3 Sheet number 20 Page number 80 black

80 C H A P T E R 3 • Implementation Technology

VDD

x1

x2

x3
f

7404

7408 7432

Figure 3.22 An implementation of f = x1x2 + x2x3.

As integrated circuit technology has improved over time, a system of classifying chips
according to their size has evolved. The earliest chips produced, such as the 7400-series
chips, comprise only a few logic gates. The technology used to produce these chips is
referred to assmall-scale integration (SSI). Chips that include slightly more logic circuitry,
typically about 10 to 100 gates, representmedium-scale integration (MSI). Until the mid-
1980s chips that were too large to qualify as MSI were classified aslarge-scale integration

Pi
n 

2

Pi
n 

4

Pi
n 

6

Pi
n 

8

Pi
n 

1

Pi
n 

12

Pi
n 

14

Pi
n 

16

Pi
n 

18

Pi
n 

11

Pi
n 

13

Pi
n 

15

Pi
n 

17

Pi
n 

19

Pi
n 

3

Pi
n 

5

Pi
n 

7

Pi
n 

9

Figure 3.23 The 74244 buffer chip.



April 5, 1999 14:26 g02-ch3 Sheet number 21 Page number 81 black

3.6 Programmable Logic Devices 81

(LSI). In recent years the concept of classifying circuits according to their size has become
of little practical use. Most integrated circuits today contain many thousands or millions
of transistors. Regardless of their exact size, these large chips are said to be made with
very large scale integration (VLSI)technology. The trend in digital hardware products is
to integrate as much circuitry as possible onto a single chip. Thus most of the chips used
today are built with VLSI technology, and the older types of chips are used rarely.

3.6 Programmable Logic Devices

The function provided by each of the 7400-series parts is fixed and cannot be tailored to suit
a particular design situation. This fact, coupled with the limitation that each chip contains
only a few logic gates, makes these chips inefficient for building large logic circuits. It is
possible to manufacture chips that contain relatively large amounts of logic circuitry with
a structure that is not fixed. Such chips were first introduced in the 1970s and are called
programmable logic devices (PLDs).

A PLD is a general-purpose chip for implementing logic circuitry. It contains a col-
lection of logic circuit elements that can be customized in different ways. A PLD can be
viewed as a “black box” that contains logic gates and programmable switches, as illustrated
in Figure 3.24. The programmable switches allow the logic gates inside the PLD to be
connected together to implement whatever logic circuit is needed.

3.6.1 Programmable Logic Array (PLA)

Several types of PLDs are commercially available. The first developed was thepro-
grammable logic array (PLA). The general structure of a PLA is depicted in Figure 3.25.
Based on the idea that logic functions can be realized in sum-of-products form, a PLA

Logic gates
and

programmable
switches

Inputs
(logic variables)

Outputs
(logic functions)

Figure 3.24 Programmable logic device as a black box.



April 5, 1999 14:26 g02-ch3 Sheet number 22 Page number 82 black

82 C H A P T E R 3 • Implementation Technology

f1

AND plane OR plane

Input buffers

inverters
and

P1

Pk

fm

x1 x2 xn

x1 x1 xn xn

Figure 3.25 General structure of a PLA.

comprises a collection of AND gates that feeds a set of OR gates. As shown in the figure,
the PLA’s inputsx1, . . . , xn pass through a set of buffers (which provide both the true value
and complement of each input) into a circuit block called anAND plane, or AND array.
The AND plane produces a set of product termsP1, . . . , Pk. Each of these terms can be
configured to implement any AND function ofx1, . . . , xn. The product terms serve as the
inputs to anOR plane, which produces the outputsf1, . . . , fm. Each output can be config-
ured to realize any sum ofP1, . . . , Pk and hence any sum-of-products function of the PLA
inputs.

A more detailed diagram of a small PLA is given in Figure 3.26, which shows a PLA
with three inputs, four product terms, and two outputs. Each AND gate in the AND plane
has six inputs, corresponding to the true and complemented versions of the three input
signals. Each connection to an AND gate is programmable; a signal that is connected to
an AND gate is indicated with a wavy line, and a signal that is not connected to the gate is
shown with a broken line. The circuitry is designed such that any unconnected AND-gate
inputs do not affect the output of the AND gate. In commercially available PLAs, several
methods of realizing the programmable connections exist. Detailed explanation of how a
PLA can be built using transistors is given in section 3.10.

In Figure 3.26 the AND gate that producesP1 is shown connected to the inputsx1 and
x2. HenceP1 = x1x2. Similarly, P2 = x1x3, P3 = x1x2x3, andP4 = x1x3. Programmable
connections also exist for the OR plane. Outputf1 is connected to product termsP1,
P2, andP3. It therefore realizes the functionf1 = x1x2 + x1x3 + x1x2x3. Similarly, output



April 5, 1999 14:26 g02-ch3 Sheet number 23 Page number 83 black

3.6 Programmable Logic Devices 83

f1

P1

P2

f2

x1 x2 x3

OR plane

Programmable

AND plane

connections

P3

P4

Figure 3.26 Gate-level diagram of a PLA.

f2 = x1x2+x1x2x3+x1x3. Although Figure 3.26 depicts the PLA programmed to implement
the functions described above, by programming the AND and OR planes differently, each
of the outputsf1 and f2 could implement various functions ofx1, x2, andx3. The only
constraint on the functions that can be implemented is the size of the AND plane because it
produces only four product terms. Commercially available PLAs come in larger sizes than
we have shown here. Typical parameters are 16 inputs, 32 product terms, and eight outputs.

Although Figure 3.26 illustrates clearly the functional structure of a PLA, this style of
drawing is awkward for larger chips. Instead, it has become customary in technical literature
to use the style shown in Figure 3.27. Each AND gate is depicted as a single horizontal
line attached to an AND-gate symbol. The possible inputs to the AND gate are drawn as
vertical lines that cross the horizontal line. At any crossing of a vertical and horizontal
line, a programmable connection, indicated by anX, can be made. Figure 3.27 shows the
programmable connections needed to implement the product terms in Figure 3.26. Each
OR gate is drawn in a similar manner, with a vertical line attached to an OR-gate symbol.



April 5, 1999 14:26 g02-ch3 Sheet number 24 Page number 84 black

84 C H A P T E R 3 • Implementation Technology

f1

P1

P2

f2

x1 x2 x3

OR plane

AND plane

P3

P4

Figure 3.27 Customary schematic for the PLA in Figure 3.26.

The AND-gate outputs cross these lines, and corresponding programmable connections can
be formed. The figure illustrates the programmable connections that produce the functions
f1 andf2 from Figure 3.26.

The PLA is efficient in terms of the area needed for its implementation on an integrated
circuit chip. For this reason, PLAs are often included as part of larger chips, such as
microprocessors. In this case a PLA is created so that the connections to the AND and OR
gates are fixed, rather than programmable. In section 3.10 we will show that both fixed and
programmable PLAs can be created with similar structures.

3.6.2 Programmable Array Logic (PAL)

In a PLA both the AND and OR planes are programmable. Historically, the programmable
switches presented two difficulties for manufacturers of these devices: they were hard to
fabricate correctly, and they reduced the speed-performance of circuits implemented in the
PLAs. These drawbacks led to the development of a similar device in which the AND plane
is programmable, but the OR plane is fixed. Such a chip is known as aprogrammable array
logic (PAL)device. Because they are simpler to manufacture, and thus less expensive than
PLAs, and offer better performance, PALs have become popular in practical applications.



April 5, 1999 14:26 g02-ch3 Sheet number 25 Page number 85 black

3.6 Programmable Logic Devices 85

An example of a PAL with three inputs, four product terms, and two outputs is given
in Figure 3.28. The product termsP1 andP2 are hardwired to one OR gate, andP3 andP4

are hardwired to the other OR gate. The PAL is shown programmed to realize the two logic
functionsf1 = x1x2x3+x1x2x3 andf2 = x1x2+x1x2x3. In comparison to the PLA in Figure
3.27, the PAL offers less flexibility; the PLA allows up to four product terms per OR gate,
whereas the OR gates in the PAL have only two inputs. To compensate for the reduced
flexibility, PALs are manufactured in a range of sizes, with various numbers of inputs and
outputs, and different numbers of inputs to the OR gates. An example of a commercial PAL
is given in Appendix E.

So far we have assumed that the OR gates in a PAL, as in a PLA, connect directly to
the output pins of the chip. In many PALs extra circuitry is added at the output of each OR
gate to provide additional flexibility. It is customary to use the termmacrocellto refer to
the OR gate combined with the extra circuitry. An example of the flexibility that may be
provided in a macrocell is given in Figure 3.29. The symbol labeledflip-flop represents a
memory element. It stores the value produced by the OR gate output at a particular point
in time and can hold that value indefinitely. The flip-flop is controlled by the signal called
clock. Whenclockmakes a transition from logic value 0 to 1, the flip-flop stores the value
at itsD input at that time and this value appears at the flip-flop’s Q output. Flip-flops are
used for implementing many types of logic circuits, as we will show in Chapter 7.

In section 2.7.2 we discussed a 2-to-1 multiplexer circuit. It has two data inputs, a
select input, and one output. The select input is used to choose one of the data inputs as

f1

P1

P2

f2

x1 x2 x3

AND plane

P3

P4

Figure 3.28 An example of a PAL.



April 5, 1999 14:26 g02-ch3 Sheet number 26 Page number 86 black

86 C H A P T E R 3 • Implementation Technology

f1

To AND plane

D Q

Clock

Select
Enable

Flip-flop

Figure 3.29 Extra circuitry added to OR-gate outputs from Figure 3.28.

the multiplexer’s output. In Figure 3.29 a 2-to-1 multiplexer selects as an output from the
PAL either the OR-gate output or the flip-flop output. The multiplexer’s select line can be
programmed to be either 0 or 1. Figure 3.29 shows another logic gate, called a tri-state
buffer, connected between the multiplexer and the PAL output. We discuss tri-state buffers
in section 3.8.8. Finally, the multiplexer’s output is “fed back” to the AND plane in the
PAL. This feedback connection allows the logic function produced by the multiplexer to be
used internally in the PAL, which allows the implementation of circuits that have multiple
stages, or levels, of logic gates.

A number of companies manufacture PLAs or PALs, or other, similar types ofsimple
PLDs (SPLDs).A partial list of companies, and the types of SPLDs that they manufacture, is
given in Appendix E. An interested reader can examine the information that these companies
provide on their products, which is available on the World Wide Web (WWW). The WWW
locator for each company is given in Table E.1 in Appendix E.

3.6.3 Programming of PLAs and PALs

In Figures 3.27 and 3.28, each connection between a logic signal in a PLA or PAL and the
AND/OR gates is shown as anX. We describe how these switches are implemented using
transistors in section 3.10. Users’ circuits are implemented in the devices byconfiguring,
or programming, these switches. Commercial chips contain a few thousand programmable
switches; hence it is not feasible for a user of these chips to specify manually the desired
programming state of each switch. Instead, CAD systems are employed for this purpose. We
introduced CAD tools in Chapter 2 and described methods for design entry and simulation
of circuits. For CAD systems that support targeting of circuits to PLDs, the tools have the
capability to automatically produce the necessary information for programming each of the



April 5, 1999 14:26 g02-ch3 Sheet number 27 Page number 87 black

3.6 Programmable Logic Devices 87

switches in the device. A computer system that runs the CAD tools is connected by a cable
to a dedicatedprogramming unit. Once the user has completed the design of a circuit, the
CAD tools generate a file, often called aprogramming fileor fuse map, that specifies the
state that each switch in the PLD should have, to realize correctly the designed circuit. The
PLD is placed into the programming unit, and the programming file is transferred from the
computer system. The programming unit then places the chip into a specialprogramming
modeand configures each switch individually. A photograph of a programming unit is
shown in Figure 3.30. Several adaptors are shown beside the main unit; each adaptor is
used for a specific type of chip package.

The programming procedure may take a few minutes to complete. Usually, the pro-
gramming unit can automatically “read back” the state of each switch after programming,
to verify that the chip has been programmed correctly. A detailed discussion of the process
involved in using CAD tools to target designed circuits to programmable chips is given in
Appendices B, C, and D.

PLAs or PALs used as part of a logic circuit usually reside with other chips on a printed
circuit board (PCB). The procedure described above assumes that the chip can be removed
from the circuit board for programming in the programming unit. Removal is made possible
by using a socket on the PCB, as illustrated in Figure 3.31. Although PLAs and PALs are
available in the DIP packages shown in Figure 3.21a, they are also available in another
popular type of package, called aplastic-leaded chip carrier (PLCC), which is depicted in
Figure 3.31. On all four of its sides, the PLCC package has pins that “wrap around” the
edges of the chip, rather than extending straight down as in the case of a DIP. The socket
that houses the PLCC is attached by solder to the circuit board, and the PLCC is held in the
socket by friction.

Figure 3.30 A PLD programming unit (courtesy of Data IO Corp.).



April 5, 1999 14:26 g02-ch3 Sheet number 28 Page number 88 black

88 C H A P T E R 3 • Implementation Technology

Printed circuit b
oard

Figure 3.31 A PLCC package with socket.

Instead of relying on a programming unit to configure a chip, it would be advantageous
to be able to perform the programming while the chip is still attached to its circuit board. This
method of programming is calledin-system programming (ISP). It is not usually provided
for PLAs or PALs, but is available for the more sophisticated chips that are described below.

3.6.4 Complex Programmable Logic Devices (CPLDs)

PLAs and PALs are useful for implementing a wide variety of small digital circuits. Each
device can be used to implement circuits that do not require more than the number of inputs,
product terms, and outputs that are provided in the particular chip. These chips are limited
to fairly modest sizes, typically supporting a combined number of inputs plus outputs of not
more than 32. For implementation of circuits that require more inputs and outputs, either
multiple PLAs or PALs can be employed or else a more sophisticated type of chip, called
acomplex programmable logic device (CPLD), can be used.

A CPLD comprises multiple circuit blocks on a single chip, with internal wiring re-
sources to connect the circuit blocks. Each circuit block is similar to a PLA or a PAL; we
will refer to the circuit blocks asPAL-like blocks. An example of a CPLD is given in Figure
3.32. It includes four PAL-like blocks that are connected to a set ofinterconnection wires.
Each PAL-like block is also connected to a subcircuit labeledI/O block, which is attached
to a number of the chip’s input and output pins.



April 5, 1999 14:26 g02-ch3 Sheet number 29 Page number 89 black

3.6 Programmable Logic Devices 89

PAL-like
block

I/
O

 b
lo

ck
PAL-like

block

I/O
 block

PAL-like
block

I/
O

 b
lo

ck

PAL-like
block

I/O
 block

Interconnection wires

Figure 3.32 Structure of a complex programmable logic device (CPLD).

Figure 3.33 shows an example of the wiring structure and the connections to a PAL-like
block in a CPLD. The PAL-like block includes 3 macrocells (real CPLDs typically have
about 16 macrocells in a PAL-like block), each consisting of a four-input OR gate (real
CPLDs usually provide between 5 and 20 inputs to each OR gate). The OR-gate output
is connected to another type of logic gate that we have not yet introduced. It is called an
Exclusive-OR (XOR) gate. We discuss XOR gates in section 3.9.1. The behavior of an
XOR gate is the same as for an OR gate except that if both of the inputs are 1, the XOR gate
produces a 0. One input to the XOR gate in Figure 3.33 can be programmably connected to
1 or 0; if 1, then the XOR gate complements the OR-gate output, and if 0, then the XOR gate
has no effect. In many CPLDs the XOR gates can be used in other ways also, which we will
see in Example 4.19, in Chapter 4. The macrocell also includes a flip-flop, a multiplexer,
and a tri-state buffer. As we mentioned in the discussion for Figure 3.29, the flip-flop is
used to store the output value produced by the OR gate. Each tri-state buffer (see section
3.8.8) is connected to a pin on the CPLD package. The tri-state buffer acts as a switch that
allows each pin to be used either as an output from the CPLD or as an input. To use a pin as
an output, the corresponding tri-state buffer is enabled, acting as a switch that is turned on.
If the pin is to be used as an input, then the tri-state buffer is disabled, acting as a switch
that is turned off. In this case an external source can drive a signal onto the pin, which can
be connected to other macrocells using the interconnection wiring.

The interconnection wiring contains programmable switches that are used to connect
the PAL-like blocks. Each of the horizontal wires can be connected to some of the vertical
wires that it crosses, but not to all of them. Extensive research has been done to decide
how many switches should be provided for connections between the wires. The number
of switches is chosen to provide sufficient flexibility for typical circuits without wasting



April 5, 1999 14:26 g02-ch3 Sheet number 30 Page number 90 black

90 C H A P T E R 3 • Implementation Technology

D Q

D Q

D Q

PAL-like block (details not shown)

PAL-like block

Figure 3.33 A section of the CPLD in Figure 3.32.

many switches in practice. One detail to note is that when a pin is used as an input, the
macrocell associated with that pin cannot be used and is therefore wasted. Some CPLDs
include additional connections between the macrocells and the interconnection wiring that
avoids wasting macrocells in such situations.

Commercial CPLDs range in size from only 2 PAL-like blocks to more than 100 PAL-
like blocks. They are available in a variety of packages, including the PLCC package that
is shown in Figure 3.31. Figure 3.34a shows another type of package used to house CPLD
chips, called aquad flat pack (QFP).Like a PLCC package, the QFP package has pins on all
four sides, but whereas the PLCC’s pins wrap around the edges of the package, the QFP’s
pins extend outward from the package, with a downward-curving shape. The QFP’s pins



April 5, 1999 14:26 g02-ch3 Sheet number 31 Page number 91 black

3.6 Programmable Logic Devices 91

(a) CPLD in a quad flat pack (QFP) package

Printed
circuit board

To computer

(b) JTAG programming

Figure 3.34 CPLD packaging and programming.

are much thinner than those on a PLCC, which means that the package can support a larger
number of pins; QFPs are available with more than 200 pins, whereas PLCCs are limited
to fewer than 100 pins.

Most CPLDs contain the same type of programmable switches that are used in SPLDs,
which are described in section 3.10. Programming of the switches may be accomplished
using the same technique described in section 3.6.3, in which the chip is placed into a special-
purpose programming unit. However, this programming method is rather inconvenient for
large CPLDs for two reasons. First, large CPLDs may have more than 200 pins on the chip
package, and these pins are often fragile and easily bent. Second, to be programmed in a
programming unit, a socket is required to hold the chip. Sockets for large QFP packages
are very expensive; they sometimes cost more than the CPLD device itself. For these
reasons, CPLD devices usually support the ISP technique. A small connector is included
on the PCB that houses the CPLD, and a cable is connected between that connector and a
computer system. The CPLD is programmed by transferring the programming information
generated by a CAD system through the cable, from the computer into the CPLD. The
circuitry on the CPLD that allows this type of programming has been standardized by the
IEEE and is usually called aJTAG port. It uses four wires to transfer information between
the computer and the device being programmed. The termJTAGstands for Joint Test Action



April 5, 1999 14:26 g02-ch3 Sheet number 32 Page number 92 black

92 C H A P T E R 3 • Implementation Technology

Group. Figure 3.34b illustrates the use of a JTAG port for programming two CPLDs on a
circuit board. The CPLDs are connected together so that both can be programmed using
the same connection to the computer system. Once a CPLD is programmed, it retains the
programmed state permanently, even when the power supply for the chip is turned off. This
property is callednonvolatileprogramming.

CPLDs are used for the implementation of many types of digital circuits. In industrial
designs that employ some type of PLD device, CPLDs are used in about half the cases
(SPLDs are used in only a small fraction of recently produced designs). A number of
companies offer competing CPLDs. Appendix E lists, in Table E.2, the names of the major
companies involved and shows the company’s WWW locator. The reader is encouraged
to examine the product information that each company provides on its Web pages. One
example of a commercially available CPLD is described in detail in Appendix E. This CPLD
family, manufactured by Altera and called the MAX 7000, is used in several examples
presented later in the book.

3.6.5 Field-Programmable Gate Arrays

The types of chips described above, 7400 series, SPLDs, and CPLDs, are useful for im-
plementation of a wide range of logic circuits. Except for CPLDs, these devices are rather
small and are suitable only for relatively simple applications. Even for CPLDs, only mod-
erately large logic circuits can be accommodated in a single chip. For cost and performance
reasons, it is prudent to implement a desired logic circuit using as few chips as possible, so
the amount of circuitry on a given chip and its functional capability are important. One way
to quantify a circuit’ssizeis to assume that the circuit is to be built using only simple logic
gates and then estimate how many of these gates are needed. A commonly used measure is
the total number of two-input NAND gates that would be needed to build the circuit; this
measure is often called the number ofequivalent gates.

Using the equivalent-gates metric, the size of a 7400-series chip is simple to measure
because each chip contains only simple gates. For SPLDs and CPLDs the typical measure
used is that each macrocell represents about 20 equivalent gates. Thus a typical PAL that
has eight macrocells can accommodate a circuit that needs up to about 160 gates, and a large
CPLD that has 1000 macrocells can implement circuits of up to about 20,000 equivalent
gates.

By modern standards, a logic circuit with 20,000 gates is not large. To implement
larger circuits, it is convenient to use a different type of chip that has a larger logic capacity.
A field-programmable gate array (FPGA)is a programmable logic device that supports
implementation of relatively large logic circuits. FPGAs are quite different from SPLDs
and CPLDs because FPGAs do not contain AND or OR planes. Instead, FPGAs provide
logic blocksfor implementation of the required functions. The general structure of an FPGA
is illustrated in Figure 3.35a. It contains three main types of resources: logic blocks, I/O
blocks for connecting to the pins of the package, and interconnection wires and switches.
The logic blocks are arranged in a two-dimensional array, and the interconnection wires
are organized as horizontal and verticalrouting channelsbetween rows and columns of
logic blocks. The routing channels contain wires and programmable switches that allow
the logic blocks to be interconnected in many ways. Figure 3.35a shows two locations for



April 5, 1999 14:26 g02-ch3 Sheet number 33 Page number 93 black

3.6 Programmable Logic Devices 93

(b) Pin grid array (PGA) package (bottom view)

Logic block Interconnection switches

(a) General structure of an FPGA

I/
O

 b
lo

ck

I/O
 block

I/O block

I/O block

Figure 3.35 A field-programmable gate array (FPGA).

programmable switches; the blue boxes adjacent to logic blocks hold switches that connect
the logic block input and output terminals to the interconnection wires, and the blue boxes
that are diagonally between logic blocks connect one interconnection wire to another (such
as a vertical wire to a horizontal wire). Programmable connections also exist between the
I/O blocks and the interconnection wires. The actual number of programmable switches
and wires in an FPGA varies in commercially available chips.



April 5, 1999 14:26 g02-ch3 Sheet number 34 Page number 94 black

94 C H A P T E R 3 • Implementation Technology

FPGAs can be used to implement logic circuits of more than a few hundred thousand
equivalent gates in size. Two examples of FPGAs, called the Altera FLEX 10K and the
Xilinx XC4000, are described in Appendix E. FPGAs are available in a variety of packages,
including the PLCC and QFP packages described earlier. Figure 3.35b depicts another type
of package, called apin grid array (PGA).A PGA package may have up to a few hundred
pins in total, which extend straight outward from the bottom of the package, in a grid pattern.
Yet another packaging technology that has emerged is known as theball grid array (BGA).
The BGA is similar to the PGA except that the pins are small round balls, instead of posts.
The advantage of BGA packages is that the pins are very small; hence more pins can be
provided on the package.

Each logic block in an FPGA typically has a small number of inputs and one output.
A number of FPGA products are on the market, featuring different types of logic blocks.
The most commonly used logic block is alookup table (LUT), which containsstorage cells
that are used to implement a small logic function. Each cell is capable of holding a single
logic value, either 0 or 1. The stored value is produced as the output of the storage cell.
LUTs of varioussizesmay be created, where the size is defined by the number of inputs.
Figure 3.36a shows the structure of a small LUT. It has two inputs,x1 andx2, and one

(a) Circuit for a two-input LUT

x1

x2

f

0/1

0/1

0/1

0/1

0
0
1
1

0
1
0
1

1
0
0
1

x1 x2

(b) f 1 x1x2 x1x2+=

(c) Storage cell contents in the LUT

x1

x2

1

0

0

1

f 1

f 1

Figure 3.36 A two-input lookup table (LUT).



April 5, 1999 14:26 g02-ch3 Sheet number 35 Page number 95 black

3.6 Programmable Logic Devices 95

output, f . It is capable of implementing any logic function of two variables. Because a
two-variable truth table has four rows, this LUT has four storage cells. One cell corresponds
to the output value in each row of the truth table. The input variablesx1 andx2 are used
as the select inputs of three multiplexers, which, depending on the valuation ofx1 andx2,
select the content of one of the four storage cells as the output of the LUT. We introduced
multiplexers in section 2.7.2 and will discuss storage cells in Chapter 10.

To see how a logic function can be realized in the two-input LUT, consider the truth table
in Figure 3.36b. The functionf1 from this table can be stored in the LUT as illustrated in
Figure 3.36c. The arrangement of multiplexers in the LUT correctly realizes the functionf1.
Whenx1 = x2 = 0, the output of the LUT is driven by the top storage cell, which represents
the entry in the truth table forx1x2 = 00. Similarly, for all valuations ofx1 andx2, the logic
value stored in the storage cell corresponding to the entry in the truth table chosen by the
particular valuation appears on the LUT output. Providing access to the contents of storage
cells is only one way in which multiplexers can be used to implement logic functions. A
detailed presentation of the applications of multiplexers is given in Chapter 6.

Figure 3.37 shows a three-input LUT. It has eight storage cells because a three-variable
truth table has eight rows. In commercial FPGA chips, LUTs usually have either four or
five inputs, which require 16 and 32 storage cells, respectively. In Figure 3.29 we showed
that PALs usually have extra circuitry included with their AND-OR gates. The same is true
for FPGAs, which usually have extra circuitry, besides a LUT, in each logic block. Figure
3.38 shows how a flip-flop may be included in an FPGA logic block. As discussed for
Figure 3.29, the flip-flop is used to store the value of itsD input under control of itsclock
input. Examples of logic blocks in commercial FPGAs are presented in Appendix E.

For a logic circuit to be realized in an FPGA, each logic function in the circuit must be
small enough to fit within a single logic block. In practice, a user’s circuit is automatically

x1

f

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

x2

x3

Figure 3.37 A three-input LUT.



April 5, 1999 14:26 g02-ch3 Sheet number 36 Page number 96 black

96 C H A P T E R 3 • Implementation Technology

Out

D Q

Clock

Select

Flip-flop
In1

In2

In3

LUT

Figure 3.38 Inclusion of a flip-flop in an FPGA logic block.

translated into the required form by using CAD tools (see section 4.12). When a circuit
is implemented in an FPGA, the logic blocks are programmed to realize the necessary
functions and the routing channels are programmed to make the required interconnections
between logic blocks. FPGAs are configured by using the ISP method, which we explained
in section 3.6.4. The storage cells in the LUTs in an FPGA arevolatile, which means
that they lose their stored contents whenever the power supply for the chip is turned off.
Hence the FPGA has to be programmed every time power is applied. Often a small memory
chip that holds its data permanently, called aprogrammable read-only memory (PROM),
is included on the circuit board that houses the FPGA. The storage cells in the FPGA are
loaded automatically from the PROM when power is applied to the chips.

A small FPGA that has been programmed to implement a circuit is depicted in Figure
3.39. The FPGA has two-input LUTs, and there are four wires in each routing channel.
The figure shows the programmed states of both the logic blocks and wiring switches in
a section of the FPGA. Programmable wiring switches are indicated by anX. Each switch
shown in blue is turned on and makes a connection between a horizontal and vertical wire.
The switches shown in black are turned off. We describe how the switches are implemented
by using transistors in section 3.10.1. The truth tables programmed into the logic blocks in
the top row of the FPGA correspond to the functionsf1 = x1x2 andf2 = x2x3. The logic
block in the bottom right of the figure is programmed to producef = f1+ f2 = x1x2+ x2x3.

3.6.6 Using CAD Tools to Implement Circuits in CPLDs
and FPGAs

In section 2.8 we suggested that the reader should work through Tutorial 1, in Appendix
B, to gain some experience using real CAD tools. Tutorial 1 covers the steps of design
entry and functional simulation. Now that we have discussed some of the details of the
implementation of circuits in chips, the reader may wish to experiment further with the CAD
tools. In Tutorial 2, section C.3, we illustrate how to download a circuit from a computer
into a CPLD or FPGA.



April 5, 1999 14:26 g02-ch3 Sheet number 37 Page number 97 black

3.7 Custom Chips, Standard Cells, and Gate Arrays 97

0
1
0
0

0
1
1
1

0
0
0
1

x1

x2

x2

x3

f 1

f 2

f 1 f 2

f

x1

x2

x3 f

Figure 3.39 A section of a programmed FPGA.

3.7 Custom Chips, Standard Cells, and Gate Arrays

The key factor that limits the size of a circuit that can be accommodated in a PLD is the
existence of programmable switches. Although these switches provide the benefit of user
programmability, they consume a significant amount of space on the chip. They also result
in a reduction in the speed of operation of circuits. In this section we will introduce some
integrated circuit technologies that do not contain programmable switches.

Chips that provide the largest number of logic gates and the highest speed are so-called
custom chips. Whereas a PLD is prefabricated, containing logic gates and programmable
switches that are programmed to realize a user’s circuit, a custom chip is created from
scratch. The designer of a custom chip has complete flexibility to decide the size of the
chip, the number of transistors the chip contains, the placement of each transistor on the
chip, and the way the transistors are connected together. The process of defining exactly
where on the chip each transistor and wire is situated is calledchip layout. For a custom
chip the designer may create any layout that is desired. Because it may contain more than
a million transistors, a custom chip requires a large amount of design effort and therefore



April 5, 1999 14:26 g02-ch3 Sheet number 38 Page number 98 black

98 C H A P T E R 3 • Implementation Technology

is expensive. Consequently, custom chips are used only when a very large number of
transistors is needed and high-speed performance is important. Also, the product being
designed must be expected to sell in sufficient quantities to recoup the expense. Two
examples of products that are usually realized with custom chips are microprocessors and
memory chips.

Some of the design effort incurred for a custom chip can be avoided by using a technol-
ogy known asstandard cells. Chips made using this technology are often calledapplication-
specific integrated circuits (ASICs). This technology is illustrated in Figure 3.40, which
depicts a small portion of a chip. The rows of logic gates may be connected by wires that
are created in therouting channelsbetween the rows of gates. In general, many types of
logic gates may be used in such a chip. The available gates are prebuilt and are stored in
a library that can be accessed by the designer. In Figure 3.40 the wires are drawn in two
colors. This scheme is used because metal wires can be created on integrated circuits in
multiple layers, which makes it possible for two wires to cross one another without creating
a short circuit. The blue wires represent one layer of metal wires, and the black wires are a
different layer. Each blue square represents a hard-wired connection (called avia) between
a wire on one layer and a wire on the other layer. In current technology it is possible to
have eight or more layers of metal wiring. Some of the metal layers can be placed on top
of the transistors in the logic gates, resulting in a more efficient chip layout.

Like a custom chip, a standard-cell chip is created from scratch according to a user’s
specifications. The circuitry shown in Figure 3.40 implements the two logic functions
that we realized in a PLA in Figure 3.26, namely,f1 = x1x2 + x1x3 + x1x2x3 and f2 =
x1x2 + x1x2x3 + x1x3. Because of the expense involved, a standard-cell chip would never
be created for a small circuit such as this one, and thus the figure shows only a portion
of a much larger chip. The layout of individual gates (standard cells) is predesigned and
fixed. The chip layout can be created automatically by CAD tools because of the regular
arrangement of the logic gates (cells) in rows. A typical chip has many long rows of logic
gates with a large number of wires between each pair of rows. The I/O blocks around the
periphery connect to the pins of the chip package, which is usually a QFP, PGA, or BGA
package.

f 1

f 2x1

x3

x2

Figure 3.40 A section of two rows in a standard-cell chip.



April 5, 1999 14:26 g02-ch3 Sheet number 39 Page number 99 black

3.7 Custom Chips, Standard Cells, and Gate Arrays 99

Another technology, similar to standard cells, is thegate-arraytechnology. In a gate
array parts of the chip are prefabricated, and other parts are custom fabricated for a par-
ticular user’s circuit. This concept exploits the fact that integrated circuits are fabricated
in a sequence of steps, some steps to create transistors and other steps to create wires to
connect the transistors together. In gate-array technology, the manufacturer performs most
of the fabrication steps, typically those involved in the creation of the transistors, without
considering the requirements of a user’s circuit. This process results in a silicon wafer (see
Figure 1.1) of partially finished chips, called the gate-arraytemplate. Later the template is
modified, usually by fabricating wires that connect the transistors together, to create a user’s
circuit in each finished chip. The gate-array approach provides cost savings in comparison
to the custom-chip approach because the gate-array manufacturer can amortize the cost of
chip fabrication over a large number of template wafers, all of which are identical. Many
variants of gate-array technology exist. Some have relatively large logic cells, while others
are configurable at the level of a single transistor.

An example of a gate-array template is given in Figure 3.41. The gate array contains a
two-dimensional array of logic cells. The chip’s general structure is similar to a standard-
cell chip except that in the gate array all logic cells are identical. Although the types of logic
cells used in gate arrays vary, one common example is a two- or three-input NAND gate.
In some gate arrays empty spaces exist between the rows of logic cells to accommodate
the wires that will be added later to connect the logic cells together. However, most gate
arrays do not have spaces between rows of logic cells, and the interconnection wires are
fabricated on top of the logic cells. This design is possible because, as discussed for Figure
3.40, metal wires can be created on a chip in multiple layers. This technology is known

Figure 3.41 A sea-of-gates gate array.



April 5, 1999 14:26 g02-ch3 Sheet number 40 Page number 100 black

100 C H A P T E R 3 • Implementation Technology

f 1

x1

x3

x2

Figure 3.42 The logic function f1 = x2x3 + x1x3 in the gate array of Figure 3.41.

as thesea-of-gatestechnology. Figure 3.42 depicts a small section of a gate array that has
been customized to implement the logic functionf = x2x3 + x1x3. It is easy to verify that
this circuit with only NAND gates is equivalent to the AND-OR form of the circuit. We
will describe a process for deriving this equivalence in section 4.6.

3.8 Practical Aspects

So far in this chapter, we have described the basic aspects of logic gate circuits and given
examples of commercial chips. In this section we provide more detailed information on
several aspects of digital circuits. We describe how transistors are fabricated in silicon and
give a detailed explanation of how transistors operate. We discuss the robustness of logic
circuits and discuss the important issues of signal propagation delays and power dissipation
in logic gates.

3.8.1 MOSFET Fabrication and Behavior

To understand the operation of NMOS and PMOS transistors, we need to consider how
they are built in an integrated circuit. Integrated circuits are fabricated on silicon wafers.


