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Abstract

Nowadays artificial neural network models often lack
many physiological properties of the nervous cell.
Feedforward multilayer perceptron architectures, and
even simple recurrent networks, still in vogue, are far
from those encountered in cerebral cortex. Current
learning algorithms are more oriented to computational
performance than to biological credibility. The aim of this
paper is to propose an artificial neural network system,
called Bio-θR, including architecture and algorithm, to
take care of a natural language processing problem, the
thematic relationship, in a biologically inspired
connectionist approach. Instead of feedforward or simple
recurrent network, it is presented a bi-directional
architecture. Instead of the well-known biologically
implausible backpropagation algorithm, a
neurophysiologically motivated one is employed to
account for linguistic thematic role assignment in natural
language sentences. In addition, several features
concerning biological plausibility are also included.

1. Introduction

     Successful connectionist natural language processing
(NLP) systems often employ recurrent architectures
instead of feedforward networks [4] [5] [17]. These
systems with “reentrancy” are supposed to be more
adequate to deal with the temporal extension of natural
language sentences, and, at the same time, they seem to be
more physiologically realistic [3]. The search for models
based on neuroscience is about to be considered the next
generation of artificial neural networks [12], since
nowadays models are far from biology, mainly for
mathematical simplicity reasons [16] [18]. Another item
considered fundamental in a biologically based model is
the representation adopted. It is required to be distributed,
in a sense that one concept is represented along many units
of the connectionist architecture [9] [14], while localist

representations lack semantic distinctiveness [5] [17].
Natural language processing systems that use distributed
representations have shown good performance [11] [21]
[22] [19].
     Here, a connectionist NLP system called Bio-θR is
presented to account for thematic role relationships in
natural language sentences. The architecture employed is a
bi-directional (recurrent) artificial neural network. The
processors are perceptron-like units and the connectionist
learning algorithm uses a simple reinforcement rule, based
only on available information of local synapses [13]. The
words are presented sequentially to the network and
represented by means of distributed semantic microfeature
arrays [11] [24]. Twenty three-valued logic semantic
microfeature units account for each noun and verb. The
schema on table 1 displays the semantic features for verbs.
Table 2 shows the microfeatures for nouns.

control of action no control of action
direct process triggering indirect triggering

direction to source direction to goal
impacting process no impacting process

change of state no change of state
psychological state no psychological state

objective no objective
effective action no effective action

high intensity of action low intensity
interest on process no interest on process

Table 1. The ten semantic microfeature
dimensions for verbs. These features were

chosen based on a thematic frame [22]

2. Thematic roles

     Linguistic theory [6] refers to the roles words usually
have in relation to the predicate (often the verb) as
thematic roles, so that one can say that the verb frighten,
in one possible reading of sentence (1), assigns the
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thematic structure (grid) [AGENT, EXPERIENCER], because
man is deliberately responsible for the action of
frightening (the “agent”), and girl is the “experiencer”
affected by the action.

human non-human
soft hard

small medium large
1-D/compact 2-D 3-D

pointed rounded
fragile/breakable unbreakable

value furniture food toy tool/
utensil

animate

Table 2. The seven semantic microfeature
dimensions for nouns, separated in rows. Only

one value in each dimension is on for each
unambiguous noun [22] (adapted from [11])

The man frightened the girl (1)

     But linguistic theory also assumes that thematic
structures may vary for a specific verb. So, in sentence (2),
there is a different thematic grid ([CAUSE, EXPERIENCER])
assigned by the same verb frighten, since ball causes the
frightening, but in an involuntary way.

The ball frightened the girl (2)

     The Government and Binding linguistic theory [6]
states that thematic roles are in the lexicon, so a specific
verb assigns a single thematic grid. This is a “slot and
filler” lexicalist view. For instance, the verb kill would
assign an AGENT (i) and a PATIENT (j), no matter in which
sentence it occurs, like in Michaeli killed Peterj [22]. But
there are verbs, which assign different thematic grids in
different sentences, like frighten in (1) and (2). This is a
problem for this symbolic linguistic theory.
     In a componential perspective, it is possible to have a
representation for verbs independently of the sentence in
which they occur. Considering sentences (1) and (2) again,
it seems that the nouns employed as subjects make the
distinction between AGENT and CAUSE. In sentence (1),
since the subject (man) is an animate noun, it can be the
“agent” of an action. In sentence (2), the subject (ball) is
inanimate, so it can not be agent of anything. In other
words, thematic roles must be elements with semantic
content [2].
     In the system Bio-θR, the connectionist architecture
processes the sentences in a componential way, allowing
that this kind of semantic relationship be approached.
     The representation of the verb is strongly based on a
non-lexicalist representation; that is, the thematic role

assignment compositionally depends on the whole
sentence [21].

3. Biologically plausible connectionist models

     According to O’Reilly [14], biologically plausible
connectionist models should have, as main characteristics,
distributed representation, inhibitory competition, bi-
directional activation propagation, and error-driven task
learning.

3.1. Distributed representation

     Several are the advantages of the distributed
representation concerning connectionism. According to
Hinton and others [9], the connections between a set of
units are capable of supporting a large number of different
patterns, thus implying in a considerable reduction of the
network size. And, regarding cognition, the strengths and
weaknesses give rise to some powerful and unexpected
emergent properties, like generalization. This way,
systems that employ distributed representations are more
neurophysiologically realistic. Distributed representations
make possible to create new concepts without allocating
new hardware. This means that, for NLP purposes, new
words can be added to the lexicon of systems that use
distributed representations, without modifying the
architecture previously employed and trained. Besides
this, in a neuroscience standpoint, distributed
representations seem to be predominant in the cerebral
cortex [15].

3.2. Inhibitory competition

     The inhibitory competition feature present in the
cerebral cortex is due mainly to inhibitory interneurons.
During a lateral inhibition, a neuron excites an inhibitory
interneuron that makes a feedback connection onto the
first neuron, which is often called self-regulation [10]. As
a matter of fact, 20% of the neurons in the cortex are
inhibitory interneurons [14]. In Bio-θR, this happens at the
output layer, where there is a competition between output
units, in a kind of winner-takes-all strategy.

3.3. Bi-directional activation propagation

     The bi-directionality of the architecture is necessary to
simulate a biological electrical synapse, which may be bi-
directional [10]. In Bio-θR, this is done by recurrence of
the connectionist architecture. The hidden units receive
stimuli from both the input and output layers.

3.4. Error-driven task learning
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     The most used supervised connectionist algorithm
backpropagation [23] requires the propagation of error
signals in a manner inconsistent with known
neurobiological properties [14] [1]. The error-driven task
is important, but not in the way it happens in
backpropagation [14]. So, in Bio-θR, a
neurophysiologically connectionist learning algorithm is
employed [13].

4. The system Bio-θθθθR

     The system Bio-θR consists of a bi-directional
(recurrent) connectionist architecture, with three layers (A
units in input layer, B units in hidden layer, and C units in
output layer) and lateral inhibition occurring at the output
level (figure 1). At input, words are presented in terms of
their semantic microfeatures, one at a time, at its specific
slot, until the whole sentence is completely entered. This
way, besides semantics, included as part of the distributed
representation employed, syntactic constraints are also
considered. At output, thematic roles are highlighted as
soon as they are assigned. For instance, when the subject
of a sentence is presented, no thematic role shows up,
because it is unknown which will be the main verb, the
predicate that assigns such roles. When the verb appears,
immediately the network displays the thematic role
assigned to the subject presented previously. For the other
input words, the correspondent thematic roles are
displayed at the output, one at a time, for every input
word.

5. The learning procedure

The learning procedure, also employed in Bio-Pred
system [20], is inspired by the Recirculation [8] and
GeneRec algorithms [13], and uses the two phases notion
(minus and plus phases). First of all, the inputs xi are
presented to the input layer. In the minus phase, there is a
propagation of these stimuli to the output through the
hidden layer (bottom-up propagation). There is also a
propagation of the previous actual output ok back to the
hidden layer (top-down propagation). Then, the hidden
minus activation hj

- is generated (sum of the bottom-up
and top-down propagations – through the sigmoid
activation function, represented by σ in equation 3).
Finally, the current real output ok is generated through the
propagation of the hidden minus activation to the output
layer (equation 4). The indexes i, j, and k refer to input,
hidden, and output units, respectively.
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Figure 1. The three-layer bi-directional
connectionist architecture of Bio-θθθθR. The

labels of the output units (in layer C) represent
the ten thematic roles (AGENT, PATIENT,

EXPERIENCER, THEME, SOURCE, GOAL,
BENEFICIARY, CAUSE, INSTRUMENT, and VALUE).

To the input layer A the words, represented by
their distributed microfeature arrays, are
entered sequentially at their specific slot

according to their syntactic category (subject,
verb, object, or complement)
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     In the plus phase, there is a propagation from the input
xi to the hidden layer (bottom-up). After this, there is the
propagation of the desired output yk to the hidden layer
(top-down). Then the hidden plus activation hj

+ is
generated, summing these two propagations (equation 5).
The synaptic weights w are updated in the way represented
in equations 6 and 7. Notice the presence of the learning
rate (η), considered an important variable during the
experiments [20].

)..(
10
∑∑

==
= ++

C

k
kjk

A

i
iijj ywxwh σ (5)

−−=∆ jkkjk hoyw )..(η (6)

ijjij xhhw )..( −+ −=∆ η (7)

    subject         verb               object      complement

• • •

1  2    20     21  22   40    41  42   60     61 62  80

  A        P       E       T    S      G       B        C       I        V
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5.1. Different architectures

     The experiments were accomplished by several
different neural network architectures, in relation to the
hidden layer. The input and output layers have always the
same number of units, 80 and 10, respectively. The hidden
layer size changed during the simulations. From 10 to 70,
many sizes were experimented. The performance can be
checked in figure 2 for three hidden layer sizes, for
different learning rates. The 50-unit hidden layer was
chosen, considering satisfactory training time and best
learning performance for a learning rate η = 0.25.

Figure 2. The diagram shows the influence of
the learning rate ηηηη (represented in the

horizontal X-axis) in three different neural
networks architectures (hidden layer with 25,

50, and 70 units). The vertical Y-axis shows the
number of training cycles needed to reach the

output error of 10-2

     The average output error is the difference between
“actual” output ok and “desired” output yk, and it is
obtained from the average squared error energy formula
(equation 8) [7].
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     In order to obtain the final output error, enough to
make the system learn the correct sentence-thematic grid
relations (which, empirically, was assumed to be 0.01),
Bio-θR computes the average of 52 cycles, in order to
compose a sample including all possible sentences.

5.2. A kind of competition

At the output layer there is a kind of lateral inhibition,
since the unit in the output layer which is most active (the
winner), makes the others to be inactive (“the winner takes
all”). This is a kind of competitive learning procedure.

The output layer is composed of ten units, representing
ten thematic roles (AGENT, PATIENT, EXPERIENCER,
THEME, SOURCE, GOAL, BENEFICIARY, CAUSE,
INSTRUMENT, and VALUE). The aim of Bio-θR is to learn
the correct thematic role assignments for complete
semantically sound sentences presented sequentially (one
word at a time).

For each output in the training step, the most activated
unit will be considered active and the other units will be
inactive. Active and inactive units have values next to 1.0
and 0.0, respectively. This is done after the (back)
propagation of the output to the hidden layer in the plus
phase. That is, the effect of the competition will happen
only in the minus phase of the next cycle.

5.3. The training set

In the bi-directional architecture of Bio-θR, the
supervised learning procedure employs pairs of
semantically sound sentences and the corresponding
thematic grid. A sentence-thematic grid pair generator
supplies the word and the respective thematic role for each
sentence presented sequentially, one word at a time (see
tables 3 and 4). For example, for sentence (9), the pairs
boy-null, delivered-AGENT, curtain-THEME, and woman-
GOAL are generated. Notice that for the first word (the
subject), there is no thematic role prediction yet, because
to the subject may be assigned any thematic role. The verb
presentation is crucial for the decision in favor of AGENT.

The boy delivered the curtain to the woman (9)

     In this version of Bio-θR, a small lexicon is employed,
with only 13 verbs (including alternative readings, in case
of thematic ambiguity) and 30 nouns. This is enough to
validate the componential semantic relationships between
the words of a sentence and their thematic roles. This way,
it is possible to propose a more biologically realistic
system than other systems that account for a similar
linguistic problem, like HTRP [21] [22].

6. Distributed semantic microfeature
representations

As already well known, distributed representation has
several advantages concerning connectionism [9]. It is
essential to notice that the verb microfeatures are selected
in order to cover the semantic issues considered pertinent
in a thematic framework. The microfeatures outside this
thematic context are not meaningful [21] [22] [19]. They
only make sense in a system like Bio-θR, where the
specification of semantic relationships between the words
in a sentence plays a leading role.
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frame for verb love1 thematic grid
the human loves the object [EXPERIENCER, THEME]

frame for verb love2 thematic grid
the human loves the human [EXPERIENCER, THEME]

frame for verb frighten1 thematic grid
the object frightened the

human
[CAUSE, EXPERIENCER]

frame for verb frighten2 thematic grid
the human frightened the

human
[AGENT, EXPERIENCER]

frame for verb hit1 thematic grid
the object hit the thing [CAUSE, PATIENT]

frame for verb hit2 thematic grid
the human hit the thing with

the hitter
[AGENT, PATIENT,

INSTRUMENT]
frame for verb buy1 thematic grid

the human bought the object
from the human

[AGENT, THEME, SOURCE]

frame for verb buy2 thematic grid
the human bought the object

by value
[AGENT, THEME, VALUE]

frame for verb give thematic grid
the human gave the object to

the human
[AGENT, THEME,

BENEFICIARY]
frame for verb deliver thematic grid

the human delivered the
object to the human

[AGENT, THEME, GOAL]

frame for verb break1 thematic grid
the object broke the fragile

object
[CAUSE, PATIENT]

frame for verb break2 thematic grid
the human broke the fragile

object with the breaker
[AGENT, PATIENT,

INSTRUMENT]
the human broke the fragile

object
[AGENT, PATIENT]

frame for verb fear thematic grid
the human fears the human [EXPERIENCER, THEME]

Table 3. The sentence-thematic grid pair
generator, showing only one sample sentence
frame for each verb [22]. Each category will be

filled by the words displayed on table 4

category words
human man, girl, boy, woman
object ball, mechanical jack, doll, plate
thing doll, chicken, sleeve, vase

fragile
object

window, vase, plate

hitter mechanical jack, hammer, stone
breaker ball, hammer, vase, stone
value ten, hundred, thousand

Table 4. Some words for each filler for
sentence-thematic grid pair generator (table 3)

Besides the inclusion of lexically ambiguous nouns
(like bat), Bio-θR allows thematically ambiguous verbs in
its lexicon, as well. Thematic ambiguity means that a same
verb can assign different thematic grids in different
sentences, like the verb frighten. These words have
indefinite dimensions, represented by the “?” symbol, in
the microfeature array. As an example, the microfeatures
of the verb frighten and its two alternative readings
(frighten1 and frighten2) are shown on table 5.

microfeature frighten frighten1 frighten2
control of action ? no yes
process triggering ? indirect direct
direction goal goal goal
impacting process yes yes yes
change of state no no no
psychological state yes yes yes
objective action ? no yes
effective action no no no
intensity of action low low low
interest on process ? no yes

Table 5. The thematically ambiguous verb
frighten, with the default reading and two

alternative readings. The “?” sign represents
ambiguity

7. Conclusion

      Bio-θR is a connectionist natural language processing
system that account for the thematic role relationships
between words in a sentence. Unlike most systems, Bio-
θR adopts a biologically motivated model, including a bi-
directional architecture and a physiologically plausible
learning procedure.
     Several experiments were made to reach an
architecture that, in conjunction with an error-driven task
learning algorithm that resembles GeneRec [13], is able to
learn the thematic roles of sentences presented
componentially one word at a time. It is important to
notice that the word representation is distributed, in the
sense that a set of units is used to represent one word. This
is crucial in a system which aims to be
neurophysiologically based. In addition, other biologically
inspired features were included, like lateral inhibition.
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