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Abstract. The system “Neural Labyrinth Robot” is a connectionist approach 
to robot guidance in small experimental labyrinths.  It is based on a two-layer 
perceptron, which learns the correct path from a symbolic algorithm. Even 
when the robot comes along to unknown situations, the neural network obtains 
satisfying results. The system has proven to be very efficient in its 
environmental tests, so it can provide a valuable contribution to nowadays’ 
path finding systems.  

1. Introduction 
Perhaps in analogy to human development that also starts with locomotion and only 
later comes to other features, several studies on robotics have taken correct movement in 
space as a goal: from animal mimics [Benyus, 1997] to futuristic walking machines (e.g. 
[Filiat et al., 1999]) and even agents with complex tasks [Simmons et al., 1997]. 

 One of the main problems concerning computational resources consumption is 
the perception of the environment in its several constituents: stationary and moving 
objects, light, odor, temperature as well as abstract items like the cause of an action or – 
regarding this application – the best way from one point to another (e.g. [Satchok, 1997] 
and [Auf der Heide and Vöcking, 1995]).  

 The project “Neural Labyrinth Robot” intends to be a contribution to the 
perception problems research, offering a simple but efficient algorithm of learning the 
best way in a simulated labyrinth. 

2. Description of the System 

2.1. Basics 

The system “Neural Labyrinth Robot” is a system that simulates a robot in an 8 by 8 
matrix. Each position may contain an obstacle, the destination or be simply an empty 
space.  



  

 
Figure 1: An example of a simple labyrinth 

 The robot’s goal is to find its way without any external help from its starting 
point up to its destination. 

 “ Neural Labyrinth Robot”  employs a symbolic recursive algorithm to establish 
an analysis of the current labyrinth in order to teach the results to an artificial neural 
network.  

2.2. Preprocessing 

The system makes use of preprocessing routines. The scheme may be called by its steps 
of execution: “ vision – turning-points – move!” .  

• Vision: The robot makes use of an artificial vision device, so it can go to all 
directions, providing that there are no walls in the path, because it is not allowed 
to see through walls. The labyrinth is completely unknown to the robot when it 
is inserted into it. As it moves and establishes vision throughout the maze, it 
automatically remembers everything discovered previously. This feature is not 
difficult to implement computationally, considering that it is one of the most 
important strategies of the symbolic algorithm to find the best way in a recursive 
manner. 

• Turning-points: After establishing vision in its current situation, the robot 
automatically detects possible turning points. These are points that imply in a 
change of direction, making the robot move into an area not covered by its 
current vision or memory. 

• Move!: The path of the robot is computed by its turning points, meaning that a 
simple straight path is not explicitly treated because it is considered simple to 
conceive with a real robot. The system also assumes that the destination point is 
achieved when the robot finds it, because moving towards it means simply 
adjusting the direction to it. 



  

2.3. Symbolic Teaching Algorithm 

The symbolic teaching algorithm finds the best way in a recursive manner, i.e., a tree 
diagram is formed, all eventual solutions are considered and the shortest way is 
achieved. Starting with the initial situation, all possible next turning points are 
considered, which themselves lead to all of the next turning points etc. until finding the 
destination. The fact that each path is described by its turning points comes in handy, 
because considering every single step would not only be useless, but also mean very 
deep recursion levels and stack overflows. 

 
Figure 2: An example of processing using the symbolic algorithm 

 Throughout the recursion a maximum depth is considered. This depth is void 
until the first way to the destination is found. Afterwards, all ways having more turning 
points and thus representing a greater depth of recursion are cut off (as shown in figure 
2, where all possibilities with 4 turning points are not considered after having found a 
path with only 3 turning points first). 

 Although there might be paths with fewer turning points being actually longer 
than some with more turning points, turning points instead of total distance are 
considered because of: 

• The computational cost: every turning point means one more level of recursion 
(see figure 2) and a possible risk of memory problems (stack overflow etc.). 



  

• General simplicity: human beings seem to prefer straight ways in unknown 
situations because they are much easier to remember – and this applies not only 
to humans but also to computational systems! 

 However, in order to decide between paths with the same number of turning 
points, the total distance is evaluated and the path with the smallest distance chosen (as 
shown in figure 2). 

 As turning points describe turns into ways that have not been explored yet, the 
robot keeps exploring until it finds the destination. If the entire labyrinth has been 
explored, there are no more turning points to reach, i.e. no more alternatives to go on 
and thus the algorithm detects that there is no solution (this happens only in labyrinths 
without any destination point or without any possible path to it!). 

2.4. Neural Network 

“ Neural Labyrinth Robot”  uses an artificial neural network, which takes hold of the 
knowledge being transmitted by the symbolic algorithm during training. 

 Topology: “ Neural Labyrinth Robot”  uses a basic two-layer perceptron structure 
with backpropagation as its learning algorithm. This topology was chosen because of its 
simplicity and computational efficiency [Haykin, 1999]. 

 
Figure 3: The Network Topology used in “Neural Labyrinth Robot” 



  

 Initialization: As a preliminary step, the synapses of the neural network are 
initialized with small random values between –0.1 and 0.1. 

 Processing: In the beginning of the neural network processing, the current 
position on the board is first mapped into the two input layers. This procedure 
(described below in detail) is performed because handing over the plain board to the net 
produces the following problems. Firstly, consider figure 4. 

 
Figure 4: Problem with similar positions and different paths 

 The problem displayed by figure 4 is the reason that the network starts to 
oscillate when trying to treat similar labyrinths with slightly different (or even 
completely different) solutions in a straightforward manner (simply passing the situation 
on the board unprocessed to the network). The difference at the input-level is not 
significant enough to justify the desired difference at the output.  

 
Figure 5: Demonstration of the problem of dealing with different positions of 
the robot 

 Beside the fact that similar positions produce problems of oscillation, it also has 
to be ensured that the progress of the robot inside a single labyrinth is correctly treated. 
As shown in figure 5, only the obstacles and the position of the robot produce little 
difference at the input layer. Thus the path itself, meaning the sequential behavior only 



  

providing the next point at every step (and not the whole solution at once), is not 
correctly treated. This means that the position of the robot has to be clearly amplified at 
the input pattern. 

 
Figure 6: Extraction of characteristics and translation into the two input layers 

 Therefore a more sophisticated way of preprocessing the information coming 
from the labyrinth is adopted. This is done in order to make sure that similar positions 
produce different entries and that the position of the robot has more influence on the 
pattern itself. 

 The preprocessing scheme extracts the main characteristics of the labyrinth: 
visible empty fields, visible obstacles and position of the robot. It works on each one of 
them and maps them to the input layers. 

 The following steps are observed (see figure 6): 

• The board is mapped to an 8 by 8 matrix. Vision of empty spaces and visible 
obstacles are numbered in the matrix with fields from 1 to 64 (a).  

•  The corresponding numbers of the visible fields are summed in a first step of 
processing (b). This pattern is used to ensure that identical numbers of visible 
fields do not automatically produce identical results (as this would potentially 
bring about problems especially in well explored labyrinths). 

• The number obtained is passed on to a tangent function (c). This function was 
chosen, because it is non linear and does not necessarily produce similar results 
for values that are relatively close to each other.  

• The results tend to be very different with frequent low values and with seldom 
very high values. Thus, they have to be normalized in order to be fitted into an 



  

input layer. This is done by a simple function (d) leaving the respective value 
between -64 and 0 if the original value is negative and between 0 and 64 if it is 
positive. 

• Afterwards the values are finally supplied to the input layers (e). This is 
achieved by counting positions from above if the value is positive (e.g. if the 
final value is 15 the first 15 positions of the matrix starting with [0,0] will be set 
true, the others false). If the value is negative the positions from below are filled 
with true (e.g. -27 will fill the 27 positions from [8,8] upwards with true and the 
others with false). 

 Finally, the position of the robot is considered. All fields in the two layers with 
the x-position or the y-position equal to that of the robot are inverted producing a large 
cross. 

 Thus a typical input layer may look like the following: 

 
Figure 7: Example of an input layer produced by the number of visible 
obstacles and the position of the robot at (2,7) 

 From the input patterns onwards the information is processed in a standard 
perceptron manner. “ Neural Labyrinth Robot”  makes use of 10 neurons in the hidden 
layer. This number has been chosen out of an empirical evaluation with 2 to 64 neurons 
(see figure 8) as well as considering the computational cost, which rises considerably 
with the increase of the number of hidden neurons. 
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Figure 8:  Number of necessary iterations (y-axis) in relation to the number of 
hidden neurons (x-axis) treating 20 labyrinths 

 At the end of processing, a matrix 8 by 8 with decimal values from 0 to 1 is 
produced at the output of the network. “ Neural Labyrinth Robot”  interprets this matrix 
in order to find the correct position to move to. In this case, it only considers the 
positions that correspond to possible turning points. Between these turning points, the 
one with the highest attributed value is chosen as illustrated in figure 9. 

 
Figure 9: Method of choice between the turning points 

 Certainly, there is a lot of information being produced, which is not at all being 
used in the present position. However, depending on the situation, the network has to be 
able to process a much higher quantity of turning points – the nominal limit, which will 
never be reached, is 64 because this is the number of positions on the board.  

 A second reason for this output-layout is a higher flexibility and computational 
power, which enables “ Neural Labyrinth Robot”  to process several labyrinths 
sequentially. 



  

3. Learning 
As stated above, the backpropagation algorithm is used, however employing the system 
of small changes (adopted also in [Schneider and Rosa, 2002]). This system tends to 
look at the output rather than the real values, meaning that adjustments are only made if 
the final decision produced is incorrect. In this case the alternative that should have been 
chosen receives the value 1, the alternative incorrectly provided receives the value 0 and 
the entire scheme is learned without changing any other value. This produces smoother 
results and steadier learning as shown in [Schneider and Rosa, 2002]. 

 The learning rate of “ Neural Labyrinth Robot”  was set to 0.85 as the system 
obtained a minimum value at 20 (or less) labyrinths (see figure 10). This minimum is 
true in a topology with 10 neurons and was also validated with 64 neurons. 
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Figure 10: Comparison of Learning Rates 0,05 to 1,0 with 20 Labyrinths 

 The system successfully treats 20 labyrinths, which can be modified at the user’s 
choice. In this case the system reaches error zero (100% of correctness) with only 16 to 
20 iterations. So, it is clearly estimated that the system has the ability to treat many 
more labyrinths in a reasonable period of time. 

4. Known Problems 
The inputs’ preprocessing produces 64 * 64 * 64 = 262,144 (distinct vision layers * 
distinct obstacle layers * distinct robot positions) unique positions at most – not 
considering eventually repeated values being provided by the tangent function. 

 The matrix-size has not yet been expanded to more than 8 by 8 because of 
memory problems. Though not being of any theoretical difficulty, the practical solution 
has yet to be compressed in order to be able to consider larger or even real life mazes. 
 



  

5. Future Developments 
Firstly, a huge number of different labyrinths could certainly be implemented in order to 
offer the possibility of better evaluation of the system performance. This is done at no 
extra computational cost, however demands a reasonable amount of time for 
development, since each labyrinth has to be created manually. 

 Secondly, the size of the labyrinths must be expanded further in order to adapt 
the system slowly to real life situations. In this case problems are expected and must be 
treated, mainly because of limited computational resources. 

6. Conclusions 
“ Neural Labyrinth Robot”  is a system based on a simple feedforward neural network 
that adequately learns several paths from an initial point to the final destination in 20 
test labyrinths. The system gives a suggestion of how future guidance systems may 
process their way through more difficult situations. 
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