
 CHAPTER 0 

INTRODUCTION TO TCP/IP 

 

This chapter gives an overview of TCP/IP networking principles that form the basis of 
discussion for many of the laboratories that are covered in this text. Using the example of a 
web access, the chapter gives some insight into the intricacies and complexities of TCP/IP 
networking.  The chapter also provides an in-depth discussion of IP addresses and other 
addressing schemes used in the Internet.  
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1. A TCP/IP Networking Example 

Consider a web browser (a web client) at a host with name Argon.cerf.edu (“Argon”) that makes 
a web access to a web server on a host with name Neon.cerf.edu (“Neon”).1 The web access is 
illustrated in Figure 0.1. Both hosts are connected to the Internet. The web access is a request 
for the home page of the web server with URL http://Neon.cerf.edu/index.html.  

 

argon.cerf.edu
("Argon")

neon.cerf.edu
("Neon")

Web request

Web page

Web client Web server
 

Figure 0.1. A simple web request. 

We will explore what happens in the network when the web request is issued. We proceed, by 
following the steps that are performed by network protocols until the first packet from Argon 
reaches the web server at Neon. An outline of the steps involved is given in  the table below. 
The example in this section is based on real traffic measurements, however, the names of the 
host have been changed. 

A web client and a web server are programs that interact with each other using the Hypertext 
Transfer Protocol (HTTP). HTTP is a client-server protocol; the web client runs an HTTP client 
program and the web server runs an HTTP server program. When a web client requests a web 
page, the HTTP client sends an HTTP Request message to the HTTP server. When the web 
server finds the web page, the HTTP server sends the page in an HTTP Reply message.  

HTTP uses the Transmission Control Protocol (TCP) to deliver data between the HTTP client 
and the HTTP server.  When the HTTP client at Argon wants to send an HTTP request, it must 
first establish a TCP connection to the HTTP server at Neon (see Figure 0.2).   

                                                 
1 Throughout we use the term host refers to a computer , or more generally, to any end system of communications. 
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1. Web client at Argon starts an HTTP Request. 
2. Argon contacts its DNS server to translate the domain name “neon.cerf.edu” into IP address 

“128.143.71.21” and looks up the well-known port number of  the web server (port 80). 
3. The HTTP client at Argon requests a TCP connection to port 80 at IP address 

128.143.71.21. 
4. The TCP client at Argon requests its Internet Protocol (IP) to deliver an IP datagram with 

the connection request to destination 128.143.71.21. 
5. The IP process at Argon decides that it cannot deliver the IP datagram directly, and decides 

to send the IP datagram to its default gateway 128.143.137.1. 
6. The Address Resolution Protocol (ARP) at Argon sends an ARP request for the MAC 

address of IP address 128.143.137.1.  
7. The ARP request is broadcast by the Ethernet device driver at Argon to all devices on the 

Ethernet network. 
8. The router with IP address 128.143.137.1 responds with an ARP Response to Argon which 

includes MAC address 00:e0:f9:23:a8:20. 
9. The IP process at Argon asks its Ethernet device driver to send the IP datagram in an 

Ethernet frame to MAC address 00:e0:f9:23:a8:20. 
10. Ethernet device driver at router with MAC address 00:e0:f9:23:a8:20 unpacks the IP 

datagram, and passes it to its IP process. 
11. The IP process at the router decides that it can deliver the IP datagram with destination 

128.143.137.21 directly (without the need of additional routers). 
12. The Address Resolution Protocol (ARP) at the router sends an ARP request for the MAC 

address of IP address 128.143.137.21. 
13. The ARP request is broadcast by the Ethernet device driver at the router to all devices on the 

Ethernet network. 
14. Neon (which has IP address 128.143.137.21) responds with an ARP Response to the router  

which includes MAC address 00:20:af:03:98:28. 
15. The IP process at the router  asks its Ethernet device driver to send the IP datagram in an 

Ethernet frame to MAC address 00:20:af:03:98:28. 
16. The Ethernet device driver at Neon unpacks the IP datagram contained in the Ethernet 

frame, and passes it to its IP process. 
17. The IP process unpacks the TCP connection request contained in the IP datagram and passes 

it to the TCP server at port 80. 
18. The TCP server at port 80 processes the TCP connection request. 

 

 

Table 0.1. Overview of the steps of the networking example. 
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HTTP client

TCP client

Argon

HTTP server

TCP server

Neon

HTTP request / HTTP response

TCP connection

Figure 0.2 An HTTP session invoking a TCP/IP transmission  

Before the HTTP client at Argon can ask the TCP protocol to establish a connection, it must 
resolve an addressing issue. The TCP protocol expects that addresses be written in terms of an 
IP address and a port number. An IP address is a 32-bit identifier that uniquely identifies a 
network interface connected to the Internet. Every network interface that is connected to the 
Internet has an IP address. The IP address of Argon’s network interface is 128.143.137.144. 
Each byte (1 byte = 8 bits2) of the IP address is written as a decimal number, and the four 
numbers are separated by periods. A port number is a 16-bit address that can be used to identify 
an application program on a system. Together, an IP address and a port number can uniquely 
identify an application on the Internet.  

HTTP client DNS Server

argon.cerf.edu 128.143.136.15

neon.cerf.edu

128.143.71.21

 
Figure 0.3. A DNS lookup for the IP address 

Le us now see how the HTTP client at Argon determines the IP address and the port number of 
the web server at Neon. The IP address is determined using an Internet-wide address translation 
service, called the Domain Name System (DNS), that translates symbolic domain names, such as 
Neon.cerf.edu, into IP addresses, and vice versa. A host invokes the DNS service by sending a 
request to its DNS server. The location of the DNS server of a host is part of the network 
configuration of a host. Skipping over a lot of detail, Argon sends a query to its DNS server with 
the domain name “Neon.cerf.edu”, and obtains in return the IP address for 128.143.71.21  (see 
Figure 0.3).  

                                                 
2 Throughout this book, we use the convention that 1 byte is always 8 bits.  The networking literature also uses the term “octet” 

to refer to a group of 8 bits. 
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Once the IP address is obtained, determining the port number of the HTTP server at Neon is 
simple. On the Internet, the server programs of widely used applications have permanently 
assigned port number, called well-known port numbers, and are stored in a configuration file of 
a host. The well-known port number of an HTTP server is port 80. When Argon contacts the 
HTTP server of Neon it assumes that the web server is reachable at port number 80.  

Now, the HTTP client at Argon has the information needed to establish a TCP connection, and 
requests a TCP connection to port 80 at IP address 128.143.71.21.  Like HTTP, TCP is a client-
server protocol. The party that initiates the connection is called the TCP client. The party that is 
waiting for connection is called the TCP server. When a web server is started, the HTTP server 
sets up a TCP server that is waiting on the well-known port 80 for requests for TCP 
connections. The details of establishing a TCP connection a covered later in this book. Here we 
only note that the establishment of a TCP connection involves three steps: (1) the TCP client 
sends a TCP connection request to the TCP server, (2) the TCP server responds to the request, 
(3) the TCP client acknowledges this response and starts to send data. Here, we only follow the 
first step of the connection establishment procedure, where TCP sends a connection request to 
port 80 of IP address 128.143.71.21. We point out that this connection request does not contain 
any data. The HTTP request with the URL will be sent in the third step of the establishment 
procedure. 

We now follow the steps that are involved to deliver the TCP connection request from Argon to 
Neon.  The TCP client at Argon asks IP, the Internet Protocol, to deliver the connection request 
to IP address 128.143.71.21. IP takes the connection request, encapsulates it in an IP datagram 
(an IP datagram is the name of a packet in the Internet protocol), and delivers the IP datagram to 
Neon.  

The network shown in Figure 0.4 gives an overview of what is involved in delivering the IP 
datagram from Argon to Neon. The figure shows that Argon and Neon are each connected to an 
Ethernet local area network. The picture shows that the path (route), of an IP datagram from 
Argon to Neon goes through a router which connects the two Ethernet. A router, also called IP 
router or gateway, is a switching device with multiple network interface cards (NICs), which 
takes an IP datagram that arrives on one of its network interfaces and forwards the datagram on 
a different interface, with the intent to move the IP datagram closer to its destination. The 
forwarding decision is based on a routing table, which lists the name of a network interface for a 
set of destination addresses. Note in Figure 0.4 that the router has a domain name and an IP 
address for each of its network interfaces.  

When Argon has the IP datagram for destination 128.143.71.21, it does not know the route that 
the IP datagram will take to its destination. The IP module at Argon merely determines if the IP 
datagram can be delivered directly to Neon, or if the datagram must be send to a router. A 
datagram can be delivered directly without the need for intermediate routers, if the sender and 
receiver are both connected to the same local network. Argon makes a decision whether Neon is 
on the same local network, by comparing the IP address of Neon  with its own IP address. In 
this particular case, Argon assumes that IP addresses that match its own IP address 
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(128.143.137.144) in the first three bytes belong to interfaces that are on the same local network 
as Argon, and all other IP addresses are not on the same local network. With this criterion, Neon 
is on a different local network and Argon tries to forward the IP datagram to its default gateway. 
The default gateway of a host is the IP address of a router, and is part of the network 
configuration of any host. Argon’s default gateway is 128.143.137.1, with domain name 
router137.cerf.edu (“Router137”). Therefore, Argon sends the IP datagram to Router137. 

 

neon.cerf.edu
"Neon"

128.143.71.21

argon.cerf.edu
"Argon"
128.143.137.144

router137.cerf.edu
"Router137"

128.143.137.1

router71.cerf.edu
"Router71"
128.143.71.1

Ethernet NetworkEthernet Network

Router

 
Figure 0.4.  The route between Argon and Neon. The router in the center of the figure is referred to by any of the names 

associated its interfaces (“Router137” or “Router71”). 

 

To forward the IP datagram to the default gateway 128.143.137.1, Argon passes the  IP 
datagram to the Ethernet device driver of its network interface card. The device driver will 
insert the IP datagram in an Ethernet frame  (Ethernet packets are called frames), and transmit 
the frame on the Ethernet network. However, Ethernet frames do not use IP addresses, but have 
an addressing scheme that is based on 48 bit long MAC (media access control) addresses. MAC 
addresses are written in hexadecimal notation, where each byte is separated by a colon or a 
hyphen. For example, Argon’s MAC address is 00:a0:24:71:e4:44. Each Ethernet frame 
contains the MAC addresses of the source and the destination of the frame. Before IP can pass 
the datagram to the Ethernet device driver, it must find out the MAC address that corresponds to 
IP address 128.143.137.1.  The translation between IP addresses and MAC addresses is done 
with the help of  the Address Resolution Protocol (ARP). 

The translation of addresses using ARP and the subsequent transmission of the frame that holds 
the IP datagram steps are shown in Figure 0.5. First, Argon sends out an ARP message of the 
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form “What is the MAC address of 128.143.137.1?”.  The ARP message is sent in an Ethernet 
frame that is broadcast to all Ethernet devices on the same network. When Router137, which 
has IP address 128.143.137.1, receives the ARP message, it responds with an ARP message that 
states “IP address 128.143.137.1 belongs to MAC address 00:e0:f9:23:a8:20”. Finally, when 
Argon receives this message, it passes the MAC address of the default gateway together with the 
IP datagram to the device driver and transmits the frame. In total, three Ethernet frames are 
transmitted on the Ethernet network. (We note that subsequent transmissions of IP datagrams 
from Argon to Router137 do not require ARP messages. Argon keeps a list of known MAC 
addresses in a local table.) 

argon.cerf.edu
128.143.137.144
00:a0:24:71:e4:44

ARP message: What is the MAC
address of 128.143.71.1?

ARP message: IP address 128.143.71.1
belongs to MAC address 00:e0:f9:23:a8:20

IP Datagram for Neon

router137.cerf.edu
128.143.137.1
00:e0:f9:23:a8:20

 
Figure 0.5. Ethernet frames transmitted to deliver the IP datagram to router137.cerf.edu. 

 

 

When Router137 receives the Ethernet frame from Argon, it first extracts the IP datagram and 
passes the datagram to the IP module. Once Router137 receives the IP datagram from Argon, it 
makes a similar decision as Argon, that is, it determines if the datagram can be forwarded 
directly to Neon or it selects a router from its local routing table and forwards the packet to 
another router. Router137 has multiple network interfaces, and, therefore, checks if the 
destination of the IP datagram is directly through any of its interfaces. To determine if a node is 
locally reachable, the router tries to match the first three bytes of  the IP address of Neon, which 
is included in the IP datagram, to the IP addresses of  its own interfaces: 128.143.137.1 and 
128.143.71.1. Since a match occurs for 128.143.71.1, the router tries to forward the IP datagram 
directly to Neon.  

The transmission of the IP datagram from the router to Neon, goes through the same steps as the 
delivery of the IP datagram from Argon to the router. First, the router acquires the Ethernet  
address of Neon, by sending an ARP request on the Ethernet interface which is associated with 
IP address 128.143.71.21. Neon sends its MAC address, 00:20:af:03:98:28, in an ARP response 
message. As soon as the router receives the MAC address of Neon, it sends an Ethernet frame 
that contains the IP datagram to Neon. Again, three Ethernet frames are as shown in Figure 0.6. 
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ARP message: What is the MAC
address of 128.143.71.21?

ARP message: IP address 128.143.71.21
belongs to MAC address 00:20:af:03:98:28

IP Datagram for Neon

neon.cerf.edu
128.143.71.21

00:20:af:03:98:28

router71.cerf.edu
128.143.71.1

 
Figure 0.6. Ethernet frames transmitted to deliver the IP datagram from the router to Neon. 

When Neon receives the Ethernet frame from Router713, it first extracts the IP datagram, and 
then delivers the TCP segment to the TCP server at port 80. At this time, the delivery of the first 
IP datagram from Argon to Neon, which contains the TCP connection request, is completed. 
What will happen next is that the TCP server at Neon responds to the TCP connection request, 
which involves the transmission of an IP datagram from Neon to Argon. The steps involved in 
delivering this IP datagram are identical to what we saw earlier. When the response is received 
at Argon, Argon can start to transmit the HTTP request. 

The above description gives a good picture of the complexity of transferring data from one host 
to another. As you work your way through the chapters of this book, you will become familiar 
with each of the steps described above and you will understand the intricacies of this example.  

                                                 
3 Note that from the perspective of Neon, the domain name  of the router is router71.cerf.edu. 
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2. The TCP/IP protocol suite 

The transport of data as shown in the example in the previous section is governed by a set of 
protocols that constitutes the TCP/IP protocol suite, also called Internet protocol architecture or 
Internet protocol stack. The protocols are organized in four layers, as shown in Figure 0.8: an 
application layer, a transport layer, a network layer, and a data link (or network interface) layer. 
Each protocol is assigned to one layer. At any given layer, a  protocol requests the services of a 
protocol in a layer immediately below it, and provides services to a protocol in a  layer 
immediately above it. The service requests  generally relate to the delivery of data. This is 
shown in Figure 0.7, for the Web example from the previous section. When the HTTP client at 
Argon wants to send an HTTP request to the HTTP server at Neon, it requests from TCP the 
establishment of a TCP connection. Then TCP requests from IP the transmission of an IP 
datagram, which, in turn, requests from the Ethernet device driver the delivery of an Ethernet 
frame. Not shown in the figure is that the Ethernet device driver requests transmission from the 
MAC layer, which, in turn, requests the transmission of a bit stream. Whenever a protocol at a 
certain protocol layer wants to send data to a remote peer at the same layer, it actually passes the 
data to the layer below it, and asks that layer to perform the delivery of data. In this way, data 
can be thought of as traveling vertically through the protocol stack. 

HTTP client

TCP client

argon.tcpip-lab.edu

IP

Send an IP datagram to
128.143.71.21

Establish a TCP connection
to port 80 of 128.143.71.21

Ethernet

Send an Ethernet frame
to 00:e0:f9:23:a8:20

 
Figure 0.7. Invoking an IP connection to the remote host at IP address: 128.143.71.21 
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2.1. An Overview of the TCP/IP protocol suite 

The TCP/IP protocol suite does not specify nor require specific networking hardware. The only 
assumption that the TCP/IP protocol suite makes is that the networking hardware, also called 
physical network , supports the transmission of an IP datagram. The lowest layer of the TCP/IP 
protocol suite, the data link  layer, is concerned with interfacing to a physical network. 
Whenever a new network hardware technology emerges all that is needed to run Internet 
applications over the new hardware is an interface at the data link layer that supports the 
transmission of an IP datagram packet over the new hardware. This minimal dependence of the 
TCP/IP protocol suite on the underlying networking hardware contributes significantly to the 
ability of the Internet protocols to adapt to advances in networking hardware.  

 

Application

Transport

Network Operating system

User-level programs

Data Link

  
Figure 0.8. The Internet Protocol Stack 

We next provide an overview of the layers of the TCP/IP protocol suite. At the application layer 
are protocols that support application programs. For example, the HTTP protocol is an 
application layer protocol that supports web browsers and web servers. Other protocols at the 
application layer are support of electronic mail (POP3, SMTP), file transfers (FTP), or 
command line interfaces to remote computers (Telnet, SSH).  

The transport layer, also called host-to-host layer, is responsible for the exchange of 
application-layer messages between hosts. There are two transport-layer protocols in the TCP/IP 
protocol suite: the Transport Control Protocol (TCP) and the User Datagram Protocol (UDP). 
TCP offers a reliable data service which ensures that all data from the sender is received at the 
destination. If data is lost or corrupted in the network, TCP will perform a retransmission. UDP 
is a much simpler protocol which does not make guarantees that delivery of data is successful. 

The network layer, also called internet layer, addresses issues involved with forwarding data 
from a host to the destination across intermediate routers. All data transport at the network layer 
is handled by the Internet Protocol (IP). IP receives support from other protocols, such as the 
Internet Control and Messaging Protocol (ICMP) and the Internet Group Management Protocol 



 

0.10 

(IGMP) which perform error reporting and other functions.  Also, IP relies on routing protocols, 
such as the Routing Information Protocol (RIP) or Open Shortest Path First (OSFP), or Border 
Gateway Protocol (BGP), which determine the content of the routing table at IP routers.  

The data link layer, also called network access layer or interface layer, is concerned with 
sending and receiving data across either a point-to-point link or a local area network. There is a 
large variety data link layer protocols for local area networks and point to point links. Each data 
link layer protocol offers a hardware independent interface to the networking hardware. The 
functions of a data link layer protocol are partially implemented in hardware (on the network 
interface card) and partially in software (in the device driver).  Most local area networks are 
broadcast networks where the transmission of a packet can be received by more than one host. 
In such networks, the data link layer has a sub-layer, which is called the Media Access Control 
(MAC) layer. The MAC layer can be thought of as residing  at the bottom of the data link layer. 
The MAC layer runs a protocol that determines when a station on the local area network has 
permission to transmit. The MAC layer is realized in hardware on the network interface card 
and is not visible at the network layer or higher layers.  Below the data link layer is the physical 
layer, which consists of the hardware that generates and interprets electrical or optical signals, 
and the cables and connectors that carry the signals.  

HTTP

TCP

IP

Ethernet

HTTP

TCP

IP

Ethernet

HTTP protocol

TCP protocol

IP protocol

Ethernet

IP

Router
(Router137, Router71)

Host
(Neon)

Host
(Argon)

IP protocol

Ethernet Ethernet Ethernet

 
Figure 0.9. Protocols involved in data exchange between two hosts.  

Figure 0.9 shows the protocols that are involved in the web access example between Argon and 
Neon. At each host, the figure shows protocol instantiations (entities) for HTTP, TCP, IP and 
Ethernet, where the  Ethernet entity encompasses the data link layer, including the MAC layer, 
and the physical layer. At each layer, a protocol entity interacts with an entity of the same layer 
at a different system. The HTTP client at Argon interacts with an HTTP server at Neon, the TCP 
client at Argon interacts with the TCP server at Neon, and the IP and Ethernet entities at the 
hosts interact with corresponding entities at the router.  Figure 0.9 illustrates that the routers do 
not have entities at the transport and application layer. Protocols at these layers are end-to-end 
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protocols, and are not aware of the existence or the  number of routers between two hosts. 
Conversely, routers do not interpret messages at the application or transport layer.   

In Figure 0.10 we show the assignment of all protocols discussed in this book to the layers of 
the TCP/IP protocol suite.  Figure 0.10 is not complete and shows only  a subset of the protocols 
used in the TCP/IP protocol suite. An arrow in the figure indicates  how protocols request 
services from each other. For example, HTTP requests the services of TCP, which, in turn, 
requests the services of IP, and so on. Figure 0.10 shows protocols that we have not mentioned 
so far. SNMP, the Simple Network Management Protocol, is used for remote monitoring and 
administration of equipment in an IP network. With exception of the ping program, all 
applications shown in the figure use the services of TCP or UDP, or, as in the case of   DNS, 
both.  

RIP, OSPF and PIM are routing protocols which determine the content of the routing tables at 
IP routers. Interestingly, RIP sends routing messages with UDP, a transport layer protocol. 
ICMP  is a helper protocol to IP, which performs error reporting and other functions. IGMP is 
used for group communications.  

The ARP protocol, which translates IP addresses to MAC addresses, so that IP can send frames 
over a local area network communicates directly with the data link layer.  

Figure 0.10 clearly illustrates the central role of IP in the TCP/IP protocol suite. IP carries all 
application data, and can neither be bypassed nor replaced.  
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Network
Layer

Routing Protocols

PIM

OSPF

RIP

Application
Layer

Data Link
Layer

IP

ARP Ethernet

Network
Interface

Transport
Layer

TCP UDP

SNMPFTP DNSHTTP

ICMP

IGMP

ping
application Telnet

DHCP

 

Figure 0.10. Assignment of Protocols to Layers. 

  

2.2. Encapsulation and Demultiplexing 

When data is passed from a higher layer to the next lower layer, a certain amount of control 
information is attached to the data. The control information is generally added in front of the 
data, and is called a header. If the control information is appended to the data, it is called a 
trailer. All protocols have headers and, but only very few have trailers. The process of adding 
header and trailers to data is called encapsulation. The data between the  header and the trailer is 
called the payload. Together, header, payload, and (if present) trailer, make up  a protocol data 
unit. There is a convention for naming protocol data units in the TCP/IP protocol suite: In TCP 
they are called segments, in UDP and IP, they are called datagrams, and at the data link layer, 
they are called frames. The generic name packet is used when the protocol data unit does not 
refer to a specific protocol or layer. The encapsulation process is illustrated in Figure 0.11. The 
protocol data unit at one layer makes up the payload at the next lower layer. Each layer adds a 
header and, in addition, Ethernet also adds a trailer. In this way, the overhead for sending 
application layer data increases with each layer.  
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Headers (and trailers) from a given layer are processed only by entities at the same layer. The 
header of a transmitted TCP segment is processed only by the TCP protocol at the host which 
receives the TCP segment. Each header of a protocol data unit is formatted  into a number of 
protocol specific fields. The format of the header is part of the specification of a protocol. 
Header fields contain, among others, a source and a destination address, a checksum for error 
control, sequence numbers, and the length of the payload. If the header has not a fixed size, then 
the size of the header must be included as a field in the header.  

At the receiver side, each layer strips off header fields from that layer and passes the payload to 
a protocol at the next higher layer. Each layer must decide to which higher-layer protocol to 
send the payload to. For example, an Ethernet device driver must assign  the payload of a frame 
to IP or to ARP. Likewise, IP must assign the payload of an IP datagram to UDP or TCP or 
another protocol.  This process of assigning the payload to a higher layer protocol is called 
demultiplexing. Demultiplexing is done using a field in the header of a protocol data unit, which 
identifies a higher layer protocol or an application process. Each protocol has such a 
demultiplexing field.  

HTTP

TCP

IP

Ethernet

User data

User dataHTTP Header

TCP Header

TCP HeaderIP Header

TCP HeaderIP Header
Ethernet
Header

Ethernet
Trailer

IP datagram

TCP segment

Ethernet frame

User dataHTTP Header

User dataHTTP Header

User dataHTTP Header

 

Figure 0.11. Encapsulation in the Internet. 

Next we investigate encapsulation and demultiplexing by completely parsing an entire Ethernet 
frame. Specifically, we use the Ethernet frame transmitted by Argon to Router137, which 
contains the TCP connection requests for Neon. In hexadecimal notation the frame has a length 
of 58 bytes and looks like this:  
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00e0 f923 a820 00a0 2471 e444 0800 4500 002c 9d08 4000 8006 8bff 
808f 8990 808f 4715 065b 0050 0009 465b 0000 0000 6002 2000 
598e 0000 0204 05b4  

Here, each byte is represented by two hexadecimal digits. The data shown does not contain the 
trailer of the Ethernet frame. In Figure 0.12 we show how these bytes are mapped to the 
Ethernet header, IP header, and TCP header.  

version
0x4

header length
0x5

Type of Service/TOS
0x00

total length (in bytes)
0x002c

Identification
0x9d08

flags
0102

fragment offset
00000000000002

cource IP address
128.143.137.144

destination IP address
128.143.71.21

time-to;ive
0x80

protocol
0x06

header checksum
0x8bff

source port number
162710

destination port number
8010

sequence number
0x0009465b

acknowledgement number
0x00000000

header length
0x6

unused
0000002

flags
0000102

window size
819210

TCP checksum
0x598e

urgent pointer
0x0000

maximum segment size
146010

option type
0x02

option length
0x04

destination address
00:e0:f9:23:a8:20

source address
0:a0:24:71:e4:44

type
0x0800

 4 bytes

CRC

Ethernet
header

(14 bytes)

IP  Header
(20 bytes)

TCP  Header
(24 bytes)

Ethernet
trailer

(4 bytes)

 

Figure 0.12. Encapsulation of a frame (0xN indicates a hexadecimal representation, N10 indicates a decimal representation, 
and N2 indicates a binary representation of a number). 

We now parse the bytes of the frame, just like the protocol stack at a host would parse the 
frame. For orientation, we refer to Figure 0.12, which contains the final results of the processing 
of the frame. The first 14 bytes represent the fixed-sized Ethernet header: 
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00e0 f923 a820 00a0 2471 e444 0800 

The first six bytes of the header contain the destination MAC address for this frame, and the 
next six bytes contain the source MAC address. We can verify that these are the addresses of 
Router137 (00:e0:f9:23:a8:20) and Argon (00:a0:24:71:e4:44). The last two 
bytes of the Ethernet header contain the demultiplexing field. The value 0x08004 indicates that 
the payload of the frame following the Ethernet header is an IP datagram. Therefore, the 
Ethernet device driver that receives the frame can pass the frame to IP for further processing. 

The next 20 bytes are the IP header and are as follows: 

4500 002c 9d08 4000 8006 8bff 808f 8990 808f 4715  

The first four bits are the version number of the Internet Protocol. The value 0x4 indicates that 
this datagram is formatted according to the IP version 4 (IPv4) specification. The next four bits 
indicate the length of the IP header in multiples of four bytes. The value 0x5 states that the 
length of the IP header is 5 x 4 = 20 bytes, which is the minimum size of an IP datagram. The 
next byte specifies the type of service requested by this IP datagram. The value 0x00 states that 
this frame does not have any specific service requirements. The next two bytes (0x002c) 
contain  the length of the IP datagram. At this point, IP knows that the IP datagram is 44 bytes 
long. The following two bytes (0x9d08) are an identifier which is assigned when the IP 
datagram is created. The next two bytes  (0x4000) contain a 3-bit long flag field and a 13-bit 
long so-called fragment offset. These fields are used when an IP datagram is split into multiple 
pieces (fragments). If we use a binary representations for the two fields, then the flag field 
evaluates to 0102,5 which means that the second flag is set. This is the Don’t Fragment  flag, 
with the interpretation that the current IP datagram should never be split into multiple 
fragments. Accordingly, the value of the 13-bit long fragment offset is set to zero, or, in binary 
representation 00000000000002. The next byte is the Time-to-Live (TTL) field, which 
specifies the maximum number of routers that this IP datagram can cross. The value 0x80 
states that the path of this IP datagram cannot exceed 128 routers. The next byte (0x06) is the 
protocol field, which is the demultiplexing field in the IP header. This field identifies the 
transport protocol that must  process the payload following the IP header.  The value 0x06 
states that  the payload of the IP datagram is a TCP segment. Following are a 2-byte long 
checksum field (0x8bff). The remaining bytes of the IP header contain the IP addresses of the 
source and destination. We can verify that 0x808f8990 corresponds to 128.143.137.144, the 
IP address of Argon, and that 0x808f4715 corresponds to 128.143.71.21, the IP address of 
Neon.  

                                                 
4 When a number is preceded by a “0x” then the number is given in hexadecimal notation. Otherwise, the number is given in 

decimal notation.  
5 The subscript in 0102 indicates that we use a binary representation. 
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The next 24 bytes are the header fields of the TCP segment: 

065b 0050 0009 465b 0000 0000 6002 2000 598e 0000 0204 05b4  

TCP parses the information in this header as follows. The first two bytes are the port numbers of 
the source (0x065b) and the destination (0x0050). Thus, the  port number of the TCP client at 
Argon is 1627. This number was selected from a pool of available ports numbers when the TCP 
client was started at Argon. The destination port number is 80. As we already know, this is the 
well-known port number for HTTP servers. Note that the port numbers are the demultiplexing 
fields for a TCP segment, since they identify the protocol or application program at the next-
higher layer. The next bytes are a 32-bit sequence number for data (0x0009465b) and a 32-bit 
sequence number for acknowledgements (0x00000000). The following four bits (0x6) 
provide the length of the TCP header in multiples of 4 bytes. Here, the TCP header is  6 x 4 = 24 
bytes long. Since each TCP segment has a required size of 20 bytes, this value informs TCP  
that there is a 4 byte long option header following the required header fields. The six bits 
following the TCP header length are always set to zero: 0000002. This seems to be a waste, 
but many protocols allocates certain bits in the header for “future use”, and then never use these 
bits. The next six bits contain bit flags which contain important signaling information. The value  
for the fourteenth byte of the TCP header (0x02) we can derive the binary representation of the 
bit flags as 0000102.  We see that only flag number five is set. This flag is the SYN flag, 
which is set when a TCP client requests a TCP connection or when a TCP server  responds to a  
request for a TCP connection . The following two bytes (0x200) indicate the size of the 
window for flow control purposes, and is set to 8192 bytes. The next two bytes of the header 
(0x598e) are a checksum. The two bytes fo llowing the checksum contain a 2-byte long urgent 
field. This field plays a role only when a certain flat, the URG flag, is set. In this segment, the 
flag is not set, and the urgent field is set to zero. The last four bytes (0x020405b4) contain an 
optional extension of the TCP header. Each TCP header option has three parts. The first byte 
(0x02) specifies the type of option, the second byte (0x04) the length of the option in 
number of bytes, and the remaining bytes contain the value of the option (0x05b4). The value 
of the type field identifies the option as a maximum segment size option, which sets the size of 
the largest TCP segment for the TCP connection.  The value 0x05b4 sets the maximum size of 
a TCP segment to 1460 bytes.   

We have now completely parsed the Ethernet frame. The result is summarized in Figure 0.12. It 
is interesting to note that there is no application data following the TCP header. The length of 
the IP datagram  was given as 44 bytes, which is fully used by the IP header (20 bytes) and the 
TCP header (24 bytes). So, the entire frame consists only of header information.  

Many exercises in the Internet Lab require the interpretation of protocol header information at 
different protocol layers. However, rather than going through the tedious exercise of parsing 
headers manually, the Internet Lab uses software tools that interpret the protocol headers and 
present them in an easily readable format.  
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2.3. Different Views of a Network 

In all layers of the TCP/IP protocol suite the notion of a “network” is an abstract representation 
of the actual network environment. At the application and the transport layer, the network is 
seen as a single IP network that connects TCP clients and servers, as shown in Figure 0.13.  
Routers are not visible at this level of abstraction. The network abstraction does not distinguish 
whether applications are running on the same or on different hosts. As Figure 0.13 illustrates, 
the HTTP and TCP clients at Argon have the same view of the network when the HTTP server 
and TCP server are running locally. 

HTTP client

TCP client

Argon
128.143.137.144

HTTP
server

TCP server

Neon
128.143.71.21

IP Network

HTTP
server

TCP server

 

Figure 0.13 HTTP’s and TCP’s view of the “network” 

   

Figure 0.14. IP’s view of a “network” 

The network view at the IP layer is more detailed. Here the network is seen as an internetwork, 
that is, a collection of networks, often called subnetworks or subnets, which are connected by 
routers. In the web access example between Argon and Neon, the IP layer sees two networks 
which are connected by a single router, as shown in Figure 0.14.  
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Argon
(128.143.137.144)

Router137
(128.143.137.1)

Ethernet Network

 

Figure 0.15. Ethernet’s view of a “network”. 

At the data link layer, Ethernet views the network as a broadcast local area network, where 
multiple devices  are attached to a shared bus, and each device on the bus can send frames to 
every other device on the bus. A single Ethernet network is also called an Ethernet segment . The 
example from Section 1, had two Ethernet networks, and we show one of the networks in Figure 
0.15. The graphical representation of an Etherne t segment as a shared link tries to indicate the 
broadcast nature of an Ethernet segment, that is, each frame transmission can be received by all 
devices on the same segment, and multiple overlapping transmissions result in a collision.  

After reviewing the network abstractions used by various layers, we now follow the actual path 
of the first IP datagram from Argon to Neon through the networking hardware.  The networking 
hardware, through which the IP datagram is traveling, and their approximate location is shown 
in  Figure 0.16. Argon and Neon are two PCs located on the same floor of the same building, the 
“IP Building”, at Cerf University. The PCs are each connected to an Ethernet switch6 in the 
basement of the IP Building. The Ethernet switches connect to a multiprotocol switch, which is 
partly an Ethernet switch and partly an ATM switch. The multiprotocol switch has a 155 Mbps 
fiber cable connection to an ATM switch. ATM (Asynchronous Transfer Mode) is a virtual-
circuit packet switching method, that can be found in corporate or campus networks, as well as 
in wide-area networks that carry data, telephony, or video traffic.7 For our purposes, it is 
sufficient to think of ATM as a data link layer protocol. ATM switches provide the backbone of 
the Cerf University campus network. The IP router in Figure 0.4, which we called Router71 and 
Router137, is located in the TCP Building, which is across campus from the IP Building.  The 
router is connected via an ATM link to the ATM switch in the TCP Building. The ATM 
switches in the TCP Building and the IP Building are connected by a 622 Mbps fiber link.  

                                                 
6 Ethernet switches are the subject of Lab 5. 
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From Figure 0.16, it becomes very clear that  none of the network abstractions of HTTP and 
TCP (Figure 0.13), IP (Figure 0.14), and Ethernet (Figure 0.15) allow an accurate description of 
the actual path of traffic between Argon and Neon.  Even though the view of the IP layer 
suggests otherwise, the traffic between Argon and Neon does not take the  shortest path. We see 
that all traffic between Argon and Neon leaves the building to reach the router in a different 
building, just to return to the building where the traffic originated. Scenarios as shown in Figure 
0.16, i.e., where the path of traffic that is visible at the IP layer is very different from the actual 
flow of traffic, can be found very frequently. 

100 Mbps 
Ethernet 

155 Mbps ATM 

622 Mbps ATM 

TCP 
Building 

IP  
Building 

155 Mbps ATM

argon neon 

router71 / 
router137 100 Mbps 

Ethernet 
100 Mbps 
Ethernet 

100 Mbps 
Ethernet

Ethernet 
switch 

Ethernet 
switch 

Multiprotocol 
switch 

ATM 
switch 

ATM 
switch  

Figure 0.16. Network equipment. 
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3. The  Internet 

The term “Internet” refers to a global network of routers and hosts that run the TCP/IP protocol 
suite, and use the same global IP address space. Figure 0.17 shows an attempt for a precise 
definition of the Internet from 1995 by the United States Federal Networking Council.  

RESOLUTION: 

"The Federal Networking Council (FNC) agrees that the following language reflects our definition of the term "Internet".  
"Internet" refers to the global information system that --  
 
(i) is logically linked together by a globally unique address space based on the Internet Protocol (IP) or its subsequent 
extensions/follow-ons; 
 
(ii) is able to support communications using the Transmission Control Protocol/Internet Protocol (TCP/IP) suite or its 
subsequent extensions/follow-ons, and/or other IP-compatible protocols; and  
 
(iii) provides, uses or makes accessible, either publicly or privately, high level services layered on the 
communications and related infrastructure described herein."  

  

Figure 0.17. Definition of the term “Internet” by the United States Federal Networking Council (FNC) (Source: 
http://www.ccic.gov/fnc/Internet_res.html). 

3.1. A Brief History  

The Internet started out in the late 1960s as a research network funded by the U.S. Department 
of Defense (DoD) in an effort to build a communication network based on the principles of 
packet switching. The network was initially referred to as the ARPANET (Advanced Research 
Projects Agency network). By the early 1970s, the emergence of several  commercial and non-
commercial  packet-switching networks, and the development of various networking 
technologies, such as packet radio and local area networks,  created a need to interconnect 
(“internetwork”) different types of networks through a common protocol  architecture. The 
development of TCP, which initially included both the functionality of TCP and IP, in the mid-
1970s met this need by providing a protocol that supports an internetwork  or internet  of  
networks, that use a  variety of different  technologies and are owned by different organizations. 
The term “the Internet”  was used to refer to the set of all TCP/IP based internetworks with a 
common address space.  By the early 1980s, the TCP/IP protocol architecture had taken the 
shape and form as described in Subsection 2.1, and had become the protocol standard for the 
ARPANET. Throughout the 1980s, new TCP/IP based network infrastructures emerged that 
connected universities and computing centers, and also interfaced to the existing ARPANET. 
One of these networks, the NSFNET, which was established by the National Science 
Foundation, became the successor of the ARPANET as the core infrastructure of the Internet. In 
the late 1980s, many regional and international TCP/IP based networks connected to the 
NSFNET, and created the foundation for today’s global Internet infrastructure. Today, the 
Internet consists of many thousand, mostly commercial, interconnected internetworks, and 
provides network services for more than 100 million hosts. The dramatic growth of the Internet 
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is illustrated in  Figure 0.18 which shows the number of hosts connected to the Internet since the 
early 1980s. 
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Figure 0.18. Growth of the Internet since the 1980s. The data is based on the Internet Domain Survey by the Internet Software 
Consortium 

3.2. Infrastructure of the Internet 

The infrastructure of the Internet consists of a federation of connected networks that are each 
independently managed. As is shown in Figure 0.19, the networks are organized in a loose 
hierarchy, where the attribute “loose” refers to the fact that the hierarchy is not required, but has 
evolved to its present form. At the lowest layer of the hierarchy are private networks, either 
campus or corporate networks, and local Internet service providers (ISPs). At the next level are 
regional networks which have a coverage of one or several states. At the top level of the 
hierarchy are backbone networks which span entire countries or even continents.  ISPs, regional 
networks, and backbone networks are also called, respectively, Tier-3, Tier-2, and Tier-1 
network service providers (NSPs). In the United States there are less than 20 Tier-1 NSPs, less 
than  100 Tier-2 NSPs, and several thousand Tier-3 ISPs.  

Local ISPs, corporate networks, and ISPs are generally connected to one or more regional 
network or, less often, to a backbone network. The location where an ISP or corporate network 
obtains access to the Internet is called a Point-of-Presence (POP).  The places where regional 
networks and backbone networks interconnect together for the purpose of exchanging traffic are 
called peering points.  Peering can be done as public peering or private peering. Public peering 
is done at dedicated locations, called Internet exchange points (IXPs), where a possibly very 
large number of networks swap their traffic. In  private peering, two networks establish a direct 
link to each other.  
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Figure 0.19. The organization of the Internet infrastructure. 

  

The internal topology and equipment of each network of the Internet is independently 
maintained. The network topology of a local ISP may consist only of a small number of routers, 
a few modem banks for dial- in customers, and an access link to a regional network. The internal 
structure of a backbone network is significantly more complex, and is illustrated in Figure 0. 20. 
Figure 0. 20(a) depicts the network topology. Each node of the network topology is a network 
by itself, with a large set of networking equipment. This is indicated in Figure 0. 20(b).  The 
depicted devices are router or other pieces of network equipment, and each arrow represents an 
outgoing network link. Only a small number of links connect to other nodes of the same 
backbone network, and most links connect to other networks or to customers.  
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(a) Network Topology. The thickness of a
line indicates the link capacity.
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(b) Networking equipment at a single node of a backbone network. Each arrow indicates an
outgoing link.

 

Figure 0. 20. Backbone network. 
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3.3. Administration and Standard Bodies of the Internet 

There are many administrative bodies that oversee and manage the growth of the Internet. As 
the Internet infrastructure itself, the administration of the Internet is based on cooperation and 
characterized by a minimum of central control.   

The Internet Society (ISOC) is an international nonprofit professional organization that 
provides administrative support for the Internet. Founded in 1992, ISOC is the organizational 
home for the standardization bodies of the Internet. The Internet Architecture Board (IAB) is 
a technical advisory group of the Internet Society, and, among others, provides oversight of the 
architecture for the protocols and  the standardization process. The Internet Engineering Task 
Force (IETF) is a forum that  coordinates the development of new protocols and standards. The 
IETF is organized into working groups that are each devoted to a specific topic or protocol. 
Working groups document their work in reports, called Request For Comments (RFCs), which 
also built the basis for Internet standards.  All specification of the Internet protocols or  issues 
related to the TCP/IP protocol suite are published as RFCs. For example,  IP is specified in RFC 
791, TCP in RFC 793, ARP in RFC 826, and so forth.  A small subset of published RFCs are put 
on a track to become Internet standards. Internet standards are going through a set of stages, 
from Internet draft to proposed standard, draft standard, and finally Internet standard. RFC’s 
that are approved Internet standards are assigned an STD number. Currently, there are 61 
designated Internet standards. 

An important part of the administration of the Internet consists of the assignment and 
administration of unique identifiers. These include domain names (e.g., tpcip- lab.net), IP 
addresses (e.g., 128.143.71.21), well-known port numbers (e.g., port 80 for web servers), 
protocol numbers for demultiplexing (e.g., 0x60 to indicate that an IP datagram contains a TCP 
segment), and many others. From the early days of the ARPANET until the end of the 1980s, 
the administration of identifiers was done by a single person (Jon Postel from the Information 
Sciences Institute). The growth, increasingly international participation, and the privatization of 
the Internet has since led to a structure where identifiers are managed by organizations with 
broad international participation. Currently, a private non-profit organization, called Internet 
Corporation for Assigned Names and Numbers (ICANN) assumes the responsibility for the 
assignment of technical protocol parameters, allocation of the IP address space, management of  
the domain name system, and others. The management of IP address and domain name 
allocation is not done by ICANN itself, but by organizations that are authorized by ICANN. 
ICANN has granted a small number of Regional Internet Registries (RIRs) the authority to 
allocate IP addresses within certain geographical areas. Currently, there are three RIRs: APNIC 
(Asia Pacific Network Information Centre) for the Asia Pacific region, RIPE NCC (Réseaux IP 
Européens Network Coordination Centre)  for Europe and surrounding regions, and ARIN 
(American Registry for Internet Numbers) for the Americas and Sub-Sahara Africa. The 
distribution of domain names is done by a large number of private organizations that are 
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accredited by ICANN.  An important role of ICANN in the domain name assignment is the 
establishment of new top-level domains (e.g., edu, us, jp). 
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4. Addresses and Numbers  

In the networking example in Section 1, we encountered a set of different address schemes: 
domain names (e.g., Argon.cerf.edu), IP addresses (e.g., 128.143.137.144) and port numbers 
(e.g., 80), and MAC addresses (e.g., 00:a0:24:71:e4:44).  

It is important to realize that domain names, IP addresses, and MAC addresses are not assigned 
to hosts or routers, but to their network interfaces. Since most Internet users work on hosts with 
only a single network interface, the distinction between a host and the network interface of a 
host is often irrelevant. This is different when working with routers or hosts with more than one 
network interface, so-called multi-homed hosts. In Section 1, the router in Figure 0.4 had two 
domain names, two IP addresses, and two physical interfaces. Depending on the point of view 
we referred to this router as “router137.cerf.edu” or as “router71.cerf.edu”, with the 
interpretation, “the router that has a network interface with domain name r̀outer137.cerf.edu’” 
or  “the router that has a network interface with domain name `router71.cerf.edu’”. 

We now present some of the details of the address schemes for MAC addresses, IP addresses 
and port numbers. We discuss issues relating to domain names in Chapter 9. 

4.1. Media Access Control (MAC) Addresses 

MAC addresses are used to designate network interfaces at the data link layer. The MAC 
addresses are used in the frame header to identify the source and destination of a frame. Not 
every data link layer protocol requires the use of addresses. For example, when two routers are 
connected by a point-to-point  link, such as a high-speed serial link, there is no need to use 
addresses in a frame to identify source or destination: every frame that is transmitted at one end 
of a point-to-point link goes to the device at the other end of the link. So, the sender of a frame 
on a point-to-point link knows where the frame is going to, and the receiver of a frame on a 
point-to-point link knows that the sender of the frame is the device at the other end of the link. 
Examples of data link layers for point-to-point links, which do not use addresses for network 
interfaces, are PPP (Point-to-Point Protocol) and SLIP (Serial Line IP).  

In a local area network, multiple network interface access a broadcast transmission medium, 
which plays the role of a shared link. Each transmission on the shared link can be received by 
all network interfaces attached to the shared link. As a result, each network interface must have 
a unique address, and each transmitted frame must carry a destination address and a source 
address. The destination address is needed  so that a network interface that receives a frame on 
the shared link can  determine if it is the intended receiver of the frame. The source address in 
the frame header is needed to identify the sender of a frame.  

Most local area networks adopt an address scheme that was developed by the IEEE 802 
committee, a standardization body that has defined many standards for local area networks, 
including Ethernet, token ring, and wireless LANs.  The address scheme is part of the MAC 
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layer that we introduced in Subsection 2.1. The addresses in this scheme are 48 bits long and are 
known as MAC addresses, hardware addresses, or physical addresses. The  convention for 
writing MAC addresses uses a hexadecimal notation, where each byte is separated by a colon or 
a dash. So, Neon’s MAC address (00:a0:24:71:e4:44 or 00-a0-24-71-e4-448) corresponds to 
00000000 10100000 0100100 01110001 1110001 01000100.  

The MAC address of a network interface card is permanent and is assigned when the card is 
manufactured. Each network interface card receives a globally unique MAC address. When the 
network interface card of a host is replaced, the host is reached via a different MAC address. 
Since recently, some network interface cards provide the capability to modify the MAC address 
of a network interface card. However, changing the MAC address of a network interface card 
may result in address duplication. Therefore, when the MAC address is modified it is important 
to ensure that the assigned MAC address is unique on the local network.  

The assignment of the MAC address space is administered by the IEEE.  Each company that 
manufactures network interface cards obtains address blocks from the IEEE in the form of a  
24-bit prefix. The manufacturer uses this prefix for the first 24 bits of the MAC addresses of 
its network interface cards. The last 24 bits are assigned by the manufacturer, who must 
ensure that the these bits are assigned without duplication. Once the address block is depleted, 
the manufacturer can request a new address block from the IEEE. Note, however, that  one 
24-bit prefix lasts for 224 ≈ 16.7 million interface cards.  An interesting consequence of this 
assignment scheme is that the MAC address can be used to identify the manufacturer of an 
Ethernet card. For the MAC addresses in Section 1, we can determine that the network 
interface card of Argon and Neon were manufactured by the 3COM Corporation, since the 
prefixes 00:a0:24  and  00:20:af are assigned to the 3COM Corporation, and that the Ethernet 
interface of the router with MAC address 00:e0:f9:23:a8:20 was manufactured by Cisco 
Systems. 

Other than identifying the manufacturer, the address space of MAC addresses is  flat, meaning 
that MAC addresses do not encode any hierarchy or other structure that can be exploited for 
the delivery of frames. There are a few special addresses. The address ff:ff:ff:ff:ff:ff, that is, 
the address with all 48 bits set to ‘1’, is designated as broadcast address. A frame where the 
destination address is the broadcast address is sent to all network devices on the local area 
network. For example, the Ethernet frames that carry the ARP request packets shown in 
Figure 0.5 and Figure 0.6 have the destination address set to the broadcast address. Addresses 
where the first 24 bits are set to 01:00:5e are multicast MAC addresses. Multicast addresses 
are intended for group communication, when a single sender wants to send a frame to a group 
of several, but not all, hosts, and are discussed in detail in Chapter 7.  

                                                 
8 Leading zeros in a byte a dropped, e.g., 0a is written as a. 
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4.2. Port numbers  

At the transport layer, TCP and UDP use 16-bit port numbers to identify an application process, 
which is either an application-layer protocol or an application program. Each TCP segment or 
UDP datagram carries the port number of the source and the destination in the packet header. 
The IP address, the transport protocol number (0x60 for TCP, 0x11 for UDP), and the port 
number of a packet uniquely identify a process on the Internet. When a packet is received by the 
transport layer, the transport protocol number and the port number provide the demultiplexing 
information to assign the data to the correct process. Since the number of the transport protocol  
is used in the demultiplexing decision,  a host can have ports for TCP and ports for UDP with 
the same number. As an example, a UDP port 80 and a TCP port 80 are separate ports, which 
that can be bound different application processes. 

Most network services and application programs on the Internet have a client-server interaction. 
When allocating port numbers the server programs of the client-server applications are assigned 
to well-known port number, meaning that all hosts on the Internet have default port numbers for 
their server programs. For example, the well-known port number for an HTTP server is port 80, 
and the well-known port numbers of other applications are port 21 for File Transfer Protocol 
(FTP) servers, port 25 for the mail servers that run the Simple Mail Transfer Protocol (SMTP), 
and port 23 for Telnet servers.  All well known port numbers are in the range from 0 to 1023. 
The assignment of well-known port numbers to the server programs of application-layer 
protocols is generally stored in a file on a host. The assignment can be found in RFC 1700 (STD 
2). The advantage of using well-known port numbers is that client programs of application layer 
protocols which need to access a server program, can obtain the port number of the server 
simply via a local lookup. 

The assignment of port numbers 1024 and higher is not regulated. Port numbers in this range are 
used by client programs of network services. Generally, client programs allocate a port number 
only for a short period of time, and release the port number  as soon as the client program has 
completed its task. Because of the temporary allocation, port numbers 1024 and above are called 
ephemeral port numbers.  

When developing software for application programs and application layer protocols for the 
Internet, programmers generally use the (Berkeley or BSD) socket application programming 
interface. A socket provides to the application programmer an abstraction that is similar to that 
of a file. An application program can open a socket, and then read  from and write to a socket, 
and, once a task is completed, close a socket. By associating (binding) a socket to a port 
number, an application program gains access to the Internet address space. 

4.3. IP Addresses 

An IP address is an identifier for a network interface at the network layer. When the network 
interface is connected to the Internet, the IP address must be globally unique within the address 
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space of the Internet. This means that no two network interfaces on the Internet can have the 
same IP address. In Lab 8 we will see that  private networks (intranets)  that interface with the 
Internet, but have hosts that are not directly connected to the Internet may need not have unique 
addresses.  In Lab 9, we will learn about a method for dynamic assignment of IP addresses with 
a protocol called  DHCP. 

 Throughout this book, we will we use the IP addresses from the Internet Protocol Version 4 
(IPv4), which is the current version of the Internet Protocol.  IP addresses in IPv4 are 32 bits 
long and are written in a so-called dotted decimal notation. In this notation, the value of each 
byte is represented as a decimal number, and the four numbers are separated by dots. So, 
address 128.143.137.144  corresponds to 10000000 10001111 10001001 10010000. The 
conversion from the binary to the dotted decimal notation is illustrated in Figure 0.21. 

 

10001111 10000000 10001001 10010000 
= 128 = 143 = 137 = 144 

128.143.137.144 

1
st
 Byte 
  

2
nd

 Byte 
  

3
rd
 Byte 

 
4

th
 Byte 

  

 
Figure 0.21. Derivation of the dotted decimal notation of an IP address 

 

Each IP address consists of a network number which is followed by a host number.9  The 
network number is also called the network prefix or, simply, the prefix. An organization obtains 
a network prefix either from its network service provider or directly from a Regional Internet 
Registrations (RIR). Once assigned a network prefix, the organization is free to assign host 
numbers to the network interfaces of  routers and hosts on its network. The length of the 
network prefix is specified by a bitmask, called the netmask , which has a ‘1’ in all bit positions 
of the prefix.  In the so-called CIDR notation, the length of the network prefix is appended to 
the IP address, where IP address and the prefix length are separated by a ‘/’ (slash). For 
example, the network of the Cerf University is assigned the 16-bit long network prefix 128.143. 
All hosts and routers on the Cerf University network have IP addresses in the range 128.143.0.0 
– 128.143.255.255. The resulting netmask is 255.255.0.0. The CIDR notation for an IP address 
is 128.143.137.144/16, where /16 indicates the length of the prefix.  

The separation of the address into a network number and a host number results in a two-layer 
hierarchy for IP addresses. When a router processes an IP address outside the scope of its 

                                                 
9 Using  “interface number” instead of “host number” would be more appropriate, but is not commonly used terminology.  Note 

that a multi-homed host has one host number for each of its network interfaces.  
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network number, the router only looks at the network number and does not look at all at the host 
number.  

Certain IP addresses have a special interpretation and cannot be used for network interfaces. All 
IP addresses where the host number is set to zero do not specify an interface but specify the 
address of a network. For example, the address 128.143.0.0/16 is the address of the Cerf 
University network. Many systems reserve address 0.0.0.0 to designate the default route in a 
routing table. An IP address where the host number has ones in all bit positions is a broadcast 
address. An IP datagram where the destination address is a broadcast is delivered to all hosts on 
the network. For example, the IP address 128.143.255.255  is the broadcast address for all hosts 
on the Cerf University network. The IP address 255.255.255.255 is called limited broadcast 
address, which tries to reach all hosts on the same local network. IP datagrams with this 
destination address are not forwarded by routers. By convention, the default router or gateway 
of a subnet has the host number set to one. The IP addresses of the router in Section  1, 
128.143.137.1 and 128.143.71.1, followed this convention. Addresses with prefix 127.0.0.0/8 
are reserved for loopback interfaces. The address of the loopback interface is used when  the 
sender and receiver of an IP datagram reside on the same system, e.g., a web client accesses a 
web server on the same host. On most  hosts, IP address 127.0.0.1 is reserved for the loopback 
address and is associated with the name localhost. When a host sends a datagram to IP address 
127.0.0.1, the destination of the datagram is the local host, and the datagram is not transmitted 
on the network.    

Then there are some IP addresses that are reserved for testing or experimental purposes. These 
are the addresses in the ranges 10.0.0.0 – 10.255.255.255, 172.16.0.0 – 172.31.255.255, and 
192.168.0.0 – 192.168.255.255. When a system in the public Internet sees an IP datagram with 
an experimental IP address, the datagram is dropped. Experimental address ranges are often 
used for hosts that are not directly connected to the public Internet, e.g., hosts in testbed 
networks or private networks. We use experimental IP addresses in the Internet Lab. Therefore, 
if,  for some reason, an IP datagram from the Internet Lab should leak to the public Internet, the 
datagram is designated as a packet that should be dropped and does not interfere with regular 
Internet traffic. 

4.3.1. Subnetting  

Since the networks of some organizations grow large, network operators can decide to subdivide 
the network into smaller subnetworks and assign each subnetwork its own network address. 
This process is known as subnetting. Subnetting is done by allocating some of the leading bits 
of the host number to indicate a subnet number.  With subnetting, the network prefix and the 
subnet number make up an extended network prefix. The extended prefix can be expressed in 
terms of a subnetmask or, using CIDR notation, by adding the length of the extended 
subnetmask after the IP address. For example, for Argon, the first byte of the host number (the 
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third byte of the IP address) is used to denote the subnet number10. With this, 128.143.0.0/16 is 
the IP address of the network, 128.143.137.0/24 is the IP address of the subnet, 
128.143.137.144/24 is the IP address of the host, and 255.255.255.0 is the subnetmask of the 
host  (see Figure 0.22). 

128.143 137.144

network prefix host number

128.143 144

network prefix host numbersubnet
number

137

extended network prefix

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

subnetmask
 

Figure 0.22. Network prefix and extended network prefix. 

When a host or router holds an IP datagram it compares, for each of its network interfaces, its 
own IP address and the destination IP address. If the addresses match on the bits that correspond 
to the extended network prefix, the host or router will attempt to deliver the IP datagram 
directly. Otherwise, it will pass the IP datagram to another router.  

The use of subnetting and the length of the subnet number in a network are up to the 
administrator of a network. The subnet structure is not visible outside the network where it is 
used. Hosts and routers do not know if and how subnetting is used on other networks. It is even 
possible to have different subnetmasks on the same network. 

In Figure 0.23, Figure 0.24, and Figure 0.25 we illustrate different uses of subnetting Figure 
0.23 shows a network without subnetting. Here the subnetmask of each host is identical to the 
network prefix. All hosts of the network believe to be part of the same subnetwork with IP 
address 128.143.0.0/16. In Figure 0.24, the hosts have an 8-bit long subnet number, resulting in 

                                                 
10 In the real network, Argon does not use subnetting, and the (sub)netmask of Argon is 255.255.0.0. We will revisit our example 

with the correct subnetmask in a later chapter.  
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a 24-bit long extended network prefix or, equivalently, a subnetmask with value 255.255.255.0.  
Based on the IP addresses the hosts in the figure belong to subnet 128.143.137.0/24 or 
128.143.71.0/24. Figure 0.25 shows an example  where hosts on the same network have 
different subnetmasks. Starting from the left, the first two  hosts have a 26-bit extended network 
prefix, the third host has a 24-bit extended prefix, and the fourth host has a 16-bit extended 
prefix. As a result, all hosts are on different subnets. Interestingly, the  host with IP address 
128.143.137.201 believes to be on the same subnet (with IP address 128.143.0.0/16) as all other 
hosts. However, based on their subnetmasks, any of the other hosts determines that 
128.143.137.201 is not on its local subnet. 

128.143.70.0/16

128.143.137.32/16
subnetmask: 255.255.0.0

128.143.71.21/16
subnetmask: 255.255.0.0

128.143.137.144/16
subnetmask: 255.255.0.0

128.143.71.201/16
subnetmask: 255.255.0.0

   

Figure 0.23. Network without subnetting. 

128.143.0.0/16

128.143.137.32/24
subnetmask: 255.255.255.0

128.143.71.21/24
subnetmask: 255.255.255.0

128.143.137.144/24
subnetmask: 255.255.255.0

128.143.71.201/24
subnetmask: 255.255.255.0

128.143.137.0/24
Subnet

128.143.71.0/24
Subnet

 

Figure 0.24. Network with subnetting. 
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128.143.0.0/16

128.143.137.32/26
subnetmask: 255.255.255.192

128.143.71.21/24
subnetmask: 255.255.255.0

128.143.137.144/26
subnetmask: 255.255.255.192

128.143.71.201/16
subnetmask: 255.255.0.0

128.143.71.0/24
Subnet

128.143.137.128/26
Subnet

128.143.137.0/26
Subnet

 

Figure 0.25. Network with different subnetmasks. 

Subnetting leads to a three-layer hierarchy of IP addresses. The first level is the network 
number, the second level is the subnet number, and the third level is the host number. The 
delivery of an IP datagram follows the levels of this hierarchy. First, an IP datagram is delivered 
to the destination network. Once it arrives at the correct network, the datagram is delivered to 
the correct subnet, and then to the host on the subnetwork.  

4.3.2. Classful addresses 

In IPv4, the IP address space was partitioned into a five address classes: Class A, B, C, and D. 
IP addresses in Classes A, B and C are used for network interfaces.Class A addresses have the 
leftmost bit set to “0”. The network prefix of a Class A address is 8 bits long, resulting in a total 
of 27 different Class A networks. There are 24 bits available for the host number, resulting in up 
to 224-2 ≈ 16.7 million hosts for each Class A network.11 Each Class B address has the two 
leftmost bits set to “10”. Class B addresses have a network prefix that is 16 bits long. As result, 
the maximum number of Class B networks is 214=16,384. The maximum number of hosts in a 
Class B  network is  216-2≈ 64,000. In Class C addresses, the three  leftmost bits are set to 
“110”. Here, the network prefix has a length of 24 bits. The maximum number of Class C 
networks is approximately 2 million, and the number of hosts on a Class C  network is  limited 
by 28-2 = 254.  

The motivation for the different classes is that a network administrator who wants to set up a 
new network requests a network prefix that matches the size of the network. Class A network 
addresses are intended for very large networks, class B addresses for networks that have a few 
thousand hosts, and Class C addresses are to be used for small networks.  Note that classful 
addresses encode the class membership in the first bits of the IP address. Therefore, a router or  
host can derive the length of the network prefix by looking at the first bits of the IP address. 

                                                 
11 This assumes that no subnetting is used and discounts the  addresses where all bits of the host number are set to zero (network 

address) and all bits of the host number  are set to one (broadcast address). 
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Class D and Class E addresses are not used to identify network interfaces. Class D addresses are 
reserved for multicast addresses, which are used to specify groups of hosts. A Class D address 
has the four  leftmost bits set to “1110”. The details of Class D addresses will be discussed in 
Chapter 7. Class E addresses start with prefix “11110”. This address class was reserved for 
future use, but has never been defined. All address classes are illustrated in Figure 0.26. Using 
the dotted decimal notation the address ranges of the IP address classes are as follows: 

Class A:  0.0.0.0 – 127.255.255.255 
Class B:  128.0.0.0 – 191.255.255.255 
Class C:  192.0.0.0 – 223.255.255.255 
Class D: 224.0.0.0 – 239.255.255.255 
Class E:  240.0.0.0 – 247.255.255.255 
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Class D multicast address11 1
bit # 0 1 2 313

0
4

Class E (reserved for future use)11 1
bit # 0 1 2 313

1
4

0
5

Class C network host11 0

Network Prefix
24 bits

Host Number
8 bits

bit # 0 1 23 242 313

Class B 1 network host
bit # 0 1 15 162

Network Prefix
16 bits

Host Number
16 bits

0
31

Class A 0 network host

Network Prefix
8 bits

bit # 0 1 7 8

Host Number
24 bits

31

 

Figure 0.26. IP Address Classes. . 

Classful addressing has a few inherent disadvantages. One disadvantage is a lack of flexibility 
when assigning network addresses. For example, when an organization wants to build a network 
for up to 10,000 hosts, the organization can either request a Class B address with more than 
64,000 addresses or 40 Class C addresses which yields 10160 addresses. The former utilizes 
only a small fraction of the assigned portion of the address space, thus wasting a lot of IP 
addresses. The latter choice results in a large number of network addresses that need to be 
maintained by the network administrator. Ideally, the organization should allocate a network 
number with a network prefix with 14 bits, resulting in 214-2 = 16382 addresses.  

The second problem is that the assignment of Class A, B, and C network addresses results in a 
flat address space and does not permit an aggregation of  routing table entries. As a result, an IP 
router must keep one routing table entry for each network address. Since the number of 
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networks, especially, Class C networks  can be large, searching routing tables may become a 
performance bottleneck in a  router.  

In the early 1990s, the limitations of classful addressing became so apparent that the classful 
address scheme with fixed network prefixes was abandoned, and replaced with a scheme with 
flexible network prefixes. This scheme was called Classless Interdomain Routing (CIDR, 
pronounced “Cider”).  

4.3.3. Classless Inter Domain Routing (CIDR) 

When the fixed network prefixes and the flat  address space of classful addressing seemed to 
limit the growth of the Internet,  a new scheme for assigning IPv4 addresses was adopted which 
increased the efficiency of IP address assignments by using flexible network prefixes and 
reduced the routing table size via aggregation of routing table entries.  

CIDR is a new interpretation of the IP address space. CIDR eliminates fixed-length prefixes, 
and, instead, allows network prefixes to have arbitrary lengths.  With CIDR, the size of the 
network prefix must be provided with an IP address, since the length of the network prefix can 
no longer be inferred from the first bits of the IP address. Therefore, for each IP address, one 
must provide the length of the network prefix. This motivates the CIDR notation, where the 
network prefix length is added after a “/” that follows the IP address, e.g., as in 
128.143.137.144/16. When subnetting is used, one writes the length of the extended network 
prefix. The CIDR notation allows to drop trailing zeros for network addresses, e.g., 
128.143.0.0/16 can be written as 128.143/16. 

With the variable size of the network prefix, IP address allocations for networks can be done 
more efficiently. Each prefix length corresponds to a block of addresses. For example, the prefix 
10.0.112.0/20 describes an address block in the range 10.0.112.0–10.0.127.255.  When an 
organization asks for a new network address it requests a prefix of appropriate length. For 
example, an organization that requires IP addresses for1000 hosts can request a /22 prefix. With 
a prefix of 22, 32 –22 = 10 bits are left for the host number, resulting in 210 –2 = 1022 IP 
addresses.  

The introduction of CIDR enables route aggregation in  routing table entries. Essentially a 
routing table has two columns. The first column contains the destination IP address of a network 
and the second column contains the name of a network interface. With classful IP addresses, 
routing table entries are Class A, Class B or Class C addresses. A row with entry (128.143.0.0, 
interface #2) is interpreted as follows: When the router  receives an IP datagram where the 
destination address has the (Class B) IP address 128.143.0.0/16, the router forwards this IP 
datagram to interface #2. With this scheme, a router must have one routing table entry for each 
network address. CIDR allows routing table entries to have a network prefix of any length. For 
example, a routing table entry of the form (128.0.0.0/8, interface #2) is interpreted, as follows.  
When the router  receives an IP datagram where the destination address where the first 8 bits 
have value 128, the router forwards this IP datagram to interface #2. Therefore, a single routing 
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table can contain routing information for many network addresses. This is called route 
aggregation. An issue with route aggregation is that a routing table can have multiple matches 
for the same destination. As an example, the following table has three matches for address 
128.143.137.144: 

Prefix Interface 

128.0.0.0/4 interface #5 

128.128.0.0/9 interface #2 

128.143.128.0/17 interface #1 

With route aggregation in CIDR, one selects the routing table entry that matches the prefix of 
the destination address for the most number of bits. This is called longest prefix matching. In the 
above table, longest prefix matching selects the third row in the routing table, since the prefix 
128.143.137.0/24 matches the prefix of 128.143.137.144 for 17 bits, as opposed to 4 and 9 bits, 
respectively, for the other entries.  

Route aggregation is effective when the assignment of IP addresses is done in a hierarchical 
fashion. In a  hierarchical address allocation, a backbone ISP obtains large block of IP addresses 
space from one of the RIRs, and then reallocate portions of this address blocks to its customers. 
If the customers are themselves network service providers, they divide their address blocks 
further and assign pieces of the blocks to their customers, and so on. 

 

 

206.0.64.0/18 
209.88.232.0/21 

Rest of  
the Internet 

ISP X 
Company A: 
  206.0.68.0/22 

ISP Y : 
 209.88.237.0/24 

Company B: 
 209.88.237.192/26 

Company C: 
 209.88.237.0/26 

 
Figure 0.27. Address Space Allocation with CIDR. 

In Figure 0.27, we show an example, where ISP X owns two IP address blocks with prefixes 
206.0.64.0/18 and 209.88.232.0/21. The prefixes correspond to the IP address ranges  
206.0.64.0 – 206.0.127.255 and 209.88.232.0 – 209.88.239.0. ISP X has allocated a /22 prefix 
(206.0.68.0/22) to Company A and a /24 prefix (209.88.237.0/24) to ISP Y. ISP Y, in turn, has 
given part of its allocated address space to Company B (209.88.237.192/26) and Company C 
(209.88.237.0/26).  
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 In this example,  the routers in the rest of the Internet (indicated by the cloud on the left  of 
Figure 0.27), only require to have routing table entries for the prefixes 206.0.64.0/18, and 
209.88.232.0/21 for traffic with a destination in ISP X or any of ISP X’s customers. The routers 
need not know anything about the network addresses of  ISP X’s customers. When ISP X 
receives a packet which matches prefix 209.88.237.0/24, it forwards the packet to ISP Y. ISP X 
does not need to have routing table entries for the networks of Company B and Company C.  

A disadvantage of route aggregation and the hierarchical organization of the IP address space is 
that network prefixes are tied to the organizations from which the prefixes are obtained. For 
example, when Company B decides that it wants to change its ISP, from ISP Y to ISP X, it 
cannot keep its IP addresses. Instead, Company B must return the allocated address block to ISP 
Y, request a new address block from ISP X, and modify  the IP addresses on all systems in 
Company B.   

4.3.4. The future of IP addresses 

In principle, with 32-bit addresses, the Internet can have up to of 232 ≈ 4 billion IP addresses. 
However, since IP addresses are not assigned individually to hosts, but allocated in blocks to 
network service providers and organizations, which may, or may not, use all addresses of an 
allocated block, the Internet will eventually outgrow the available address space.  Recognizing 
that the address space of IPv4 will eventually be depleted, the IETF has standardized a new 
version of the IP protocol, called IP Version 6 (IPv6). The length of an IP address in IPv6 is 128 
bits, four times as large as an IPv4 address. With 128 bits it is not likely that IPv6 will ever out 
of IP addresses anytime soon. The address space is large enough to permit in the order of 1024 
IP addresses per square inch on the surface of the Earth. 12 

5. Application Layer Protocols 

The first generation of Internet applications from the late 1960s and early 1970s addressed the 
need to transfer files between computers, to have remote access to computing resources, and to 
support communication between users at different hosts. The applications, which met these 
needs: FTP, Telnet, and Email, were the predominant applications in the first decades of the 
Internet. The emergence of the World Wide Web in the early 1990s quickly made web browsing 
the most popular Internet application. Recently, applications for streaming audio and video, 
telephony over the Internet, and peer-to-peer file sharing have again changed the landscape of 
Internet applications. 

This section discusses knowledge about  applications interact with the Internet and how 
applications take advantage of the Internet to provide network  services to end users. 

                                                 
12 This is based on the Earth’s surface, including land and ocean areas, having a size of approximately 196,935,000 square miles.  
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Many Internet applications are built on top of application-layer protocols that have been 
standardized by the IETF. In this section we briefly describe some of the most popular 
application layer protocols of the Internet, where we concentrate on the application protocols 
used in the Internet Lab. Since this book and the Internet Lab focus on the internal operations of 
the Internet protocols, and, less so, how applications use the Internet, we do not cover every 
detail of the applications and application- layer protocols. Rather, we provide an overview of the 
design of application-layer protocols, focusing on the interactions between application programs 
and application layer-protocols, and between application-layer protocols and transport-layer 
protocols. In pursuing this goal, we discover several  similarities between different application 
layer protocols.  

5.1. File Transfer  

The File Transfer Protocol (FTP) for copying files between computer systems is one of the 
oldest application- layer protocols and was created before the TCP/IP protocol suite.  FTP is a 
client-server protocol where an FTP client accesses an FTP server. The FTP client authenticates 
itself with a user name and a password to establish an FTP session. A successful authentication 
results in the establishment of an FTP session, where the FTP client can download (“get”) and  
upload (“put”) files and file lists. When transferring files, FTP respects the ownership and 
access privileges of files. Most hosts have a utility program, generally also called FTP, which 
provides an interactive command line interface to run an FTP session. This utility program is 
used throughout all parts of the Internet Lab. FTP clients can also be integrated in other 
applications, such as web browsers.  Anonymous FTP is a special form of file transfer service 
that allows public access to files at an FTP server. An FTP client can establish an anonymous 
FTP session by supplying the user name “anonymous” and an arbitrary password (The FTP 
server usually requests to supply an email address as password). 

TCP client

Port  1931

Control connection
(authentication,

commands from client,
responses from server)

FTP serverFTP client

TCP server

Port  1932

TCP server

Port  21

TCP client

Port  20

Data connection
(files, file lists)

Data connection is re-established
after each file  or  file list

 

Figure 0.28. TCP connections in an FTP session.   

FTP employs TCP as its transport protocol, thereby ensuring a reliable transfer of transmitted 
data. Two TCP connections are established for each FTP session, called control connection and 
data connection. The control connection is used for commands from the client and messages 
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from the server. The data connection is used for the transport of files. As illustrated in Figure 
0.28, an FTP server uses the well known TCP port 21 for the control connection, and the well-
known TCP port 20 for the data connection, and an FTP client selects available ephemeral port 
numbers. The control connection is established at the beginning of the FTP session and stays up 
for the entire lifetime of the session. The control connection is used by the FTP client for 
authentication, for setting various session parameters, and for commands to download or upload 
files. The data connection is opened and closed for each transfer of a file or file. As soon as a 
file or a file list has been transferred, the data connection is closed. If there is another file 
transfer, the data connection is re-opened. By default, the data connection is established upon 
request by the FTP server. The FTP client starts a TCP server that waits for a connection on an 
ephemeral port, and sends the port number of this port on the control connection to the FTP 
server. After the FTP server receives the port, it can request a data connection to the FTP client.  

A security concern with FTP is that the user name and the password submitted by the FTP client 
on the control connection at the beginning of an FTP session are not encrypted. Therefore, 
anyone with the ability to capture traffic from an FTP client can obtain the user name and 
password used by an FTP client. 

In Figure 0.29 we show the interaction between an FTP client and an FTP server on the TCP 
control connection. The FTP client sends commands to the FTP server, and the FTP server 
responds with a three-digit  response code and an explaining text message. The commands from 
the FTP client as well as the responses from the FTP server are transmitted as ASCII 
characters.13 The end of a client command and the end of a server response is represented by an 
end-of-line sequence, which consists of the ASCII special characters Carriage Return (ASCII 
10)  followed by Line Feed (ASCII 13). When the TCP connection to TCP port 21 of the FTP 
server is established, the FTP server sends a message that it is ready to interact on a new FTP 
session. Then, the user supplies a user name and a password. If the authentication is successful, 
the user sends the IP address and port number of its ephemeral port for the data connection. The 
IP address and port number is sent in dotted-decimal notation, where the first four numbers 
specify the IP address and the last two numbers specify the port number. The string 
“192,168,123,175,7,140” in Figure 0.29 informs the FTP server that the client has a TCP server 
running on IP address 192.168.123.175 at TCP port 1932 (=7*256+140). The FTP server uses 
the IP address and port number for setting up the data connection. The command “RETR 
myfile” is a request by the client to copy the file “myfile” from the FTP server to the FTP client. 
By default, files are transmitted as text files using ASCII characters. However, the FTP client 
can change this default so that files are transmitted bit-by-bit without any interpretation. When 
the file transfer has been completed, the FTP server sends a message to the FTP client. At this 

                                                 
13 ASCII (American Standard Code for Information Interchange) is an encoding format for textual data, which 

represents an alphanumeric character or special character by seven bits. Application-layer protocols transmit each 
ASCII character in a byte (octet) with the most significant bit set to zero. We provide a table which explains the 
ASCII code at the end of this chapter. 
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time, the FTP client can download or upload another files, or end the FTP sessions by issuing 
the command “Quit”. 

Server:  220 ftp.local-lab.net FTP server (Version wu-2.6.1-16) ready. 
Client:  USER student 
Server:  331 Password required for root. 
Client:  PASS MySeCreT 
Server:  230 User root logged in. 
Client:  PORT 192,168,123,175,7,140 
Server:  200 PORT command successful. 
Client:  RETR myfile 
Server:  150 Opening ASCII mode data connection for myfile (61 bytes). 
 // transmission of myfile on TCP data connection (66 bytes) 
Server:  226 Transfer complete. 
Client:  QUIT 
Server:  221-You have transferred 66 bytes in 1 files. 
Server:  221-Total traffic for this session was 400 bytes in 1 transfers. 
    

 

 

Figure 0.29. Exchange of FTP control messages between FTP client and FTP  server. 

The Trivial File Transfer Protocol (TFTP) is a minimal protocol for transferring files without 
authentication and no separation of control information and data as in FTP. TFTP is frequently 
used by devices without permanent storage for copying an initial memory image (bootstrap) 
from a remote server when the devices are powered on. Due to the lack of any security features, 
the use of TFTP is generally restricted.  

TFTP uses the unreliable transport protocol UDP for data transport. Each TFTP message is 
carried in a separate UDP datagram. The first two bytes of a TFTP message specify the type of 
message, which can be a  request to download a file, request to upload a file, a data message, or 
an acknowledgement or error message. A TFTP session is initiated when a TFTP client sends a 
request to upload or download a file from an ephemeral UDP port to the (well-known) UDP 
port 69 of an TFTP server.  When the request is received the TFTP server picks an ephemeral 
UDP port of its own and uses this port to communicate with the TFTP client. Thus, both client 
and server communicate using ephemeral ports. 
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Figure 0.30. TFTP session.  

Since UDP does not recover lost or corrupted data, TFTP is responsible for maintaining the 
integrity of the data exchange. TFTP transfers data in blocks of 512 bytes. Each block is 
assigned a 2 byte long sequence number and is transmitted in a separate UDP datagram. A block 
must be acknowledged before the next block can be sent. When an acknowledgment is not 
received before a timer expires, the block is retransmitted.  When the receiver receives a block 
that is less than 512 bytes long, it assumes that the end of file has been reached. 

5.2. Remote Login   

Telnet is a remote login protocol for executing commands on a remote host. The Telnet protocol 
runs in a client-server mode and uses the TCP protocol for data transmission. A client initiates a 
Telnet session by contacting a Telnet server at a remote host. Similar to FTP, the origins of 
Telnet go back to the beginning of the ARPANET in the late 1960s. Recently, the use of Telnet 
in public networks has been discouraged since Telnet does not offer good protection against 
third parties that can observe (“snoop”) traffic between a Telnet client and a Telnet server. 

The mode of operation in a Telnet session is illustrated in Figure 0.31.  At the Telnet client, a 
character that is typed on the keyboard is not displayed on the monitor, but, instead, is encoded 
as an ASCII character and transmitted to a remote Telnet server. At the server, the ASCII 
character is interpreted as if a user had typed the character on the keyboard of the remote 
machine. If the keystroke results in any output, this output is encoded as (ASCII) text and sent 
to the Telnet client, which displays it on its monitor. The output can be just the (echo of the) 
typed character or it can be the output of a command that was executed at the remote Telnet 
server. 



 

0.43 
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send character
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Host with
Telnet client

Host with
Telnet server  

Figure 0.31. Client/server interaction in a Telnet session.  

Telnet uses a single TCP connection for communications. The Telnet server uses the well-
known TCP port 23 and the Telnet client uses an ephemeral TCP port. After establishing the 
TCP connection, the Telnet client and server negotiate a set of parameters for the Telnet session, 
including terminal type, line speed, if typed characters should be echoed to the client or not, and 
so on.  Unless a Telnet session is explicitly configured not to do so, Telnet client sends one TCP 
segment for each typed character. 

Telnet provides some independence from the differences of hardware and software at hosts by 
mapping input and output to a virtual device, called Network Virtual Terminal (NVT) or 
pseudoterminal. The Telnet client and Telnet server map the input from a keyboard and the 
output to a monitor to the ASCII character set. Thus, before a character is sent over the network 
it is encoded as ASCII character. Also, when an ASCII character is received on the TCP 
connection, the receiving host interprets the character and translates it into its local character 
format.   

Rlogin is an alternative remote login application program for hosts that run the Unix operating 
system. Rlogin takes advantage of the fact that both the client and server run a similar operating 
system, and, for this reason, is simpler than Telnet. Rsh is an application program for the 
execution of a single command on a remote Unix host. There is also an application program for 
file transfers between Unix hosts, called rcp. However, this group of applications has poor 
security features, and is, therefore, often disabled. 

The Secure Shell suite of protocols provides application layer services for remote login and file 
transfer services, similar to FTP, Telnet, rlogin, rsh, and rcp, but ensures secure encrypted 
communications between untrusted hosts.  All components of Secure Shell  provide 
authentication, confidentiality, and integrity of data, using a variety of encryption and 
authentication algorithms, and protect against common attacks on the security or integrity of 
communications between hosts. On the Internet, Secure Shell  is run as a client-server protocol 
over a TCP connection and Secure Shell servers use the well-known TCP port 22. 
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5.3. Electronic Mail 

Electronic Mail (email) is the primary Internet service for exchanging messages between users 
at different hosts on the Internet. The exchange of email messages is asynchronous, meaning 
that the transmission and retrieval of an email message can occur at different times.  

Mail server

SMTP
server

queue of
messages

User agent

User mailbox User agent

User mailboxSMTP

Host A Host B

queue of
messages

SMTP
client

SMTP
client

SMTP
server

Mail server

SMTPTCP port 25

TCP port 1925

TCP port 2113

TCP port 25

 

Figure 0.32. Components of an Email system. 

The exchange of an email on the Internet is illustrated in Figure 0.32. A user on a host prepares 
an email on a mail preparation program, called a user agent. Examples of user agents on Unix 
operating systems are mail, xmail, elm, or pine 14.  Email messages are written in plain text and 
have the familiar structure shown in Figure 0.33, and users can add non-text files to an email 
message.  

From: student@local-lab.net 
To: instructor@remote-lab.net 
Subject: Internet Lab 
The dog ate my homework. 

 

 

Figure 0.33. Email message. 

The user agent passes the email to a mail server, where the message is queued for transmission. 
In Figure 0.32, the user agent and the mail server are on the same host, but it is also possible that 
they are on different hosts. The mail server uses the application-layer protocol SMTP (Simple 
Mail Transfer Protocol) to transmit the email message to the mail server of the receiver of the 
email. The sending mail server uses DNS, the domain name service, to locate the correct remote 
mail server. In addition to  translating host names into IP addresses, DNS also provides the IP 
addresses of mail servers. For the email in Figure 0.33, the mail server at Host A queries DNS 
for the IP address of the mail server that is responsible for the domain of the email receiver,  
“remote-lab.net”. Once the IP address of the remote mail server is obtained, the sending mail 
server starts an SMTP client and initiates a TCP connection to the SMTP server of the remote 
mail server at the well-known TCP port 25. As soon as the TCP connection is established, the 
SMTP client and server exchange SMTP commands and transfer the email message. All 
                                                 
14 These are user agents for hosts with a  Unix operating system. 
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commands and the email message are transmitted as plain text using  ASCII characters. If an 
email message contains parts that are not text files, these parts are converted to ASCII 
characters before transmission.  

The SMTP messages for transmitting an email from an SMTP client to an SMTP server is 
shown in Figure 0.34. As in FTP, all messages are transmitted as ASCII characters, using the 
end-of-line sequence to indicate the end of a command. The SMTP client issues commands to 
the server, and the server responds to each command with a three-digit response code and 
explaining text. After the TCP connection is established, the remote mail server sends a brief 
message. The client issues a HELO command followed by its domain name. Then, the client 
issues a MAIL FROM command sender’s email address, which is followed by a RCPT TO 
command with the receiver’s email address. After an acknowledgment from the server, the 
client issues a DATA command, and transmits the email message. By comparing the original 
message from Figure 0.33 to the actually transmitted message in Figure 0.34, we can see that 
the mail server has added several header lines to the message. When the entire email message is 
transmitted, the client indicates the end of the email by sending a line that only contains the 
character “.”  (period). When the SMTP server acknowledges the reception of the email 
message, the client can send another message or end the SMTP session. In Figure 0.34, the 
client issues a QUIT command to end the SMTP session. The mail server that receives an email 
message, adds the email to a file, called mailbox, which can be accessed by the receiver. 

Server:  220 mailserver.remote-lab.net  Mail Server  
Client:  HELO local-lab.net 
Server:  250 Hello local-lab.net, pleased to meet you 
Client:  MAIL FROM: student@local-lab.net  
Server:  50 <student@local-lab.net>... Sender ok 
Client: RCPT TO: instructor@remote-lab.net 
Server:  250 <instructor@remote-lab.net>... Recipient ok 
Client: DATA 
Server:  354 Enter mail, end with "." on a line by itself 
Client:    Received: (from student@local-lab.net) 
       by mailserver@local-lab.net (8.11.2/8.11.2) id g4OK3nu19221 
      for instructor@remote-lab.net; Fri, 24 May 2002 23:03:49 -0400 
     Date: Fri, 24 May 2002 23:03:49 -0400 
    From: student <student@local-lab.net > 
      Message-Id: <200205242003.g4OK3nu19221@mailserver@local-lab.net> 
     To: instructor@remote-lab.net 
     Subject: Internet Lab 
 
  The dog ate my homework. 
Client:  . 
Server:  250 QAA01884 Message accepted for delivery 
Client:  QUIT  
Server:  221 mailserver@remote-lab.net closing connection 
 

 

 

Figure 0.34. Exchange of SMTP messages between SMTP client and SMTP server. 



 

0.46 

An email message may traverse multiple SMTP servers before reaching its destination. For 
example, on most networks a single host is dedicated to handle all outgoing email messages for 
all hosts of the network.  In this case, all hosts forward their outgoing email message to the 
dedicated mail server which relays the emails to the proper destinations. Also, in many 
networks, the receiving mail server does not have access to the receiver’s mailbox, and relays 
incoming messages to the mail server on a host where the receiver’s mailbox resides. When a 
mail server relays an email message, it adds lines to the header of an email message. These lines 
can be used by the receiver of an email message to trace the path of an incoming email.  

A mail servers adds an incoming emails to the mailbox of a user, and assumes that the user has 
access to the mailbox. Often, however, a user is not permanently connected to its mail server. In 
such situations, the user can employ mail access protocols to retrieve mail messages from their 
mailboxes at a remote host. Currently, two popular mail access protocols are in wide use: Post 
Office Protocol Version 3 (POP3) and Internet Mail Access Protocol (IMAP). Mail access 
protocols are generally integrated as a component of the user agent. 

User mailbox
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messages SMTP
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SMTP
server

Mail server
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server TCP port 110

SMTP
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retrieval

Host X

POP3
clientTCP port 1925

User agent

SMTP
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SMTP

 

Figure 0.35. A POP3 client and a mail server. 

We briefly describe the operation for a user agent that uses POP3 in Figure 0.35, where a user 
on Host X accesses its mailbox on Host A via POP3. The user must have a user name and a 
password to access Host A, and the user agent at Host X must know the domain name or IP 
address of Host A. The POP3 client at Host X initiates a TCP connection to the well-known 
TCP port 110 of the POP3 server of Host A. When the TCP connection is established, the user 
authenticates itself with a user name and a password. If the authorization is successful, the POP3 
client can download email messages from the mailbox at Host A to Host X.  The messages can 
be downloaded with or without deleting the message from the remote mailbox.  
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Server:   +OK POP3 mailserver.local-lab.net v7.62 server ready 
Client:   user student 
Server:   +OK User name accepted, password please 
Client:   pass MySeCreT 
Server:  +OK Mailbox open, 4 messages 
Client:   list 
Server:   +OK Mailbox scan listing follows 
  1 861 
  2 1045 
  3 1560 
  4 753 
  . 
Client:   retr 1 
Server:   +OK 861 octets 
  // The email follows  
Client:   dele 1 
Server:   +OK Message deleted 
Client:   quit 
Server:   +OK Sayonara 
 

 

 

Figure 0.36. Exchange of POP3 messages between a POP3 client and a POP3 server. 

 

An exchange of POP3 commands between a POP3 client and a POP3 server is shown in Figure 
0.36. All commands and messages are in plain ASCII text, and lines are separated by an end-of-
line sequence (CR and LF). The POP3 server acknowledges each command from the client. 
When the TCP connection is established, the POP3 server sends a greeting. Then the user 
submits a user name and a password. In Figure 0.36, the password is transmitted without 
encryption, but POP3 also provides more secure methods of user authentication. Once the POP3 
client has authenticated itself, it issues a command to list all messages in its mailbox. The POP3 
server responds with the number and length of each message. In the example in Figure 0.36, the 
POP3 client downloads the first message (“retr 1”) and then deletes the message (“dele 1”). The 
POP3 client ends the POP3 session with the command “quit”. 

For outgoing messages, the user agent at Host X still uses SMTP. This is illustrated in Figure 
0.36, where the SMTP client of the user agent at Host X connects to the SMTP server of Host 
A. Here, Host A acts as a relay and forwards the message to the mail server of the email 
receiver. Alternatively, the SMTP client at Host X can directly connect to the mail server of the 
receiver. 

5.4. The Web  

The World Wide Web (WWW or Web) emerged in the early 1990s as a new application for 
access to content stored on Internet hosts. Within a few years, the Web became the most popular 
Internet applications, and traffic on the Internet was dominated by Web applications.  
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The Web is a distributed hypertext system which is implemented as a client-server application. 
A Web client program, called a Web browser, retrieves and displays documents from a Web 
server. The documents, often referred to as web pages, are formatted using the Hypertext 
Markup Language (HTML). HTML documents are text files that contain HTML tags, which 
describe how text should be displayed in the user interface of a Web browser. A hyperlink is 
special type of tag. It is a reference to another document, which may be located at a different 
Web server. When displayed in a browser, hyperlinks can be activated with a mouse click. 
When activated, the browser retrieves the document that is referenced in the hyperlink.   A Web 
browser makes it convenient to access a variety of documents at different web servers, which 
refer to each other by hyperlinks, thus, providing users with a feeling of navigating a global 
database of documents.  

On the Web, the location of a document is expressed in terms of a Uniform Resource Locator 
(URL). A URL specifies a unique location for a document on the web. It can reference an 
HTML document, but also any other file that can be accessed with a Web browser. An example 
of a URL is http://www.cerf.net/index.html, which specifies that an HTML 
document with name index.html can be accessed via the protocol HTTP from a host with the 
name www.cerf.net .   

 
 
 
 
 
 
 
 

(a) HTML file. 
 
 
 
 
 
 
 
 
 
 
 

 

<HTML> 
 <BODY> 
  <H1>Internet Lab</H1> 
  Click <a href="http://www.tcpip-lab.net/index.html">here</a>  
  for the Internet Lab webpage. 
 </BODY> 
</HTML> 

(b) HTML file displayed in a web browser. 
 

Figure 0.37. A minimal HTML document and its appearance in a web browser. 
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An HTML document and its representation in a Web browser for a minimal web page are 
shown in Figure 0.37. Figure 0.37(a) depicts a simple HTML document. Tags in the document 
are the portions of text which are enclosed by two brackets (< and >). The tag  

<a href="http://www.cerf.net/index.html">here</a>  

is a hyperlink which contains a URL. Figure 0.37(b) shows how the HTML document appears 
when it is displayed in a Web browser. The hyperlink is shown as underlined text. When a user 
activates this hyperlink, the Web browser attempts to access the web page that is referenced in 
the HTML document. 

The application- layer protocol of the Web is the Hypertext Transfer Protocol (HTTP).  HTTP is 
a request-response protocol where an HTTP client sends requests to an HTTP server, and the 
HTTP server responds with status information, possibly followed by an HTML file. HTTP 
employs TCP for data transfer, and the HTTP server uses the well-known TCP port 80 to accept 
requests for TCP connections. HTTP is a stateless protocol, in the sense that the HTTP server 
does not keep state information about request from clients. Each HTTP server handles each 
request from a client independently, even if multiple subsequent requests are made by the same 
client.  There is no notion of a sessions, as, for example, in Telnet and FTP. 

In older versions of HTTP, which are still in use today, an HTTP client initiates one TCP 
connection for each request to the HTTP server. When a single client issues multiple requests to 
the HTTP server, the number of TCP connections between the HTTP client and HTTP server 
can grow large.  To reduce the number of  TCP connections, HTTP/1.1, the current version of 
HTTP, permits multiple HTTP requests and responses on the same TCP connection, leaves the 
TCP connection open after a request has been served. The HTTP client does not need to wait 
until a request is completed before issuing new requests.  

As in many other application layer protocols of the Internet, HTTP messages are transmitted as 
ASCII text, using the end-of-line character sequence to indicate the end of a message. The most 
common HTTP messages sent by a client are requests for HTML or other documents. The 
server responds to such a request either with a message that contains the requested document or, 
if the request cannot be satisfied, with an error code. 

Let us know discuss a request and a response between an HTTP client and an HTTP. Suppose a 
user has typed the URL http://www.cerf.net/example.html in a web browser (see 
Figure 0.37(b)). When the URL is typed, the web browser starts an HTTP client which 
establishes a TCP connection to port 80 of the HTTP server of host www.cerf.net. When the 
TCP connection is established, the HTTP client sends the HTTP request shown in Figure 0.38. 
The HTTP request consists of the request line and a set of header line. Each line is ended with 
an end-of- line sequence. The request line “GET /example.html HTTP/1.1”  specifies the type of 
command (GET), an identification of the requested resource (/example.html), and the version of 
the HTTP protocol (HTTP/1.1). The header lines following the request line provide additional 



 

0.50 

information to the server. The request in the figure specifies the media formats, encoding 
schemes, and language that can be interpreted by the client (Accept: image/gif, */*, Accept-
Language: en-us, Accept-Encoding: gzip, deflate), an identification of the type of web browser 
that issued the request (User-Agent: Mozilla/4.0), the IP address of the client (Host: 
192.168.123.144), and a request to keep the TCP connection in place after the HTTP request is 
served (Connection: Keep-Alive). The HTTP request is completed with an empty line. 

Client:  GET /example.html HTTP/1.1 
   Accept: image/gif, */* 
   Accept-Language: en-us 
   Accept-Encoding: gzip, deflate 
   User-Agent: Mozilla/4.0  
   Host: 192.168.123.144 
   Connection: Keep-Alive 
    
 
 
Server:   HTTP/1.1 200 OK 
      Date: Sat, 25 May 2002 21:10:32 GMT 
      Server: Apache/1.3.19 (Unix)  
      Last-Modified: Sat, 25 May 2002 20:51:33 GMT 
      ETag: "56497-51-3ceff955" 
      Accept-Ranges: bytes 
      Content-Length: 81 
      Keep-Alive: timeout=15, max=100 
      Connection: Keep-Alive 
      Content-Type: text/html 
       
  <HTML> 
   <BODY> 
    <H1>Internet Lab</H1> 
    Click <a href="http://www.tcpip-lab.net/index.html">here</a> 
    for the Internet Lab webpage. 
   </BODY> 
  </HTML> 
     

 

 

Figure 0.38. Exchange of HTTP messages between an HTTP client and an HTTP server. 

The HTTP response message to the request consists of a status line, a set of header lines, and an 
entity body. The status line is HTTP/1.1 200 OK and has three parts: the HTTP version, a 
status code, and a status phrase. The version (HTTP/1.1) is the same as in the HTTP request. 
The status code is a three-digit number  that states whether the request is successful, or indicates 
if a problem has been encountered. The status phrase  provides a textual explanation to  the 
status code. Here, the response “200 OK” indicates that the request is successful. As shown in 
Figure 0.38, the HTTP response has many header lines, including the date and time of the web 
access (Date: Sat, 25 May 2002 21:10:32 GMT), the type and version of the HTTP 
server (Server: Apache/1.3.19 (Unix)), the date when the downloaded document was last 
modified (Last-Modified: Sat, 25 May 2002 20:51:33 GMT), a tag that can be used 
to distinguish different versions of the same resource (ETag: "56497-51-3ceff955"), 
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information if the downloaded file has been fragmented (Accept-Ranges: bytes), the 
length of the downloaded document in bytes (Content-Length: 81), a confirmation that the 
TCP connection will be kept open (Keep-Alive: timeout=15, max=100, Connection: 
Keep-Alive), and the media type that follows the header (Content-Type: text/html). 
Then, followed by an empty line, the HTTP server includes the requested HTML file in the 
entity body.   

We note that the example is quite simplistic. HTTP has a significant level of sophistication, and 
web browsers and servers are very complex software systems. There are numerous additions 
and enhancements to the web, such as web caches, dynamic content, remote execution of 
programs at a web server, and security of transactions.  
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The discussion of Internet applications showed that many clients of application layer 
protocols set up a TCP connection to a server and then exchange protocol messages over the 
TCP connection as ASCII text. Since Telnet clients send single ASCII characters over a TCP 
connection, a Telnet client program can be used to emulate the client portion of many 
application layer-protocols. 

Generally, a Telnet client program is started with the command  

 telnet hostname  

, where hostname is the domain name (or IP address) of a host on the Internet. By default, a 
Telnet client program attempts to establish a TCP connection to TCP port 23 of the host, 
which is the well-known port of a Telnet server. However, if  the Telnet client is started with 
the command  

 telnet hostname port 

, where port is a port number, the Telnet client program tries to set up a TCP connection to 
the given port number. Thus, by setting up TCP connections to a well-known port of  
application-layer protocols (e.g., 21, 25, 80, 110), a user can directly interact with the servers 
of application-layer protocols at remote hosts. As an example, by typing  

 telnet www.cerf.net 80 
a Telnet client establishes a TCP connection to a remote HTTP server. After the connection is 
established, typing the HTTP request  

GET  /index.html HTTP/1.1  
at the Telnet client results in a web access of the document at URL 
www.cerf.net/index.html. In a similar fashion, a TCP client can emulate an SMTP 
client to send emails to an SMTP server or a POP3 client to retrieve emails from a POP3 
server (Emulating an FTP client generally fails since FTP uses two TCP connections). 

5.5. Recent Applications  

New Internet applications are constantly emerging. In recent years, multimedia applications 
have emerged for the Internet that exploit the capability of modern computer systems to process 
audio and video data. For example, streaming media applications can retrieve and play back 
audio and video data, without creating a local copy of the data on the retrieving host. 
Application layer protocols in support of  streaming media applications include RTP (Real-time 
transport protocol), which is used for encapsulation of  multimedia data,   and RTSP (Real-time  
streaming protocol), which supports client control functions for interactions with a streaming 
server.  Another multimedia application is IP telephony, which refers to the technologies to 
support telephony in the Internet. Voice-over-IP (VoIP) is an ambitious standardization effort of 
IP telephony, which includes application layer protocols for signaling, for transmission of 



 

0.53 

digitized voice, and for interfacing to the legacy telephone network. Peer-to-peer (P2P) 
applications are a new class of applications that abandon the client-server model which 
characterizes most Internet applications. Instead of clients and servers, there are only P2P 
clients. Groups of P2P clients form a virtual network and use the virtual network to exchange 
data.  
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ASCII Table 
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0 00 NUL (Null) 32 20 Space 64 40 @ 96 60 ` 

1 01 SOH (Start of heading) 33 21 ! 65 41 A 97 61 a 

2 02 STX (Start of text) 34 22 " 66 42 B 98 62 b 

3 03 ETX (End of text) 35 23 # 67 43 C 99 63 c 

4 04 EOT (End of transmission) 36 24 $ 68 44 D 100 64 d 

5 05 ENQ (Enquiry) 37 25 % 69 45 E 101 65 e 

6 06 ACK (Acknowledge) 38 26 & 70 46 F 102 66 f 

7 07 BEL (Bell) 39 27 ' 71 47 G 103 67 g 

8 08 BS (Backspace) 40 28 ( 72 48 H 104 68 h 

9 09 HT (Horizontal tab) 41 29 ) 73 49 I 105 69 i 

10 0A LF (Linefeed) 42 2A * 74 4A J 106 6A j 

11 0B VT (Vertical tab) 43 2B + 75 4B K 107 6B k 

12 0C FF (Form feed) 44 2C , 76 4C L 108 6C l 

13 0D CR (Carriage return) 45 2D - 77 4D M 109 6D m 

14 0E SO (Shift out) 46 2E . 78 4E N 110 6E n 

15 0F SI (Shift in) 47 2F / 79 4F O 111 6F o 

16 10 DLE (Data link escape) 48 30 0 80 50 P 112 70 p 

17 11 DC1 (Device Control 1) 49 31 1 81 51 Q 113 71 q 

18 12 DC2 (Device Control 2) 50 32 2 82 52 R 114 72 r 

19 13 DC3 (Device Control 3) 51 33 3 83 53 S 115 73 s 

20 14 DC4 (Device Control 4) 52 34 4 84 54 T 116 74 t 

21 15 NAK (Negative Acknowledge) 53 35 5 85 55 U 117 75 u 

22 16 SYN (Synchronous idle) 54 36 6 86 56 V 118 76 v 

23 17 ETB (End transmission blocks) 55 37 7 87 57 W 119 77 w 

24 18 CAN (Cancel) 56 38 8 88 58 X 120 78 x 

25 19 EM (End of medium) 57 39 9 89 59 Y 121 79 y 

26 1A SUB (substitute) 58 3A : 90 5A Z 122 7A z 

27 1B ESC (Escape) 59 3B ; 91 5B [ 123 7B { 

28 1C FS (File separator) 60 3C < 92 5C \ 124 7C | 

29 1D GS (Group separator) 61 3D = 93 5D ] 125 7D } 

30 1E RS (Record separator) 62 3E > 94 5E ^ 126 7E ~ 

31 1F US (Unit separator) 63 3F ? 95 5F _ 127 7F DEL 
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