
 

 

CHAPTER 2 

SINGLE SEGMENT 
NETWORKS 

 

Chapter 2 focuses on topics related to the transmission of IP datagrams over a single 
Ethernet segment.  The first section gives an overview of Ethernet. The second sections 
discusses  the Address Resolution Protocol (ARP), and its role in resolving IP addresses.  
Section 4 and Section 5, respectively, provide an overview of the Internet Protocol (IP) and 
the Internet Control Message Protocol (ICMP). The last section discusses network 
configuration and traffic analysis tools used in Lab 2. 
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1. Ethernet Networks 

Ethernet networks are the dominant local area network (LAN) technology.  The broadcast mode 
of transmissions in Ethernet makes it easy to observe traffic between hosts and routers, and 
makes Ethernet very attractive for use in the Internet Lab. This section presents an overview of 
Ethernet networks, including its Medium Access Control (MAC) protocol, the Ethernet frame 
format, and physical layer issues. 

Ethernet networks were invented in the mid-1970s by Bob Metcalfe and D.R. Boggs at 
the Xerox Palo Alto Research Center. Ethernet was first standardized in 1980 by a 
consortium of DEC, Intel, and Xerox. This standard is known as Ethernet II or DIX. In 1983, 
the Institute of Electrical and Electronics Engineers (IEEE) adopted a revised, but compatible, 
version of Ethernet II in the IEEE 802.3 CSMA/CD standard. The IEEE 802.3 committee has 
repeatedly revised the 802.3 standard, to integrate new advances in transmission technology. 
Currently, standards are available for data rates at 10 Mbps, 100 Mbps, 1 Gbps, and 10 Gbps, 
running over a wide variety of media, ranging from phone wires and optical fiber cables.  

The first generation of Ethernet networks was designed for a bus network topology. A single 
coaxial cable, with a length of up to 500 m, provides the transmission media, Ethernet devices 
are  directly connected to the coaxial cable, as shown in Figure 2.1. The coaxial cable provides a 
shared broadcast medium, meaning that any transmission can be received by all devices 
connected to the coaxial cable. A single Ethernet LAN, as shown in Figure 1.1, is also called an 
Ethernet segment. 

Ethernet
 

Figure 2.1. Ethernet segment with a bus topology. 

Ethernet segments can be interconnected to create larger networks using devices such as hubs, 
switches, or routers. Ethernet hubs and Ethernet switches are devices that operate at the data link 
layer, whereas routers operate at the network layer. The issues involved in interconnecting 
Ethernet segments will be revisited in Chapter 5.   
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1.1. The Ethernet MAC protocol 

The main abstraction of an Ethernet network is that of a broadcast network with a shared 
communication channel. Broadcast networks are common in local area networks, and are not 
limited to Ethernet. An important issue with broadcast networks is that only one network device 
should transmit at any time. If two or more devices transmit at the same time, the transmissions 
are corrupted. This is referred to as a collision. Protocols that arbitrate access to a shared 
medium are called Multiple Access Control (MAC) protocols. The MAC protocol of a local area 
network is generally implemented in hardware on the network interface card of a host or router.  

The MAC protocol of Ethernet networks is called CSMA/CD (Carrier Sense Multiple Access 
with Collision Detections) and works as follows: 

1. A device that has data ready for transmission listens to the broadcast channel for an ongoing 
transmission. If the channel is idle, the device transmits. Otherwise, the device waits until 
the channel becomes idle. This is the “carrier sense” portion of CSMA/CD, sometimes also 
called `listen before talking’. 

2. While a device is transmitting data, it continues to listen to the broadcast channel to 
determine if there is a collision. This is the “collision detection” part of the MAC protocol, 
also referred to as “listen while talking”. If a collision is detected, the device stops its 
transmission and sends a jamming signal that notifies other devices about the collision. 
Then, the device waits  for a random period of time and makes a retransmission attempt.  

3. When a retransmission results in a collision, the device waits again a random time and 
retransmits. This time, however, the station doubles the interval from which the random 
time is selected (backoff interval). If another collision occurs, the backoff interval is doubled 
once again.  Doubling the backoff interval intends to reduce the likelihood of repeated 
collisions.   

Compared to MAC protocols of other local area networks, CSMA/CD is a relatively simple 
protocol. The MAC protocol of Ethernet has remained unchanged over the years. Most versions 
of Ethernet run the CSMA/CD MAC protocol. An exception are full-duplex Ethernet versions, 
that can transmit and receive concurrently without ever encountering collisions. In these  
versions of Ethernet, a device can transmit data at any time. 
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1.2. Ethernet Frame Format 

Ethernet frames in transmission have a structure as shown in Figure 2.2. Each Ethernet frame is 
preceded by a 64 bit preamble that consists of a bit pattern of alternating 1’s and 0’s, and has the 
last two bits set to “11”.  This bit pattern is used by the receiver to synchronize with the bit 
timing of the frame. The last two bits indicate the beginning of the Ethernet frame. Consecutive 
frames must be separated by a gap of 96 bits, which corresponds to 96 nanoseconds on a 100 
Mbps Ethernet network.  

Preamble
101010...101011

8 bytes

Ethernet Frame

64  to 1518

inter frame gap
96 bits

Preamble
101010...101011

Ethernet Frame

 
Figure 2.2. Ethernet Frames.  

The frame itself has a minimum size of 64 bytes and a maximum size of 1518 bytes. The 
requirement for a minimum frame size is needed for the collision detection part of the Ethernet 
MAC protocol.  If frames are shorter than 64 bytes, Ethernet stations may not be able to detect a 
collision of a frame. The collision detection component of Ethernet requires that a transmitting 
station becomes aware of a collision occurs before the transmission of the frame is completed.  
The longest time to detect a collision occurs, when two stations with the maximum distance 
between them start to transmit a frame at the same time. In this case, the time to detect a 
collision is twice the propagation delay between  the transmitter and the receiver. In the original 
Ethernet specification, the maximum length of an Ethernet network, if extended by signal 
repeating devices, is 2500 meters, resulting in a delay of 51.2 microseconds, which translates 
into 512 bits or 64 bytes for a 10 Mbps network.  

The format of an Ethernet frame is somewhat different in the Ethernet II and IEEE 802.3 
versions.  Following a widely used convention, we will refer to an Ethernet II frame as an 
Ethernet frame and an IEEE 802.3 frame as an 802.3 frame. Both versions have a 14 byte long 
Media Access Control (MAC) header and a 4 byte long  trailer. The 802.3 frame has an 
additional 8 bytes of header information. Both types of frames may be observed on the same 
Ethernet network, and most Ethernet devices recognize both formats. However,  Ethernet 
frames are much more common. 

The Ethernet frame format is shown in Figure 2.3(a). The frame header has a length of 14 bytes. 
The first two fields are the destination and source MAC addresses, using the format that was  
discussed in Chapter 0. The next field is the protocol type field. This field serves as the 
demultiplexing field and  identifies the protocol used in the payload of the Ethernet frame. If the 
payload of the frame is an IP datagram, the protocol field is set to 0x8000. The payload itself 
has a length between 46 and 1500 bytes. If an IP datagram is smaller than 46 bytes, then 
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additional zeros are added as padding to satisfy the minimum length requirement. Following the 
payload is a four byte long Cyclic Redundancy Check (CRC) field, which serves as a checksum 
for error detection purposes. 

 

Data (38 - 1492 bytes)

Data (46-1500 bytes)

(a) Ethernet Encapsulation

(b) IEEE 802.3 Encapsulation

Destination Address (6 bytes)

Source Address  (6 bytes)

Type (2bytes)

 4 bytes

CRC

Padding (0-46 bytes)

Destination Address (6 bytes)

Source Address  (6 bytes)

Length (2bytes)

 4 bytes

CRC

Padding (0-46 bytes)

DSAP
(0xaa)

SSAP
(0xaa)

Control
(0x03)

Organization Identifier
(0x000000)

Type (2bytes)

 

Figure 2.3. Ethernet Frame Formats.  
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The 802.3 frame format, shown in Figure 2.3, also has a MAC header with 14 bytes. The first 
two fields are identical to Ethernet, but the third field is interpreted differently. This field 
contains the length of the Ethernet payload in bytes.  Following the type field is what is called a 
LLC/SNAP header. It consists of an IEEE 802.2 Logical Link Control (LLC) header which has 
a length of three bytes.  The fields of the LLC header are a Destination Service Access Point 
(DSAP) and a  Source Service Access Point (SSAP) with a length of each 1 byte, followed by a 
1 byte control field. The IEEE 802.2 Subnetwork Access Protocol (SNAP) header is five bytes 
long and contains  an organization unique identifier (OUI) and a type field. In 802.3 frames the 
fields are always set to the same value, and, we therefore, skip a lengthy discussion of their role. 
The DSAP and SSAP fields are always set to 0xaa, the control field is always set to 0x03, the 
OUI field is always set to 0x000000, and the type field has the same interpretation as the last 
byte in the MAC header of the Ethernet frame.  

Since the same Ethernet network can have both Ethernet and 802.3 frames, how can a host 
distinguish the type of a frame? The determination is done with the content of bytes 13 and 14. 
In Ethernet II, these bytes are designated as the type field, and in 802.3 as the length field. Since 
the length of an Ethernet frame is less than 1500, a host can distinguish 802.3 and Ethernet II 
frames, as long as all  types are indicated by a value larger than 1500. Thus, a frame is identified 
as 802.3 frame if the value of bytes 13 and 14 does not exceed 1500, and  otherwise as an 
Ethernet frame.  

 

1.3. The Ethernet Physical Layer 

The MAC protocol and the frame format of Ethernet have changed little since the early 1980s. 
On the other hand, the physical layer of Ethernet has evolved significantly. Over the years, close 
to 20 different physical layers have been specified for Ethernet. The physical layer 
specifications are generally referred to by acronyms, such as 10Base5, 100BaseT, 1000BaseFX, 
and so on. The acronyms specify the data rate in Megabits per second, the signaling method, 
and the transmission media. The data rate is given by the first number “10”, “100”, or “1000”. 
With one exception, physical layer specifications for Ethernet use digital signaling, and indicate 
this with a  “Base” in the acronym. Only one physical layer, the now obsolete 10Broad36, 
defines analog signaling over coaxial cables. The transmission media is denoted by a letter or a 
number at the end of the acronym. The convention is that “5” and “2” specify different types of 
coaxial cables (10Base2, 10Base5). If the last part of the acronym starts with a “T” (as in 
10BaseT, 100BaseTX, 100BaseT4) the physical layer uses unshielded twisted pair (UTP) 
cables. If the last part of the acronym contains an “X” (100BaseCX, 1000BaseFX, 100BaseX) 
the physical layer probably uses a fiber optic cable.  

The physical layer specifications 10Base5 and 10Base2, also known as thick Ethernet and thin 
Ethernet, respectively, use a coaxial cable in a bus topology, as seen in Figure 2.1, and support a 
data rate of 10 Mbps. Both versions of Ethernet have become obsolete.  
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Today, the most widely used Ethernet physical layers are 10BaseT and 100BaseTX, which have 
a data rate of 10 Mbps and 100 Mbps, respectively. Both technologies UTP cables with RJ-45 
connectors. These Ethernet networks are not configured in a bus topology. Instead, the network 
is configured as a star, where stations connect to an Ethernet hub or an Ethernet switch1.  In 
Figure 2.4 we show an Ethernet segment with one hub and a few hosts. Many Ethernet hubs and 
Ethernet interface cards are dual-speed, meaning that they can support both 10BaseT and 
100BaseTX. All Ethernet networks in the Internet Lab use 10BaseT or 100BaseTX.  

In principle, Ethernet hubs preserve the broadcast property of Ethernet LANs. This means that a 
hub transmits every incoming packet on all of its ports. Increasingly, however, hubs forward a 
packet on a port only if the packet is marked as a broadcast packet, or if the packet is directed to 
the host connected to the port. The technical term for such a hub is switched hub.  

PCs

Hub  

Figure 2.4. Ethernet Segment with a Hub in a Star Topology 

The IEEE 802 Committee 

 The IEEE 802 LAN/MAN standards committee within the  Institute of Electrical and 
Electronics Engineers (IEEE)  is devoted to the development of  local area network  
and metropolitan area network standards. Since the 1980s, IEEE 802 has specified 
standards for a variety of technologies including CSMA/CD (IEEE 802.3), Token Bus 
(IEEE 802.4) and Token Ring (IEEE 802.5), Wireless LAN (IEEE 802.11), and 
several more. The IEEE 802 committee has defined more than a dozen different MAC 
layer protocols and, generally, many different physical layer protocols for each MAC 
layer protocol. Each of these specifications describes a MAC layer and generally 
multiple physical layers for that MAC layer. The MAC layer and the physical layer in 
the 802 standards are very different, however, the frame formats are very similar. Also, 
most standards use the MAC addresses that we saw in Ethernet.  
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 The 802 committee has defined a complete protocol architecture for LANs and MANs, 
as illustrated in Figure 2.5. The protocol architecture specifies that all LAN and MAN 
specifications have a common upper layer interface to the IEEE 802.2 Logical Link 
Control (LLC) layer. The IEEE 802.1 standard describes the the overall IEEE 802 
architecture, addresses interoperability issues between different types of LANs and 
MANs, and discusses how to interface with layers above the LLC layer.  

 The modular design of the IEEE 802 protocol architecture, with the common LLC 
layer makes it relatively easy to introduce new LAN and MAN protocols. For 
protocols above the MAC layer,  including the entire TCP/IP protocol suite, the 
transition to a new LAN standard is almost transparent. 

802.3

802.2
Logical Link Control (LLC)

802.1
Higher Layer Issues

Medium
Access
Control

Logical Link
Control

Higher
Layer

Physical Layer

802.4 802.5 802.11

CSMA/CD
Token
Bus

Token
Ring

Wireless
LAN

 
Figure 2.5. IEEE 802 LAN/MAN Protocol Architecture.  

1.4. Processing of Ethernet Frames in Linux 

The operations at the physical layer and the MAC layer are generally implemented in hardware 
on the network interface card.  The operations at the data link layer, such as the construction  
and  demultiplexing of frames, are performed in the  device drivers of the network interface 
cards. Recall from Chapter 1, that each network interface is associated with a device driver. A 
device driver is responsible for the data exchange between the Linux operating system and the 
network interface card, generally via memory mapped I/O.  

In  Figure 2.6 we show the operations of  an device driver for an Ethernet card when it processes 
an IP datagram. The figure also includes the driver of the loopback interface. Recall that the 
loopback interface is a virtual interface, which is present on any Linux system and which is 
generally assigned the IP address 127.0.0.1.  If a host sends a packet to the loopback interface, 
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the packet is immediately returned to the network layer of the host. Thus, the loopback interface 
permits a host to send packets to itself. 

When an IP module on a Linux host transmits an IP datagram on an Ethernet card, the device 
driver first tests if the sending host should also receive the IP datagram, and if so, passes  the IP 
datagram to the loopback driver.  The sender of a datagram should receive the IP datagram, 
when the IP destination address is a multicast or broadcast address or when the IP destination 
address matches one of the IP addresses of sending host. If this is not the case, the Ethernet 
driver tests if it knows the MAC address for the destination IP address. If not, the ARP protocol, 
which is discussed in the next section, is invoked to resolve the MAC address and the datagram 
is kept in a buffer until the MAC address becomes available. If the MAC address is known, the 
Ethernet driver constructs the Ethernet frame with the format shown in Figure 2.3. Once the 
frame is constructed, the Ethernet device driver passes the frame to the Ethernet card. The MAC 
and physical layer are handled by the hardware on the Ethernet card, and are not part of the 
Linux operating system. 

When an Ethernet frame arrives at a network interface card, the interface cards assembles the 
frame, writes the frame into a memory location, and issues a signal to the Linux operating 
system.  Then, the device driver for the appropriate network interface reads and demultiplexes 
the frame. As shown in Figure 2.3, if the packet is an ARP message the payload of the frame  is 
passed to ARP, and if it is an IP datagram, the payload is passed to the IP module.  
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IP module

loopback
driver

Ethernet
driver

demultiplex
Ethernet frame

ARP
build

Ethernet frame

IP datagram

Is the IP destination
address a multicast or
broadcast  address?

Is the IP destination
address local?

Transmit IP
datagrams

Receive IP
datagrams

from MAC layerto MAC layer

write to IP input
queue

Yes

No

MAC address of destination
or gateway known?

No

No: send/
receive

ARP
packet

ARP
packet

Yes

Yes

 

Figure 2.6. Ethernet and loopback device drivers (from W. Stevens: TCP/IP Illustrated, Volume 1). 

When a datagram is transmitted it can be processed by either, the loopback driver, or the 
Ethernet driver, depending on the IP address of the outgoing datagram. If the IP address is not 
the local loopback address, the datagram is filtered one more time to determine if the address is 
a broadcast or multicast address, in which case it is sent directly to the Ethernet  network with 
the appropriate hardware address and is also placed on the device’s input queue for local 
processing. If the IP address is none of the above, the driver checks the ARP cache to determine 
if the hardware address is available. If the ARP cache does not contain the destination IP 
address, the driver calls the ARP module to send out an ARP query. Once the ARP response 
comes back, it is processed and the outgoing packet is transmitted. All incoming packets are 
filtered to separate ARP frames from IP datagrams. The former are used to update the ARP 
cache and the latter are passed on to the input queue. 
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2. The Address Resolution Protocol (ARP) 

Whenever a system transmits an IP datagram over an Ethernet network, it encapsulates the IP 
datagram in an Ethernet frame. To send the frame, the sender must include the MAC address of 
the receiver in the frame. The sender of the frame has the IP address of the receiver, either the 
destination IP address or the IP address of a router, but may not know the MAC address.  This is 
where the Address Resolution Protocol (ARP) comes in. ARP performs a lookup service that 
finds a MAC address for a given IP address.  The basic operation of ARP is simple.  A system 
that needs a MAC address for a given IP address broadcasts a query which contains the IP 
address to all systems on the network. If a system receives the query and the IP address in the 
message  matches its own IP address, it sends its MAC address to the sender of the query. 

The address resolution service of ARP is not limited to MAC addresses and IP addresses. By 
design, ARP can be used for a variety of network layer addresses and data  link layer addresses. 
In the context of ARP, the former are called protocol addresses and the latter are called 
hardware addresses. However, the most common use of ARP, and the only use of ARP in the 
Internet Lab, is concerned with finding a MAC address for a given IP address. 

In principle, one can think of three methods to translate IP addresses and MAC addresses. A 
direct mapping, a table lookup, and a message based solution.  ARP implements the third 
option. Let us briefly review why this choice is made. 

In a direct mapping, the MAC address of a system is derived from its IP address. For example, 
Argon’s IP address, 128.143.137.144, could be directly mapped to the MAC address 00:00:80: 
8F:89:90, that is, the first two bytes of the MAC address are set to zero, and the last 4 bytes are 
directly translated. This solution assumes that the MAC address of a network interface card can 
be  set to an arbitrary value. However, as we discussed in Chapter 0,  for MAC addresses, most 
network interface cards have preconfigured MAC addresses, which are permanently assigned 
during the manufacturing process. Therefore, for most Ethernet networks and most other LAN 
networks, a direct mapping is not viable.  

Another solution to the address translation problem is a  table lookup. Here, each system 
maintains a table with entries of the form (IP address, MAC address) for each system on the 
local area network. Then, whenever the host looks for an IP address, it simply performs a 
lookup in its table. The drawback of this solution is that every change to an IP address or a 
MAC address in the local area network requires  that the table are updated on each system in the 
network, and keeping the tables current at all systems requires a significant amount of human 
intervention.  

As already indicated, ARP uses a third solution, which is based on  a query and reply messages. 
The system looking for a MAC address sends a query message and waits for a response. When 
ARP is used on local area networks, the query is broadcast to all systems on the local area 
network and all systems process the query. However, only the system whose IP address matches 
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the IP address in the query message responds by sending its own hardware address to  the host 
that issues the query. 

As an alternative to broadcasting queries, one could think of a solution where ARP messages are 
sent to a central server that keeps an updated copy of all  (IP address, MAC address) entries. An 
argument against a server solution are that all systems must know the hardware address, thus 
requiring yet another network configuration parameter. Also this solution is sensitive to the 
failure of the server. However, in local networks that do not support  broadcast messages at the 
data link layer, a server based solution  to ARP is sensible. 

2.1. Operations of ARP 

Each system maintains a table, called the ARP cache, that temporarily stores the results from 
previous address resolutions. The ARP cache contains entries of the form (IP address, MAC 
address). The role of the ARP cache is to reduce the amount of ARP messages being sent. If  the 
cache has an entry for the receiver of the frame, the address resolution is completed. The ARP 
cache, however,  is not a static table. In fact, each ARP entry is associated with a timer, and is 
deleted when the timer expires. The timers are usually set to a value between 1 and 10 minutes. 
The timer for an entry  in the ARP cache is reset,  each time the system looks up this entry. In 
some implementations of ARP, systems send out a queries for an IP address for which it already 
has an entry in its cache to verify that the mapping is still valid.  

When a host holds an IP datagram and the destination address is not found in the ARP cache, 
the host issues an ARP Request, and holds the IP datagram in a queue until the MAC address 
has been found. The ARP Request is sent to all systems on the network using a  broadcast 
message. In Ethernet networks, a frame is broadcast when the destination MAC address is set to 
the broadcast address ff:ff:ff:ff:ff:ff. A broadcast frame is received and processed by all hosts on 
the network. If a system receives the ARP request and the IP address in the message  matches its 
own IP address, it issues an ARP Reply message to the sender of the query. The reply message 
is not a broadcast message. 

In Figure 2.7(a), we illustrate the ARP Request from the example in Chapter 0, where Argon 
tries to find the MAC address of Router137. The ARP Request contains the IP address needs to 
be resolved, and the IP address of the sender. When Router137 processes the request, it notices 
that the request refers to its own IP  address, Router137 generates an ARP Reply and transmits 
its IP address and MAC address to Argon. The reply message is not broadcast to all hosts, but is 
sent directly to Argon. This is shown in Figure 2.7(b).  

When a system sends an ARP Request for a not existing IP address,  there will not be a 
response. In this case, the ARP Request is repeated. The waiting time until the next ARP 
Request is sent depends on the implementation of ARP. In Linux, one ARP Request is sent 
every second, until a response is received. In other implementations, the sender of an ARP 
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request increases the time interval between transmission of ARP Request, and may eventually 
give up.  

ARP Request transmissions are used by all systems on the network to update their ARP caches. 
Every host that sees an ARP Request verifies its ARP cache if there is an entry for the sender of 
the ARP Request. If such an entry exists, it updates the MAC address with the address in the 
ARP Request.  Since ARP Requests are broadcast message, these updates are made by all 
systems each time an ARP Request is transmitted on the network. This feature is exploited in a 
concept that is called gratuitous ARP. A gratuitous ARP is an ARP Request sent by a host for its 
own its own IP address. Gratuitous ARP messages can be used in several scenarios. For  
example, when the IP address of a host is changed, a gratuitous ARP can be used to verify if the 
new IP address is already in use. When some other host responds to the gratuitous ARP,  the IP 
address is already in use. Also, if the MAC address of a host has changed, a gratuitous ARP by 
this systems forces an update of all ARP caches on the network. Gratuitous ARP messages are 
sometimes used by backup servers. When the main server fails, the backup server takes over the 
IP address of the failed server by issuing a gratuitous ARP.  

ARP is quite vulnerable to attacks by malicious users. As shown in the scenario with the backup 
server, a gratuitous ARP packet can be used to redirect traffic directed to a certain IP address to 
any machine on the network, thereby effectively hijacking an IP address. Another vulnerability 
is that broadcasting ARP Replies with invalid MAC addresses inserts incorrect entries in ARP 
caches.  

ARP works well in networks where the mapping of IP address and MAC addresses of system 
changes frequently. Such a change can occur for a number of reasons.  When the network 
interface card of a host is replaced, the MAC address changes even though the IP address does 
not change. When a host is moved to a different subnetwork, the IP address of the host changes, 
but the MAC address remains the same. As we will see in Chapter 8, networks may assign IP 
addresses on an on-demand basis to hosts (via the Dynamic Host Configuration Protocol or 
DHCP). In this case, the IP address of a host may change frequently. In all of these situations, 
ARP is designed to automatically adapt to the new mappings without requiring changes  to the 
network configuration. 

Sometimes a host needs to perform an address resolution service as provided by ARP, but in the 
opposite direction. That is, a host may want to find the IP address that corresponds to a given 
MAC address. One such protocol is the Reverse Address Resolution Protocol (RARP).  RARP 
is intended for hosts that have a MAC address and want to be assigned an IP address.  This 
scenario applies to hosts that do not have a disk to store their IP configuration, or to networks 
were IP addresses are dynamically assigned by a server when a system is started.  As in ARP, a 
RARP Request is broadcast and the RARP Reply is sent as a unicast message to the querying 
hosts. RARP assumes that there is always a system on the network that responds to RARP 
requests. Today, even though dynamic assignment of IP addresses is quite common, RARP is 
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rarely used. Dynamic assignment of IP addresses is generally performed by other protocols, 
such as BOOTP and DHCP.   

Argon

00:a0:24:71:e4:44

Router137
128.143.137.1

00:e0:f9:23:a8:20

ARP Reply:
The MAC address of 128.143.71.1
is 00:e0:f9:23:a8:20

Argon
128.143.137.144

00:a0:24:71:e4:44

Router137
128.143.137.1

00:e0:f9:23:a8:20

ARP Request:
What is the MAC address
of  128.143.71.1?

(a) ARP Request.

(b) ARP Reply.
 

Figure 2.7. ARP Request and Reply. 

   

2.2. ARP Packet Formats 

ARP messages are carried in the payload of  Ethernet frames. In Figure 2.8, we show the 
encapsulation of an ARP message in an Ethernet frame.  In ARP messages, the type field of the 
Ethernet frame is set to  0x8060.  As we already indicated, ARP can be used to map addresses 
for a variety of data link protocols and network layer protocols, not only for IEEE 802 MAC 
addresses and IP addresses. The length of an ARP message is determined by the size of these 
addresses, ARP packets can have a different length. With 48-bit MAC addresses and 32-bit IP 
addresses, ARP Request and ARP Reply messages have a length of 28 bytes.  
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Destination
address

6

ARP Request or ARP Reply

28
(for IP addresses and MAC addresses)

Source
address

6 2

CRC

4

Type
0x8060

Padding

1 0

Ethernet II header

Figure 2.8. Encapsulation of ARP messages in an Ethernet frame. 

Hardware type (2 bytes)

Hardware address
length (1 byte)

Protocol address
length (1 byte)

Operation code (2 bytes)

Target hardware  address*

Protocol type (2 bytes)

Source hardware address*

Source protocol address*

Target protocol address*

* Note: The length of the address fields is determined by the corresponding address length fields
 

Figure 2.9. Format of ARP packets. 

We show the format of an ARP packet in Figure 2.9. The first field, called  hardware type, 
identifies the data link layer protocol to be used, and the second field, called protocol type, 
identifies the network layer protocol that request the hardware address. We already pointed out 
that, in principle, ARP can perform address resolution for many data link layer and network 
layer protocols. In practice, however, ARP is generally resolves IP addresses to 48-bit MAC 
addresses. For Ethernet, the hardware type is 0x0001 and for IEEE 802 addresses, the hardware 
type is set to 0x0006.  The protocol type field is set to 0x8000 when ARP is used to resolve  IP 
addresses. Note that the value 0x800  is the same value as the type field in Ethernet frames that 
indicate an IP datagram payload. The operation code is set to 0x0001 for ARP Requests and 
0x0002 for ARP Replies. There are several other operation codes defined for ARP, but they do 
not play  a role in the Internet Lab. 

The fields for the hardware address length and protocol address length specify the number of 
bytes of the address types. Since we have 48-bit long MAC addresses the  hardware address 
length is set to six, and for IP addresses the protocol address length is set to four.  

The next four fields contain the hardware address and the network address of the sender and the 
intended receiver of the ARP packet. The former is referred to as the source and the latter is 
referred to as the target. In the ARP Request in Figure 2.7(a), Argon is the source and Router137 
is the target, and the fields in the ARP Request are set as follows: 



 

 15 

ARP Request from Argon:  Source hardware address:  00:a0:24:71:e4:44 
  Source protocol address:  128.143.137.144 
  Target hardware address:  00:00:00:00:00:00 
  Target protocol address:  128.143.137.1 

The target hardware address is set to zero since this is the address that Argon, the sender of the 
ARP Request, is looking for. (In some ARP implementations, including Linux  implementations 
of ARP, one observes that hosts periodically send ARP Requests for IP addresses listed in the 
ARP cache, even if  no IP datagram is sent to these IP addresses. In these requests, the 
requesting host includes the hardware address of the target from the ARP cache in the target 
hardware address field of the ARP request.). When Router137 sends its ARP Reply to Argon, as 
shown in Figure 2.7(a), Router137 is the source and Argon is the target, and the addresses in the 
ARP Reply packet are set as follows: 

ARP Reply from Router137:  Source hardware address:  00:e0:f9:23:a8:20  
  Source protocol address:  128.143.137.1  
  Target hardware address:  00:a0:24:71:e4:44 
  Target protocol address:  128.143.137.144 

The MAC address needed by Argon is contained in the source hardware address. Note that 
inserting the source addresses in the ARP Reply is superfluous, since they do not play any role 
in the address resolution.   

Finally, in a gratuitous ARP Request transmitted by Argon, the addresses in the source and the 
target fields are identical. 

Gratuitous ARP Request from Argon:   
  Source hardware address:  00:a0:24:71:e4:44 
  Source protocol address:  128.143.137.144 
  Target hardware address:  00:a0:24:71:e4:44 
  Target protocol address:  128.143.137.144 

2.3. Proxy ARP 

Proxy ARP is a configuration option for IP routers, where an IP router responds to ARP 
Request that arrive from one of its connected networks for a host that is on another of its 
connected networks. Without Proxy ARP enabled, an ARP Request for a host on a different 
network is unsuccessful, since routers do not forward ARP packets to another network.  
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A scenario where Proxy ARP is extremely useful is shown in Figure 2.10. The depicted 
network configuration is almost identical to the configuration in Figure 0.4, but with one 
subtle difference: The network interface of Argon and the left interface of Router137 are 
configured with a 16-bit extended network prefix, or equivalently, with subnetmasks set to 
255.255.0.0.  

Recalling from Chapter 0, with this network configuration, when Argon with IP address 
128.143.137.144 sends an IP datagram to Neon with IP address 128.143.71.21, the two 
address match on the bits that correspond to the extended network prefix. Therefore, Argon 
will attempt to deliver the IP datagram directly, and will not forward the IP datagram to 
Router 137.  

Without Proxy ARP, Argon sends an ARP Request and  wait for a response. However, since 
Neon is behind the router, it does not receive the ARP Request, and the address is not 
resolved. Now suppose that Proxy ARP is enabled on Router137. Then, when Router137 
receives the ARP Request from Argon, it checks if the IP address 128.143.71.21 can be 
reached from one of its connected interfaces. The router determines that 128.143.71.21 is 
directly reachable via its interface 128.143.71.1. In this case, Router 137 issues an ARP Reply 
on behalf of Neon. In the ARP Reply the source network address is set to 128.143.71.21 and 
the source hardware address to 00:e0:f9:23:a8:20. This indicates that   “IP address 
128.143.71.21 has MAC address 00:e0:f9:23:a8:20”. In other words, Router137  sends  an 
ARP Reply to Argon as if it was Neon. After Argon receives the ARP Reply, it sends a frame 
with IP destination address set to 128.143.71.21 and MAC destination address set to 
00:e0:f9:23:a8:20. Note that this is the same frame that Argon sent in Figure 0.5, where Argon 
has a 24-bit extended network prefix. When Router137 receives the frame, it forwards  the IP 
datagram to subnetwork 128.143.71/24.  Thus, the IP datagram is correctly delivered to Neon, 
and passed through a router, even though Argon believes that it has delivered the IP datagram 
directly. 

As a final note, when Neon  sends an IP datagram to Argon, it determines that Neon and 
Argon are on different subnetworks and it  sends the datagram to the router without relying on 
Proxy ARP.  
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128.143.137.1/16
00:e0:f9:23:a8:20 128.143.71.1/24

128.143.0.0/16
Subnet

128.143.71.0/24
Subnet

Router137

ARP Request:
What is the MAC address
of 128.143.71.21?

128.143.137.144/16
128.143.171.21/24
00:20:af:03:98:28

Argon Neon

ARP Reply:
The MAC address of
128.143.71.21 is
00:e0:f9:23:a8:20

 

Figure 2.10. Proxy ARP. 

 

3. The Internet Protocol (IP) 

The Internet Protocol (IP) carries IP datagrams from a source to a destination across a path of 
routers. As shown in Figure 2.11, IP is the highest layer protocol that is running on both hosts 
and routers. At the sending host, IP receives a protocol data unit from a transport layer protocol, 
TCP or UDP, encapsulates that data in an IP datagram, and then sends the  IP datagram to the 
destination host or to an IP router. For the delivery of an IP datagram, IP requests the services of 
a data link layer protocol. When an IP router receives an IP datagram, it forwards the datagram  
to another router or to the destination host. At the destination host, the IP layer demultiplexes an 
IP datagram and passes the payload of the datagram to a transport layer protocol.  

IP is the only network layer protocol  that performs data transport in the Internet. For this 
reason, IP has been called the waist of the hourglass of the TCP/IP protocol suite. As illustrated 
in Figure 2.12, there is a variety of protocols above IP, and a variety of data link layer protocols 
below IP, but there is no alternative to IP at the network layer. A single network layer protocol 
makes it easy to ensure interoperability between different types of hosts and routers. As long as 
a host or router speaks the  language of IP, it can communicate with all other systems on the 
Internet. A drawback of having no alternative to IP at the network layer is that all Internet 
applications, however different their needs, receive the same one-size-fits-all service of IP. 
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Figure 2.11. Protocols involved in data exchange between two hosts. 
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Figure 2.12. The waist of the hourglass of the Internet protocol suite. 

 

 

The current version of the Internet Protocol is IP version 4 (IPv4) which is in use since 20 years, 
without incurring any significant revision. In the early 1990s, motivated by a growing concern 
about the rapid decrease of availalbe IP addresses, the IETF initiated a process to define a new 
version of IP. The result of this process was the Internet Protocol version 6 (IPv6).2 3 Today, 
                                                 
2 RFC 1883. 
3 RFC 2460. 
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IPv6 implementations are available on most computers and commercial routers, but IPv6 does 
not yet play a significant role in operational IP networks.  Therefore, in the Internet Lab, we 
only work with  IP version 4. 

As a note on the version numbers of IP, the version numbers 1, 2, and 3, were allocated for 
prototype implementations of IPv4. Version number 5 was allocated for an experimental 
connection-oriented protocol for the Internet, called Stream Protocol (ST).  

3.1. The IP Service 

IP provides a very minimal delivery service. IP does not ensure that a transmitted IP datagram 
actually reaches its destination host. If an IP datagram gets dropped, due to a transmission error, 
or a buffer overflow at a router, IP does not attempt to recover the datagram. This is called an 
unreliable service.  

Also, IP does not recognize sequences of packets that are sent between a sending and receiving 
application. In IP, each IP datagram is handled completely independent from any other IP 
datagram. Even if  an IP router processes two back-to-back datagrams from the same source to 
the same destination, the router does not realize that the two IP datagrams belong together. This  
is called a connectionless service. A consequence of a connectionless service is that two back-
to-back IP datagrams that are sent between two hosts may traverse the network on a different 
route and may arrive in a different order than they were sent. In other words, IP does not 
guarantee an in-sequence delivery of datagrams. Another consequence of a connectionless 
service is that each IP datagram must contain the IP address of the destination hosts.   

By default, IP does not give service guarantees in terms of a bounds on delay, losses, and the 
data rate. This is called a best-effort service. The term best effort points out  that IP will make a 
good faith effort to give an IP datagram the best possible service, but without committing itself 
to specific guarantees. In IP, a host can indicate that it wishes to receive a service with low 
delay, high bandwidth or low loss service for its transmitted traffic. This is done by setting 
appropriate bits in the IP header. In addition, the IP header can be used to identify that an IP 
datagram belongs to a certain traffic class, and IP routers can give different priorities to traffic 
from different classes, resulting in a differential treatment of IP datagrams.  

IP has three different delivery modes: unicast, multicast, and broadcast. In a unicast mode, an IP 
datagram is sent to a single receiver, as identified in the destination IP address. The vast 
majority of IP datagrams are transmitted in this mode. In a multicast mode, an IP datagram is 
sent to a set of receivers, called a multicast group. The multicast group is identified by a 
multicast address in the destination IP address in the IP header. If a host wants to receive 
packets sent to a multicast address, it joins the multicast group for this address. Multicast will be 
covered in detail in Chapter 7. With broadcast, an IP datagram is transmitted to all hosts with 
respect to a given scope. Broadcast addresses can be recognized by having all bits in the host 
portion of an IP address set to 1. Since hosts that receive a broadcast IP datagrams must process 
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the datagram, it is important to limit the amount of broadcast traffic. Broadcast addresses are 
often employed to stage Denial of Service (DDoS) attacks in the Internet. Therefore, IP routers 
often disable forwarding of IP datagrams with broadcast addresses. 

3.2. IP Datagram Format 

Each IP datagram has a header of at least 20 bytes and at most 60 bytes. The maximum size of 
an IP datagram, including the header, is 65,535 bytes, however, the actual size is typically much 
smaller, due to restrictions imposed by the data link layer protocol. For example, with Ethernet 
at the data link layer, IP datagrams cannot exceed a size of 1500 bytes. 

The format of an IP datagram is shown in Figure 2.13. When transmitted on a link, the order of 
transmissions of an IP datagram is  row-by-row, and in  each row, from left to right. 

ECNversion
header
length

DS total length (in bytes)

Identification Fragment offset

source IP address

destination IP address

options (0 to 40 bytes)

payload

4 bytes

time-to-live (TTL) protocol header checksum

bit # 0 15 23 248 317 16

0 M
F

D
F

 

Figure 2.13. The IP Datagram format. 

The first field of the header is the version number of IP. For IPv4 datagrams, the version field is 
set to value 4. The next field is the header length field, which states the length of the IP header 
in multiples of four bytes. The header length field is four bits long. Therefore, the maximum 
size of the IP header is 15*4=60 bytes. The header length field is needed because of the variable 
length IP header. Without the field IP could not detect the boundary between the IP header and 
the beginning of the payload.   

The second byte in the IP header contains the Differentiated Services (DS) field and the Explicit 
Congestion Notification (ECN) fields. Until recently, these fields were known as the Type-of-
Service (TOS) field. In Figure 2.14 we show the old and the new interpretation of this field. 
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Figure 2.14(a) shows the format of the TOS field. The first three bits of the TOS field denote the 
precedence level of an IP datagram. A higher precedence level indicates that the IP datagram 
should be treated with a higher priority. The next four bits indicate the desired type of service: 
low delay, high throughput, high reliability, or low cost. Only one of these bits can be set in an 
IP header. The last two bits are always set to zero. For many Internet application there are 
recommended values how to set the value of the TOS byte. For example, for Telnet traffic, the 
low delay bit should be turned on, and for FTP traffic, the high throughput bit should be turned 
on during a file transfer. In practice, however, most routers ignored the TOS field and gave all 
IP datagrams the same (best effort) service.  

As part of an effort to enhance the ability of the Internet to give differential service to different 
classes of IP traffic, the TOS field in the IP header has been renamed as DS field. The format of 
the DS field is shown in Figure 2.14. The DS field is set by the sending host or by the first IP 
router, and can be modified when an IP datagram crosses a network  boundary, e.g., between a 
regional and a backbone network. The marking of the DS field is interpreted as a code, called 
Differentiated Services Codepoint (DSCP) or, simply, codepoint. For certain codepoint values 
there are a set of rules, called Per-Hop-Behaviors (PHBs), which define how an IP datagram 
that is marked with a given codepoint should be handled by IP routers. For example, the 
codepoint 101110 is associated with a PHB that provides a rate guarantee to IP datagrams with 
that marking. All IP datagrams with the same codepoint are treated as a group and receive the 
same service. The DS field is, to a limited degree, backward compatible to the TOS field. For 
example, if the first three bits of the DSCP are set to 000 then bits 3 through 5 are associated 
with a PHB that gives, respectively, low delay, high throughput, and high reliability. In other 
words, the codepoint 000100 defines a PHB for a low delay service. The codepoint 000000 
indicates the default best effort service.  At present only a few codepoints and corresponding 
PHBs have been defined.  

(a) TOS field:

(d) DS and ECN fields:

0 1 2 3 4 5 6 7

DS ECN

Precedence 0TOS

Low delay

High throughput

High reliability
Low cost

 

Figure 2.14. Interpretation of the TOS field and DS field. 
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Following the DSCP, is the Explicit Congestion Notification (ECN) field4. This two bit long 
field is used in a recently proposed algorithm where an overloaded router can mark IP headers 
when it is congested. The marking in the headers can be used by higher layer protocols such as 
TCP to reduce the rate of data transmission. The sender of an IP datagram sets the ECN field to 
00 if it does not run an ECN algorithm, and to 01 or 10, otherwise. A backlogged router can set 
the ECN field to 11, when it is experiencing congestion. If the destination receives an IP 
datagram where the ECN field is set to 11, it notifies the sender in a separate message that there 
is a congested router on the path. When the sender receives such a notification, it reduces its rate 
of data transmission.   

Continuing with the header fields in Figure 2.13, the total length field identifies the total number 
of bytes of the IP datagram, including IP header and payload. This field has a length of 16 bits. 
Therefore, the length of an IP datagram is limited to 216-1 = 65536 bytes.  One may wonder why 
the total length field is needed. Since data link layer protocols pass the entire payload of a frame 
to IP as a single chunk of data, the end of the payload of a frame should be obvious to IP. 
However, it may happen that the IP datagram is shorter than the data link layer payload of a 
frame. For example, Ethernet needs to have  a minimum payload of 46 bytes, and if an IP 
datagram is shorter than that, Ethernet pads the frame to reach the minimum length. In  these 
situations, the total length field is needed, otherwise IP cannot recognize and discard bytes that 
have been padded.  

We mentioned that most data link layer protocols impose a limit on the maximum size of an IP 
datagram, which is often much smaller than the maximum of 65536 bytes. This limit, called the 
Maximum Transmission Unit (MTU), is specified during the configuration of a network 
interface. If an IP datagram must be transmitted over an interface, but its size is larger than the 
MTU for that interface, the IP datagram is split into multiple IP datagrams with a smaller 
payload. This process is called fragmentation. The process of fragmentation is relatively 
complex, and requires several fields in the IP header. In fact, all fields in the second row of the 
IP header in Figure 2.13 are needed to support fragmentation.  The identification field is a 16-bit 
long identifier for a datagram. The identifier is assigned by the sending host, and is incremented 
by one for each transmitted datagram. This field plays a role when a fragmented IP datagram is 
reassembled.  The next three bits in the IP header contain bit flags. The first bit is always set to 
0. The second bit is the Don’t fragment (DF)  bit. If this bit is set by the sending host, the IP 
datagram will not be fragmented, but simply discarded, if its size exceeds that of the MTU. The 
third bit is the more fragments (MF) bit. This bit indicates if the IP datagram is not the last in a 
sequence of fragments of a previously fragmented IP datagram. The 13-bit fragmentation offset 
field is used to indicate the position of a fragment in the original datagram payload. The offset is 
given in multiples of 8 bytes. Fragmentation is discussed in more detail in the next subsection. 

                                                 
4 RFC 3260 
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The time-to-live (TTL) field is used to limit the lifetime of an IP datagram, in situations when 
the routing tables of IP routers have become inconsistent and result in a routing loop. As an 
example of a routing loop, consider three routers A, B, and C, where A forwards a packet to B, 
B forwards a packet to C, and C forwards a packet to A. The TTL field does not prevent routing 
loops from occurring. It simply prevents IP datagrams from getting caught forever in routing 
loops. The sender of an IP datagram writes a number in the TTL field, and each router that 
processes the IP datagram decrements the TTL field by one. When the value of the TTL field 
reaches zero, a router drops the IP datagram.  Routers decrement the TTL field before they 
process an IP datagram. Therefore, when an IP datagram with a TTL of one arrives at a router, 
the router decrements the TTL field, realizes that the TTL has reached zero, and then drops the 
datagram. The initial value of the TTL field that is set by the source should be large than the 
longest route in the Internet, otherwise, an IP datagram may be dropped before it has reached its 
destination. The initial TTL value should be set to 64 or higher.  

The protocol field is the demultiplexing field in the IP header. It identifies  the protocol data unit 
in the IP payload, that is, if it is an UDP datagram or a TCP segment. The protocol is identified 
by a protocol number, Table 2.1 lists protocol numbers of frequently used protocols.  When the 
protocol field is set to value four, then the payload of the IP datagram is another IP datagram,  
complete with its own header. This is referred to as IP-in-IP encapsulation or IP tunneling. 

 

1 ICMP, Internet Control Message Protocol. 

2 IGMP, Internet Group Management Protocol. 

4 IP-in-IP encapsulation. 

6 TCP, Transmission Control Protocol. 

17 UDP, User Datagram Protocol. 

41 IPv6-over-IPv4 

89 OSPF, Open Shortest Path First Routing Protocol. 

103 PIM, Protocol Independent Multicast. 

Table 2.1. Protocol field values in the IP header (selection).  

The header checksum field in Figure 2.13 protects the integrity of the IP header. It contains a 
checksum that is computed over the IP header. The checksum does not cover the payload of the 
IP datagram. When IP detects an error in the header, it discards the datagram. To compute the 
checksum, the IP header is divided into a sequence of 16-bit sections, and the sections are added 
up. The checksum is the one’s complement of the last 16 bits of the sum of the sections. The 
receiver of an IP datagram also divides the header into 16-bit sections, including the checksum 
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field, and adds the sections up. If the IP header does not contain an error, then the sum should be 
all ones on the last 16 bits. If the result contains a zero, the receiver assumes that there is an 
error and discards the IP datagram. Note that the header checksum must be recomputed at each 
router, since each router changes the TTL field in the IP header. 

Following the IP checksum are the 32-bit source and destination IP addresses. The last fields in 
the IP header are variable length options. Options are rarely used, and are not supported by all 
hosts and routers. They are used for debugging and for special services, such as sending a 
timestamp or determining the MTU of a route. Interesting IP options are source route and record 
route. In the source route options, the sender of an IP datagram can specify the route of an IP 
datagram by writing the IP addresses of routers in the IP header. Up to nine IP addresses can be 
specified in the source route options. With the record route options, IP routers that handle a 
datagram with this option, add their IP address to the header. Due to restrictions of the total 
length of the IP header, not more than  nine entries can be recorded.  

3.3. IP Fragmentation 

As described in the previous section, data link layers generally impose an upper bound on the 
length of a frame, and, thereby, on the length of an IP datagram that can be encapsulated in the 
frame. For each network interface, the MTU specifies the maximum length of an IP datagram 
that can be transmitted over a given data link layer protocol.  Ethernet II and IEEE 802.3 
networks have an MTU of 1500 bytes and 1492 bytes, respectively. Some protocols set the 
MTU to the largest datagram size of 65536 bytes.  The MTU for any data link layer protocol 
must be at least 576 bytes.5  If an IP datagram exceeds the MTU size, the IP datagram is 
fragmented into multiple IP datagrams, or, if the DF flag is set in the IP header, the IP datagram 
is discarded. 

When an IP datagram is fragmented, its payload is split into multiple IP datagrams, each 
satisfying the limit imposed by the MTU. Each fragment is an independent IP datagram, and is 
routed in the network independently from the other fragments. Fragmentation can occur at the 
sending host or at an intermediate router. It is even possible that an IP datagram is fragmented 
multiple times, e.g., an IP datagram may be transmitted on a network with an MTU of 4000 
bytes, then forwarded to an network with an MTU of 2000 bytes, and then to a network with an 
MTU of 1000 bytes. Fragments are reassembled only at the destination hosts. If a host receives 
fragments of a larger IP datagram it holds the fragments until the original IP datagram has been 
fully restored. Fragments do not have to be received in the correct order. The destination host 
can use the fragment offset field to place each fragment in the right position. IP assumes tha t a 
fragment is lost if no new fragment have been received for a timeout period, which is generally 

                                                 
5 RFC 1009 (STD 3) and RFC 1121 (STD 4). 
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set to 60–120 seconds.6 If such a timeout occurs, all fragments of the original datagram that 
have been received so far are discarded. 

Fragmentation of IP datagrams involves the following fields in the IP header: total length, 
identification, DF and MF flags, and fragment offset. We illustrate the process of fragmenting 
an IP datagram in an example shown in Figure 2.15. The fields that are relevant during 
fragmentation are included in the figure. In the figure an IP datagram with a length of 2400 
bytes is transmitted on a network with an MTU of 1000. We assume that the IP header of the 
datagram has the minimum size of 20 bytes. Since the DF flag is not set in the original IP 
datagram on the left of Figure 2.15, the IP datagram is now split into three fragments. All 
fragments are given the same identification as the original IP datagram. The destination host 
uses the identification field when reassembling the original IP datagram. The first and second IP 
datagram have the MF flag set, indicating to the destination host that there are more fragments 
to come. Without this flag, the receiver of fragments cannot determine if it has received the last 
fragment.   

To determine the size of the fragments we recall that, since there are only 13 bits available for 
the fragment offset, the offset is given as a multiple of eight bytes. As a result, the first and 
second fragment have a size of 996 bytes (and not 1000 bytes). This number is chosen since 976 
is the largest number smaller than 1000–20= 980 that is divisible by eight. The payload for the 
first and second fragments is 976 bytes long, with bytes 0 through 975 of the original IP payload 
in the first fragment, and bytes 976 through 1951 in the second fragment. The payload of the 
third fragment has the remaining 428 bytes, from byte 1952 through 2379. With these 
considerations, we can determine the values of the fragment offset, which are 0, 976 / 8 = 122, 
and 1952 / 8 = 244, respectively, for the first, second and third fragment.  

IP datagram

Router

Fragment 2Fragment 3

Header length: 20
Total length: 2400
Identification: 0xa428
DF flag: 0
MF flag: 0
Fragment offset: 0

Header length: 20
Total length: 448
Identification: 0xa428
DF flag: 0
MF flag: 0
Fragment offset: 244

Header length: 20
Total length: 996
Identification: 0xa428
DF flag: 0
MF flag: 1
Fragment offset: 122

MTU: 1000MTU: 4000

Fragment 1

Header length: 20
Total length: 996
Identification: 0xa428
DF flag: 0
MF flag: 1
fragment offset: 0
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Figure 2.15. Example of IP Fragmentation. 

Even though IP fragmentation provides flexibility tha t can deal effectively with  heterogeneity 
at the data link layer, and can hide this heterogeneity to the transport layer, it is has considerable 
drawbacks. For one, fragmentation involves significant processing overhead.  Also, if a single 
fragment of an IP datagram is lost, the entire IP datagram needs to be retransmitted (by a 
transport protocol). To avoid fragmentation, TCP tries to set the maximum size of TCP 
segments to conform to the smallest MTU on the path, thereby avoiding fragmentation. 
Likewise, applications that send UDP datagrams often avoid fragmentation by limiting the size 
of  UDP datagrams to 512 bytes, thereby, ensuring that the IP datagrams is smaller than the 
minimum MTU of 576 bytes.   

4. The Internet Control Message Protocol (ICMP)7 

The Internet Control Message Protocol (ICMP) is a helper protocol for IP that provides IP with 
a facility for reporting error conditions. For example, when an IP router discards an IP 
datagram, the router sends an ICMP message to the source of the datagram which explains why 
the datagram was dropped. ICMP also provides the capability to issue queries to hosts for 
diagnosing network conditions. The ping program discussed in Chapter 0 Section 3.3 is an 
example of such a query.  

Since ICMP error messages are triggered by certain events, there is a danger that a network gets 
flooded with ICMP messages. To limit the number of ICMP messages, only one ICMP 
messages is issued for the same event, and ICMP error messages are never generated in 
response to a ICMP error message, a broadcast or multicast datagram, and to more than one  
fragment of an IP datagram.  

 

4.1. ICMP Message Formats 

An ICMP message is encapsulated in the payload of an IP datagram as shown in Figure 2.16.  

IP header ICMP message

IP payload

 

Figure 2.16. Encapsulation of an ICMP message. 

                                                 
7 RFC 792. 
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The format of an ICMP message is shown in Figure 2.17.  Each ICMP message is at least 8 
bytes long. We refer to these 8 bytes as the ICMP header. The first 4 bytes contain the 
mandatory fields type, code and checksum. The type and code fields identify the particular 
ICMP message. There are more than thirty different ICMP message types, and some types are 
further qualified by a code field. The type of an ICMP message determines if there are 
additional fields following the ICMP header. The checksum is 16 bits long and is computed 
using the same algorithm as for the IP header checksum. Different from the IP header, the 
checksum is computed for the entire ICMP message. Following the checksum may be additional 
fields, that are defined for certain type fields.  If there are no additional fields following the 
checksum, then the ICMP field has four bytes of zeros. 

additional information
or

0x00000000

type code checksum

bit # 0 15 23 248 317 16

 

Figure 2.17. ICMP header format. 

 

4.2. ICMP query messages 

ICMP messages can be classified in two groups: ICMP queries and ICMP error messages. 
ICMP queries consist of a pair of message, as illustrated in Figure 2.18.  The first message is an 
ICMP Request that is sent to an IP address, and the second message is an ICMP Reply that is 
sent in response to the request message. The transmission of a request message is usually 
triggered by a user- level command, such as the ping command. When the reply message arrives 
at the host that issued the request, ICMP delivers information to the user-level command. 

Host

ICMP Request

Host or router

ICMP Reply

 

Figure 2.18. ICMP query.  
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Type
8 or 0

Code
0

Checksum

bit # 0 15 23 248 317 16

Optional data

Identifier Sequence number

 

Figure 2.19. Format of ICMP Echo Request and Reply messages. 

ICMP Queries 
Type Code Description  

0 
8 

0 
0 

Echo Reply 
Echo Request 

Tests if an IP address is  reachable on the Internet  

13 
14 

 

0 
0 

Timestamp Request  
Timestamp Reply 

Used to synchronize clocks and determine the 
roundtrip time between systems 

17 
18 

 

0 
0 

Addressmask Request  
Addressmask Reply 

Queries the subnetmask of a system 

10 
9 
 

0 
0 

Router Solicitation 
Router Advertisement 
 

Used for router discovery. Routers periodically send 
advertisements as multicast messages. Hosts may 
send solicitations for advertisements 

37 
28 

 

0 
0 

Domain Name Request 
Domain Name Reply 
 

Queries the hostname from a system. 

Table 2.2. ICMP Query  Messages. 

The different available ICMP queries are shown in Table 2.2.8  In  Figure 2.19, we show the 
format of an ICMP Echo Request and Reply message. Other ICMP query messages have a 
similar format. All query messages have a 16-bit identifier field and a 16-bit sequence number 
field that follows the first four bytes. These fields are used by the sender of a query to match a 
request with a reply. In Linux systems, the identifier field  is set to the process identifier of the 
process that generated the reply. When a host or router sends a reply, it sets the identifier and 
sequence number fields to the same values as in the corresponding request.  

In the exercises of the Internet Lab, we will mostly see ICMP Echo Request and Echo Reply 
messages, which are used to test if a host is reachable at the IP layer. A receiver of an ICMP 
Echo Request immediately responds with an ICMP Echo Reply.  

The only other ICMP query that we will encounter in the Internet Lab are ICMP Router 
Solicitation and ICMP Router Advertisement messages. These messages make up what is 

                                                 
8 RFC 792, RFC 950, RFC 1256, RFC 1393, RFC 1788.  
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sometimes referred to as the Router Discovery Protocol9, and provide hosts and routers a 
mechanisms to announce and learn the presence of IP routers. A host sends ICMP Router 
Solicitation messages to a multicast or broadcast address. When an IP router that is on the same 
subnetwork receives the solicitation, it responds by sending an ICMP Router Advertisement 
messages. The reply message contains the IP address of the router, and possibly the IP addresses 
of other routers on the same subnetwork. In addition, IP routers periodically send, about every 
five to ten minutes, send an advertisements without having received a solicitation. When a host 
receives a router advertisement it updates its routing table.  

4.3. ICMP Error messages 

Host

IP datagram

Host or router

ICMP Error
Message

IP datagram
is discarded

 

Figure 2.20. ICMP Error message 

 

ICMP error messages report an error condition to the sender of an IP datagram. As shown in 
Figure 2.20, the transmission of an ICMP error message is usually triggered when an IP 
datagram is discarded. Often, when a host receives an ICMP error message, the error message is 
reported to the application program that sent the IP datagram that was discarded. In this way, a 
user program is made aware of the error. It is import to not that ICMP is simply a reporting 
mechanism, and does not take any correcting actions.  

                                                 
9 RFC 1256 
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Unused (0x00000000)

IP header ICMP header IP header 8 bytes of payload

ICMP Message

from IP datagram that triggered the error

type code checksum

 

Figure 2.21. Format of an ICMP error message. 

 

 

The general format of an ICMP error message is shown in Figure 2.21. The ICMP message 
consists of an ICMP header which contains the type, code and checksum fields, followed by 
four bytes of zeros. Following the ICMP header is the IP header and the first eight bytes of the 
IP payload from the IP datagram that triggered the error. The first 8 bytes of the IP  payload are 
significant because they contain the source port number and the destination port number in TCP 
segments and UDP datagrams.  With this information a host that receives an ICMP error 
message can  identify the user- level process that needs to  receive the error notification.  

The different types of ICMP error message are listed in Table 2.3.   The table is not 
comprehensive but contains the most frequently seen error messages.10  In the Internet Lab, we 
will encounter ICMP error messages of Type 3 (Destination unreachable), Type 5 (Redirect), 
and Type 11 (Time Exceeded).  ICMP Redirect messages are discussed in more detail in 
Chapter 3. The ICMP Time Exceeded message is sent with Code 0 by an IP router when the 
TTL value of an IP datagram has reached zero, and with Code 1 by a host when there is a 
timeout for reassembling the fragments of an IP datagram.  

ICMP Error Messages 
Type Code Description  

3 
 

0–15 Destination 
unreachable 

Notification that an IP datagram could not be forwarded and 
was dropped. The code field contains an explanation. 

                                                 
10 RFC 792, RFC 1475, RFC 2521. 
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5 0–3 Redirect Informs about an alternative route for the datagram and should 
result in a routing table update. The code field explains the 
reason for the route change.  

11 0, 1 Time 
exceeded 

Sent when the TTL field has reached zero (Code 0) or when 
there is a timeout for the reassembly of segments (Code 1)  

12 0, 1 Parameter 
problem 

Sent when the IP header is invalid (Code 0) or when an IP 
header option is missing (Code 1) 
Table 2.3. ICMP Error  Messages. 

ICMP Destination Unreachable messages are generated by a host or by a router when they 
discard an IP datagram because they cannot deliver the datagram to the next host or router, or to 
an application program. The code field in the ICMP message explains why a datagram could not 
be delivered. The different values of the code field and their interpretation are listed in Table 
2.4. Some ICMP Destination Unreachable messages indicate that the network configuration is 
faulty. For example, when the network address not reachable, the routing tables are not properly 
configured. The error host unreachable indicates that the routing tables are properly configured, 
but the router on the destination network does not receive an ARP Reply for the destination IP 
address. This indicates that the host IP address of the host is incorrect, or the host is currently 
not operational.  

The error port unreachable is raised by the destination host if the transport layer protocol cannot 
deliver the data to an application program. This error occurs when a client program attempts to 
connect to a server program that does not exist. This error message is not needed when the 
transport protocol is TCP,  since a TCP server responds to connection requests to non-existing 
server programs by closing the connection. However, when the transport protocol is UDP, the 
ICMP port unreachable error is needed, otherwise, a client of an application program that uses 
UDP cannot determine if the server is down, unless a port unreachable message is sent. 
Therefore, this error is seen only when trying to connect to a UDP server program, such as a 
TFTP server. 

  

 

Code Description Reason for Sending  

0 Network Unreachable No routing table entry is available for the destination 
network.  

1 Host Unreachable Destination host should be directly reachable on one of 
the interfaces, but does not respond to ARP Requests. 

2 Protocol Unreachable The protocol in the protocol field of the IP header is not 
supported at the destination. 
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supported at the destination. 

3 Port Unreachable The transport protocol at the destination host cannot  pass 
the datagram to an application. Typically issued when an 
UDP datagram is sent to an destination port and no 
application program is attached to the port. 

4 Fragmentation Needed  
and DF Bit Set 

IP datagram must be fragmented, but the DF bit in the IP 
header is set. 

5 Source Route Failed IP header has source route option set, but the IP datagram 
cannot be forward to the next router in the list.  

11 Network Unreachable For 
Type Of Service 

No routing table entry is available for the destination 
network with the default TOS value or the TOS value 
requested in the IP header.  

12 Host Unreachable For Type Of 
Service 

The host is unreachable for IP datagrams with the given 
Type-Of-Service field. 

13 Communication 
Administratively Prohibited 

A router does not forward the IP datagram due to an 
administrative policy 

14 Host Precedence Violation Indicates that the requested precedence setting in the 
precedence bits of the TOS field of the IP header is not 
permitted for this IP datagram. 

15 Precedence cutoff in effect The precedence level in precedence bits of the TOS field 
of the IP header is too low. 

Table 2.4. Codes in ICMP Destination Unreachable messages.  

 

5. IP version 6  

IPv611 is a revised version of the Internet Protocol. The designers of IPv6 did not introduce 
drastic changes, and were conservative with adding new features to the protocol. As its 
predecessor, IPv6 offers an connectionless unreliable best-effort delivery service for IP 
datagrams.   

Other than expanding the size of the IP address from 32 bits to 128 bits, IPv6 introduces a 
number of changes. The IP header format has been simplified. Security mechanisms, such as 

                                                 
11 RFC 2460 
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authentication and encryption of IP datagrams, have been integrated into the IPv6 design. IPv6 
introduces a new type of addresses, called anycast addresses. Just like a multicast addresse, an 
anycast address designates a group of hosts. Different from multicast, where a packet is sent to 
all hosts in a group, a packet with an anycast destination address is sent to only one, generally 
the closest, member in the group.   

There also a new version of the Internet Control Message Protocol, called ICMPv6. ICMPv6  
streamlines the previous version of ICMP by eliminating several ICMP message types. ICMPv6 
has been expanded to perform the functions of ARP and IGMP, and makes the two protocols 
obsolete.  

version traffic class flow label

payload length next header hop limit

source IP address (16 bytes)

payload

bit # 0 15 23 248 317 16

destination IP address (16 bytes)

 

Figure 2.22. IPv6 header format.  

The format of an IPv6 datagram is shown in Figure 2.22. In comparison to IPv4, the new IP 
header is much simplified.  The IPv6 header has a fixed length of 40 bytes. It is possible to add 
an arbitrary number of extension headers to the IPv6 header.  

The version field is, as can be expected, set to six. The eight-bit traffic class field plays a similar 
role as the DS (previously TOS) field, and is used to give differential service to traffic classes. 
The 20-bit long flow label is a new field which identifies a flow, defined to be a sequence of 
packets sent from a source to a destination for which the source requests special handling. The 
flow label can be used to provision service guarantees to the traffic from individual applications, 
e.g., give rate and delay guarantees to a live video transmission. The payload length contains the 
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total number of bytes of the IP datagram that follow the 40-byte IPv6 header.  The next header 
field has two functions. First, if there is an extension header, the next header field identifies the 
type of the extension header. Second, if there is no extension header, the next header field is  the 
demultiplexing field of  the IPv6 header, and plays the same role as the protocol field in IPv4, 
even using the using the same values as the protocol field in IPv4 (see Table 2.1). 

The hop limit field plays an identical role as the Time-to-live field in IPv4. The value is 
initialized by the source host, and decremented at each router. If the hop limit reaches zero the 
IP datagram is discarded.  The last two fields of the fixed header are the 128 bit long source and 
destination addresses. 

As we can see, some fields from the IPv4 header are missing in IPv6. With a fixed-length 
header, there is no need for a header length field. Also, IPv6 removes the ability for IP 
fragmentation. As a result, the identification and the fragment offset fields, as well as the flags 
from the IPv4 header have been removed. Finally, there is no header checksum. Since data link 
layer protocols generally provide a cyclic redundancy checksum (CRC), which is very effective 
in detecting bit errors, the designers of IPv6 felt that adding a checksum to the IP header does 
not provide significant added protection and eliminated the field altogether.  

IPv6 replaces the IP header options in IPv4 with the elegant concept of extension headers. An 
example of an extension headers is a routing header that records the route of an IP datagram. 
Another example is an authentication header which can carry a cryptographic checksum for 
authentication purposes. IPv6 allows concatenating an arbitrary number of extension headers. In 
Figure 2.23, we show how headers are concatenated. Figure 2.23(a) shows a header without an 
extensions. Here, the next header field identifies the protocol type of the payload, TCP in this 
case. The datagram in Figure 2.23(b) has one extension header, and the datagram in Figure 
2.23(c) has two extension headers.  

IPv6 header
Next header =
routing header

IPv6 header
Next header = TCP

IPv6 header
Next header =
routing header

IPv6 header
Next header = TCP TCP segment

IPv6 header
Next header =

authentication header

TCP segment

IPv6 header
Next header = TCP TCP segment

 
Figure 2.23. Extension headers in IPv6. 

The transition of the Internet to the new version of IP is a tremendous challenge. Eventually, 
every host and every router on the Internet has to switch from IPv4 to IPv6. With several 
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hundred million hosts and routers, the transition to IPv6 is approached as a process rather than a 
single event. The design of IPv6 allows that both versions of the Internet Protocol can coexist 
during a transition period.  

Today, it is difficult to predict if and when IPv6 will fully replace IPv4. The conversion to 
version 6 has been slower than anticipated. A possible explanation is that the increasing use of 
private networks, IP masquerading, and dynamic assignment of IPv4 addresses (see Chapter 8), 
have made the depletion of IP addresses a less urgent problem, thereby removing a main 
incentive for converting to IPv6.  

6. Networking Tools  and Utilities 

In this section we discuss the software tools that are introduced in Lab 2 for configuring and 
displaying the network configuration of a Linux PC.  We also discuss  commandsto manipulate 
the ARP cache at a Linux PC. Finally, we discuss the use of filters in the tcpdump and ethereal 
commands. 

6.1. The netstat command  

The Linux command netstat displays information on the network configuration and activity of a 
Linux system, including network connections, routing tables, interface statistics, masquerade 
connections, and multicast memberships. The following list shows four important uses of the 
netstat command.  

netstat –i  
 Displays a table with statistics of the currently configured network interfaces. 

netstat –rn  

 Displays the kernel routing table. The -n option forces netstat to print the IP 
addresses. Without this option, netstat attempts to display the hostnames.  

netstat –an 
netstat –tan 
netstat –uan 

 Displays the active network connections.  The –a option displays all active network 
connections, the –ta option displays only information on TCP connections, and the –tu 
option displays only information  on  UDP traffic. Omitting the –n options prints 
hostnames and names of servers, instead of IP addresses and ports numbers.  

netstat –s  
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 Displays summary statistics for each protocol that is currently running on the host. 

   

Invoking netstat  with the –in option produces the following output. 

%netstat –in 

Kernel Interface table 
Iface   MTU  Met    RX-OK  RX-ERR RX-DRP RX-OVR  TX-OK   TX-ERR TX-DRP TX-OVR   Flg 
eth0   1500   0     1353        0      0      0   1608        0      0      0   BRU 
eth1   1500   0     944         0      0      0   1176        0      0      0   BRU 
lo    16436   0     1625        0      0      0   1625        0      0      0   LRU 

 
The output shows that the host has interfaces eth0 and lo (loopback) enabled. For each interface, 
a number of configuration parameters and statistics are displayed. MTU is the maximum 
transmission unit for that interface, Met is a link metric that can be used by a routing protocol. 
The RX and TX columns show how many packets were received or transmitted without an error 
(RX-OK and TX-OK), how many had bit errors (RX-ERR and TX-ERR), how many have 
dropped packets (RX-DRP and TX-DRP), and how many had an overrun (RX-OVR and TX-
OVR ). These statistics are reset every time the host is rebooted. The last column contains a set 
of flags for the interface which are interpreted as follows: B indicates that a broadcast address 
has been set for this interface, L   indicates the loopback interface, M is set if the interface is set 
to promiscuous mode, O shows that ARP is disabled for this interface, P indicates a point-to-
point link (as opposed to a broadcast network), R indicates that the interface is running, and 
means that the interface is enabled. 

When netstat is issues with the –rn option it displays the content of the routing table of the 
Linux kernel. The output of the command could be as follows. 

% netstat –rn 
Kernel IP routing table 
Destination     Gateway      Genmask         Flags   MSS Window  irtt Iface  
10.0.1.4        0.0.0.0     255.255.255.255  UH      40  0       0     eth0 
10.0.3.0        0.0.0.0     255.255.255.0    U       40  0       0     eth1 
10.0.2.0        0.0.0.0     255.255.255.0    UG      40  0       0     eth0 
10.0.5.0        10.0.2.1    255.255.255.0    UG      40  0       0     eth0 
127.0.0.0       0.0.0.0     255.0.0.0        UH      40  0       0     lo 
0.0.0.0         10.0.3.1    0.0.0.0          UG      40  0       0     eth1 
 
We defer some of the discussion of the routing table to Chapter 3, when we discuss routing 
tables in detail. The first column contains the destination, which can be a network address or a 
host address. The third column (Genmask) provides the netmask for the  destination address. 
Thus, the routing table entries are given for destination addresses 10.0.1.4/32, 10.0.3.0/24, 
10.0.2.0/24, 127.0.0.0/8. Destination 127.0.0.0/24 is the entry for the loopback, and 0.0.0.0 
indicates, by convention, the default route. The second column (Gateway) identifies the next 
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hop router where matching IP datagrams are transmitted, and the last column (Iface) 
identifies the network interface where the packet with a matching entry is sent. Entries that are 
set to 0.0.0.0 in the second column should be considered empty. From here we can derive that 
there are two IP directly connected networks: 10.0.2.0/24 via interface eth0, and 10.0.3.0/24 
via interface eth1. The columns MSS, Window, and irtt are parameters used by the TCP 
protocol, and indicate respectively, maximum segment size, the advertised window,  and initial 
round-trip time for  TCP connections over this link. A value of 0 in these columns means that 
the default values are used. 

The flags qualify the type of route:  G indicates that the next hop is a gateway, H indicates a 
host route, D means that the route is dynamically created using a  routing protocol or an ICMP 
redirect, M tells that the entry was modified by an ICMP redirect message, and ! indicates that 
this route is rejected and the datagrams with matching destinations will be dropped. 

 

We can list the TCP and UDP activity at a host by  invoking netstat with the –ta and the –ua 
options.  
% netstat –tan 
Proto Recv-Q Send-Q Local Address           Foreign Address      State       
tcp        0      0 0.0.0.0:32768           0.0.0.0:*            LISTEN       
tcp        0      0 0.0.0.0:32769           0.0.0.0:*            LISTEN       
tcp        0      0 0.0.0.0:515             0.0.0.0:*            LISTEN       
tcp        0      0 0.0.0.0:611             0.0.0.0:*            LISTEN       
tcp        0      0 0.0.0.0:905             0.0.0.0:*            LISTEN       
tcp        0      0 0.0.0.0:139             0.0.0.0:*            LISTEN       
tcp        0      0 0.0.0.0:111             0.0.0.0:*            LISTEN       
tcp        0      0 0.0.0.0:80              0.0.0.0:*            LISTEN        
tcp        0      0 128.143.71.29:139       128.143.71.37:1078   ESTABLISHED  
tcp        0      0 128.143.71.29:22        128.143.71.37:4385   ESTABLISHED             
               
Each row shows the information of one TCP connection. The columns Recv-Q and Send-Q 
address display the amount of received and sent user level data, measured in bytes. The local 
address and foreign address are the local and remote IP addresses and port numbers. A * or 
0.0.0.0 for the IP address indicates the local host, and an entry *:* or 0.0.0.0:* for the foreign 
address indicates that no connection is established. The last column lists the state of the TCP 
connection. The states of TCP will be discussed in detail in Chapter 6. Here, LISTEN      
presents a TCP server that is waiting for connection requests, and ESTABLISHED means that a 
TCP connection is in place. By identifying the well-known port numbers, we can identify that 
this host has servers running for. The well-known port numbers are replaced with the name of 
the application, when the –n option is omitted in the command. 

Next we  invoke netstat to display the active UDP ports. 

% netstat –uan 
Proto Recv-Q Send-Q Local Address           Foreign Address         State       
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udp        0      0 0.0.0.0:32768           0.0.0.0:*                            
udp        0      0 0.0.0.0:2049            0.0.0.0:*                            
udp        0      0 0.0.0.0:32769           0.0.0.0:*                            
udp        0      0 0.0.0.0:32770           0.0.0.0:*                            
udp        0      0 0.0.0.0:902             0.0.0.0:*                            
udp        0      0 128.143.71.29:137       0.0.0.0:*       
 

The output for UDP is interpreted similarly as for TCP. The main difference is that UDP is a 
connectionless protocol. Therefore, the column with connection state information is empty.   

As a last example, we show the output  netstat –s. The output is quite long, and we only show a 
subset of the displayed information. The results are self-explanatory.   

% netstat –s 
Ip: 
    2917 total packets received 
    0 forwarded 
    0 incoming packets discarded 
    2088 incoming packets delivered 
    3171 requests sent out 
Icmp: 
    692 ICMP messages received 
    1 input ICMP message failed. 
    ICMP input histogram: 
        destination unreachable: 291 
        echo requests: 27 
        echo replies: 374 
    318 ICMP messages sent 
    0 ICMP messages failed 
    ICMP output histogram: 
        destination unreachable: 291 
        echo replies: 27 
Tcp: 
    547 active connections openings 
    0 passive connection openings 
    1 failed connection attempts 
    0 connection resets received 
    0 connections established 
    1930 segments received 
    2235 segments send out 
    1 segments retransmited 
    0 bad segments received. 
    511 resets sent 
Udp: 
    6 packets received 
    289 packets to unknown port received. 
    0 packet receive errors 
    295 packets sent 
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6.2. The ifconfig command 

The ifconfig command is used to configure or query the status of network interfaces in Linux. 
The following list shows how ifconfig is used to query the status of network interfaces. 

ifconfig  
 Displays the configuration parameters of all active interfaces. 
 
ifconfig –a   

 Displays the configuration parameters of all network interfaces, including the inactive 
interfaces. 

ifconfig interface 

 Displays the configuration parameters of a single interface. For example, ifconfig eth0 
displays information on interface eth0.  

The output a query for interface eth0 is as follows.  

%ifconfig eth0 
eth0      Link encap:Ethernet  HWaddr 00:00:C0:88:51:00   
          inet addr:10.0.1.11  Bcast:10.0.1.255  Mask:255.255.255.0 
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1 
          RX packets:1574 errors:0 dropped:0 overruns:0 frame:0 
          TX packets:1906 errors:0 dropped:0 overruns:0 carrier:0 
          collisions:11 txqueuelen:100  
          Interrupt:11 Base address:0xf880 

The output in the first two lines is the name of the interface, the link layer protocol, the MAC 
address, the Internet address, the broadcast address, and the extended network prefix expresses 
as a subnetmask. The third line contains a set of flags. The UP and RUNNING flag means that the 
interface is enabled. In a disabled interface the two entries are replaced by a DOWN flag. 
BROADCAST indicates that a broadcast address has been configured, and MULTICAST tells that the 
interface is capable of sending and receiving multicast traffic.  The MTU value shows the 
maximum transmission unit for the interface, and Metric is a link metric which is used by a 
routing protocol.  The fourth and following lines display statistics for the interface. 
 
There are numerous options for configuring a network interface with ifconfig. The following 
example shows how to  enable and disable an interface and how to change the IP configuration.  

ifconfig eth0 down  
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 Disables the eth0 interface. No traffic will be sent or received on this interface.  
ifconfig eth0 up 

 Enables the eth0 interface.  

ifconfig eth0 10.0.1.8 netmask 255.255.255.0 broadcast 10.0.1.255   

 Assigns interface eth0 the IP address of 10.0.1.8/24 and a broadcast address of 
10.0.1.255. the interface should be disabled before an IP address is assigned, and 
should be enabled after the  IP address has been modified. 

ifconfig eth0 down 10.0.1.8 netmask 255.255.255.0 broadcast 10.0.1.255  up 

 Performs all three commands above in sequence. Interface eth0 is disabled, an IP 
address  and a broadcast address are assigned, and the interface is enabled. 

ifconfig eth0 mtu 500 

 Sets the MTU of interface eth0 to 500 bytes.  

 

6.3. The arp command  

The arp command  displays and manipulates the ARP cache in the Linux kernel. When an ARP 
entry is manually added, this entry is permanent, and is not overwritten by ARP messages. 
When an ARP entry is deleted, the entry is added again if a corresponding ARP message 
arrives. 

arp –a   

 Displays the content of the ARP cache 

arp –d IPAddress   

 Deletes the entry with IP address IPAddress from the ARP table. 

arp –s IPaddress  MAC_Address 

 Manually adds a permanent entry to the ARP cache. Such an added entry is not 
overwritten by an ARP message. The MAC address is entered as six hexadecimal 
bytes separated by colons. 
Example:  arp –s 10.0.1.2  00:02:2D:0D:68:C1 

Displaying the ARP cache results in the following output.  
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%arp –a   

? (10.0.1.11) at 00:00:C0:AD:50:00 [ether] on eth0 
? (10.0.1.11) at 00:02:2D:0D:68:C1 [ether] PERM on eth0 
 

The output shows the IP address and its corresponding hardware address. The entry  “? 
(10.0.1.11)” shows the hostname and the IP address. A ‘?’ indicates that the hostname has not 
been resolved. The output also indicates the link layer encapsulation ([ether]) and the 
interface (eth0) where the entry was resolved. The entry PERM indicates a  permanent entry 
that has been manually added. 

6.4. Setting filters in tcpdump  

When the tcpdump tool is started with the command 

%tcpdump –n eth0, 

it displays all packets that are captured on network interface eth0. Instead of capturing all traffic, 
and then searching through the output for the data of interest, one can limit the amount of traffic 
captured by tcpdump by specifying a filter expression in the command line. With a filter 
expression, only the traffic that matches the filter expression is captured and displayed. For 
example, the command  

%tcpdump –n eth0 host 10.0.1.12 

captures IP datagrams from or to IP address 10.0.1.12, and ignores traffic with different IP 
addresses and non-IP addresses.. A list of filter expressions which may be useful in the exercises 
of the Internet Lab is shown in Table 2.5. The filter expressions can be combined using negation 
(not), concatenation (and), or alternation (or) to form more complex filter expressions. In filter 
expressions with multiple operators, negation has the highest precedence. Concatenation and 
alternation have equal precedence and are interpreted from left to right. For example, the 
command  

%tcpdump –n eth0 not \icmp or src host 10.0.1.12 and ip multicast  

displays IP datagrams that are not ICMP messages or come from host 10.0.1.12 and, in addition,  
do not have an IP multicast destination address. A different precedence of the operators can be 
enforced with parentheses. For example, each of the following three filter expressions yields a 
different result: 

not \icmp or host 10.0.1.2  and \tcp 
not (\icmp or host 10.0.1.2)  and \tcp 
not \icmp or (host 10.0.1.2  and \tcp). 
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If an address or number is not specified by a keyword (host, proto, net), then the most recent 
keyword is assumed. For example, 

host 10.0.1.2  and 10.0.1.3   

is short for 

host 10.0.1.2  and  host 10.0.1.2 . 

It is possible to access specific fields in protocol headers, and select packets based on the values 
of protocol header fields. This is done with expressions of the form proto[offset : size] which 
select bytes offset+1, offset+2, …, offset+size from the header of protocol proto. For example, 
ip[2:2] selects the third and fourth byte in the IP header the total length field. Therefore, the 
expression ip[2:2]>576 selects IP datagrams that are longer than 576 bytes. The tcpdump 
expression that displays these IP datagrams is  

%tcpdump –n ‘ip[2:2]>576’. 

Note that the selection is put in quotes (‘ ’). If a selection specifies a protocol header, packets 
that do not have such a protocol header are simply ignored. Table 2.6 shows examples for 
selecting  packets based on the contents of  protocol headers. Single bits can be tested using a 
bitwise and operator  (&) and a comparison operator (>, <, >=, <=, =, !=  ). For example ip[0] 
& 0x80 > 0 selects packets where the first bit of the IP header is set. Also, a selection can be 
combined with any other filter  expression. For example,  

%tcpdump –n ‘ip[2:2]>576’ and not host 10.0.1.2 

selects all IP datagrams longer than 576 bytes that do not have IP address 10.0.1.2 as source or 
destination IP address.  

 

 

 
 
dst host 10.0.1.2 IP  destination  address field  is 10.0.1.2 
src host 10.0.1.2 IP  source address  field  is 10.0.1.2 
host 10.0.1.2 IP source or  destination  address field  is 10.0.1.2 
src net 10.0.1.0/24 IP source address matches the network address 

10.0.1.0/24 
dst net 10.0.1.0/24 IP destination address matches the network address 

10.0.1.0/24 
net 10.0.1.0/24 IP source or destination address matches the network 
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address 10.0.1.0/24 
dst port 80 Destination port is 80 in TCP segment or UDP 

datagram 
src port 80 Source port is 80 in TCP segment or UDP datagram 
port 80 Destination or source port is 80 in TCP segment or 

UDP datagram 
src and dst port 80 Destination and source port is 80 in TCP segment or 

UDP datagram 
tcp port 80 
udp port 80 

Destination or source port is 80 in TCP segment 
Destination or source port is 80 in UDP datagram 

len <= 200 Packet size is not longer than 200 bytes 
ip proto \icmp or icmp 
ip proto \tcp    or tcp 
ip proto \udp  or udp 
ip proto ospf 

IP protocol field is set to the number of ICMP or TCP 
or UDP or OSPF. (Since icmp, tcp, and udp are 
keywords in tcpdump there an escape character (`\’) 
must be placed in front of these keywords.) 

ip proto 17 IP protocol number is set to 17. The protocol numbers 
are given in Table 2.1. 

broadcast Ethernet broadcast packet 
ip broadcast IP broadcast packet 
multicast Ethernet multicast packet 
ip multicast IP multicast packet 
ether proto \ip  or ip 
ether proto \arp or arp 

Ethernet payload is IP or ARP 

Table 2.5. Filter expressions for tcpdump filters. 

 
 
tcp[0]  > 4 The first byte of the TCP header is greater than 4. 
ip[2] <= 0xf The third byte of the IP header does not exceed 15. 
udp[0:2] == 1023 The first two bytes of the UDP header are equal to 1023.  
ip[0] & 0xf > 5 IP headers that are longer than 20 bytes, i.e., IP headers 

with options. The expression ip[0] selects the first byte 
from the IP packet and ip[0]& 0xf filters the four lower 
order bits in the first byte.  The expression ip[0] & 0xf > 
5, selects all IP packets where the IP header length is 
larger than five. Since the IP header field expresses 
multiples of four bytes, these are packets where the IP 
header is longer than 20 bytes.  



 

 44 

ip[6:2] & 0x1fff == 0  IP packets where the fragment offset field is zero, i.e., 
unfragmented IP packets or the first fragment of a 
fragmented IP packet. 
The expression ip[6:2] selects the seventh and eight byte 
from an IP header, and ip[6:2] & 0x1fff filters the last 13 
bits from these two bytes.  

tcp[13] & 3 != 0  

 

TCP headers with the SYN flag  or the FIN flag set. The 
expression tcp[13] & 3 selects the two least significant 
bits of the 14-th byte in the TCP header. These bits hold 
the SYN flag and the FIN flag. The expression is not 0, if 
at least one of the bits is set.  

Table 2.6. Selection of  packets based on protocol header contents. 

 

6.5. Setting filters in ethereal 

Just like tcpdump, ethereal  permits users to set filters for the traffic that is analyzed by the 
tool. Ethereal has two types of filters: capture filters and display filters. A capture filter 
specifies the type of traffic that is captured by ethereal, similarly to filters in tcpdump. In 
fact, capture filters in ethereal are written using the same syntax as tcpdump filters. A 
display filter specifies the type of traffic that is displayed in the main window of ethereal, 
but does not restrict the captured traffic. An advantage of using display filters is that it is 
possible to change the display filter after packets have been captured. The syntax for setting 
display filter is completely different from the syntax for setting a capture filter.  

Capture Filters: A capture filter can be set in the command line when ethereal is started or 
in the capture window before a traffic capture is initiatedThe following command is used to 
set a capture filter from the command line 

ethereal –i interface –f filter 

 where interface is a network interface and filter is a filter expression. The filter 
expression is written using the syntax described for tcpdump filters. If no capture filter 
is specified, ethereal captures all traffic. 

 

Alternatively, the interface and the capture filter can be set from the Capture Preferences 
window of ethereal, which is opened by selecting CaptureàStart in the main window, and 
by typing in the interface name and the desired filter expression in the appropriate boxes. 
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The Capture Preferences window of ethereal is shown Figure 2.24. Here, the interface is set 
to eth0 and the capture filter is set to host 10.0.1.12. 

 

Figure 2.24. Setting a capture filter. 

Display Filters:  Display filters cannot be set in the command line. A display filter is set by 
typing a filter expression  at the bottom of main window in ethereal, next to the label Filter.  
This is illustrated in Figure 2.25. Here the display filter is set to ip.dst==10.0.1.12, which 
selects all IP packets with the destination IP address 10.0.1.12. When the filter is applied, 
only those packets that match the filter are displayed in the main window. The Reset button 
next to the Filter box  removes the filter.  
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Figure 2.25. Applying a display filter in ethereal. 

The syntax for display filters is different from that for capture filters. In Table 2.7 and Table 2.8 
we show ethereal display filters that correspond to the tcpdump filters (and ethereal capture 
filters) from Table 2.5 and Table 2.6. Display filters have a separate keyword for each header 
field of a protocol, and are generally easier to read. The keywords for a particular header field 
can be obtained from the manual page of ethereal. 

Ethereal offers interactive help for writing display filters. This is activated by clicking on the 
Filter button in the main window (see Figure 2.25). This  pops up the Display Filter window 
(see Figure 2.26). Then, clicking on the  Add Expression button pops up  the Filter Expression 
window (see Figure 2.27). Now, the desired filter expression can be built by selecting a protocol 
and a protocol field.  Once a filter expressions is constructed, it is displayed in the main window 
of ethereal.  
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Figure 2.26. Display filter window. 

 

 

Figure 2.27. Filter expression window 
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ip.dst==10.0.1.2 IP  destination  address field  is 10.0.1.2 
ip.src==10.0.1.2 IP  source address  field  is 10.0.1.2 
ip.addr==10.0.1.2 IP source or  destination  address field  is 10.0.1.2 
ip.src==10.0.1.0/24 IP source address matches the network address 

10.0.1.0/24 
ip.dst==10.0.1.0/24 IP destination address matches the network address 

10.0.1.0/24 
ip.addr== 10.0.1.0/24 IP source or destination address matches the network 

address 10.0.1.0/24 
tcp.dstport == 80 or udp.dstport 
== 80 

Destination port is 80 in TCP segment or UDP 
datagram 

Tcp.srcport==80 or  
udp.srcport==80 

Source port is 80 in TCP segment or UDP datagram 

Tcp.port==80 or 
udp.port==80 

Destination or source port is 80 in TCP segment or 
UDP datagram 

(tcp.srcport==80 and 
tcp.dstport==80) or  
(udp.srcport==80 and 
udp.dstport==80) 
 

Destination and source port is 80 in TCP segment or 
UDP datagram 

tcp.port==80 
udp.port==80 

Destination or source port is 80 in TCP segment 
Destination or source port is 80 in UDP datagram 

eth.len <= 200 Packet size is not longer than 200 bytes 
Icmp 
tcp 
udp 
ospf 

IP protocol field is set to the number of ICMP or 
TCP or UDP or OSPF. (Since icmp, tcp, and udp are 
keywords in tcpdump there an escape character (`\’) 
must be placed in front of these keywords.) 

ip.proto==17 IP protocol number is set to 17. The protocol 
numbers are given in Table 2.1. 

eth.dst==ff:ff:ff:ff:ff:ff Ethernet broadcast packet 
ip.dst[== No general expression exists for IP broadcast packet. 
eth.dst[0]==1 Ethernet multicast packet.  
ip.dst==224.0.0.0/4  IP multicast packet.  
Ip 
arp 

Ethernet payload is IP or ARP 

Table 2.7. Display filter expressions for ethereal (compare with Table 2.5). 

 

tcp[0] > 4 The first byte of the TCP header is greater than 4. 
ip[2] <= f The third byte of the IP header does not exceed 15. 
udp[0:2] == 3:ff The first two bytes of the UDP header are equal to 1023.  

Note: When selecting bytes from a header, each byte is 
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written as a hexadecimal number, and bytes are separated 
by a colon. 

ip.hdr_len > 20 IP headers that are longer than 20 bytes, i.e., IP headers 
with options.  

ip.frag_offset == 0  IP packets where the fragment offset field is zero, i.e., 
unfragmented IP packets or the first fragment of a 
fragmented IP packet. 

tcp.flags.syn==1 or 
tcp.flags.fin==1  

TCP headers with the SYN flag  or the FIN flag set.  

Table 2.8. More display filter expressions for ethereal (compare with Table 2.6). 
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