
1

Homework Solutions: Updated September 2001

Solutions for Chapter 1

Problem 1.

There is no single right answer to this question. Many protocols would do the trick. Here's a simple
answer below:

Messages from ATM machine to Server

Msg name purpose

-------- -------

HELO <userid> Let server know that there is a card in the ATM machine

ATM card transmits user ID to Server

PASSWD <passwd> User enters PIN, which is sent to server

BALANCE User requests balance

WITHDRAWL <amount> User asks to withdrawl money

BYE user all done

Messages from Server to ATM machine (display)

Msg name purpose

-------- -------

PASSWD Ask user for PIN (password)

OK last requested operation (PASSWD, WITHDRAWL) OK

ERR last requested operation (PASSWD, WITHDRAWL) in ERROR

AMOUNT <amt> sent in response to BALANCE request

BYE user done, display welcome screen at ATM

Correct operation:

client server

HELO (userid) --------------> (check if valid userid)

<------------- PASSWD

PASSWD <passwd> --------------> (check password)

<------------- OK (password is OK)

BALANCE -------------->

<------------- AMOUNT <amt>

WITHDRAWL <amt> --------------> check if enough $ to cover withdrawl

<------------- OK

ATM dispenses $

BYE -------------->

<------------- BYE

In situation when there's not enough money:

HELO (userid) --------------> (check if valid userid)

<------------- PASSWD

PASSWD <passwd> --------------> (check password)

<------------- OK (password is OK)

2

BALANCE -------------->

<------------- AMOUNT <amt>

WITHDRAWL <amt> --------------> check if enough $ to cover withdrawl

<------------- ERR (not enough funds)

error msg displayed

no $ given out

BYE -------------->

<------------- BYE

Problem 2.

a) A circuit-switched network would be well suited to the application described, because the applica-
tion involves long sessions with predictable smooth bandwidth requirements. Since the transmission
rate is known and not bursty, bandwidth can be reserved for each application session circuit with
no signi�cant waste. In addition, we need not worry greatly about the overhead costs of setting up
and tearing down a circuit connection, which are amortized over the lengthy duration of a typical
application session.

b) Given such generous link capacities, the network needs no congestion control mechanism. In the
worst (most potentially congested) case, all the applications simultaneously transmit over one or
more particular network links. However, since each link o�ers su�cient bandwidth to handle the
sum of all of the applications' data rates, no congestion (very little queueing) will occur.

Problem 3.

a) The time to transmit one packet onto a link is (L+ h)=R. The time to deliver the �rst of the M
packets to the destination is Q(L + h)=R. Every (L + h)=R seconds a new packet from the M � 1
remaining packets arrives at the destination. Thus the total latency is

ts + (Q+M � 1)(L+ h)=R:

b) (Q+M � 1)(L+ 2h)=R.

c) The time required to transmit the message over one link is (LM + 2h)=R. The time required to
transmit the message over Q links is Q(LM + 2h)=R.

d) Because there is no store-and-forward delays at the links, the total delay is

ts + (h+ML)=R:

Problem 5.

First assume that F=S is an integer. The delay is

�
S + h

R

��
F

S
+ 1

�
=

1

R

�
F + S + h +

Fh

S

�
;

3

where h = 40.

If F=S is not an integer, then the delay is

�
S + h

R

���
F

S

�
+ 1

�
+
F � bFS cS + h

R
=

1

R

�
F + S + 2h+ h

�
F

S

��

In general, the delay is

1

R

�
F + h+ S + h

�
F

S

��

which is approximately equal to

1

R

�
F + h+ S +

hF

S

�
:

Taking the derivative of S + hF
S and setting to 0 gives

Smin =
p
Fh:

Problem 6.

a) dprop = m=s seconds.

b) dtrans = L=R seconds.

c) dend�to�end = (m=s+ L=R) seconds.

d) The bit is just leaving Host A.

e) The �rst bit is in the link and has not reached Host B.

f) The �rst bit has reached Host B.

4

g) Want

m =
L

R
S =

100

28� 103
(2:5� 108) = 893km:

Problem 7.

Consider the �rst bit in a packet. Before this bit can be transmitted, all of the bits in the packet
must be generated. This requires

48 � 8
64� 103

sec = 6msec:

The time required to transmit the packet is

48 � 8
1� 106

sec = 384�sec:

Propagation delay = 2 msec.

The delay until decoding is

6msec + 384�sec + 2msec = 8:384msec:

A similar analysis shows that all bits experience a delay of 8.384 msec.

Problem 8.

a) 10 users can be supported because each user requires one tenth of the bandwidth.

b) p = 0:1.

c)
�40
n

�
pn(1� p)40�n.

d) 1�P9
n=0

�40
n

�
pn(1� p)40�n.

5

We use the central limit theorem to approximate this probability. Let Xj be independent random
variables such that P (Xj = 1) = p.

P (\11 or more users") = 1� P (
40X
j=1

Xj 6 10)

P (
40X
j=1

Xj 6 10) = P

�P40
j=1Xj � 4p
40 � 0:1 � 0:9 6

6p
40 � 0:1 � 0:9

�

� P (Z 6
6p
3:6

) = P (Z 6 3:16)

= 0:999

when Z is a standard normal r.v. Thus P (\10 or more users") � 0:001.

Problem 9.

It takes LN=R seconds to transmit the N packets. Thus, the bu�er is empty when a batch of N
packets arrive.

The �rst of the N packets has no queueing delay. The 2nd packet has a queueing delay of L=R
seconds. The nth packet has a delay of (n� 1)L=R seconds.

The average delay is

1

N

NX
n=1

(n� 1)L=R =
L

R

1

N

N�1X
n=0

n =
L

R

1

N

(N � 1)N

2
=
L

R

N � 1

2

Problem 10.

a) The transmission delay is L=R. The total delay is

IL

R(1� I)
+
L

R
=

L=R

1� I

6

b) Let x = L=R.

Total delay =
x

1� ax

Problem 11.

a) There are Q nodes (the source host and the N � 1 routers). Let dqproc denote the processing delay
at the qth node. Let Rq be the transmission rate of the qth link and let dqtrans = L=Rq. Let dqprop be
the propagation delay across the qth link. Then

dend�to�end =

QX
q=1

[dqproc + dqtrans + dqprop]:

b) Let dqqueue denote the average queueing delay at node q. Then

dend�to�end =

QX
q=1

[dqproc + dqtrans + dqprop + dqqueue]:

Problem 12.

The command:

traceroute -q 20 www.eurecom.fr

will get 20 delay measurements from the issuing host to the host, www.eurecom.fr. The average and
standard deviation of these 20 measurements can then be collected. Do you see any di�erences in
your answers as a function of time of day?

Solutions for Chapter 2

Problem 1.

7

a) F

b) T

c) F

d) F

Problem 2.

Access control commands:

USER, PASS, ACT, CWD, CDUP, SMNT, REIN, QUIT.

Transfer parameter commands:

PORT, PASV, TYPE STRU, MODE.

Service commands:

RETR, STOR, STOU, APPE, ALLO, REST, RNFR, RNTO, ABOR, DELE, RMD, MRD, PWD,
LIST, NLST, SITE, SYST, STAT, HELP, NOOP.

Problem 3.

SFTP: 115, NNTP: 119.

Problem 4.

The total amount of time to get the IP address is

RTT1 + RTT2 + � � �+ RTTn:

Once the IP address is known, RTTo elapses to set up the TCP connection and another RTTo elapses
to request and receive the small object. The total response time is

2RTTo + RTT1 +RTT2 + � � �+ RTTn:

Problem 5.

a)

RTT1 + � � �+RTTn + 2RTTo + 3 � 2RTTo
= 8RTTo + RTT1 + � � �+ RTTn:

b)

RTT1 + � � �+ RTTn + 2RTTo + 2RTTo

= 4RTTo +RTT1 + � � �+ RTTn:

c)

RTT1 + � � �+RTTn + 2RTTo +RTTo

= 3RTTo + RTT1 + � � �+RTTn:

8

Problem 6.

HTTP/1.0: GET, POST, HEAD.

HTTP/1.1: GET, POST, HEAD, OPTIONS, PUT, DELETE, TRACE, CONNECT.

See RFCs for explanations.

Problem 8.

UIDL abbreviates \unique-ID listing". When a POP3 client issues the UIDL command, the server
responds with the unique message ID for all of the messages present in the users mailbox. This
command is useful for \download and keep". By keeping a �le that lists the messages retrieved in
earlier sessions, the client can use the UIDL command to determine which messages on the server
have already been seen.

Problem 9.

a) If you run TCPClient �rst, then the client will attempt to make a TCP connection with a non-
existent server process. A TCP connection will not be made.

b) UDPClient doesn't establish a TCP connection with the server. Thus, everything should work
�ne if you �rst run UDPClient, then run UDPServer, and then type some input into the keyboard.

c) If you use di�erent port numbers, then the client will attempt to establish a TCP connection with
the wrong process or a non-existent process. Errors will occur.

Solutions for Chapter 3

Problem 1.

source port destination port
numbers numbers

a) A ! S 467 23
b) B ! S 513 23
c) S ! A 23 467
d) S ! B 23 513

e) Yes.

f) No.

Problem 2.

9

0 1 0 1 0 1 0 1
+ 0 1 1 1 0 0 0 0

1 1 0 0 0 1 0 1

1 1 0 0 0 1 0 1
+ 1 1 0 1 0 0 0 1

1 0 0 1 0 1 1 0

= 1 0 0 1 0 1 1 1

One's complement = 0 1 1 0 1 0 0 0.

To detect errors, the receiver adds the four words (the three original words and the checksum). If the
sum contains a zero, the receiver knows there has been an error. All one-bit errors will be detected,
but two-bit errors can be undetected (e.g., if the last digit of the �rst word is converted to a 0 and
the last digit of the second word is converted to a 1).

Problem 3.

Suppose the sender is in state "Wait for call 1 from above" and the receiver (the receiver shown in
the homework problem) is in state "Wait for 1 from below." The sender sends a packet with sequence
number 1, and transitions to "Wait for ACK or NAK 1," waiting for an ACK or NAK. Suppose now
the receiver receives the packet with sequence number 1 correctly, sends an ACK, and transitions to
state "Wait for 0 from below," waiting for a data packet with sequence number 0. However, the ACK
is corrupted. When the rdt2.1 sender gets the corrupted ACK, it resends the packet with sequence
number 1. However, the receiver is waiting for a packet with sequence number 0 and (as shown in
the home work problem) always sends a NAK when it doesn't get a packet with sequence number
0. Hence the sender will always be sending a packet with sequence number 1, and the receiver will
always be NAKing that packet. Neither will progress forward from that state.

Problem 4.

To best answer this question, consider why we needed sequence numbers in the �rst place. We saw
that the sender needs sequence numbers so that the receiver can tell if a data packet is a duplicate
of an already received data packet. In the case of ACKs, the sender does not need this info (i.e., a
sequence number on an ACK) to tell detect a duplicate ACK. A duplicate ACK is obvious to the
rdt3.0 receiver, since when it has received the original ACK it transitioned to the next state. The
duplicate ACK is not the ACK that the sender needs and hence is ignored by the rdt3.0 sender.

Problem 5.

The sender side of protocol rdt3.0 di�ers from the sender side of protocol 2.2 in that timeouts have
been added. We have seen that the introduction of timeouts adds the possibility of duplicate packets

10

Figure 1: rdt 3.0 scenarios: corrupted data, corrupted ACK

into the sender-to-receiver data stream. However, the receiver in protocol rdt.2.2 can already handle
duplicate packets. (Receiver-side duplicates in rdt 2.2 would arise if the receiver sent an ACK that
was lost, and the sender then retransmitted the old data). Hence the receiver in protocol rdt2.2 will
also work as the receiver in protocol rdt 3.0.

Problem 6.

Suppose the protocol has been in operation for some time. The sender is in state "Wait for call from
above" (top left hand corner) and the receiver is in state "Wait for 0 from below". The scenarios for
corrupted data and corrupted ACK are shown in Figure 1.

Problem 7.

Here, we add a timer, whose value is greater than the known round-trip propagation delay. We add a
timeout event to the "Wait for ACK or NAK0" and "Wait for ACK or NAK1" states. If the timeout
event occurs, the most recently transmitted packet is retransmitted. Let us see why this protocol
will still work with the rdt2.1 receiver.

� Suppose the timeout is caused by a lost data packet, i.e., a packet on the sender-to-receiver
channel. In this case, the receiver never received the previous transmission and, from the
receiver's viewpoint, if the timeout retransmission is received, it look exactly the same as if the
original transmission is being received.

� Suppose now that an ACK is lost. The receiver will eventually retransmit the packet on a
timeout. But a retransmission is exactly the same action that is take if an ACK is garbled.
Thus the sender's reaction is the same with a loss, as with a garbled ACK. The rdt 2.1 receiver
can already handle the case of a garbled ACK.

Problem 8.

11

The protocol would still work, since a retransmission would be what would happen if the packet
received with errors has actually been lost (and from the receiver standpoint, it never knows which
of these events, if either, will occur).

To get at the more subtle issue behind this question, one has to allow for premature timeouts to
occur (which is not what the question asked, sorry). In this case, if each extra copy of the packet
is ACKed and each received extra ACK causes another extra copy of the current packet to be sent,
the the number of times packet n is sent will increase without bound as n approaches in�nity.

Problem 9.

It takes 8 microseconds (or 0.008 milliseconds) to send a packet. in oder for the sender to be busy
90 percent of the time, we must have

util = 0:9 = (0:008n)=30:016

or n is approximately 3377 packets.

Problem 10.

In our GBN reliable data transfer protocol, the sender keep sending packets until it receives a NAK.
A NAK is generated for packet n only if all packets up to n�1 have been correctly received. That is,
n is always the smallest sequence number of a packet that is yet to be received. When the receives
a NAK for packet n, it simply begins sending again from packet n onwards. This is like the GBN
protocol in the text, except that there is no maximum number of unacknowledged packets in the
pipeline. Note the sender can't actually know how many packets are unacknowledged. If the current
sequence number if k and the last NAK was for packet n, then there may be as many as k� (n� 1)
unacknowledged packets in the pipeline.

Note also that a receiver does not know that packet n is missing until a packet with a higher sequence
number is received! (The "gap" in the sequence numbers of received packets tells the receiver that
a packet in the gap is lost). Thus, when the data rate is low (i.e., a large amount of time between
packet transmissions), it will take longer for a receiver to notice a missing packet than when the data
rate is high.

Problem 11.

In our solution, the sender will wait until it receives an ACK for a pair of messages (seqnum and
seqnum+1) before moving on to the next pair of messages. Data packets have a data �eld and carry
a two-bit sequence number. That is, the valid sequence numbers are 0, 1, 2, and 3. (Note: you
should think about why a 1-bit sequence number space of 0, 1 only would not work in the solution
below.) ACK messages carry the sequence number of the data packet they are acknowledging.

The FSM for the sender and receiver are shown in Figure 2. Note that the sender state records
whether (i) no ACKs have been received for the current pair, (ii) an ACK for seqnum (only) has
been received, or an ACK for seqnum+1 (only) has been received. In this �gure, we assume that the
seqnum is initially 0, and that the sender has sent the �rst two data messages (to get things going).

A timeline trace for the sender and receiver recovering from a lost packet is shown below:

12

wait for
pair of
ACKs

wait for
odd
ACK

wait for
even
ACK

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_ack(seqnum)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_ack(seqnum+1)

(rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_ack(seqnum))

|| (rdt_rcv(rcvpkt) && corrupt(rcvpkt))

(rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_ack(seqnum+1))

|| (rdt_rcv(rcvpkt) && corrupt(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_ack(seqnum)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_ack(seqnum+1)

udt_send(sndpkt, seqnum+1)
start_timer

seqnum = seqnum+2
udt_send(sndpkt, seqnum)
udt_send(sndpkt, seqnum+1)
start_timer

udt_send(sndpkt, seqnum)
udt_send(sndpkt, seqnum+1)

start_timer

seqnum = seqnum+2
udt_send(sndpkt, seqnum)
udt_send(sndpkt, seqnum+1)
start_timer

udt_send(sndpkt, seqnum)
start_timer

timeout

timeout

timeout

(rdt_rcv(rcvpkt) && corrupt(rcvpkt))
||
(rdt_rcv(rcvpkt) && notcorupt(rcvpkt)
&& has_not_ACK(seqnum)
&& has_not_ACK(seqnum+1))

(rdt_rcv(rcvpkt) && corrupt(rcvpkt))

(rdt_rcv(rcvpkt) && notcorupt(rcvpkt)
&& has_seq(x)

&& x != seqnum
&& x != seqnum+1

sender

wait for
pair of
data

wait for
odd
data

wait for
even
data

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq(seqnum+1)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq(seqnum)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq(seqnum+1)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq(seqnum)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_seq(seqnum)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_seq(seqnum+1)

udt_send(ACK,seqnum)
seqnum = seqnum+2

udt_send(ACK,seqnum+1)
seqnum = seqnum+2

udt_send(ACK, seqnum+1)

udt_send(ACK, x)

udt_send(ACK, seqnum) udt_send(ACK, seqnum)

udt_send(ACK, seqnum+1)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

receiver

Figure 2: Sender and receiver for Problem 3.11

13

Sender Receiver

make pair (0, 1)

send packet 0

packet 0 drops

send packet 1

receive packet 1

buffer packet 1

send ACK 1

receive ACK 1

(timeout)

resend packet 0

receive packet 0

deliver pair (0, 1)

send ACK 0

receive ACK 0

Problem 12.

This problem is a variation on the simple stop and wait protocol (rdt3.0). Because the channel may
lose messages and because the sender may resend a message that one of the receivers has already
received (either because of a premature timeout or because the other receiver has yet to receive the
data correctly), sequence numbers are needed. As in rdt3.0, a 0-bit sequence number will su�ce
here.

The sender and receiver FSM are shown in Figure 3. In this problem, the sender state indicates
whether the sender has received an ACK from B (only), from C (only) or from neither C nor B. The
receiver state indicates which sequence number the receiver is waiting for.

Problem 13.

a) Here we have a window size of N=3. Suppose the receiver has received packet k-1, and has
ACKed that and all other preceeding packets. If all of these ACK's have been received by sender,
then sender's window is [k, k+N-1]. Suppose next that none of the ACKs have been received at the
sender. In this second case, the sender's window contains k-1 and the N packets up to and including
k-1. The sender's window is thus [k-N,k-1]. By these arguments, the senders window is of size 3 and
begins somewhere in the range [k-N,k].

b) If the receiver is waiting for packet k, then it has received (and ACKed) packet k-1 and the N-1
packets before that. If none of those N ACKs have been yet received by the sender, then ACK
messages with values of [k-N,k-1] may still be propagating back. Because the sender has sent packets
[k-N, k-1], it must be the case that the sender has already received an ACK for k-N-1. Once the
receiver has sent an ACK for k-N-1 it will never send an ACK that is less that k-N-1. Thus the range
of in-ight ACK values can range from k-N-1 to k-1.

Problem 14.

Because the A-to-B channel can lose request messages, A will need to timeout and retransmit its
request messages (to be able to recover from loss). Because the channel delays are variable and
unknown, it is possible that A will send duplicate requests (i.e., resend a request message that has

14

wait for
B or C
ACK

wait for
ACK

C

wait for
ACK
B

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& is_ack(seqnum,B)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& is_ACK(seqnum,C)

(rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& is_not_ack(seqnum,C))

|| (rdt_rcv(rcvpkt) && corrupt(rcvpkt))

(rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& is_not_ack(seqnum,B))

|| (rdt_rcv(rcvpkt) && corrupt(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& is_ack(seqnum,B)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& is_ack(seqnum,C)

udt_send(sndpkt, seqnum)
start_timer

seqnum = seqnum+1
udt_send(sndpkt, seqnum)
start_timer

udt_send(sndpkt, seqnum)
start_timer

seqnum = seqnum+1
udt_send(sndpkt, seqnum)
start_timer

udt_send(sndpkt, seqnum)
start_timer

timeout

timeout

timeout

(rdt_rcv(rcvpkt) && corrupt(rcvpkt))
||
(rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& is_not_ack(seqnum,*))

(rdt_rcv(rcvpkt) && corrupt(rcvpkt))

(rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_seq(x))
&& x != seqnum

sender

wait for
data

seqnum

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_seq(seqnum)

udt_send(ACK, seqnum,B)
seqnum = seqnum+1

udt_send(ACK, x,B)

receiver B

Figure 3: Sender and receiver for Problem 3.12

15

already been received by B). To be able to detect duplicate request messages, the protocol will use
sequence numbers. A 1-bit sequence number will su�ce for a stop-and-wait type of request/response
protocol.

A (the requestor) has 4 states:

� "Wait for Request 0 from above." Here the requestor is waiting for a call from above to
request a unit of data. When it receives a request from above, it sends a request message, R0,
to B, starts a timer and makes a transition to the "Wait for D0" state. When in the "Wait for
Request 0 from above" state, A ignores anything it receives from B.

� "Wait for D0". Here the requestor is waiting for a D0 data message from B. A timer is
always running in this state. If the timer expires, A sends another R0 message, restarts the
timer and remains in this state. If a D0 message is received from B, A stops the time and
transits to the "Wait for Request 1 from above" state. If A receives a D1 data message while
in this state, it is ignored.

� "Wait for Request 1 from above." Here the requestor is again waiting for a call from above
to request a unit of data. When it receives a request from above, it sends a request message,
R1, to B, starts a timer and makes a transition to the "Wait for D1" state. When in the "Wait
for Request 1 from above" state, A ignores anything it receives from B.

� "Wait for D1". Here the requestor is waiting for a D1 data message from B. A timer is
always running in this state. If the timer expires, A sends another R1 message, restarts the
timer and remains in this state. If a D1 message is received from B, A stops the timer and
transits to the "Wait for Request 0 from above" state. If A receives a D0 data message while
in this state, it is ignored.

The data supplier (B) has only two states:

� "Send D0." In this state, B continues to respond to received R0 messages by sending D0,
and then remaining in this state. If B receives a R1 message, then it knows its D0 message has
been received correctly. It thus discards this D0 data (since it has been received at the other
side) and then transits to the "Send D1" state, where it will use D1 to send the next requested
piece of data.

� "Send D1." In this state, B continues to respond to received R1 messages by sending D1,
and then remaining in this state. If B receives a R1 message, then it knows its D1 message has
been received correctly and thus transits to the "Send D1" state.

Problem 15.

In order to avoid the scenario of Figure 3.26, we want to avoid having the leading edge of the
receiver's window (i.e., the one with the "highest" sequence number) wrap around in the sequence
number space and overlap with the trailing edge (the one with the "lowest" sequence number in the
sender's window). That is, the sequence number space must be large enough to �t the entire receiver
window and the entire sender window without this overlap condition. So - we need to determine
how large a range of sequence numbers can be covered at any given time by the receiver and sender
windows (see Problem 13).

16

Suppose that the lowest-sequence number that the receiver is waiting for is packet m. In this case,
it's window is [m,m+w-1] and it has received (and ACKed) packet m-1 and the w-1 packets before
that, where w is the size of the window. If none of those w ACKs have been yet received by the
sender, then ACK messages with values of [m-w,m-1] may still be propagating back. If no ACKs
with these ACK numbers have been received by the sender, then the sender's window would be
[m-w,m-1].

Thus, the lower edge of the sender's window is m-w, and the leading edge of the receivers window
is m+w-1. In order for the leading edge of the receiver's window to not overlap with the trailing
edge of the sender's window, the sequence number space must thus be big enough to accommodate
2w sequence numbers. That is, the sequence number space must be at least twice as large as the
window size, k � 2w:

Problem 16.

a) True. Suppose the sender has a window size of 3 and sends packets 1, 2, 3 at t0. At t1 (t1 > t0)
the receiver ACKS 1, 2, 3. At t2 (t2 > t1) the sender times out and resends 1, 2, 3. At t3 the
receiver receives the duplicates and re-acknowledges 1, 2, 3. At t4 the sender receives the ACKs that
the receiver sent at t1 and advances its window to 4, 5, 6. At t5 the sender receives the ACKs 1, 2,
3 the receiver sent at t2. These ACKs are outside its window.

b) True. By essentially the same scenario as in (a).

c) True.

d) True. Note that with a window size of 1, SR, GBN, and the alternating bit protocol are func-
tionally equivalent. The window size of 1 precludes the possibility of out-of-order packets (within
the window). A cumulative ACK is just an ordinary ACK in this situation, since it can only refer
to the single packet within the window.

Problem 17.

There are 232 = 4; 294; 967; 296 possible sequence numbers.

a) The sequence number does not increment by one with each segment. Rather, is increments by
the number of bytes of data sent. So the size of the MSS is irrelevant { the maximum size �le that
can be sent from A to B is simply the number of bytes representable by 232 � 4:19 Gbytes.

b) The number of segments is d 232

1460e = 2; 941; 758. 66 bytes of header get added to each segment
giving a total of 194,156,028 bytes of header. The total number of bytes transmitted is 232 +
194; 156; 028 = 3; 591� 107 bits.

Thus it would take 3,591 seconds = 59 minutes to transmit the �le over a 10 Mbps link.

Problem 18.

Suppose packets n, n+1, and n+2 are sent, and that packet n is received and ACKed. If packets
n+1 and n+2 are reordered along the end-to-end-path (i.e., are received in the order n+2, n+1)
then the receipt of packet n+2 will generate a duplicate ack for n and would trigger a retransmission
under a policy of waiting only for second duplicate ACK for retransmission. By waiting for a triple
duplicate ACK, it must be the case that two packets after packet n are correctly received, while n+1
was not received. The designers of the triple duplicate ACK scheme probably felt that waiting for

17

Figure 4: Lack of TCP convergence with linear increase, linear decrease

two packets (rather than 1) was the right tradeo� between triggering a quick retransmission when
needed, but not retransmitting prematurely in the face of packet reordering.

Problem 19. Denote EstimatedRTT (n) for the estimate after the nth sample.

EstimatedRTT (1) = SampleRTT1

EstimatedRTT (2) = xSampleRTT1+ (1� x)SampleRTT2

EstimatedRTT (3) = xSampleRTT1

+ (1� x)[xSampleRTT2+ (1� x)SampleRTT3]

= xSampleRTT1+ (1� x)xSampleRTT2

+ (1� x)2SampleRTT3

EstimatedRTT (4) = xSampleRTT1+ (1� x)EstimatedRTT (3)

= xSampleRTT1+ (1� x)xSampleRTT2

+ (1� x)2xSampleRTT3+ (1� x)3SampleRTT4

18

b)

EstimatedRTT (n) = x

n�1X
j=1

(1� x)jSampleRTTj

+ (1� x)nSampleRTTn

c)

EstimatedRTT (1) =
x

1� x

1X
j=1

(1� x)jSampleRTTj

=
1

9

1X
j=1

:9jSampleRTTj

The weight given to past samples decays exponentially.

Problem 20.

Refer to Figure 4. In Figure 4(a), the ratio of the linear decrease on loss between connection 1 and
connection 2 is the same - as ratio of the the linear increases: unity. In this case, the throughputs
never move o� of the AB line segment. In Figure 4(a), the ratio of the linear decrease on loss between
connection 1 and connection 2 is 2:1. That is, whenever there is a loss, connection 1 decreases its
window by twice the amount of connection 2. We see that eventually, after enough losses, and
subsequent increases, that connection 1's throughput will go to 0, and the full link bandwidth will
be allocated to connection 2.

Problem 21.

a) The loss rate, L, is the ratio of the number of packets lost over the number of packets sent. In a

19

cycle, 1 packet is lost. The number of packets sent in a cycle is

W

2
+

�
W

2
+ 1

�
+ � � �+W =

W=2X
n=0

�
W

2
+ n

�

=

�
W

2
+ 1

�
W

2
+

W=2X
n=0

n

=

�
W

2
+ 1

�
W

2
+
W=2(W=2 + 1)

2

=
W 2

4
+
W

2
+
W 2

8
+
W

4

=
3

8
W 2 +

3

4
W

Thus the loss rate is

L =
1

3
8W

2 + 3
4W

b) For W large, 3
8W

2 � 3
4W . Thus L � 8=3W 2 or W �

q
8
3L . From the text, we therefore have

average throughput =
3

4

r
3

8L
� MSS

RTT

=
1:22 �MSS

RTT � pL

20

Problem 22.

The minimum latency is 2RTT + O=R. The minimum W that achieves this latency is

W = min

�
w : w � RTT+ S=R

S=R

�

=

�
RTT

S=R

�
+ 1:

R min latency W

28 Kbps 28.77 sec 2
100 Kbps 8.2 sec 4
1 Mbps 1 sec 25
10 Mbps 0.28 sec 235

Problem 23.

a)

K = number of windows that cover the object

= minfk : 30 + 31 + � � �+ 3k�1 � O=Sg

= min

�
k :

1� 3k

1� 3
� O=S

�

= minfk : 3k � 1 + 2O=Sg
= dlog3(1 + 2O=S)e

21

b) Q is the number of times the server would stall for an object of in�nite size.

Q = max

�
k : RTT +

S

R
� S

R
3k�1 � 0

�

=

�
1 + log3

�
1 +

RTT

S=R

��

c)

latency =
O

R
+ 2RTT+

PX
k=1

stallk

=
O

R
+ 2RTT+

PX
k=1

�
RTT+

S

R
� S

R
3k�1

�

=
O

R
+ 2RTT+ P (RTT + S=R)� (3P � 1)

2

S

R

Problem 24.

R O/R P Min Latency with
latency slow start

28 Kbps 29.25 s 3 31.25 sec 33.18 sec
100 Kbps 8.19 s 5 10.19 sec 13.86 sec
1 Mbps 819 msec 7 2.81 sec 9.26 sec
10 Mbps 82 msec 7 2 sec 9 sec

22

Problem 25.

a) T

b) T

c) F

d) F

Problem 26.

When the server sends a segment, it has to wait a time of TS=R+RTT for the acknowledgement to
arrive. The transmission time of the kth window is (S=R)2k�1. The stall time for the kth window is

�
TS

R
+ RTT � 2k�1

S

R

�+

The number of stalls Q is

Q = max

�
k : RTT +

TS

R
� S

R
2k�1 � 0

�

= max

�
k : 2k�1 � T +

RTT

S=R

�

= max

�
k : k � log2

�
T +

RTT

S=R

�
+ 1

�

=

�
log2

�
T +

RTT

S=R

��
+ 1

23

The number of times the server stalls is P = min(Q;K � 1). The latency is

latency = 2RTT +
O

R
+

PX
k=1

�
RTT +

TS

R
� S

R
2k�1

�

which simpli�es to

latency = 2RTT +
O

R
+ P

�
RTT +

TS

R

�
� (2P � 1)

S

R

Problem 27.

P
�
RTT+ S

R

�� (2P � 1) SR
2RTT+ O

R + P
�
RTT + S

R

�� (2P � 1) SR

Problem 28.

a)

Transfer time of all M + 1 objects : (M + 1)
O

R

TCP connection setup : 2 �RTT
Request for images : RTT

To this we have to add the latency due to slow-start.

Comparing the contribution of RTTs with that in non-persistent HTTP we see that the only RTTs
that a�ect the response time are the two RTTs needed for setting up the TCP connection and

24

sending the initial request and one RTT for requesting the images. In non-persistent HTTP we have
a separate TCP connection setup for each object.

b)

Because the last window of the initial object is full and the server does not need to wait for a request
for the images, the situation is identical to the server sending one large object of (M + 1)O bytes.
The response time is

2 �RTT +
(M + 1)O

R
+ P 0

�
RTT +

S

R

�
� (2P

0 � 1)
S

R

c)

In the previous question, the server did not have to wait for a request for the images. The stall
time after sending the initial object in that case is [S=R+RTT � 2K�1(S=R)]+. In reality, the stall
time is RTT because the server has to wait for an explicit request for the images from the client.
Substituting this into the response time equation gives

3 �RTT +
(M + 1)O

R
+ P 0

�
RTT +

S

R

�
� (2P

0 � 1)
S

R
� [

S

R
+ RTT � 2K�1

S

R
]+

Problem 29.

Rate Persistent Non-persistent

28 Kbps 16.2 sec 20.4 sec
100 Kbps 5.1 sec 10.6 sec
1 Mbps 1.3 sec 8.9 sec
10 Mbps 1.1 sec 8.8 sec

Problem 30.

25

Rate Persistent Non-persistent

28 Kbps 23.6 sec 91.7 sec
100 Kbps 13.4 sec 89.0 sec
1 Mbps 11.2 sec 88.1 sec
10 Mbps 11.0 sec 88.0 sec

Problem 31.

Time to transfer all objects over the link : (M + 1)O=R

TCP connection setup for �rst request : 2RTT

TCP connection setup for M=X sets of image requests : M=X � 2RTT

Adding the latency due to slow-start gives

(M + 1)
O

R
+ 2

�
M

X
+ 1

�
RTT + latency due to slow-start stalling:

The contribution of the term involving RTT is larger than that of persistent connections but smaller
than that of non-persistent, non-parallel connections. This is because we open more connections,
M=X , than with persistent connections (only one connection in that case) but less than with non-
parallel connections in which case we open M connections.

Solutions for Chapter 4

Problem 1.

a) With a connection-oriented network, every router failure will involve the routing of that connec-
tion. At a minimum, this will require the router that is"upstream" from the failed router to establish
a new downstream part of the path to the destination node, with all of the requisite signaling in-
volved in setting up a path. Moreover, all of the router on the initial path that are downstream from
the failed node must take down the failed connection, with all of the requisite signaling involved to
do this.

With a connectionless datagram network, no signaling is required to either set up a new downstream
path or take down the old downstream path. We have seen, however, that routing tables will need to
be updated (e.g., either via a distance vector algorithm or a link state algorithm) to take the failed
router into account. We have seen that with distance vector algorithms, this routing table change

26

can sometimes be localized to the area near the failed router. Thus, a datagram network would
be preferable. Interesting, the design criteria that the initial ARPAnet be able to function under
stressful conditions was one of the reasons that a datagram architecture was chosen for this Internet
ancestor.

b) In order for a router to determine the delay (or a bound on delay) along an outgoing link, it would
need to know the characteristics of the tra�c from all sessions passing through that link. That is, the
router must have per-session state in the router. This is possible in a connection-oriented network,
but not with a connectionless network. Thus, a connection-oriented network would be preferable.

Problem 2.

ABCDEF

ABCEF

ABCF

ABDCEF

ABDEF

ABDECF

ADBCF

ADBCEF

ADCEF

ADCF

ADEF

ADECF

ACF

ACBDF

ACDEF

ACEF

Problem 3.

a b c d e g h

N

inf inf inf 3,f 1,f 6,f inf

e inf inf 4,e 2,e g,f inf

ed inf 11,d 3,d 3,d inf

edc 7,c 5,c 3,d inf

edcg 7,c 5,c 17,g

edcgb 6,b 7,b

edcgba 7,b

Problem 4.

The distance table in E is:

27

via

b c d

to a 6 13 4

b 5 14 5

c 9 10 3

d 8 11 2

Problem 5.

The wording of this question was a bit ambiguous. We meant this to mean, \the number of iterations
from when the algorithm is run for the �rst time"(that is, assuming the only information the nodes
initially have is the cost to their nearest neighbors). We assume that the algorithm runs synchronously
(that is, in one step, all nodes compute their distance tables at the same time and then exchange
tables).

At each iteration, a node exchanges distance tables with its neighbors. Thus, if you are node A, and
your neighbor is B, all of B's neighbors (which will all be one or two hops from you) will know the
shortest cost path of one or two hops to you after one iteration (i.e., after B tells them its cost to
you).

Let d be the \diameter" of the network - the length of the longest path without loops between any
two nodes in the network. Using the reasoning above, after d-1 iterations, all nodes will know the
shortest path cost of d or fewer hops to all other nodes. Since any path with greater than d hops
will have loops (and thus have a greater cost than that path with the loops removed), the algorithm
will converge in at most d-1 iterations.

ASIDE: if the DV algorithm is run as a result of a change in link costs, there is no a priori bound on
the number of iterations required until convergence unless one also speci�es a bound on link costs.

Problem 6.

The distance table in X is:

via

W Y

to W 1 ?

Y ? 4

A 6 10

Note that there is not enough information given in the problem (purposefully!) to determine the
distance table entries D(W,Y) and D(Y,W). To know these values, we would need to know Y's
minimum cost to W, and vice versa.

Since X's least cost path to A goes through W, a change in the link cost c(X,W) will cause X to
inform its neighbors of a new minimum cost path to A, Since X's least cost path to A does not
go through Y, a change in the link cost c(X,Y) will not cause X to inform its neighbors of a new
minimum cost path to A.

Problem 7.

28

The distance table in X, Y, Z are:

DX via DY via DZ via

to Y Z to X Z to X Y

Y 2 8 X 2 4 X 7 3

Z 3 7 Z 5 1 y 9 1

Although Y's distance table has changed as a result of this iteration, its minimum cost paths to
various destinations have not changed and hence Y will not send out its distance tables. X's and Z's
tables have not changed as a result of their iteration and hence they will not send out their tables.
Thus, the algorithm has converged after this iteration.

Problem 8.

via via

DX Y Z DX Y Z

to Y 5 inf to Y 5 8

Z inf 2 Z 11 2

via via

DY X Z DY X Z

to X 5 inf to X 5 8

Z inf 6 Z 7 6

via via

DZ Y X DZ Y X

to Y 6 inf to Y 6 7

X inf 2 X 11 2

Problem 9.

The minimal spanning tree has G connected to D at a cost of 1, E connected to D at a cost of 1; C
connected to D at a cost of 1; C connected to B at a a cost of 2; B connected to A at a cost of 1.

We can argue informally that the tree cost is minimal as follows. C, D, E, and G can be connected
to each other at a cost of 3. One can't do any better than that. In order to connect A in to any of
C, D, E, G, the minimum cost is 3 (via B).

Problem 10.

Since there is no network layer protocol to identify hosts participating in a group, this must be done
at a higher layer. In practice, this is done using an application-level protocol over IP multicast. See
Problem 23.

Problem 11.

29

The cost of sending one packet to all 32 receivers via multicast is 62. With multicast, the packet
traverses a link exactly once. There are 62 links in a binary tree of depth 5. If the packet is unicast to
all receivers, then each of the 32 receivers is sent an individual packet. Each packet must travel across
�ve links (recall the tree depth is 5) from the source to any receiver. Hence the cost is 32*5=160.
We see there is a signi�cant savings using multicast in this case.

Problem 12.

Here's a rough sketch of how an application level group-participant-identi�cation (GPI) protocol
would work. We'll assume the application entities use a separate multicast channel in the GPI
protocol. There are two key components:

� Each application periodically sends an "I am in this group" message, giving it's host identity,
into the multicast control channel. This message is then received by all other participants.

� Each application maintains a timer for each of the other participants. If it doesn't hear an "I
am in this group" message from a group participant within the timeout interval, it removes the
participant from its participant list. An alternative approach would have been for a participant
to explicitly remove itself from the group. In this latter case, if the participant died, it would
remain in everyone's group list forever. For this reason, we prefer the "soft-state" mechanism
in the former approach. But either answer is OK; it's a matter of taste.

Problem 13.

With the new link cost, the Steiner tree connects A to C; B to C; C to E; and F to E. In order to
prove this is a minimal cost tree, we could generate all possible spanning trees connecting these 4
nodes and verify that the tree described above indeed has minimum cost.

Problem 14.

The center-based tree for the topology shown in the original �gure connects A to D; B to C; E to C;
and F to C (all directly). This center-based tree is di�erent from the minimal spanning tree shown
in the �gure.

Problem 15.

The least cost path tree connects F directly to E. B's path to E is BDE. A's path to E is ACE.

Problem 16.

See Figure 5.

Problem 17.

Reverse path forwarding would still work. RPF uses the unicast cost only to determine from which
incoming link it will receive and forward (downstream) multicast packets. Packets arriving from
other links are dropped. RPF would also work (arguably not as e�ciently) if one forwarded only the
packet arriving on the most costly path to the source.

30

Figure 5: Solution to problem 16

Problem 18.

In the center-based tree the total tra�c intensity (upstream + downstream tra�c) is 4 on links AC,
BC, EC, and FC. There is one unit of tra�c emanating from nodes A,B,E,F and three units of tra�c
coming downstream from C that was sent by the other three nodes.

The source tree rooted at A has one unit of tra�c on AB, AC, CE, and CF. The source tree rooted
at B has 1 unit of tra�c on AB, BD, DE, EF. The source tree rooted at E has one unit of tra�c on
EF, ED. DB, EC and CA. The source tree rooted at F has one unit of tra�c on FE, ED, DB, FC,
and CA. Summing these up, the union of the source rooted trees generates: 3 units on CA; 2 units
on CF; 2 units on AB; 3 units on BD; 3 units on ED; 3 units on EF; and 2 units on CE. Note that
no link has 4 units of tra�c, while four of the links in the center-based tree have 4 units of tra�c on
them. Thus, in this example, we can say that the center-based tree tends to concentrate tra�c.

Problem 19.

Since MOSP builds source-speci�c trees, its state complexity is S*G. PIM SM builds a single center-
based tree for the group and hence has state complexity G. PIM DM is like DVMRP and thus has
a complexity of S*G.

Problem 20.

32� 4 = 28 bits are available for multicast addresses. Thus, the size of the multicast address space
is N = 228.

The probability that two groups choose the same address is

1

N
= 2�28 = 3:73 � 10�9

31

The probability that 1000 groups all have di�erent addresses is

N � (N � 1) � (N � 2) � � �(N � 999)

N1000
=

�
1� 1

N

��
1� 2

N

�
� � �
�
1� 999

N

�

Ignoring cross product diterms, this is approximately equal to

1�
�
1 + 2 + � � �+ 999

N

�
= 1� 999 � 1000

2N
= 0:998

Problem 21.

The IP router at the end of the tunnel will use the protocol number in the "Upper Layer Protocol"
�eld of the IP packet to determine which upper layer protocol to pass the IP packet. Thus, IP doesn't
really know that the IP packet contains a multicast datagram. This is only discovered when the upper
layer protocol (which will perform the multicast copy and routing) "opens" the IP datagram it is
handed by the IP layer.

Solutions for Chapter 5

Problem 1.

The rightmost column and bottom row are for parity bits.

1 0 1 0 0

1 0 1 0 0

1 0 1 0 0

1 0 1 1 1

0 0 0 1 1

Problem 2.

Suppose we begin with the initial two-dimensional parity matrix:

0 0 0 0

1 1 1 1

0 1 0 1

1 0 1 0

32

With a bit error in row 2, column 3, the parity of row 2 and column 3 is now wrong in the matrix
below:

0 0 0 0

1 1 0 1

0 1 0 1

1 0 1 0

Now suppose there is a bit error in row 2, column 2 and column 3. The parity of row 2 is now correct!
The parity of columns 2 and 3 is wrong, but we can't detect in which rows the error occurred!

0 0 0 0

1 0 0 1

0 1 0 1

1 0 1 0

The above example shows that a double bit error can be detected (if not corrected)

Problem 3.

To compute the Internet checksum, we add up the values at 16-bit quantities:

00000000 00000001

00000010 00000011

00000100 00000101

00000110 00000111

00001000 00001001

00010100 00011001

The one's complement of the sum is 11101011 11100110.

Problem 4.

If we divide 1001 into 10101010000 we get 10010111, with a remainder of R = 001.

Problem 5.

The output is

-1,+1,-1,+1,-1,+1,-1,+1 +1,-1,+1,-1,+1,-1,+1,-1

Problem 6.

Sender 2's output before the adder is

+1,-1,+1,+1,+1,-1,+1,+1 +1,-1,+1,+1,+1,-1,+1,+1

33

Problem 7.

d20 = (2; 0; 2; 0; 2;�2; 0; 0) � (1;�1; 1; 1; 1;�1; 1; 1)=8 = (2 + 2 + 2 + 2)=8 = 1

d21 = (0;�2; 0; 2; 0; 0; 2; 2) � (1;�1; 1; 1; 1;�1; 1; 1)=8 = (2 + 2 + 2 + 2)=8 = 1

Problem 8.

a)

E(p) = Np(1� p)N�1

E0(p) = N(1� p)N�1 �Np(N � 1)(1� p)N�2

= N(1� p)N�2((1� p)� p(N � 1))

E0(p) = 0) p� =
1

N

b)

E(p�) = N
1

N
(1� 1

N
)N�1 = (1� 1

N
)N�1 =

(1� 1
N)

N

1� 1
N

lim
N!1

(1� 1

N
) = 1 lim

N!1
(1� 1

N
)N =

1

e

Thus

lim
N!1

E(p�) =
1

e

34

Problem 9.

E(p) = Np(1� p)2(N�1)

E0(p) = N(1� p)2(N�2)�Np2(N � 1)(1� p)2(N�3)

= N(1� p)2(N�3)((1� p)� p2(N � 1))

E0(p) = 0) p� =
1

2N � 1

E(p�) =
N

2N � 1
(1� 1

2N � 1
)2(N�1)

lim
N!1

E(p�) =
1

2
� 1
e
=

1

2e

Problem 10.

Pure Aloha has an e�ciency of zero for almost all values of p. See Figure 6

Problem 11.

The length of a polling round is

N(Q=R+ tpoll)

The number of bits transmitted in a polling round is NQ. The maximum throughput therefore is

NQ

N(Q=R+ tpoll)
=

R

1 +
tpollR
Q

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p

Efficiencies of Aloha and Slotted Aloha

Aloha
Slotted Aloha

Figure 6: E�ciency of Aloha and Slotted Aloha

Problem 12.

a), b), c) See Figure 7

d)

1. Routing table in A determines that the datagram should be routed to interface 111.111.111.002.

2. Host A uses ARP to determine the LAN address for 111.111.111.002, namely 22-22-22-22-22.

3. The adapter in A creates and Ethernet packet with Ethernet destination address 22-22-22-22-
22-22.

4. The �rst router receives the packet and extracts the datagram. The routing table in this router
indicates that the datagram is to be routed to 122.222.222.003.

LAN

A

B

00-00-00-00-00-00

11-11-11-11-11-11

111.111.111.001

111.111.111.003

Router

122.222.222.002111.111.111.002
22-22-22-22-22-22 33-33-33-33-33-33

LAN

C

D

122.222.222.001

122.222.222.004
66-66-66-66-66-66

44-44-44-44-44-44

Router

55-55-55-55-55-55

122.222.222.003 133.333.333.002
88-88-88-88-88-88

LAN

E

F

77-77-77-77-77-77-77
133.333.333.001

133.333.333.003
99-99-99-99-99-99

Figure 7: Solution to problem 12

36

5. The �rst router then uses ARP to obtain the associated Ethernet address, namely 55-55-55-
55-55-55.

6. The process continues until the packet has reached Host F .

e)

ARP in A must now determine the LAN address of 111.111.111.002. Host A sends out an ARP query
packet within a broadcast Ethernet frame. The �rst router receives the query packet and sends to
Host A an ARP response packet. This ARP response packet is carried by an Ethernet frame with
Ethernet destination address 00-00-00-00-00-00.

Problem 13.

Wait for 51,200 bit times. For 10 Mbps, this wait is

51:2� 103 bits

10� 106 bps
= 5:12 msec

For 100 Mbps, the wait is 512 �sec.

Problem 14.

At t = 0 A transmits. At t = 576, A would �nish transmitting. In the worst case, B begins
transmitting at time t = 224. At time t = 224 + 225 = 449 B's �rst bit arrives at A. Because
449 < 576, A aborts before completing the transmission of the packet, as it is supposed to do.

Thus A cannot �nish transmitting before it detects that B transmitted. This implies that if A does
not detect the presence of a host, then no other host begins transmitting while A is transmitting.

Problem 15.

Time, t Event

0 A and B begin transmission
225 A and B detect collision
273 A and B �nish transmitting jam signal

273+225 = 498 B's last bit arrives at A;
A detects an idle channel

498 A starts transmitting. B schedules transmission
at 273 + 512 = 785

498 + 225 = 723 A's retransmission reaches B

37

Because A's retransmission reaches B before B's scheduled retransmission time, B refrains from
transmitting while A retransmits. Thus A and B do not collide. Thus the factor 512 appearing in
the exponential backo� algorithm is su�ciently large.

Problem 16.

We want 1=(1 + 5a) = :5 or, equivalently, a = :2 = tprop=ttrans. tprop = d=(1:8 � 108) m/sec and
ttrans = (576 bits)=(108 bits/sec) = 5:76�sec. Solving for d we obtain d = 265 meters. For the
100 Mbps Ethernet standard, the maximum distance between two hosts is 200 m.

For transmitting station A to detect whether any other station transmitted during A's interval, ttrans
must be greater than 2tprop = 2 � 265 m=1:8� 108 m/sec = 2:94�sec. Because 2:94 < 5:76, A will
detect B's signal before the end of its transmission.

Problem 17.

a)

Let Y be a random variable denoting the number of slots until a success:

P (Y = m) = �(1� �)m�1;

where � is the probability of a success.

This is a geometric distribution, which has mean 1=�. The number of consecutive wasted slots is
X = Y � 1 that

x = E[X] = E[Y]� 1 =
1� �

�

� = Np(1� p)N�1

x =
1�Np(1� p)N�1

Np(1� p)N�1

e�ciency =
k

k + x
=

k

k + 1�Np(1�p)N�1

Np(1�p)N�1

b)

38

Maximizing e�ciency is equivalent to minimizing x, which is equivalent to maximizing �. We know
from the text that � is maximized at p = 1

N .

c)

e�ciency =
k

k +
1�(1� 1

N
)N�1

(1� 1

N
)N�1

lim
N!1

e�ciency =
k

k + 1�e
e

=
ke

1 + (k � 1)e

d) Clearly, ke
1+(k�1)e approaches 1 as k !1.

Problem 18.

a)

900 m

2 � 108 m/sec + 4 � 20 bits

10� 106 bps

= (4:5� 10�6 + 8� 10�6) sec

= 12:5�sec

b)

� At time t = 0, both A and B transmit.

� At time t = 12:5�sec, A detects a collision.

� At time t = 25�sec last bit of B's aborted transmission arrives at A.

� At time t = 37:5�sec �rst bit of A's retransmission arrives at B.

� At time t = 37:5�sec + 1000 bits
10�106 bps = 137:5�sec A's packet is completely delivered at B.

39

c) 12:5�sec + 5 � 100�sec = 512:5�sec.

Problem 19.

a) The key to the design is to build a network with a backbone. This is done by putting a multiport
�ber repeater in WC2, and connecting four ports of this repeater to bridges:

Repeater
Fiber

B

B

B

B

Each bridge has one �ber port and one coax port. We put the marketing bridge in WC1, the support
and manufacturing bridges in WC2, and the engineering bridge in WC3.

b) Here we use a design similar to part (a) except we replace the thin coax cables with UTP hubs,
and we use bridges that have one �ber port and one UTP port. Note that the maximum length
of a UTP connection is 100 m. For this reason, the design just outlined may not su�ce for the
manufacturing, which may have hosts more than 100 m away from WC2. To solve this problem
we put a second bridge for manufacturing in WC1. This bridge is connected to the multiport �ber
repeater by �ber.

Problem 20.

a) CIR � Tc \high-priority bits" can be sent in a measurement interval. Thus

�
CIR � Tc

L

�

packets can be sent in a measurement interval.

b)

�
R � Tc
L

�
�
�
CIR � Tc

L

�

40

Problem 21.

The maximum number of high-priority packets that can pass in a measurement interval is

N =

�
CIR � Tc

L

�

Each packet has L bits, so that maximum size of object is

O = L �N = L

�
CIR � Tc

L

�
� CIR � Tc

Problem 22.

a) The time required to �ll L � 8 bits is

L � 8
64� 103

sec =
L

8
msec:

b) For L = 1; 500, the packetization delay is

1500

8
msec = 187:5msec:

For L = 48, the packetization delay is

48

8
msec = 6msec:

41

c)

Store-and-forward delay =
L � 8 + 40

R

For L = 1; 500, the delay is

1500 � 8 + 40

155� 106
sec � 12

155
msec � 77�sec

For L = 48, store-and-forward delay < 1�sec.

d) Store-and-forward delay is small for both cases for typical ATM link speeds. However, packetiza-
tion delay for L = 1500 is too large for real-time voice applications.

Solutions for Chapter 6

Problem 3.

x(t) will continue to grow until the client bu�er becomes full. Once the client bu�er becomes full,
the client application will drain the receive TCP bu�er at rate d. TCP ow control will then throttle
the sender's transmission rate so that the average of x(t) after the client bu�er becomes full is
approximately d.

Problem 4.

No, they are not the same thing. The client application reads data from the TCP receive bu�er and
puts it in the client bu�er. If the client bu�er becomes full, then application will stop reading from
the TCP receive bu�er until some room opens up in the client bu�er.

Problem 5.

a) 160 + h bytes are sent every 20 msec. Thus the transmission rate is

(160+ h) � 8
20

Kbps = (64 + :4h)Kbps

42

b)

IP header : 20bytes

UDP header : 8bytes

RTP header : 12bytes

h = 40 bytes (a 25% increase in the transmission rate!)

Problem 6.

a) Denote d(n) for the estimate after the nth sample.

d(1) = r4 � t4

d(2) = u(r3 � t3) + (1� u)(r4 � t4)

d(3) = u(r2 � t2) + (1� u)[u(r3 � t3) + (1� u)(r4� t4)]

= u(r2 � t2) + (1� u)u(r3 � t3) + (1� u)2(r4 � t4)

d(4) = u(r1 � t1) + (1� u)d(3)

= u(r1 � t1) + (1� u)u(r2 � t2) + (1� u)2u(r3 � t3) + (1� u)3(r4 � t4)

b)

d(n) = u

n�1X
j=1

(1� u)j(rj � tj) + (1� u)n(rn � tn)

43

c)

d(1) =
u

1� u

1X
j=1

(1� u)j(rj � tj)

=
1

9

1X
j=1

:9j(rj � tj)

The weight given to past samples decays exponentially.

Problem 7.

a) Denote v(n) for the estimate after the nth sample. Let �j = rj � tj .

v(1) = j�4 � d(1)j (= 0)

v(2) = uj�3 � d(2)j+ (1� u)j�4 � d(1)j

v(3) = uj�2 � d(3)j+ (1� u)v(2)

= uj�2 � d(3)j+ u(1� u)j�3 � d(2)j+ (1� u)2j�4 � d(1)j

v(4) = uj�1 � d(4)j+ (1� u)v(3)

44

= uj�1 � d(4)j+ (1� u)uj�2 � d(3)j+ u(1� u)2j�3 � d(2)j

+ (1� u)3j�4 � d(1)j

= u
�j�1 � d(4)j+ (1� u)j�2 � d(3)j+ (1� u)2j�3 � d(2)j�

+ (1� u)3j�4 � d(1)j

b)

v(n) = u

n�1X
j=1

(1� u)j�1j�j � d(n�j+1)j+ (1� u)nj�n � d(1)j

Problem 8.

The two procedures are very similar. They both use the same formula, thereby resulting in expo-
nentially decreasing weights for past samples.

One di�erence is that for estimating average RTT, the time when the data is sent and when the
acknowledgement is received is recorded on the same machine. For the delay estimate, the two
values are recorded on di�erent machines. Thus the sample delay can actually be negative.

Problem 9.

a) If there is packet lost, then other packets may have been transmitted inbetween the two received
packets.

b) Let Si denote the sequence number of the ith received packet. If

ti � ti�1 > 20msec

and

Si = Si�1 + 1

then packet i begins a new talkspurt.

Problem 10.

45

a) Both schemes require 25% more bandwidth. The �rst scheme has a playback delay of 5 packets.
The second scheme has a delay of 2 packets.

b) The �rst scheme will be able to reconstruct the original high-quality audio encoding. The second
scheme will use the low quality audio encoding for the lost packets and will therefore have lower
overall quality.

c) For the �rst scheme, many of the original packets will be lost and audio quality will be very poor.
For the second scheme, every audio chunk will be available at the receiver, although only the low
quality version will be available for every other chunk. Audio quality will be acceptable.

Problem 11.

The interarrival jitter J is de�ned to be the mean deviation (smoothed absolute value) of the di�er-
ence D in packet spacing at the receiver compared to the sender for a pair of packets. As shown in
the equation below, this is equivalent to the \relative transit time" for the two packets; the relative
transit time is the di�erence between a packet's RTP timestamp and the receiver's clock at the time
of arrival. If Ti is the RTP timestamp for packet i and ri is the time of arrival in RTP timestamp
units for packet i, then for two packets i and j, D is de�ned as

D(i; j) = (ri � rj)� (si � sj) = (rj � sj)� (ri � si)

The interarrival jitter is calculated continuously as each data packet i is received, using this di�erence
D for that packet and the previous packet i � 1 in order of arrival (not necessarily in sequence),
according to the formula

J = J +
jD(i; j)j� J

16

Whenever a reception report is issued, the current value of J is sampled.

Problem 12.

Let x denote the average size of an RTCP packet. The rate at which one sender sends RTCP packets
is 1=T or

:25 � :05 � session bandwidth

S � x

The aggregate rate across all S senders is

:25 � :05 � session bandwidth

x

46

remove
token

up to
b tokens

remove
token

up to
1 token

to network

p tokens/sec

packets

r tokens/sec

Figure 8: Solution to problem 16

Since the average RTCP packet is x bits, the aggregate rate at which senders send bits is

:25 � :05 � session bandwidth

Similarly, the aggregate rate at which receivers send bits is

:75 � :05 � session bandwidth

The total aggregate rate is therefore

:05 � session bandwidth

Problem 15.

a) One possible sequence is 1 2 1 3 1 2 1 3 1 2 1 3 : : :

Another possible sequence is 1 1 2 1 1 3 1 1 2 1 1 3 1 1 2 1 1 3 : : :

b) 1 1 3 1 1 3 1 1 3 1 1 3 : : :

Problem 16.

See Figure 8.

For the second leaky bucket, r = p, b = 1.

Problem 18.

Let � be a time at which ow 1 tra�c starts to accumulate in the queue. We refer to � as the
beginning of a ow-1 busy period. Let t > � be another time in the same ow-1 busy period. Let
T1(�; t) be the amount of ow-1 tra�c transmitted in the interval [�; t]. Clearly,

T1(�; t) � W1P
Wj

R(t� �)

47

Let Q1(t) be the amount of ow-1 tra�c in the queue at time t. Clearly,

Q1(t) = b1 + r1(t� �)� T1(�; t)

� b1 + r1(t� �) +
W1P
Wj

R(t� �)

= b1 + (t � �)

�
r1 � W1P

Wj
R

�

Since r1 <
W1P
Wj
R, Q1(t) � b1. Thus the maximum amount of ow-1 tra�c in the queue is b1. The

minimal rate at which this tra�c is served is W1RP
Wj

.

Thus, the maximum delay for a ow-1 bit is

b1
W1R=

P
Wj

= dmax:

Solutions for Chapter 7

Problem 1.

The encoding of "This is an easy problem" is "uasi si my cmiw lokngch".

The decoding of "rmij'u uamu xyj" is "wasn't that fun"

Problem 2.

If Trudy knew that the words "bob" and "alice" appeared in the text, then she would know the
ciphertext for b,o,a,l,i,c,e (since "bob" is the only palindrome in the message, and "alice" is the only
5-letter word. If Trudy knows the ciphertext for 7 of the letters, then she only needs to try 19!,
rather than 26!, plaintext-ciphertext pairs. The di�erence between 19! and 26! is 26*25*24...*20,
which is 3315312000, or approximately 109:

48

Problem 3.

Every letter in the alphabet appears in the phrase "The quick fox jumps over the lazy brown dog."
Given this phrase in a chosen plaintext attack (where the attacker has both the plain text, and the
ciphertext), the Caesar cipher would be broken - the intruder would know the ciphertext character for
every plaintext character. However, the Vigenere cipher does not alway translate a given plaintext
character to the same ciphertext character each time, and hence a Vigenere cipher would not be
immediately broken by this chosen plaintext attack.

Problem 4.

We are given p = 3 and q = 11: We thus have n = 33 and q = 11: Choose e = 9 (it might be a good
idea to give students a hint that 9 is a good value to choose, since the resulting calculations are less
likely to run into numerical stability problems than other choices for e:) since 3 and (p�1)�(q�1) = 20
have no common factors. Choose d = 9 also so that e � d = 81 and thus e � d � 1 = 80 is exactly
divisible by 20. We can now perform the RSA encryption and decryption using n = 33, e = 9 and
d = 9:

letter m m**e ciphertext = m**e mod 33

h 8 134217728 29

e 5 1953125 20

l 12 5159780352 12

l 12 5159780352 12

o 15 38443359375 3

ciphertext c**d m = c**d mod n letter

29 14507145975869 8 h

20 512000000000 5 e

12 5159780352 12 l

12 5159780352 12 l

3 19683 15 o

Problem 5.

This wouldn't really solve the problem. Just as Bob thinks (incorrectly) that he is authenticating
Alice in the �rst half of Figure 7.14, so too can Trudy fool Alice into thinking (incorrectly) that she
is authenticating Bob. The root of the problem that neither Bob nor Alice can tell is the public key
they are getting is indeed the public key of Alice of Bob.

Problem 6.

As discussed in section 7.4.2, full blown encryption is more computationally complex than a message
digest such as MD5.

Problem 7.

The message

I O U 2

49

0 0 . 8

9 B O B

has the same checksum.

Problem 8.

If Alice wants to ensure that the KDC is live (that is, the message she will be receiving back from
the KDC are not part of a playback attack), she can include a nonce, R0 in the initial message
(KA�KDC(A;B;R0)) to the KDC. The KDC would then include R) in the reply back to Alice, thus
proving the KDC is indeed live. Note that it is already assumed that only the KDC and Alice know
the key to decrypt KA�KDC (A;B;R0).

Problem 9.

Alice has received a one-time session key, R1, from the trusted KDC, as well as the KDC-encoded
version of R1 to send to Bob. If Alice trusts the KDC then she knows (i) R1 is indeed a one time
session key, i.e., like a nonce, and (ii) the person who communicates back to Alice using R1 must be
Bob, since the KDC has encoded R1 so only Bob can unencrypt it.

Problem 10.

The message from Alice is encoded using a key that is only known to Alice and the KDC. Therefore
the KDC knows (by de�nition) that anyone using the key must be Alice. It is interesting to think
about what damage Trudy could do if she obtains Alice's key. In this case, she can impersonate
Alice to anyone; see also the answer to question 11.

Problem 11.

Bob would want to authenticate that Alice is indeed live by sending her a nonce value encoded using
R1. This would at least let Bob know he is not being subjected to a playback attack. However, how
does Bob know that it is indeed Alice to whom he is talking? Note that Bob obtains the identity of
the person with whom he is talking (Alice) from the message that was encoded by the KDC (and
routed to Bob via Alice). Thus at least Bob knows that the KDC thinks that Alice is indeed Alice.

Problem 12.

If the KDC goes down, no one can communicate securely, as a �rst step in communication (see
Figure 7.20) is to get the one-time session key from the KDC. If the CA goes down, then as along as
the CA's public key is known, one can still communicate securely using previously-issued certi�cates
(recall that once a certi�cate is issued, the CA is not explicitly involved in any later communication
among parties using the CA's certi�cate. Of course, if the CA goes down, no new certi�cates can be
issued.

Solutions for Chapter 8

Problem 1.

50

Request response mode will generally have more overhead (measured in terms of the number of
messages exchanged) for several reasons. First, each piece of information received by the manager
requires two messages: the poll and the response. Trapping generates only a single message to the
sender. If the manager really only wants to be noti�ed when a condition occurs, polling has more
overhead, since many of the polling messages may indicate that the waited-for condition has not yet
occurred. Trapping generates a message only when the condition occurs.

Trapping will also immediately notify the manager when an event occurs. With polling, the manager
needs will need to wait for half a polling cycle (on average) between when the event occurs and the
manager discovers (via its poll message) that the event has occurred.

If a trap message is lost, the managed device will not send another copy. If a poll message, or
its response, is lost the manager would know there has been a lost message (since the reply never
arrives). Hence the manager could repoll, if needed.

Problem 2.

Often, the time when network management is most needed is in times of stress, when the network may
be severely congested and packets are being lost. With SNMP running over TCP, TCP's congestion
control would cause SNMP to back-o� and stop sending messages at precisely the time when the
network manager needs to send SNMP messages.

Problem 3.

1.3.6.1.2.1.5

Problem 4.

3 7 'J' 'a' 'c' 'k' 's' 'o' 'n' 2 2 1 15

