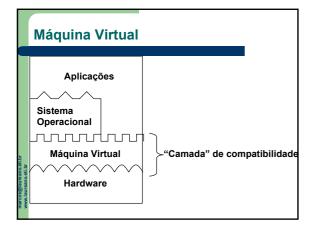
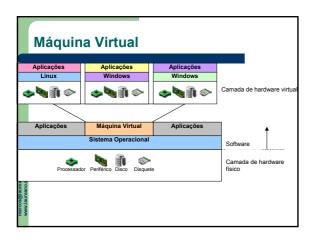

Máquinas Virtuais e Emuladores Marcos Aurelio Pchek Laureano

Sistemas de Computadores

- Os sistemas de computadores são projetados com basicamente 3 componentes:
 - hardware
 - sistema operacional
 - aplicações

Aplicações Sistema Operacional Hardware




Máquina Virtual

- Cria uma "camada" para compatibilizar diferentes plataformas
- Esta "camada" é chamada de virtualização
 - Softwares que podem ser utilizados para fazer os recursos parecerem diferentes do que realmente são.

Definição de Máquina Virtual

- "Uma duplicata eficiente e isolada de uma máquina real"
- A IBM define uma máquina virtual como uma cópia totalmente protegida e isolada de um sistema físico
- Na década de 60, uma abstração de software que enxerga um sistema físico (máquina real)

Emulador

- É o oposto da máquina real;
- Implementa todas as instruções realizadas pela máquina real em um ambiente abstrato de software
- "Engana", fazendo com que todas as operações da máquina real sejam implementadas em um software
- Interpreta um código desenvolvido para outra plataforma.

Emulador e Máquina Virtual

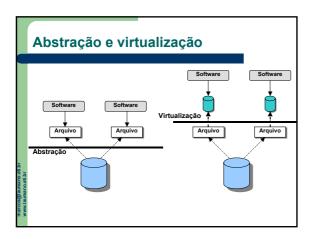
 A funcionalidade e o nível de abstração de uma máquina virtual encontra-se em uma posição intermediária entre uma máquina real e um emulador, na forma em que os recursos de hardware e de controle são abstraídos e usados pelas aplicações.

Máquina Virtual

• É um ambiente criado por um monitor de máquina virtual;

Virtual Machine Monitor - VMM

- Sistema operacional para sistemas operacionais;
- Também conhecida como hypervisor;
- O monitor pode criar uma ou mais máquinas virtuais sobre uma única máquina real.


•	/ B =						
•	/ пл	NЛ		-r	nii	lad	n
·	/ I V /	IV	C	_	II U	ıau	IUI.

- Um emulador fornece uma camada de abstração completa entre o sistema em execução e o hardware;
- Um monitor fornece uma interface (através da multiplexação do hardware) que é idêntica ao hardware subjacente e controla uma ou mais máquinas virtuais;
- Um emulador também fornece uma abstração do hardware idêntico ao que está em uso, mas também pode simular outros diferentes do atual;

Abstração e virtualização

 A abstração é uma forma simples de prover alguns recursos específicos de hardware para um software, enquanto a virtualização provê um conjunto completo de recursos.

-	

Tipos de Emuladores (1ª classificação)

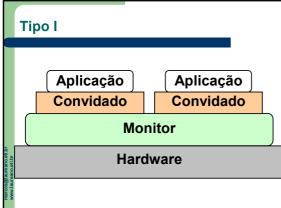
- Firmware: Um firmware pode ser definido como Programação em hardware;
- Software: Toda a emulação é feita por software;
- Combinação ou "emulação combinada" ou "combo": O emulador é composto de hardware e software;

Tipos de Emuladores

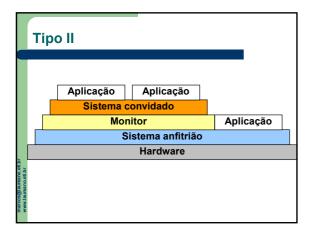
(2ª classificação)

- Totalmente baseada em hardware;
- Parcialmente baseado em hardware;
- Parcialmente baseada em software:
- Totalmente baseada em software.

Tipos de Emuladores


De acordo com uso

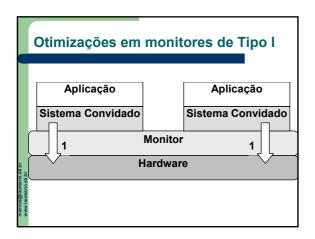
- Emulação do processador;
- Emulação de um sistema operacional;
- Emulação de uma plataforma de (hardware) específico;
- Consoles de videogames.


Tipos de Máquinas Virtuais

• Tipo I

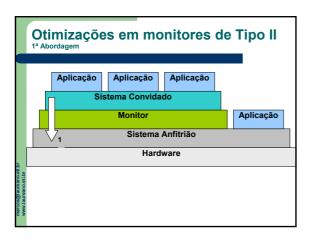
- o monitor é implementado entre o hardware e os sistemas convidados (guest system)
- Tipo II
 - o monitor é implementado como um processo de um sistema operacional real subjacente, denominado sistema anfitrião (host system)

_	
- [
-	
- [
t	
_	
_	
- [
-	
-	
- [
- [
-	
_	
- [
╛	
_	



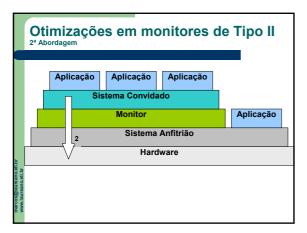
Abordagens Híbridas

- Os monitores de tipo I e II raramente são usados em sua forma conceitual em implementações reais;
- Várias otimizações são inseridas com o objetivo principal de melhorar o desempenho das aplicações nos sistemas convidados

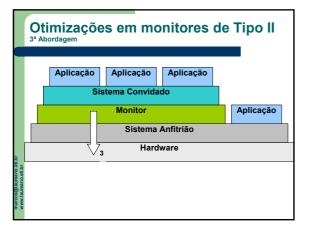

Otimizações em monitores de Tipo I

- O sistema convidado (guest system) acessa diretamente o hardware.
- Essa forma de acesso é implementada através de modificações no núcleo do sistema convidado e no monitor.

Otimizações em monitores de Tipo II


- O sistema convidado (guest system) acessa diretamente o sistema anfitrião (host system).
- Essa otimização é implementada pelo monitor, oferecendo partes da API do sistema anfitrião ao sistema convidado.

•		


Otimizações em monitores de Tipo II

- O sistema convidado (guest system) acessa diretamente o hardware.
- Essa otimização é implementada parcialmente pelo monitor e parcialmente pelo sistema anfitrião, através de um device driver específico.

Otimizações em monitores de Tipo II 3ª Abordagem

- O monitor acessa diretamente o hardware.
- Neste caso, um device driver específico é instalado no sistema anfitrião, oferecendo ao monitor uma interface de baixo nível para acesso ao hardware subjacente.

Formas de Virtualização

- É a interposição do software (máquina virtual) em várias camadas do sistema.
- É uma forma de dividir os recursos de um computador em múltiplos ambientes de execução.

Tipos de Virtualização

- Virtualização do hardware
- Virtualização do sistema operacional
- Virtualização de linguagens de programação

Virtualização do Hardware

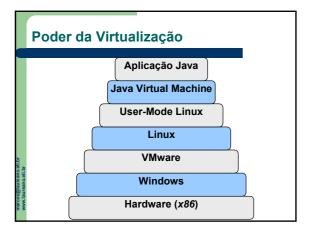
- Exporta o sistema físico como uma abstração do hardware;
- Qualquer software escrito para a arquitetura (x86, por exemplo) irá funcionar.

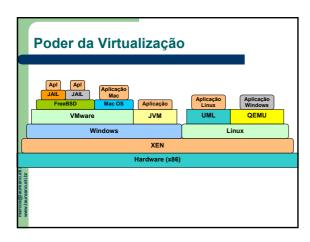
Aplicação Aplicação Sistema Operacional (Linux, Windows, Unix) cpu, ram, dispositivos de E/S Virtual Máquina Virtual Sistema Operacional (Linux, Windows, Unix) cpu, ram, dispositivos de E/S - Real

Virtualização do sistema operacional

- Exporta um sistema operacional como abstração de um sistema específicico;
- A máquina virtual roda aplicações ou um conjunto de aplicações – de um sistema operacional específico.

Aplicação Aplicação Sistema Operacional (Linux, Windows, Unix) - Virtual Máquina Virtual Sistema Operacional (Linux, Windows, Unix) Cpu, ram, dispositivos de E/S - Real


Virtualização de linguagens de programação


- Cria uma aplicação no topo do sistema operacional;
- São desenvolvidas para computadores fictícios projetados para uma finalidade específica;
- A camada exporta uma abstração para a execução de programas escritos para esta virtualização.

Aplicação Aplicação Máquina Virtual Sistema Operacional (Linux, Windows, Unix) cpu, ram, dispositivos de E/S - Real

Poder da Virtualização

- O uso das máquinas virtuais e emuladores possibilitam:
 - Executar um sistema operacional (e suas aplicações) sobre outro;
 - Utilizar uma aplicação de outra plataforma operacional;
 - Executar múltiplos sistemas operacionais;
 - Flexibilizar uma plataforma complexa de trabalho.

Outra Classificação para virtualização

- Abstração do ISA (Instruction Set Architecture);
- Hardware Abstraction Layer (HAL);
- OS Level (sistema operacional);
- Nível de aplicação ou virtualização de linguagens de programação;
- User level library interface (biblioteca de interface para usuário).

Abstração do ISA

- É implementada através da emulação completa do ISA;
- O emulador executa as instruções do sistema convidado através da tradução das instruções para o sistema nativo.
- Esta arquitetura é simples para implementação e robusta, mas a perda de performance é significativa.

Hardware Abstraction Layer

- O monitor simula uma arquitetura completa para o sistema convidado;
- O sistema convidado acredita estar executando sobre um sistema completo de hardware.

-	
-	
-	

OS Level

- Obtido através de uma chamada de sistema específica;
- A virtualização é obtida para isolamento;
- Cada sistema virtualizado com seu próprio endereço IP e outros recursos de hardware (embora limitado).

Nível de aplicação ou virtualização de linguagens de programação

- É obtido através da abstração de uma "camada de execução";
- Uma aplicação utiliza esta camada para executar as instruções do programa;
- Garante que uma aplicação pode ser executada em qualquer plataforma de software ou hardware, pois a camada é abstraída de forma idêntica em todas as plataformas;
 - mas requer uma máquina virtual específica para cada plataforma

User level library interface

- É obtida através da abstração do topo do sistema operacional para que as aplicações possam executar em outra plataforma.
- API do Windows.

	-
J	
_	
_	
1	
J	

Técnicas de virtualização e emulação

- Virtualização total (full virtualization)
- Paravirtualização (paravirtualization)
- Re-compilação dinâmica (dynamic recompilation)

Virtualização total

- Uma estrutura completa de hardware é virtualizado;
- Sistema convidado n\u00e3o precisa sofrer qualquer tipo de altera\u00e7\u00e3o;
- Grande compatibilidade;
- Perda de velocidade.

Virtualização total O000 O0FF OFFF FFFF O000 O00F Memória Real Virtual Espaço reservado pela máquina virtual para o sistema convidado.

	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

Paravirtualização

- O sistema que vai ser virtualizado (sistema convidado) sofre modificações para que a interação com o monitor de máquinas virtuais seja mais eficiente;
- Perda de compatibilidade;
- Ganho de velocidade.

Re-compilação dinâmica

- 1. Agrupamento de bits: Usando o conhecimento sobre o formato do executável e técnicas heurísticas, conjuntos de bits são recuperados do executável e re-ordenados;
- 2. Desmontagem (disassembling): Os bits são desmontados e transformados para um conjunto de instruções e operadores ordenados em pares;

Re-compilação dinâmica

 É explorando informações que normalmente não estão disponíveis para um compilador estático tradicional.

Re-compilação dinâmica

- 3. Geração intermediária do código: As instruções são transformadas para uma representação de máquina independente;
- 4. Decompilação: A representação gerada é transformada em uma linguagem de alto nível (como o código na linguagem C);

Re-compilação dinâmica

- 5. Compilação: O código gerado é novamente compilado para a nova plataforma;
- 6. Montagem (assembling): Os códigos são novamente montados;
- 7. Armazenagem dos bits: Os bits são são agrupados de forma a gerar o novo executável.

Propriedades de monitores de máquinas virtuais

- Isolamento
- Inspeção
- Interposição
- Eficiência
- Gerenciabilidade
- Compatibilidade do software
- Encapsulamento
- Desempenho

-	

Isolamento •Um software em execução em uma máquina virtual não acessa ou modifica outro software em execução no monitor ou em outra máquina virtual. Inspeção O monitor tem acesso e controle sobre todas as informações do estado da máquina virtual, como estado da CPU, conteúdo de memória, eventos, etc. Interposição • O monitor pode intercalar ou acrescentar instruções em certas operações de uma máquina virtual, como por exemplo, quando da execução de instruções privilegiadas por parte da máquina virtual.

Eficiência •Instruções inofensivas podem ser executadas diretamente no hardware, pois não irão afetar outras máquinas virtuais ou aplicações. Gerenciabilidade Como cada máquina virtual é uma entidade independente das demais, a administração das diversas instâncias é simplificada e centralizada. Compatibilidade do software A máquina virtual fornece uma abstração compatível de modo que todo o software escrito para ela funcione.

Encapsulamento

- Esta camada pode ser usada para manipular e controlar a execução do software na máquina virtual.
- Pode também usar esta ação indireta para dar prioridade ao software ou fornecer um ambiente melhor para execução.

Desempenho

 Adicionar uma camada de software a um sistema pode afetar o desempenho do software que funciona na máquina virtual, mas os benefícios proporcionados pelo uso de sistemas virtuais compensam a perda de desempenho.

Benefícios ao utilizar máquinas virtuais (1)

- Facilitar o aperfeiçoamento e testes de novos sistemas operacionais;
- Auxiliar no ensino prático de sistemas operacionais e programação ao permitir a execução de vários sistemas para comparação no mesmo equipamento;

Benefícios ao utilizar máquinas virtuais (2)

- Executar diferentes sistemas operacionais sobre o mesmo hardware, simultaneamente;
- Simular configurações e situações diferentes do mundo real, como por exemplo, mais memória disponível ou a presença de outros dispositivos de E/S;

Benefícios ao utilizar máquinas virtuais (3)

- Simular alterações e falhas no hardware para testes ou reconfiguração de um sistema operacional, provendo confiabilidade e escalabilidade para as aplicações;
- Garantir a portabilidade das aplicações legadas (que executariam sobre uma máquina virtual simulando o sistema operacional original);

Benefícios ao utilizar máquinas virtuais (4)

- Desenvolvimento de novas aplicações para diversas plataformas, garantindo a portabilidade destas aplicações;
- Diminuição de custos com hardware, através da consolidação de servidores;

-	
_	

Benefícios ao utilizar máquinas virtuais (5)

- Facilidades no gerenciamento, migração e replicação de computadores, aplicações ou sistemas operacionais;
- Prover um serviço dedicado para um cliente específico com segurança e confiabilidade.

Dificuldades para o uso de máquinas virtuais

- Processador não Virtualizado;
- Diversidade de equipamentos;
- •Pré-existência de softwares.

Futuro - CPU

 AMD e Intel anunciaram tecnologias (Pacifica e Vanderpool respectivamente) para que a virtualização sobre a plataforma x86 ocorra de formais mais natural e tranquila.

	-	
_		
1		

Futuro - Memória

 Várias técnicas tem permitido que a virtualização da memória seja mais eficiente. Pesquisas futuras devem levar aos sistemas operacionais convidados a gerenciar a memória juntamente com o monitor de máquinas virtuais (gerência cooperativa).

Futuro - E/S

 Os dispositivos de E/S serão projetados para fornecer suporte a virtualização através de devices de alta-performance. A responsabilidade pelo acesso aos dispositivos deverá passar do monitor para o sistema convidado.

Então....

- •Dúvidas ?
- Perguntas ?
- Sugestões ?

ww.laureano.eti.br