
Professional Ajax
Nicholas C. Zakas
Jeremy McPeak
Joe Fawcett

Published by Wiley Publishing, Inc.
10475 Crosspoint Boulevard Indianapolis , IN 46256 .
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-471-77778-6

ISBN-10: 0-471-77778-1
0471777781

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RZ/QR/QW/IN

Library of Congress Cataloging-in-Publication Data
Zakas, Nicholas C.
 Professional Ajax / Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett.
 p. cm.
 Includes index.

ISBN-13: 978-0-471-77778-6 (paper/website)

ISBN-10: 0-471-77778-1 (paper/website)

1. JavaScript (Computer program language) 2. Asynchronous transfer mode. 3. World Wide
Web. I. McPeak, Jeremy, 1979- II. Fawcett, Joe, 1962- III. Title.

QA76.73.J39Z35 2006

005.13'3—dc22

2005034274

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission
should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR
MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY

http://www.wiley.com/
http://www.wiley.com/go/permissions

OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM
ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE
IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT
INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-
3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates, in the United States and other countries, and may not be used without written
permission. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic books.

About the Authors

Nicholas C. Zakas has a BS degree in Computer Science from Merrimack College and an MBA
degree from Endicott College. He is the author of Professional JavaScript for Web Developers
as well as several online articles. Nicholas has worked in web development for more than five
years and has helped develop web solutions in use at some of the largest companies in the
world. Nicholas can be reached through his web site at www.nczonline.net.

Jeremy McPeak began tinkering with web development as a hobby in 1998. Currently working
in the IT department of a school district, Jeremy has experience developing web solutions with
JavaScript, PHP, and C#. He has written several online articles covering topics such as XSLT,
WebForms, and C#.

Joe Fawcett started programming in the 1970s and worked briefly in IT after leaving full-time
education. He then pursued a more checkered career before returning to software development
in 1994. In 2003, he was awarded the title Microsoft Most Valuable Professional in XML for
community contributions and technical expertise. Joe currently works in London as a developer
for The Financial Training Company, which provides professional certifications and business
training.

Credits

Senior Acquisitions Editor
Jim Minatel

Development Editor
John Sleeva

Technical Editor
Alexei Gorkov

http://www.books24x7.com/viewer.asp?bkid=11768&destid=0#0
http://www.nczonline.net/

Production Editor
Kathryn Duggan

Copy Editor
Michael Koch

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Graphics and Production Specialists
Carrie A. Foster
Lauren Goddard
Joyce Haughey
Jennifer Heleine
Barbara Moore
Melanee Prendergast
Alicia B. South

Quality Control Technician
John Greenough

Proofreading and Indexing
TECHBOOKS Production Services

To my family and Emily, whose love and support have been invaluable over the past couple of
years.

—Nicholas C. Zakas

To my parents, Sheila and William, who instilled in me a love of reading. Thank you!

—Jeremy McPeak

Acknowledgments

It takes many people to create a book such as this, and we'd like to thank some people for their
contributions to this work.

First and foremost, thanks to everyone at Wiley for their support: Jim Minatel for starting the
process, Gabrielle Nabi for helping with the first few chapters, and John Sleeva for finishing
where Gabrielle left off. Also, a big thanks to our technical editor, Alexei Gorkov, for doing a
fantastic job of keeping us honest.

Last, a big thanks to those who provided pre-publication feedback, including Martin Honnen,
Peter Frueh, Mike Shaffer, Brad Neuberg, Steven Peterson, and Eric Miraglia.

Introduction
With recent advances in JavaScript, web developers have been able to create an
unprecedented user experience in web applications. Breaking free of the "click-and-wait"
paradigm that has dominated the web since its inception, developers can now bring features
formerly reserved for desktop applications onto the web using a technique called Ajax.

Ajax is an all-encompassing term surrounding the use of asynchronous HTTP requests initiated
by JavaScript for the purpose of retrieving information from the server without unloading the
page. These requests may be executed in any number of ways and using any number of
different data transmission formats. Combining this remote data retrieval with the interactivity of
the Document Object Model (DOM) has bred a new generation of web applications that seem to
defy all the traditional rules of what can happen on the web. Big companies such as Google,
Yahoo!, and Microsoft have devoted resources specifically towards the goal of creating web
applications that look and behave like desktop applications.

This book covers the various aspects of Ajax, including the different ways you can initiate HTTP
requests to the server and the different formats that can be used to carry data back and forth.
You will learn different Ajax techniques and patterns for executing client-server communication
on your web site and in web applications.

Whom This Book is For
This book is aimed at two groups of readers:

 Web application developers looking to enhance the usability of their web sites and web
applications.

 Intermediate JavaScript developers looking to further understand the language.

In addition, familiarity with the following related technologies is a strong indicator that this book
is for you:

 XML
 XSLT
 Web Services
 PHP
 C#
 HTML
 CSS

This book is not aimed at beginners without a basic understanding of the aforementioned
technologies. Also, a good understanding of JavaScript is vitally important to understanding this
book. Readers who do not have this knowledge should instead refer to books such as
Beginning JavaScript, Second Edition (Wiley Publishing, ISBN 0-7645-5587-1) and Professional
JavaScript for Web Developers (Wiley Publishing, ISBN 0-7645-7908-8).

http://www.books24x7.com/viewer.asp?bkid=8122&destid=0#0
http://www.books24x7.com/viewer.asp?bkid=11768&destid=0#0
http://www.books24x7.com/viewer.asp?bkid=11768&destid=0#0

What This Book Covers
Professional Ajax provides a developer-level tutorial of Ajax techniques, patterns, and use
cases.

The book begins by exploring the roots of Ajax, covering how the evolution of the Web and new
technologies directly led to the development of Ajax techniques. A detailed discussion of how
frames, JavaScript, cookies, XML, and XMLHttp related to Ajax is included.

After this introduction, the book moves on to cover the implementation of specific Ajax
techniques. Request brokers such as hidden frames, dynamic iframes, and XMLHttp are
compared and contrasted, explaining when one method should be used over another. To make
this discussion clearer, a brief overview of HTTP requests and responses is included.

Once a basic understanding of the various request types is discussed, the book moves on to
provide indepth examples of how and when to use Ajax in a web site or web application.
Different data transmission formats—including plain text, HTML, XML, and JSON—are
discussed for their advantages and disadvantages. Also included is a discussion on web
services and how they may be used to perform Ajax techniques.

The last part of the book walks you through the creation of a full-fledged Ajax web application
called AjaxMail, which incorporates many of the techniques discussed throughout the book, and
introduces you to several Ajax libraries designed to make Ajax communication easier on
developers.

How This Book is Structured
This book begins by providing background about the origins of Ajax before moving into actual
implementation. Next, the various ways to accomplish client-server communication are
discussed, setting the stage for the rest of the book. It is recommended that you read the book
straight through, as each chapter builds on information in the previous chapters.

The chapter-level breakdown is as follows:
 Chapter 1: "What Is Ajax?" This chapter explains the origins of Ajax and the

technologies involved. It describes how Ajax developed as the Web developed and who, if
anyone, can claim ownership of the term and techniques.

 Chapter 2: "Ajax Basics." This chapter introduces the various ways to accomplish
Ajax communication, including the hidden frame technique and XMLHttp. The advantages
and disadvantages of each approach are discussed, as well as guidelines as to when each
should be used.

 Chapter 3: "Ajax Patterns." This chapter focuses on design patterns using Ajax. There
are a variety of ways to incorporate Ajax into web sites and web applications; these have
been organized into a handful of design patterns that describe best practices for Ajax
incorporation.

 Chapter 4: "XML, XPath, and XSLT." This chapter introduces XML, XPath, and XSLT
as complementary technologies to Ajax. The discussion centers on using XML as a data
transmission format and using XPath and XSLT to access and display information.

 Chapter 5: "Syndication with RSS/Atom." This chapter deals with using Ajax together
with the data syndication formats RSS and Atom to create a web-based news aggregator.

 Chapter 6: "Web Services." This chapter brings web services into the Ajax picture.
Examples of how to call web services from the client are explained, as well as how to
create server-side proxies to work around browser security restrictions.

 Chapter 7: "JSON." This chapter introduces JavaScript Object Notation (JSON) as an
alternate data transmission format for Ajax communications. Advantages and
disadvantages over using XML and plain text are discussed.

 Chapter 8: "Web Site Widgets." This chapter brings the techniques from the previous
chapters into focus by creating Ajax widgets that can be included in your web site.

 Chapter 9: "AjaxMail." This chapter walks you through the development of a complete
web application, AjaxMail. This application is an Ajax-based e-mail system that uses many
of the techniques described earlier in the book.

http://www.books24x7.com/viewer.asp?bkid=13421&destid=36#36
http://www.books24x7.com/viewer.asp?bkid=13421&destid=79#79
http://www.books24x7.com/viewer.asp?bkid=13421&destid=137#137
http://www.books24x7.com/viewer.asp?bkid=13421&destid=192#192
http://www.books24x7.com/viewer.asp?bkid=13421&destid=274#274
http://www.books24x7.com/viewer.asp?bkid=13421&destid=341#341
http://www.books24x7.com/viewer.asp?bkid=13421&destid=409#409
http://www.books24x7.com/viewer.asp?bkid=13421&destid=482#482
http://www.books24x7.com/viewer.asp?bkid=13421&destid=592#592

 Chapter 10: "Ajax Frameworks." This chapter covers three Ajax frameworks:
JPSPAN for PHP, DWR for Java and JSP, and Ajax.NET for the .NET framework. Each of
these frameworks attempts to automate some part of the Ajax development process.

What You Need to Use This Book
To run the samples in the book, you will need the following:

 Windows 2000, Windows Server 2003, Windows XP, or Mac OS X
 Internet Explorer 5.5 or higher (Windows), Mozilla 1.0 or higher (all platforms), Opera

7.5 or higher (all platforms), or Safari 1.2 or higher (Mac OS X).

The complete source code for the samples is available for download from www.wrox.com.

Conventions
To help you get the most from the text and keep track of what's happening, we've used a
number of conventions throughout the book.

Important Boxes like this one hold important, not-to-be forgotten information that is

directly relevant to the surrounding text.

Note Tips, hints, tricks, and asides to the current discussion are offset and placed

in italics like this.

As for styles in the text:
 We highlight new terms and important words in italic when we introduce them.
 We show keyboard strokes like this: Ctrl+A.
 We show file names, URLs, and code within the text like so:

persistence.properties.
 We present code in two different ways:
 In code examples we highlight new and important code with a

gray background.

 The gray highlighting is not used for code that's less
important in

 the present context, or has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type all the code
manually or to use the source code files that accompany the book. All of the source code used
in this book is available for download at www.wrox.com. When at the site, locate the book's
title (either by using the Search box or by using one of the title lists) and click the Download
Code link on the book's detail page to obtain all the source code for the book.

Note Because many books have similar titles, you may find it easiest to search by

ISBN; this book's ISBN is 0-471-77778-1.

After you have downloaded the code, decompress it with your favorite compression tool.
Alternately, you can go to the main Wrox code download page at
www.wrox.com/dynamic/books/download.aspx to see the code available for this book
and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no
one is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling
mistake or faulty piece of code, we would be very grateful for your feedback. By sending in

http://www.books24x7.com/viewer.asp?bkid=13421&destid=703#703
http://www.wrox.com/
http://www.wrox.com/
http://www.wrox.com/dynamic/books/download.aspx

errata you may save another reader hours of frustration and at the same time you will be
helping us provide even higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this
page you can view all errata that has been submitted for this book and posted by Wrox editors.
A complete book list including links to each's book's errata is also available at
www.wrox.com/misc-pages/booklist.shtml.

If you don't spot "your" error on the Book Errata page, go to
www.wrox.com/contact/techsupport.shtml and complete the form there to send us the
error you have found. We'll check the information and, if appropriate, post a message to the
book's errata page and fix the problem in subsequent editions of the book.

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-
based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e-
mail you topics of interest of your choosing when new posts are made to the forums. Wrox
authors, editors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only
as you read this book, but also as you develop your own applications. To join the forums, just
follow these steps:

1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.
3. Complete the required information to join as well as any optional information you would

like to provide and click Submit.
4. You will receive an e-mail with information describing how to verify your account and

complete the joining process.

Note You can read messages in the forums without joining P2P but in order to post

your own messages, you must join.

After you've joined the forum, you can post new messages and respond to messages other
users post. You can read messages at any time on the Web. If you would like to have new
messages from a particular forum e-mailed to you, click the Subscribe to this Forum icon next to
the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for
answers to questions about how the forum software works as well as many common questions
specific to P2P and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

http://www.wrox.com/
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml
http://www.p2p.wrox.com/
http://p2p.wrox.com/
http://www.p2p.wrox.com/

Chapter 1: What Is Ajax?
Overview
From 2001 to 2005, the World Wide Web went through a tremendous growth spurt in terms of
the technologies and methodologies being used to bring this once-static medium to life. Online
brochures and catalogs no longer dominated the Web as web applications began to emerge as
a significant portion of online destinations. Web applications differed from their web site
ancestors in that they provided an instant service to their users. Whether for business process
management or personal interests, developers were forced to create new interaction paradigms
as users came to expect richer functionality.

Spurred on by little-known and lesser-used technologies that had been included in web
browsers for some time, the Web took a bold step forward, shattering the traditional usage
model that required a full page load every time new data or a new part of the application's logic
was accessed. Companies began to experiment with dynamic reloading of portions of web
pages, transmitting only a small amount of data to the client, resulting in a faster, and arguably
better, user experience.

At the forefront of this movement was Google. After the search giant went public, new
experiments conducted by Google engineers began popping up through a special part of the
site called Google Labs. Many of the projects at Google Labs, such as Google Suggest and
Google Maps, involved only a single web page that was never unloaded but was constantly
updated nevertheless. These innovations, which began to bring the affordances of desktop
software interfaces into the confines of the browser screen, were praised around the Web as
ushering in a new age in web development. And indeed they did.

Numerous open source and commercial products began development to take advantage of this
new web application model. These projects explained their technology using a variety of terms
such as JavaScript remoting, web remote procedure calls, and dynamic updating. Soon,
however, a new term would emerge.

Ajax is Born
In February 2005, Jesse James Garrett of Adaptive Path, LLC published an online article
entitled, "Ajax: A New Approach to Web Applications" (still available at
www.adaptivepath.com/publications/essays/archives/000385.php). In this
essay, Garrett explained how he believed web applications were closing the gap between the
Web and traditional desktop applications. He cited new technologies and several of the Google
projects as examples of how traditionally desktop-based user interaction models were now
being used on the Web. Then came the two sentences that would ignite a firestorm of interest,
excitement, and controversy:

Note Google Suggest and Google Maps are two examples of a new approach to

web applications that we at Adaptive Path have been calling Ajax. The name
is shorthand for Asynchronous JavaScript + XML, and it represents a
fundamental shift in what's possible on the Web.

From that point forward, a tidal wave of Ajax articles, code samples, and debates began
popping up all over the Web. Developers blogged about it, technology magazines wrote about
it, and companies began hitching their products to it. But to understand what Ajax is, you first
must understand how the evolution of several web technologies led to its development.

The Evolution of the Web
When Tim Berners-Lee crafted the first proposal for the World Wide Web in 1990, the idea was
fairly simple: to create a "web" of interconnected information using hypertext and Uniform
Resource Identifiers (URIs). The ability to link disparate documents from all around the world
held huge potential for scholarly endeavors, where people would be able to access referenced

http://www.adaptivepath.com/publications/essays/archives/000385.php

material almost instantly. Indeed, the first version of the HyperText Markup Language (HTML)
featured little more than formatting and linking commands, a platform not for building rich
interactive software but rather for sharing the kinds of textual and illustrative information that
dominated the late age of print. It was from these static web pages that the Web grew.

As the Web evolved, businesses soon saw potential in the ability to distribute information about
products and services to the masses. The next generation of the Web saw an increased ability
to format and display information as HTML also evolved to meet the needs and match the
expectations of these new media-savvy users. But a small company called Netscape would
soon be ready to push the evolution of the Web forward at a much faster pace.

JavaScript

Netscape Navigator was the first successful mainstream web browser, and as such, moved web
technologies along quickly. However, Netscape often was ridiculed by standards organizations
for implementing new technologies and extensions to existing technologies before the
standards were in place (much like Microsoft is being chastised today for ignoring existing
standards in its development of Internet Explorer). One such technology was JavaScript.

Originally named LiveScript, JavaScript was created by Brendan Eich of Netscape and included
in version 2.0 of the browser (released in 1995). For the first time, developers were able to
affect how a web page could interact with the user. Instead of making constant trips to the
server and back for simple tasks such as data validation, it became possible to transfer this
small bit of processing to the browser. This ability was very important at a time when most
Internet users were connected through a 28.8 Kbps modem, turning every request to the server
into a waiting game. Minimizing the number of times that the user had to wait for a response
was the first major step toward the Ajax approach.

Frames

The original version of HTML intended for every document to be standalone, and it wasn't until
HTML 4.0 that frames were officially introduced. The idea that the display of a web page could
be split up into several documents was a radical one, and controversy brewed as Netscape
chose to implement the feature before HTML 4.0 was completed. Netscape Navigator 2.0 was
the first browser to support frames and JavaScript together. This turned out to be a major step
in the evolution of Ajax.

When the browser wars of the late 1990s began between Microsoft and Netscape, both
JavaScript and frames became formalized. As more features were added to both, creative
developers began experimenting using the two together. Because a frame represented a
completely separate request to the server, the ability to control a frame and its contents with
JavaScript opened the door to some exciting possibilities.

The Hidden Frame Technique

As developers began to understand how to manipulate frames, a new technique emerged to
facilitate client-server communication. The hidden frame technique involved setting up a
frameset where one frame was set to a width or height of 0 pixels, and its sole purpose was to
initiate communication with the server. The hidden frame would contain an HTML form with
specific form fields that could be dynamically filled out by JavaScript and submitted back to the
server. When the frame returned, it would call another JavaScript function to notify the original
that data had been returned. The hidden frame technique represented the first asynchronous
request/response model for web applications.

While this was the first Ajax communication model, another technological advance was just
around the corner.

Dynamic HTML and the DOM

Up to about 1996, the Web was still mainly a static world. Although JavaScript and the hidden
frame technique livened up the user interaction, there was still no way to change the display of
a page without reloading it. Then came Internet Explorer 4.0.

At this point, Internet Explorer had caught up with the technology of market leader Netscape
Navigator and even one-upped it in one important respect through the introduction of Dynamic
HTML (DHTML). Although still in the development phase, DHTML represented a significant step
forward from the days of static web pages, enabling developers to alter any part of a loaded
page by using JavaScript. Along with the emergence of cascading style sheets (CSS), DHTML
reinvigorated web development, despite deep disparities between the paths Microsoft and
Netscape followed during the early years of each discipline. Excitement in the developer
community was justified, however, because combining DHTML with the hidden frame technique
meant that any part of a page could be refreshed with server information at any time. This was a
genuine paradigm shift for the Web.

DHTML never made it to a standards body, although Microsoft's influence would be felt strongly
with the introduction of the Document Object Model (DOM) as the centerpiece of the standards
effort. Unlike DHTML, which sought only to modify sections of a web page, the DOM had a
more ambitious purpose: to provide a structure for an entire web page. The manipulation of that
structure would then allow DHTML-like modifications to the page. This was the next step
forward for Ajax.

Iframes

Although the hidden frame technique became incredibly popular, it had a downside — one had
to plan ahead of time and write a frameset anticipating the usage of hidden frames. When the
<iframe/> element was introduced as an official part HTML 4.0 in 1997, it represented
another significant step in the evolution of the Web.

Instead of defining framesets, developers could place iframes anywhere on a page. This
enabled developers to forego framesets altogether and simply place invisible iframes (through
the use of CSS) on a page to enable client-server communication. And when the DOM was
finally implemented in Internet Explorer 5 and Netscape 6, it introduced the ability to
dynamically create iframes on the fly, meaning that a JavaScript function could be used to
create an iframe, make a request, and get the response — all without including any additional
HTML in a page. This led to the next generation of the hidden frame technique: the hidden
iframe technique.

XMLHttp

The browser developers at Microsoft must have realized the popularity of the hidden frame
technique and the newer hidden iframe technique, because they decided to provide developers
with a better tool for client-server interaction. That tool came in the form of an ActiveX object
called XMLHttp, introduced in 2001.

One of the Microsoft extensions to JavaScript allowed the creation of ActiveX controls,
Microsoft's proprietary programming objects. When Microsoft began supporting XML through a
library called MSXML, the XMLHttp object was included. Although it carried the XML name, this
object was more than just another way of manipulating XML data. Indeed, it was more like an
ad hoc HTTP request that could be controlled from JavaScript. Developers had access to HTTP
status codes and headers, as well as any data returned from the server. That data might be
structured XML, pre-formatted swaths of HTML, serialized JavaScript objects, or data in any
other format desired by the developer. Instead of using hidden frames or iframes, it was now
possible to access the server programmatically using pure JavaScript, independent of the page
load/reload cycle. The XMLHttp object became a tremendous hit for Internet Explorer
developers.

With popularity mounting, developers at the open source Mozilla project began their own port of
XMLHttp. Instead of allowing access to ActiveX, the Mozilla developers replicated the object's
principal methods and properties in a native browser objectXMLHttpRequest. With both of the
major browsers supporting some form of XMLHttp, the development of Ajax-type interfaces
really took off and forced the fringe browsers, Opera and Safari, to support some form of
XMLHttp as well (both chose to do so natively with an XMLHttpRequest object, mimicking
Mozilla).

The Real Ajax
Despite the frequently asked questions attached to the end of Garrett's essay, some confusion
still exists as to what Ajax really is. Put simply, Ajax is nothing more than an approach to web
interaction. This approach involves transmitting only a small amount of information to and from
the server in order to give the user the most responsive experience possible.

Instead of the traditional web application model where the browser itself is responsible for
initiating requests to, and processing requests from, the web server, the Ajax model provides an
intermediate layer — what Garrett calls an Ajax engine — to handle this communication. An
Ajax engine is really just a JavaScript object or function that is called whenever information
needs to be requested from the server. Instead of the traditional model of providing a link to
another resource (such as another web page), each link makes a call to the Ajax engine, which
schedules and executes the request. The request is done asynchronously, meaning that code
execution doesn't wait for a response before continuing.

The server — which traditionally would serve up HTML, images, CSS, or JavaScript — is
configured to return data that the Ajax engine can use. This data can be plain text, XML, or any
other data format that you may need. The only requirement is that the Ajax engine can
understand and interpret the data

When the Ajax engine receives the server response, it goes into action, often parsing the data
and making several changes to the user interface based on the information it was provided.
Because this process involves transferring less information than the traditional web application
model, user interface updates are faster, and the user is able to do his or her work more quickly.
Figure 1-1 is an adaptation of the figure in Garrett's article, displaying the difference between
the traditional and Ajax web application models.

Figure 1-1

Ajax Principles
As a new web application model, Ajax is still in its infancy. However, several web developers
have taken this new development as a challenge. The challenge is to define what makes a good
Ajax web application versus what makes a bad or mediocre one. Michael Mahemoff
(http://mahemoff.com/), a software developer and usability expert, identified several key
principles of good Ajax applications that are worth repeating:

 Minimal traffic: Ajax applications should send and receive as little information as
possible to and from the server. In short, Ajax can minimize the amount of traffic between

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig29%5F01%5F0%2Ejpg&image_id=2&previd=IMG_2&titlelabel=Figure+1%2D1%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=465943745#ch01fig01#ch01fig01
http://mahemoff.com/

the client and the server. Making sure that your Ajax application doesn't send and receive
unnecessary information adds to its robustness.

 No surprises: Ajax applications typically introduce different user interaction models
than traditional web applications. As opposed to the web standard of click-and-wait, some
Ajax applications use other user interface paradigms such as drag-and-drop or double-
clicking. No matter what user interaction model you choose, be consistent so that the user
knows what to do next.

 Established conventions: Don't waste time inventing new user interaction models that
your users will be unfamiliar with. Borrow heavily from traditional web applications and
desktop applications so there is a minimal learning curve.

 No distractions: Avoid unnecessary and distracting page elements such as looping
animations, and blinking page sections. Such gimmicks distract the user from what he or
she is trying to accomplish.

 Accessibility: Consider who your primary and secondary users will be and how they
most likely will access your Ajax application. Don't program yourself into a corner so that an
unexpected new audience will be completely locked out. Will your users be using older
browsers or special software? Make sure you know ahead of time and plan for it.

 Avoid entire page downloads: All server communication after the initial page
download should be managed by the Ajax engine. Don't ruin the user experience by
downloading small amounts of data in one place, but reloading the entire page in others.

 User first: Design the Ajax application with the users in mind before anything else. Try
to make the common use cases easy to accomplish and don't be caught up with how you're
going to fit in advertising or cool effects.

The common thread in all these principles is usability. Ajax is, primarily, about enhancing the
web experience for your users; the technology behind it is merely a means to that end. By
adhering to the preceding principles, you can be reasonably assured that your Ajax application
will be useful and usable.

Technologies Behind Ajax
Garrett's article mentions several technologies that he sees as parts of an Ajax solution. These
are:

 HTML/XHTML: Primary content representation languages

 CSS: Provides stylistic formatting to XHTML

 DOM: Dynamic updating of a loaded page

 XML: Data exchange format

 XSLT: Transforms XML into XHTML (styled by CSS)

 XMLHttp: Primary communication broker

 JavaScript: Scripting language used to program an Ajax engine

In reality, all these technologies are available to be used in Ajax solutions, but only three are
required: HTML/XHTML, DOM, and JavaScript. XHTML is obviously necessary for the display of
information, while the DOM is necessary to change portions of an XHTML page without
reloading it. The last part, JavaScript, is necessary to initiate the client-server communication
and manipulate the DOM to update the web page. The other technologies in the list are helpful
in fine-tuning an Ajax solution, but they aren't necessary.

There is one major component that Garrett neglected to mention in his article: the necessity of
server-side processing. All of the previously listed technologies relate directly to the client-side
Ajax engine, but there is no Ajax without a stable, responsive server waiting to send content to
the engine. For this purpose you can use the application server of your choice. Whether you
choose to write your server-side components as PHP pages, Java servlets, or .NET
components, you need only ensure the correct data format is being sent back to the Ajax
engine.

Note The examples in this book make use of as many server-side technologies as

possible to give you enough information to set up Ajax communication
systems on a variety of servers.

Who Is Using Ajax?
A number of commercial web sites use Ajax techniques to improve their user experience. These
sites are really more like web applications than traditional brochureware web sites that just
display information because you visit it to accomplish a specific goal. The following are some of
the more well-known and well-executed web applications that use Ajax.

Google Suggest

One of the first examples that developers cite when talking about Ajax is Google Suggest
(www.google.com/webhp?complete=1). The interface is simply a clone of the main Google
interface, which prominently features a text box to enter search terms. Everything appears to be
the same until you start typing in the textbox. As you type, Google Suggest requests
suggestions from the server, showing you a drop-down list of search terms that you may be
interested in. Each suggestion is displayed with a number of results available for the given term
to help you decide (see Figure 1-2).

Figure 1-2

This simple client-server interaction is very powerful and effective without being obtrusive to the
user. The interface is responsive beyond what you may have learned to expect from a web
application; it updates no matter how quickly you type and, as with autocomplete features in
desktop software, you can use the up and down arrows to highlight and select each item in the
suggestions list. Although still in beta, expect to see this approach make its way into the main
Google page eventually.

Gmail

Gmail, Google's free e-mail service, has been raved about as a marvel of client-server
interaction in the age of Ajax. When you first log in to Gmail, a user interface engine is loaded
into one of the few iframes the application uses. All further requests back to the server occur
through this user interface engine through an XMLHttp object. The data being transferred back

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig32%5F01%5F0%2Ejpg&image_id=3&previd=IMG_3&titlelabel=Figure+1%2D2%3A+
http://www.google.com/webhp?complete=1
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=373489532#ch01fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch01fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

and forth is JavaScript code, which makes for fast execution once downloaded by the browser.
These requests serve as instructions to the user interface engine as to what should be updated
on the screen.

Additionally, the Gmail application uses several frames and iframes to manage and cache big
user interface changes. The extremely complicated use of frames enables Gmail to function
properly with the Back and Forward buttons, which is one of the advantages of using frames or
iframes instead of or in conjunction with XMLHttp.

The biggest win for Gmail is its usability. The user interface, as shown in Figure 1-3, is simple
and uncluttered. Interaction with the user and communication with the server is all seamless.
Once again, Google used Ajax to improve on an already simple concept to provide an
exceptional user experience.

Figure 1-3

Google Maps
The latest addition to Google's dominant Ajax web applications is Google Maps
(http://maps.google.com). Designed to compete with well-established mapping sites,
Google Maps uses Ajax to avoid reloading its main page at all (see Figure 1-4).

Figure 1-4

Unlike other mapping web applications, Google Maps enables you to drag the map to move it in
various directions. The dragging code is nothing new to JavaScript developers, but the tiling of
the map and seemingly endless scrolling effect are another story. The map is broken up into a
series of images that are tiled together to make the appearance of a contiguous image. The

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig33%5F01%5F0%2Ejpg&image_id=4&previd=IMG_4&titlelabel=Figure+1%2D3%3A+
http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig33%5F02%5F0%2Ejpg&image_id=5&previd=IMG_5&titlelabel=Figure+1%2D4%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=373489532#ch01fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch01fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://maps.google.com/
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=373489532#ch01fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch01fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

number of images used to display the map is finite, as creating new images every time the user
moves the map would quickly lead to memory problems. Instead, the same images are used
over and over to display different segments of the map.

The client-server communication is done through a hidden iframe. Whenever you do a search or
ask for new directions, this information is submitted and returned within that iframe. The data
returned is in XML format and is passed to a JavaScript function (the Ajax engine) to handle.
This XML is then used in a variety of different ways: some is used to call the correct map
images, and some is transformed using XSLT into HTML and displayed in the main window.
The bottom line is that this is another complex Ajax application that has an incredibly bright
future.

A9

Amazon.com is world famous for being an online marketplace for just about anything, but when
it released a search engine, it did so with little fanfare and attention. The introduction of A9
(www.a9.com) showed off enhanced searching, enabling you to search different types of
information simultaneously. For web and image searches it uses Google to fetch results. It
performs searches of books on Amazon.com and movies on IMDb (Internet Movie Database).
Searches for Yellow Pages, Wikipedia, and Answers.com debuted in mid-2005.

What makes A9 unique is how its user interface works. When you perform a search, the
different types of results are displayed in different areas of the page (see Figure 1-5).

Figure 1-5

On the search results page, you have the option of selecting other searches to perform using
the same criteria. When you select a check box corresponding to a type of search, the search is
performed behind the scenes using a combination of hidden iframes and XMLHttp. The user
interface shifts to allow room for the extra search results, which are loaded as soon as they are
received from the server. The result is a more responsive search results page that doesn't need
to be reloaded when you want to search on different types of information.

Yahoo! News

Also introduced in 2005 was a new design for the Yahoo! News site
(http://news.yahoo.com). The new design features an interesting enhancement: when you
move your mouse over a particular headline, a small box pops up with a summary and,
optionally, a photo associated with that story (see Figure 1-6).

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig34%5F01%5F0%2Ejpg&image_id=6&previd=IMG_6&titlelabel=Figure+1%2D5%3A+
http://www.a9.com/
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=373489532#ch01fig056F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch01fig056F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://news.yahoo.com/
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=373489532#ch01fig066F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch01fig066F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Figure 1-6

The photo information and summary are retrieved from the server using XMLHttp and inserted
into the page dynamically. This is a perfect example of how Ajax can be used to enhance a web
page. Rather than making Ajax the primary usage mode, the Yahoo! News site is completely
usable without Ajax; the Ajax functionality is used only to add a more responsive user
experience in browsers that support it. Underneath is a semantically correct HTML page that is
laid out logically even without CSS formatting.

Bitflux Blog

Another great example of using Ajax only as an enhancement is Bitflux Blog
(http://blog.bitflux.ch/), which features a technology called LiveSearch. LiveSearch
works in conjunction with the search box on the site. As you type into the box, a list of possible
search results is displayed immediately below (see Figure 1-7).

Figure 1-7

The search results are retrieved using XMLHttp as an HTML string that is then inserted into the
page. You can search the site the old-fashioned way as well: by filling in the text box and
pressing Enter. The LiveSearch Ajax functionality is just an enhancement to the overall site and
isn't required to search.

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig35%5F01%5F0%2Ejpg&image_id=7&previd=IMG_7&titlelabel=Figure+1%2D6%3A+
http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig36%5F01%5F0%2Ejpg&image_id=8&previd=IMG_8&titlelabel=Figure+1%2D7%3A+
http://blog.bitflux.ch/
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=373489532#ch01fig076F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch01fig076F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Confusion and Controversy
Despite the popularity of the term Ajax, it has been met with its fair share of dissenters and
controversy. Some believe that Ajax is an aberration of what the Web was moving toward
before Ajax entered the picture. The proponents of semantic HTML design, accessibility, and
the separation of content and presentation were gaining ground and acceptance among web
developers, and some believe that the popularity of Ajax has pushed that movement into the
background. The belief of these detractors is that Ajax promotes creating presentation within
JavaScript, thus turning it into a messy mix similar to the early days of server-side scripting.
Many believe that accessibility will suffer if more developers turn to Ajax solutions.

Others have spent a significant amount of time dissecting Garrett's article and disproving
several assumptions that he makes. For instance, the article mentions using XML and XMLHttp
repeatedly as being the core of the Ajax model, but many of the examples he lists don't use
them. Gmail and Google Maps don't use either of these technologies; Google Suggest uses
only XMLHttp and uses JavaScript arrays instead of XML for data exchange. Critics also point
out that the technical explanation of Ajax in the article is completely misleading, citing several
technologies that are not only unnecessary (such as XML and XMLHttp) but unlikely to be used
in many cases (such as XSLT).

Another big argument surrounding Ajax and Garrett's Adaptive Path article is that it's merely a
new name for a technique that has already been used for some time. Although this type of data
retrieval could be enacted in Netscape Navigator 2.0, it really became more prominent in 2001–
2002, especially with the publication of an article on Apple's Developer Connection site entitled,
"Remote Scripting With IFRAME" (available at
http://developer.apple.com/internet/webcontent/iframe.html). This article is
widely believed to be the first mainstream article published on Ajax-like methodologies. The
term remote scripting never caught on with quite the staying power as Ajax.

Still others scoff at the term Ajax and Garrett's article, believing that its creation was little more
than a marketing gimmick for Garrett's company, Adaptive Path, LLC. Some believe that
creating a name for a technique that already existed is disingenuous and a clear sign of ill
intent. Regardless of this and other controversies surrounding Ajax, the approach now has a
name that developers are quickly becoming familiar with, and with that comes a need for a
deeper understanding and explanation so that it may be used in the best possible ways.

Summary
This chapter introduced you to the basic premise of Ajax. Short for Asynchronous JavaScript +
XML, the term Ajax was coined by Jesse James Garrett in an article posted on the Adaptive
Path, LLC web site. The article introduced Ajax as a new user interaction model for web
applications in which full page loads are no longer necessary.

This chapter also explored the evolution of the Web in relation to the development of
technologies that enable Ajax to be a reality today. Ajax owes its existence to the introduction of
both JavaScript and frames into web browsers, which made asynchronous data retrieval using
JavaScript theoretically possible in Netscape Navigator 2.0. Throughout the evolution of new
web technologies, Ajax methodologies such as the hidden frame technique developed. The
introduction of iframes and XMLHttp really pushed Ajax development forward.

Although Ajax can be used to accomplish many things, it is best used to enhance the user
experience rather than providing cool effects. This chapter discussed several Ajax principles, all
circling back to the requirements of the user being paramount to anything else in web
application development.

Several of the most popular Ajax applications were also discussed, including Google Suggest,
Gmail, Google Maps, Yahoo! News, and the Bitflux Blog.

Finally, the chapter covered the controversy surrounding Ajax, Garrett's article, and Ajax's place
on the Web. Some feel that the popularization of Ajax will lead to an overall lack of accessibility,

http://developer.apple.com/internet/webcontent/iframe.html

whereas others question Garrett's motive for writing the now-famous article. As with all
approaches, Ajax is at its best when used in a logical enhancement to a well-designed web
application.

Chapter 2: Ajax Basics
The driving force behind Ajax is the interaction between the client (web browser) and the server.
Previously, the understanding of this communication was limited to those who developed purely
on the server-side using languages such as Perl and C. Newer technologies such as ASP.NET,
PHP, and JSP encouraged more of a mix of client- and server-side techniques for software
engineers interested in creating web applications, but they often lacked a full understanding of
all client-side technologies (such as JavaScript). Now the pendulum has swung in the other
direction, and client-side developers need to understand more about server-side technology in
order to create Ajax solutions.

HTTP Primer
Central to a good grasp of Ajax techniques is hypertext transmission protocol (HTTP), the
protocol to transmit web pages, images, and other types of files over the Internet to your web
browser and back. Whenever you type a URL into the browser, an "http://" is prepended to the
address, indicating that you will be using HTTP to access the information at the given location.
(Most browsers support a number of different protocols as well, most notably FTP.)

Note Note that this section covers only those aspects of HTTP that are of interest

to Ajax developers. It does constitute an HTTP reference guide or tutorial.

HTTP consists of two parts: a request and a response. When you type a URL in a web browser,
the browser creates and sends a request on your behalf. This request contains the URL that
you typed in as well as some information about the browser itself. The server receives this
request and sends back a response. The response contains information about the request as
well as the data located at the URL (if any). It's up to the browser to interpret the response and
display the web page (or other resource).

HTTP Requests

The format of an HTTP request is as follows:
<request-line>

<headers>

<blank line>

[<request-body>]

In an HTTP request, the first line must be a request line indicating the type of request, the
resource to access, and the version of HTTP being used. Next, a section of headers indicate
additional information that may be of use to the server. After the headers is a blank line, which
can optionally be followed by additional data (called the body).

There are a large number of request types defined in HTTP, but the two of interest to Ajax
developers are GET and POST. Anytime you type a URL in a web browser, the browser sends
a GET request to the server for that URL, which basically tells the server to get the resource
and send it back. Here's what a GET request for www.wrox.com might look like:
GET / HTTP/1.1

Host: www.wrox.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)

 Gecko/20050225 Firefox/1.0.1

Connection: Keep-Alive

The first part of the request line specifies this as a GET request. The second part of that line is a
forward slash (/), indicating that the request is for the root of the domain. The last part of the
request line specifies to use HTTP version 1.1 (the alternative is 1.0). And where is the request
sent? That's where the second line comes in.

http://www.wrox.com/
http://www.wrox.com/

The second line is the first header in the request, Host. The Host header indicates the target of
the request. Combining Host with the forward slash from the first line tells the server that the
request is for www.wrox.com/. (The Host header is a requirement of HTTP 1.1; the older
version 1.0 didn't require it.) The third line contains the User-Agent header, which is
accessible to both server- and client-side scripts and is the cornerstone of most browser-
detection logic. This information is defined by the browser that you are using (in this example,
Firefox 1.0.1) and is automatically sent on every request. The last line is the Connection
header, which is typically set to Keep-Alive for browser operations (it can also be set to other
values, but that's beyond the scope of this book). Note that there is a single blank line after this
last header. Even though there is no request body, the blank line is required.

If you were to request a page under the www.wrox.com domain, such as
http://www.wrox.com/books, the request would look like this:
GET /books/ HTTP/1.1

Host: www.wrox.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)

 Gecko/20050225 Firefox/1.0.1

Connection: Keep-Alive

Note that only the first line changed, and it contains only the part that comes after
www.wrox.com in the URL.

Sending parameters for a GET request requires that the extra information be appended to the
URL itself. The format looks like this:
URL ? name1=value1&name2=value2&..&nameN=valueN

This information, called a query string, is duplicated in the request line of the HTTP request, as
follows:
GET /books/?name=Professional%20Ajax HTTP/1.1

Host: www.wrox.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)

 Gecko/20050225 Firefox/1.0.1

Connection: Keep-Alive

Note that the text "Professional Ajax" had to be encoded, replacing the space with %20, in order
to send it as a parameter to the URL. This is called URL encoding and is used in many parts of
HTTP. (JavaScript has built-in functions to handle URL encoding and decoding; these are
discussed later in the chapter). The name-value pairs are separated with an ampersand. Most
server-side technologies will decode the request body automatically and provide access to
these values in some sort of logical manner. Of course, it is up to the server to decide what to
do with this data.

Important Browsers often send many more headers than the ones discussed in

this section. The examples here have been kept short for simplicity.

The POST request, on the other hand, provides additional information to the server in the
request body. Typically, when you fill out an online form and submit it, that data is being sent
through a POST request.

Here's what a typical POST request looks like:
POST / HTTP/1.1

Host: www.wrox.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)

 Gecko/20050225 Firefox/1.0.1

http://www.wrox.com/
http://www.wrox.com/
http://www.wrox.com/books
http://www.wrox.com/
http://www.wrox.com/
http://www.wrox.com/
http://www.wrox.com/

Content-Type: application/x-www-form-urlencoded

Content-Length: 40

Connection: Keep-Alive

name=Professional%20Ajax&publisher=Wiley

You should note a few differences between a POST request and a GET request. First, the
request line begins with POST instead of GET, indicating the type of request. You'll notice that
the Host and User-Agent headers are still there, along with two new ones. The Content-
Type header indicates how the request body is encoded. Browsers always encode post data as
application/x-www-form-urlencoded, which is the MIME type for simple URL encoding.
The Content-Length header indicates the byte length of the request body. After the
Connection header and the blank line is the request body. As with most browser POST
requests, this is made up of simple name-value pairs, where name is Professional Ajax and
publisher is Wiley. You may recognize that this format is the same as that of query string
parameters on URLs.

As mentioned previously, there are other HTTP request types, but they follow the same basic
format as GET and POST. The next step is to take a look at what the server sends back in
response to an HTTP request.

HTTP Responses

The format of an HTTP response, which is very similar to that of a request, is as follows:
<status-line>

<headers>

<blank line>

[<response-body>]

As you can see, the only real difference in a response is that the first line contains status
information instead of request information. The status line tells you about the requested
resource by providing a status code. Here's a sample HTTP response:
HTTP/1.1 200 OK

Date: Sat, 31 Dec 2005 23:59:59 GMT

Content-Type: text/html;charset=ISO-8859-1

Content-Length: 122

<html>

 <head>

 <title>Wrox Homepage</title>

 </head>

 <body>

 <!-- body goes here -->

 </body>

</html>

In this example, the status line gives an HTTP status code of 200 and a message of OK. The
status line always contains the status code and the corresponding short message so that there
isn't any confusion. The most common status codes are:

 200 (OK): The resource was found and all is well.

 304 (NOT MODIFIED): The resource has not been modified since the last request. This
is used most often for browser cache mechanisms.

 401 (UNAUTHORIZED): The client is not authorized to access the resource. Often, this
will cause the browser to ask for a user name and password to log in to the server.

 403 (FORBIDDEN): The client failed to gain authorization. This typically happens if you
fail to log in with a correct user name and password after a 401.

 404 (NOT FOUND): The resource does not exist at the given location.

Following the status line are some headers. Typically, the server will return a Date header
indicating the date and time that the response was generated. (Servers typically also return
some information about themselves, although this is not required.) The next two headers should
look familiar as well, as they are the same Content-Type and Content-Length headers
used in POST requests. In this case, the Content-Type header specifies the MIME type for
HTML (text/html) with an encoding of ISO-8859-1 (which is standard for the United States
English resources). The body of the response simply contains the HTML source of the
requested resource (although it could also contain plain text or binary data for other types of
resources). It is this data that the browser displays to the user.

Note that there is no indication as to the type of request that asked for this response; however,
this is of no consequence to the server. It is up to the client to know what type of data should be
sent back for each type of request and to decide how that data should be used.

Ajax Communication Techniques
Now that you understand the basics of how HTTP communication works, it's time to look into
enacting such communication from within a web page. As you know, there are a lot of requests
going back and forth between the browser and server while you are surfing the Web. Initially, all
these requests happened because the user made an overt action that required such a step.
Ajax techniques free developers from waiting for the user to make such an action, allowing you
to create a call to the server at any time.

As discussed in Chapter 1, Ajax communication supports a number of different techniques.
Each of these techniques has advantages and disadvantages, so it's important to understand
which one to use in which situation.

The Hidden Frame Technique

With the introduction of HTML frames, the hidden frame technique was born. The basic idea
behind this technique is to create a frameset that has a hidden frame that is used for client-
server communication. You can hide a frame by setting its width or height to 0 pixels, effectively
removing it from the display. Although some early browsers (such as Netscape 4) couldn't fully
hide frames, often leaving thick borders, this technique still gained popularity among
developers.

The Pattern
The hidden frame technique follows a very specific, four-step pattern (see Figure 2-1). The first
step always begins with the visible frame, where the user is interacting with a web page.
Naturally, the user is unaware that there is a hidden frame (in modern browsers, it is not
rendered) and goes about interacting with the page as one typically would. At some point, the
user performs an action that requires additional data from the server. When this happens, the
first step in the process occurs: a JavaScript function call is made to the hidden frame. This call
can be as simple as redirecting the hidden frame to another page or as complicated as posting
form data. Regardless of the intricacy of the function, the result is the second step in the
process: a request made to the server.

http://www.books24x7.com/viewer.asp?bkid=13421&destid=36#36
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=211123869#ch02fig016F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch02fig016F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Figure 2-1

The third step in the pattern is a response received from the server. Because you are dealing
with frames, this response must be another web page. This web page must contain the data
requested from the server as well as some JavaScript to transfer that data to the visible frame.
Typically, this is done by assigning an onload event handler in the returned web page that calls
a function in the visible frame after it has been fully loaded (this is the fourth step). With the data
now in the visible frame, it is up to that frame to decide what to do with the data.

Hidden Frame GET Requests
Now that the hidden frame technique has been explained, it's time to learn more about it. As
with any new technique, the best way to learn is to work through an example. For this example,
you'll be creating a simple lookup page where a customer service representative can look up
information about a customer. Since this is the first example in the book, it is very simple: The
user will enter a customer ID and receive in return information about the customer. Since this
type of functionality will most often be used with a database, it is necessary to do some server-
side programming as well. This example uses PHP, an excellent open source server-side
language, and MySQL (available at www.mysql.org), an open source database that ties
together very well with PHP.

Important Although this example is intended to be used with MySQL, you should

be able to run it on other databases with little or no modification.

First, before customer data can be looked up, you must have a table to contain it. You can
create the customer table by using the following SQL script:
CREATE TABLE 'Customers' (

 'CustomerId' int(11) NOT NULL auto_increment,

 'Name' varchar(255) NOT NULL default '',

 'Address' varchar(255) NOT NULL default '',

 'City' varchar(255) NOT NULL default '',

 'State' varchar(255) NOT NULL default '',

 'Zip' varchar(255) NOT NULL default '',

 'Phone' varchar(255) NOT NULL default '',

 'E-mail' varchar(255) NOT NULL default '',

 PRIMARY KEY ('CustomerId')

) TYPE=MyISAM COMMENT='Sample Customer Data';

The most important field in this table is CustomerId, which is what you will use to look up the
customer information.

Note You can download this script, along with some sample data, from

www.wrox.com.

With the database table all set up, it's time to move on to the HTML code. To use the hidden
frame technique, you must start with an HTML frameset, such as this:
<frameset rows="100%,0" frameborder="0">

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig44%5F01%5F0%2Ejpg&image_id=9&previd=IMG_9&titlelabel=Figure+2%2D1%3A+
http://www.mysql.org/
http://www.wrox.com/

 <frame name=" displayFrame" src=" display.htm" noresize="
noresize" />

 <frame name=" hiddenFrame" src=" about:blank" noresize=" noresize"
/>

</frameset>

The important part of this code is the rows attribute of the <frameset/> element. By setting it
to 100%,0, browsers know not to display the body of the second frame, whose name is
hiddenFrame. Next, the frameborder attribute is set to 0 to make sure that there isn't a
visible border around each frame. The final important step in the frameset declaration is to set
the noresize attributes on each frame so that the user can't inadvertently resize the frames
and see what's in the hidden one; the contents of the hidden frame are never meant to be part
of the displayed interface.

Next up is the page to request and display the customer data. This is a relatively simple page,
consisting of a text box to enter the customer ID, a button to execute the request, and a <div/>
element to display the retrieved customer information:
<p>Enter customer ID number to retrieve information:</p>

<p>Customer ID: <input type=" text" id=" txtCustomerId" value=""
/></p>

<p><input type=" button" value=" Get Customer Info"

 onclick=" requestCustomerInfo()" /></p>

<div id=" divCustomerInfo"></div>

You'll notice that the button calls a function named requestCustomerInfo(), which interacts
with the hidden frame to retrieve information. It simply takes the value in the text box and adds it
to the query string of getcustomerdata.php, creating a URL in the form of
getcustomerdata.php?id=23. This URL is then assigned to the hidden frame. Here's the
function:
function requestCustomerInfo() {

 var sId = document.getElementById("txtCustomerId").value;

 top.frames["hiddenFrame"].location = "getcustomerdata.php?id=" +
sId;

}

The first step in this function is to retrieve the customer identification number
("txtCustomerId") from the text box. To do so, document.getElementById() is called
with the text box ID, "txtCustomerId", and the value property is retrieved. (The value
property holds the text that is inside the text box.) Then, this ID is added to the string
"getcustomerdata.php?id=" to create the full URL. The second line creates the URL and
assigns it to the hidden frame. To get a reference to the hidden frame, you first need to access
the topmost window of the browser using the top object. That object has a frames array,
within which you can find the hidden frame. Since each frame is just another window object, you
can set its location to the desired URL.

That's all it takes to request the information. Note that because this is a GET request (passing
information in the query string), it makes the request very easy. (You'll see how to execute a
POST request using the hidden frame technique shortly.)

In addition to the requestCustomerInfo() function, you'll need another function to display
the customer information after it is received. This function, displayCustomerInfo(), will be
called by the hidden frame when it returns with data. The sole argument is a string containing
the customer data to be displayed:
function displayCustomerInfo(sText) {

 var divCustomerInfo = document.getElementById("divCustomerInfo");

 divCustomerInfo.innerHTML = sText;

}

In this function, the first line retrieves a reference to the <div/> element that will display the
data. In the second line, the customer info string (sText) is assigned into the innerHTML
property of the <div/> element. Using innerHTML makes it possible to embed HTML into
the string for formatting purposes. This completes the code for the main display page. Now it's
time to create the server-side logic.

The basic code for getcustomerdata.php is a very basic HTML page with PHP code in two
places:
<html>

 <head>

 <title>Get Customer Data</title>

<?php

 //php code

?>

 </head>

 <body>

 <div id=" divInfoToReturn"><?php echo $sInfo ?></div>

 </body>

</html>

In this page, the first PHP block will contain the logic to retrieve customer data (which is
discussed shortly). The second PHP block outputs the variable $sInfo, containing customer
data, into a <div/>. It is from this <div/> that you will read out the data and send it to the
display frame. To do so, you need to create a JavaScript function that is called when the page
has loaded completely:
window.onload = function () {

 var divInfoToReturn = document.getElementById("divInfoToReturn");

top.frames["displayFrame"].displayCustomerInfo(divInfoToReturn.innerHT
ML);

};

This function is assigned directly to the window.onload event handler. It first retrieves a
reference to the <div/> that contains the customer information. Then, it accesses the display
frame using the top.frames array and calls the displayCustomerInfo() function defined
earlier, passing in the innerHTML of the <div/>. That's all the JavaScript it takes to send the
information where it belongs. But how does the information get there in the first place? Some
PHP code is needed to pull it out of the database.

The first step in the PHP code is to define all of the pieces of data you'll need. In this example,
those pieces of data are the customer ID to look up, the $sInfo variable to return the
information, and the information necessary to access the database (the database server, the
database name, a user name, a password, and the SQL query string):
<?php

 $sID = $_GET["id"];

 $sInfo = "";

 $sDBServer = "your.databaser.server";

 $sDBName = "your_db_name"; $sDBUsername = "your_db_username";

 $sDBPassword = "your_db_password";

 $sQuery = "Select * from Customers where CustomerId=".$sID;

 //More here

?>

This code begins with retrieving the id argument from the query string. PHP organizes all query
string arguments into the $_GET array for easy retrieval. This id is stored in $sID and is used
to create the SQL query string stored in $sQuery. The $sInfo variable is also created here
and set to be an empty string. All the other variables in this code block contain information
specific to your particular database configuration; you'll have to replace these with the correct
values for your implementation.

Having captured the user's input and set up the foundation for the connection to the database,
the next step is to invoke that database connection, execute the query, and return the results. If
there is a customer with the given ID, $sInfo is filled with an HTML string containing all the
data, including the creation of a link for the e-mail address. If the customer ID is invalid, $sInfo
is filled with an error message that will be passed back to the display frame:
<?php

 $sID = $_GET["id"];

 $sInfo = "";

 $sDBServer = "your.databaser.server";

 $sDBName = "your_db_name";

 $sDBUsername = "your_db_username";

 $sDBPassword = "your_db_password";

 $sQuery = "Select * from Customers where CustomerId=".$sID;

 $oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);

 @mysql_select_db($sDBName) or $sInfo=" Unable to open database";

 if($oResult = mysql_query($sQuery) and mysql_num_rows($oResult) >
0) {

 $aValues = mysql_fetch_array($oResult,MYSQL_ASSOC);

 $sInfo = $aValues['Name']."
".$aValues['Address']."
".

 $aValues['City']."
".$aValues['State']."
".

 $aValues['Zip']."

Phone: ".$aValues['Phone']."
".

 "".

 $aValues['E-mail']."";

 } else {

 $sInfo = "Customer with ID $sID doesn't exist.";

 }

 mysql_close($oLink);

?>

The first two lines in the highlighted section contain the calls to connect to a MySQL database
from PHP. Following that, the mysql_query() function is called to execute the SQL query. If
that function returns a result and the result has at least one row, then the code continues to get
the information and store it in $sInfo; otherwise, $sInfo is filled with an error message. The
last two lines clean up the database connection.

Note It's beyond the scope of this book to explain the intricacies of PHP and

MySQL programming. If you'd like to learn more, consider picking up
Beginning PHP, Apache, MySQL Web Development (Wiley Press, ISBN 0-
7645-5744-0).

Now when $sInfo is output into the <div/>, it will contain the appropriate information. The
onload event handler reads that data out and sends it back up to the display frame. If the
customer was found, the information will be displayed, as shown in Figure 2-2.

Figure 2-2

If, on the other hand, the customer doesn't exist, an error message will be displayed in that
same location on the screen. Either way, the customer service representative will have a nice
user experience. This completes your first Ajax example.

Hidden Frame POST Requests
The previous example used a GET request to retrieve information from a database. This was
fairly simple because the customer ID could just be appended to the URL in a query string and
sent on its way. But what if you need to send a POST request? This, too, is possible using the
hidden frame technique, although it takes a little extra work.

A POST request is typically sent when data needs to be sent to the server as opposed to a
GET, which merely requests data from the server. Although GET requests can send extra data
through the query string, some browsers can handle only up to 512KB of query string
information. A POST request, on the other hand, can send up to 2GB of information, making it
ideal for most uses.

Traditionally, the only way to send POST requests was to use a form with its method attribute
set to post. Then, the data contained in the form was sent in a POST request to the URL

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig48%5F01%5F0%2Ejpg&image_id=10&previd=IMG_10&titlelabel=Figure+2%2D2%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=211123869#ch02fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch02fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

specified in the action attribute. Further complicating matters was the fact that a typical form
submission navigates the page to the new URL. This completely defeats the purpose of Ajax.
Thankfully, there is a very easy workaround in the form of a little-known attribute called target.

The target attribute of the <form/> element is used in a similar manner to the target
attribute of the <a/> element: it specifies where the navigation should occur. By setting the
target attribute on a form, you effectively tell the form page to remain behind while the result
of the form submission is displayed in another frame or window (in this case, a hidden frame).

To begin, define another frameset. The only difference from the previous example is that the
visible frame contains an entry form for customer data:
<frameset rows="100%,0" frameborder="0">

 <frame name="displayFrame" src=" entry.htm" noresize=" noresize"
/>

 <frame name="hiddenFrame" src=" about:blank" noresize=" noresize"
/>

</frameset>

The body of the entry form is contained within a <form/> element and has text boxes for each
of the fields stored in the database (aside from customer ID, which will be autogenerated).
There is also a <div/> that is used for status messages relating to the client-server
communication:
<form method="post" action="SaveCustomer.php" target="hiddenFrame">

 <p>Enter customer information to be saved:</p>

 <p>Customer Name: <input type="text" name="txtName" value="" />

 Address: <input type="text" name="txtAddress" value="" />

 City: <input type="text" name="txtCity" value="" />

 State: <input type="text" name="txtState" value="" />

 Zip Code: <input type="text" name="txtZipCode" value="" />

 Phone: <input type="text" name="txtPhone" value="" />

 E-mail: <input type="text" name="txtEmail" value="" /></p>

 <p><input type="submit" value="Save Customer Info" /></p>

</form>

<div id="divStatus"></div>

Note also that the target of the <form/> element is set to hiddenFrame so that when the
user clicks the button, the submission goes to the hidden frame.

In this example, only one JavaScript function is necessary in the main page: saveResult().
This function will be called when the hidden frame returns from saving the customer data:
function saveResult(sMessage) {

 var divStatus = document.getElementById("divStatus");

 divStatus.innerHTML = "Request completed: "+ sMessage;

}

It's the responsibility of the hidden frame to pass a message to this function that will be
displayed to the user. This will either be a confirmation that the information was saved or an
error message explaining why it wasn't.

Next is SaveCustomer.php, the file that handles the POST request. As in the previous
example, this page is set up as a simple HTML page with a combination of PHP and JavaScript
code. The PHP code is used to gather the information from the request and store it in the
database. Since this is a POST request, the $_POST array contains all the information that was
submitted:
<?php

 $sName = $_POST["txtName"];

 $sAddress = $_POST["txtAddress"];

 $sCity = $_POST["txtCity"];

 $sState = $_POST["txtState"];

 $sZipCode = $_POST["txtZipCode"];

 $sPhone = $_POST["txtPhone"];

 $sEmail = $_POST["txtEmail"];

 $sStatus = "";

 $sDBServer = "your.database.server";

 $sDBName = "your_db_name";

 $sDBUsername = "your_db_username";

 $sDBPassword = "your_db_password";

 $sSQL = "Insert into
Customers(Name,Address,City,State,Zip,Phone,'E-mail') ".

 " values ('$sName','$sAddress','$sCity','$sState',
'$sZipCode'".

 ", '$sPhone', '$sEmail')";

 //more here

?>

This code snippet retrieves all the POST information about the customer; moreover, it defines a
status message ($sStatus) and the required database information (same as in the previous
example). The SQL statement this time is an INSERT, adding in all the retrieved information.

The code to execute the SQL statement is very similar to that of the previous example:
<?php

 $sName = $_POST["txtName"];

 $sAddress = $_POST["txtAddress"];

 $sCity = $_POST["txtCity"];

 $sState = $_POST["txtState"];

 $sZipCode = $_POST["txtZipCode"];

 $sPhone = $_POST["txtPhone"];

 $sEmail = $_POST["txtEmail"];

 $sStatus = "";

 $sDBServer = "your.database.server";

 $sDBName = "your_db_name";

 $sDBUsername = "your_db_username";

 $sDBPassword = "your_db_password";

 $sSQL = "Insert into
Customers(Name,Address,City,State,Zip,Phone,'E-mail') ".

 " values ('$sName','$sAddress','$sCity','$sState',
'$sZipCode'".

 ", '$sPhone', '$sEmail')";

 $oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);

 @mysql_select_db($sDBName) or $sStatus = "Unable to open
database";

 if($oResult = mysql_query($sSQL)) {

 $sStatus = "Added customer; customer ID is
".mysql_insert_id();

 } else {

 $sStatus = "An error occurred while inserting; customer not
saved.";

 }

 mysql_close($oLink);

?>

Here, the result of the mysql_query() function is simply an indicator that the statement was
executed successfully. In that case, the $sStatus variable is filled with a message indicating
that the save was successful and returning the customer ID assigned to the data. The
mysql_insert_id() function always returns the last auto-incremented value of the most
recent INSERT statement. If for some reason the statement didn't execute successfully, the
$sStatus variable is filled with an error message.

The $sStatus variable is output into a JavaScript function that is run when the window loads:
<script type=" text/javascript">

 window.onload = function () {

 top.frames["displayFrame"].saveResult("<?php echo $sStatus
?>");

 }

</script>

This code calls the saveResult() function defined in the display frame, passing in the value
of the PHP variable $sStatus. Because this variable contains a string, you must enclose the
PHP echo statement in quotation marks. When this function executes, assuming the customer
data was saved, the entry form page resembles the one shown in Figure 2-3.

http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=211123869#ch02fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch02fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Figure 2-3

After this code has executed, you are free to add more customers to the database using the
same form because it never disappeared.

Hidden iFrames
The next generation of behind-the-scenes client-server communication was to make use of
iframes, which were introduced in HTML 4.0. Basically, an iframe is the same as a frame with
the exception that it can be placed inside of a non-frameset HTML page, effectively allowing any
part of a page to become a frame. The iframe technique can be applied to pages not originally
created as a frameset, making it much better suited to incremental addition of functionality; an
iframe can even be created on-the-fly in JavaScript, allowing for simple, semantic HTML to be
supplied to the browser with the enhanced Ajax functionality serving as a progressive
enhancement (this is discussed shortly). Because iframes can be used and accessed in the
same way as regular frames, they are ideal for Ajax communication.

There are two ways to take advantage of iframes. The easiest way is to simply embed an iframe
inside of your page and use that as the hidden frame to make requests. Doing this would
change the first example display page to:
<p>Enter customer ID number to retrieve information:</p>

<p>Customer ID: <input type="text" id="txtCustomerId" value="" /></p>

<p><input type="button" value="Get Customer Info"

 onclick="requestCustomerInfo()" /></p>

<div id="divCustomerInfo"></div>

<iframe src="about:blank" name="hiddenFrame" width="0" height="0"

 frameborder="0"></iframe>

Note that the iframe has its width, height, and frameborder attributes set to 0; this
effectively hides it from view. Since the name of the iframe is hiddenFrame, all the JavaScript
code in this page will continue to work as before. There is, however, one small change that is
necessary to the GetCustomerData.php page. The JavaScript function in that page
previously looked for the displayCustomerInfo() function in the frame named
displayFrame. If you use this technique, there is no frame with that name, so you must
update the code to use parent instead:
window.onload = function () {

 var divInfoToReturn = document.getElementById("divInfoToReturn");

 parent.displayCustomerInfo(divInfoToReturn.innerHTML);

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig52%5F01%5F0%2Ejpg&image_id=11&previd=IMG_11&titlelabel=Figure+2%2D3%3A+

};

Now this example will work just as the first example in this chapter did.

The second way to use hidden iframes is to create them dynamically using JavaScript. This can
get a little bit tricky because not all browsers implement iframes in the same way, so it helps to
simply go step-by-step in creating a hidden iframe.

The first step is easy; you create the iframe using the document.createElement() method
and assign the necessary attributes:
function createIFrame() {

 var oIFrameElement = document.createElement("iframe");

 oIFrameElement.width=0;

 oIFrameElement.height=0;

 oIFrameElement.frameBorder=0;

 oIFrameElement.name = "hiddenFrame";

 oIFrameElement.id = "hiddenFrame";

 document.body.appendChild(oIFrameElement);

 //more code

}

The last line of this code is very important because it adds the iframe to the document structure;
an iframe that isn't added to the document can't perform requests. Also note that both the name
and id attributes are set to hiddenFrame. This is necessary because some browsers access
the new frame by its name and some by its id attribute.

Next, define a global variable to hold a reference to the frame object. Note that the frame object
for an iframe element isn't what is returned from createElement(). In order to get this object,
you must look into the frames collection. This is what will be stored in the global variable:
var oIFrame = null;

function createIFrame() {

 var oIFrameElement = document.createElement("iframe");

 oIFrameElement.width=0;

 oIFrameElement.height=0;

 oIFrameElement.frameBorder=0;

 oIFrameElement.name = "hiddenFrame";

 oIFrameElement.id = "hiddenFrame";

 document.body.appendChild(oIFrameElement);

 oIFrame = frames["hiddenFrame"];

}

If you place this code into the previous iframe example, you can then make the following
modifications to requestCustomerInfo():
function requestCustomerInfo() {

 if (!oIFrame) {

 createIFrame();

 setTimeout(requestCustomerInfo, 10);

 return;

 }

 var sId = document.getElementById("txtCustomerId").value;

 oIFrame.location = "GetCustomerData.php?id=" + sId;

}

With these changes, the function now checks to see if oIFrame is null or not. If it is, then it calls
createIFrame() and then sets a timeout to run the function again in 10 milliseconds. This is
necessary because only the Internet Explorer (IE) browser recognizes the inserted iframe
immediately; most other browsers take a couple of milliseconds to recognize it and allow
requests to be sent. When the function executes again, it will go on to the rest of the code,
where the last line has been changed to reference the oIFrame object.

Although this technique works fairly easily with GET requests, POST requests are a different
story. Only some browsers will enable you to set the target of a form to a dynamically created
iframe; IE is not one of them. So, to use the hidden iframe technique with a POST request
requires a bit of trickery.

Hidden IFrame POST Requests
To accomplish a POST request using hidden iframes, the approach is to load a page that
contains a form into the hidden frame, populate that form with data, and then submit the form.
When the visible form (the one you are actually typing into) is submitted, you need to cancel
that submission and forward the information to the hidden frame. To do so, you'll need to define
a function that handles the creation of the iframe and the loading of the hidden form:
function checkIFrame() {

 if (!oIFrame) {

 createIFrame();

 }

 setTimeout(function () {

 oIFrame.location = "ProxyForm.htm";

 }, 10);

}

This function, checkIFrame(), first checks to see if the hidden iframe has been created. If not,
createIFrame() is called. Then, a timeout is set before setting the location of the iframe to
ProxyForm.htm, which is the hidden form page. Because this function may be called several
times, it's important that this page be loaded each time the form is submitted.

The ProxyForm.htm file is very simple. It contains only a small bit of JavaScript to notify the
main page that it has been loaded:
<html>

 <head>

 <title>Proxy Form</title>

 <script type="text/javascript">

 window.onload = function () {

 parent.formReady();

 }

 </script>

 </head>

 <body>

 <form method="post"></form>

 </body>

</html>

As you can see, the body of this page contains only an empty form and the head contains only
an onload event handler. When the page is loaded, it calls parent.formReady() to let the
main page know that it is ready to accept a request. The formReady() function is contained in
the main page itself and looks like this:
function formReady() {

 var oHiddenForm = oIFrame.document.forms[0];

 var oForm = document.forms[0];

 for (var i=0 ; i < oForm.elements.length; i++) {

 var oHidden = oIFrame.document.createElement("input");

 oHidden.type = "hidden";

 oHidden.name = oForm.elements[i].name;

 oHidden.value = oForm.elements[i].value;

 oHiddenForm.appendChild(oHidden);

 }

 oHiddenForm.action = oForm.action;

 oHiddenForm.submit();

};

The first step in this function is to get a reference to the form in the hidden iframe, which you
can do by accessing the document.forms collection of that frame. Because there is only one
form on the page, you can safely get the first form in the collection (at index 0); this is stored in
oHiddenForm. Following that, a reference to the form on the main page is saved into oForm.
Next, a for loop iterates through the form elements on the main page (using the elements
collection). For each form element, a new hidden input element is created in the hidden frame
(note that you must use oIFrame.document.createElement() instead of just
document.createElement()). This hidden input element is assigned the name and value of
the form element and added to the hidden form using the appendChild() function.

After each form element has been added, the hidden form is assigned the same action as the
main page form. By reading the action out of the form instead of hard coding it, you can use
formReady() on any number of pages. The last step in the function is to submit the hidden
form.

The only thing left to do is to make sure the main page form doesn't submit itself in the normal
way. To do this, assign an onsubmit event handler that calls checkIFrame() and returns
false:
<form method="post" action="SaveCustomer.php"

 onsubmit="checkIFrame();return false">

 <p>Enter customer information to be saved:</p>

 <p>Customer Name: <input type="text" name="txtName" value="" />

 Address: <input type="text" name="txtAddress" value="" />

 City: <input type="text" name="txtCity" value="" />

 State: <input type="text" name="txtState" value="" />

 Zip Code: <input type="text" name="txtZipCode" value="" />

 Phone: <input type="text" name="txtPhone" value="" />

 E-mail: <input type="text" name="txtEmail" value="" /></p>

 <p><input type="submit" value="Save Customer Info" /></p>

</form>

<div id=" divStatus"></div>

By returning false in this way, you are preventing the default behavior of the form (to submit
itself to the server). Instead, the checkIFrame() method is called and the process of
submitting to the hidden iframe begins.

With this complete, you can now use this example the same way as the hidden frame POST
example; the SaveCustomer.php page handles the data and calls saveResult() in the
main page when completed.

Important Note that the examples in this section have been simplified in order to

focus on the Ajax techniques involved. If you were to use these in a real
web application, you would need to provide more user feedback, such
as disabling the form while a request is being made.

Advantages and Disadvantages of Hidden Frames

Now that you have seen the powerful things that you can do using hidden frames, it's time to
discuss the practicality of using them. As mentioned previously, this technique has been around
for many years and is still used in many Ajax applications.

One of the biggest arguments for using hidden frames is that you can maintain the browser
history and thus enable users to still use the Back and Forward buttons in the browser. Because
the browser doesn't know that a hidden frame is, in fact, hidden, it keeps track of all the
requests made through it. Whereas the main page of an Ajax application may not change, the
changes in the hidden frame mean that the Back and Forward buttons will move through the
history of that frame instead of the main page. This technique is used in both Gmail and Google
Maps for this very reason.

Important Be careful, because iframes don't always store browser history.

Whereas IE always stores the history of iframes, Firefox does so only if
the iframe was defined using HTML (that is, not created dynamically
using JavaScript). Safari never stores browser history for iframes,
regardless of how they are included in the page.

The downside of hidden frames is that there is very little information about what's going on
behind the scenes. You are completely reliant on the proper page being returned. The
examples in this section all had the same problem: If the hidden frame page failed to load, there
is no notification to the user that a problem has occurred; the main page will continue to wait
until the appropriate JavaScript function is called. You may be able to provide some comfort to a
user by setting a timeout for a long period of time, maybe five minutes, and displaying a
message if the page hasn't loaded by then, but that's just a workaround. The main problem is
that you don't have enough information about the HTTP request that is happening behind the
scenes. Fortunately, there is another option.

XMLHttp Requests

When Microsoft Internet Explorer 5.0 introduced a rudimentary level of XML support, an ActiveX
library called MSXML was also introduced (discussed at length in Chapter 4). One of the objects
provided in this library quickly became very popular: XMLHttp.

The XMLHttp object was created to enable developers to initiate HTTP requests from
anywhere in an application. These requests were intended to return XML, so the XMLHttp
object provided an easy way to access this information in the form of an XML document. Since
it was an ActiveX control, XMLHttp could be used not only in web pages but also in any
Windows-based desktop application; however, its popularity on the Web has far outpaced its
popularity for desktop applications.

Picking up on that popularity, Mozilla duplicated the XMLHttp functionality for use in its
browsers, such as Firefox. Shortly thereafter, both the Safari (as of version 1.2) and Opera
(version 7.6) browsers had duplicated Mozilla's implementation. Today, all four browsers
support XMLHttp to some extent. (Safari and Opera still have incomplete implementations,
supporting GET and POST but no other request types.)

Creating an XMLHttp Object
The first step to using an XMLHttp object is, obviously, to create one. Because Microsoft's
implementation is an ActiveX control, you must use the proprietary ActiveXObject class in
JavaScript, passing in the XMLHttp control's signature:
var oXmlHttp = new ActiveXObject("Microsoft.XMLHttp");

This line creates the first version of the XMLHttp object (the one shipped with IE 5.0). The
problem is that there have been several new versions released with each subsequent release of
the MSXML library. Each release brings with it better stability and speed, so you want to make
sure you are always using the most recent version available on the user's machine. The
signatures are:

 Microsoft.XMLHttp
 MSXML2.XMLHttp
 MSXML2.XMLHttp.3.0
 MSXML2.XMLHttp.4.0
 MSXML2.XMLHttp.5.0

Unfortunately, the only way to determine the best version to use is to try to create each one.
Because this is an ActiveX control, any failure to create an object will throw an error, which
means that you must enclose each attempt within a try...catch block. The end result is a
function such as this:
function createXMLHttp() {

 var aVersions = ["MSXML2.XMLHttp.5.0",

 "MSXML2.XMLHttp.4.0","MSXML2.XMLHttp.3.0",

 "MSXML2.XMLHttp","Microsoft.XMLHttp"

];

 for (var i = 0; i < aVersions.length; i++) {

 try {

 var oXmlHttp = new ActiveXObject(aVersions[i]);

 return oXmlHttp;

 } catch (oError) {

 //Do nothing

 }

http://www.books24x7.com/viewer.asp?bkid=13421&destid=192#192

 }

 throw new Error("MSXML is not installed.");

}

The createXMLHttp() function stores an array of XMLHttp signatures, with the most recent
one first. It iterates through this array and tries to create an XMLHttp object with each
signature. If the creation fails, the catch statement prevents a JavaScript error from stopping
execution; then the next signature is attempted. When an object is created, it is returned. If the
function completes without creating an XMLHttp object, an error is thrown indicating that the
creation failed.

Fortunately, creating an XMLHttp object is much easier in other browsers. Mozilla Firefox,
Safari, and Opera all use the same code:
var oXmlHttp = new XMLHttpRequest();

Naturally, it helps to have a cross-browser way of creating XMLHttp objects. You can create
such a function by altering the createXMLHttp() function defined previously:
function createXMLHttp() {

 if (typeof XMLHttpRequest != "undefined") {

 return new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 var aVersions = ["MSXML2.XMLHttp.5.0",

 "MSXML2.XMLHttp.4.0","MSXML2.XMLHttp.3.0",

 "MSXML2.XMLHttp","Microsoft.XMLHttp"

];

 for (var i = 0; i < aVersions.length; i++) {

 try {

 var oXmlHttp = new ActiveXObject(aVersions[i]);

 return oXmlHttp;

 } catch (oError) {

 //Do nothing

 }

 }

 }

 throw new Error("XMLHttp object could be created.");

}

Now this function first checks to see if an XMLHttpRequest class is defined (by using the
typeof operator). If XMLHttpRequest is present, it is used to create the XMLHttp object;
otherwise, it checks to see if the ActiveXObject class is present and, if so, goes through the
same process of creating an XMLHttp object for IE. If both of these tests fail, an error is thrown.

The other option for creating cross-browser XMLHttp objects is to use a library that already has
cross-browser code written. The zXml library, written by two of your authors, is one such library
and is available for download at www.nczonline.net/downloads/. This library defines a
single function for the creation of XMLHttp objects:

http://www.nczonline.net/downloads/

var oXmlHttp = zXmlHttp.createRequest();

The createRequest() function, and the zXml library itself, will be used throughout this book
to aid in cross-browser handling of Ajax technologies.

Using XMLHttp
After you have created an XMLHttp object, you are ready to start making HTTP requests from
JavaScript. The first step is to call the open() method, which initializes the object. This method
accepts the following three arguments:

 Request Type: A string indicating the request type to be made — typically, GET or
POST (these are the only ones currently supported by all browsers).

 URL: A string indicating the URL to send the request to.

 Async: A Boolean value indicating whether the request should be made
asynchronously.

The last argument, async, is very important because it controls how JavaScript executes the
request. When set to true, the request is sent asynchronously, and JavaScript code execution
continues without waiting for the response; you must use an event handler to watch for the
response to the request. If async is set to false, the request is sent synchronously, and
JavaScript waits for a response from the server before continuing code execution. That means if
the response takes a long time, the user cannot interact with the browser until the response has
completed. For this reason, best practices around the development of Ajax applications favor
the use of asynchronous requests for routine data retrieval, with synchronous requests reserved
for short messages sent to and from the server.

To make an asynchronous GET request to info.txt, you would start by doing this:
var oXmlHttp = zXmlHttp.createRequest();

oXmlHttp.open("get", "info.txt", true);

Note that the case of the first argument, the request type, is irrelevant even though technically
request types are defined as all uppercase.

Next, you need to define an onreadystatechange event handler. The XMLHttp object has a
property called readyState that changes as the request goes through and the response is
received. There are five possible values for readyState:

 0 (Uninitialized): The object has been created but the open() method hasn't been
called.

 1 (Loading): The open() method has been called but the request hasn't been sent.

 2 (Loaded): The request has been sent.

 3 (Interactive). A partial response has been received.

 4 (Complete): All data has been received and the connection has been closed.

Every time the readyState property changes from one value to another, the
readystatechange event fires and the onreadystatechange event handler is called.
Because of differences in browser implementations, the only reliable readyState values for
cross-browser development are 0, 1, and 4. In most cases, however, you will check only for 4 to
see when the request has returned:
var oXmlHttp = zXmlHttp.createRequest();

oXmlHttp.open("get", "info.txt", true);

oXmlHttp.onreadystatechange = function () {

 if (oXmlHttp.readyState == 4) {

 alert("Got response.");

 }

};

The last step is to call the send() method, which actually sends the request. This method
accepts a single argument, which is a string for the request body. If the request doesn't require
a body (remember, a GET request doesn't), you must pass in null:
var oXmlHttp = zXmlHttp.createRequest();

oXmlHttp.open("get", "info.txt", true);

oXmlHttp.onreadystatechange = function () {

 if (oXmlHttp.readyState == 4) {

 alert("Got response.");

 }

};

oXmlHttp.send(null);

That's it! The request has been sent and when the response is received, an alert will be
displayed. But just showing a message that the request has been received isn't very useful. The
true power of XMLHttp is that you have access to the returned data, the response status, and
the response headers.

To retrieve the data returned from the request, you can use the responseText or
responseXML properties. The responseText property returns a string containing the
response body, whereas the responseXML property is an XML document object used only if
the data returned has a content type of text/xml. (XML documents are discussed in Chapter
4.) So, to get the text contained in info.txt, the call would be as follows:
var sData = oXmlHttp.responseText;

Note that this will return the text in info.txt only if the file was found and no errors occurred.
If, for example, info.txt didn't exist, then the responseText would contain the server's 404
message. Fortunately, there is a way to determine if any errors occurred.

The status property contains the HTTP status code sent in the response, and statusText
contains the text description of the status (such as "OK" or "Not Found"). Using these two
properties, you can make sure the data you've received is actually the data you want or tell the
user why the data wasn't retrieved:
if (oXmlHttp.status == 200) {

 alert("Data returned is: "+ oXmlHttp.responseText;

} else {

 alert("An error occurred: "+ oXmlHttp.statusText;

}

Generally, you should always ensure that the status of a response is 200, indicating that the
request was completely successful. The readyState property is set to 4 even if a server error
occurred, so just checking that is not enough. In this example, the responseText property is
shown only if the status is 200; otherwise, the error message is displayed.

Important The statusText property isn't implemented in Opera and sometimes

returns an inaccurate description in other browsers. You should never
rely on statusText alone to determine if an error occurred.

http://www.books24x7.com/viewer.asp?bkid=13421&destid=192#192
http://www.books24x7.com/viewer.asp?bkid=13421&destid=192#192

As mentioned previously, it's also possible to access the response headers. You can retrieve a
specific header value using the getResponseHeader() method and passing in the name of
the header that you want to retrieve. One of the most useful response headers is Content-
Type, which tells you the type of data being sent:
var sContentType = oXmlHttp.getResponseHeader("Content-Type");

if (sContentType == "text/xml") {

 alert("XML content received.");

} else if (sContentType == "text/plain") {

 alert("Plain text content received.");

} else {

 alert("Unexpected content received.");

}

This code snippet checks the content type of the response and displays an alert indicating the
type of data returned. Typically, you will receive only XML data (content type of text/xml) or
plain text (content type of text/plain) from the server, because these content types are the
easiest to work with using JavaScript.

If you'd prefer to see all headers returned from the server, you can use the
getAllResponseHeaders() method, which simply returns a string containing all of the
headers. Each heading in the string is separated by either a new line character (\n in
JavaScript) or a combination of the carriage return and new line (\r\n in JavaScript), so you
can deal with individual headers as follows:
var sHeaders = oXmlHttp.getAllResponseHeaders();

var aHeaders = sHeaders.split(/\r?\n/);

for (var i=0; i < aHeaders.length; i++) {

 alert(aHeaders[i]);

}

This example splits the header string into an array of headers by using the JavaScript split()
method for strings and passing in a regular expression (which matches either a carriage
return/new line couple or just a new line). Now you can iterate through the headers and do with
them as you please. Keep in mind that each string in aHeaders is in the format headername:
headervalue.

It's also possible to set headers on the request before it's sent out. You may want to indicate the
content type of data that you'll be sending, or you may just want to send along some extra data
that the server may need to deal with the request. To do so, use the setRequestHeader()
method before calling send():
var oXmlHttp = zXmlHttp.createRequest();

oXmlHttp.open("get", "info.txt", true);

oXmlHttp.onreadystatechange = function () {

 if (oXmlHttp.readyState == 4) {

 alert("Got response.");

 }

};

oXmlHttp.setRequestHeader("myheader", "myvalue");

oXmlHttp.send(null);

In this code, a header named myheader is added to the request before it's sent out. The
header will be added to the default headers as myheader: myvalue.

Up to this point, you've been dealing with asynchronous requests, which are preferable in most
situations. Sending synchronous requests means that you don't need to assign
theonreadystatechange event handler because the response will have been received by
the time the send() method returns. This makes it possible to do something like this:
var oXmlHttp = zXmlHttp.createRequest();

oXmlHttp.open("get", "info.txt", false);

oXmlHttp.send(null);

if (oXmlHttp.status == 200) {

 alert("Data returned is: "+ oXmlHttp.responseText;

} else {

 alert("An error occurred: "+ oXmlHttp.statusText;

}

Sending the request synchronously (setting the third argument of open() to false) enables
you to start evaluating the response immediately after the call to send(). This can be useful if
you want the user interaction to wait for a response or if you're expecting to receive only a very
small amount of data (for example, less than 1K). In the case of average or larger amounts of
data, it's best to use an asynchronous call.

XMLHttp GET Requests
It's time to revisit the hidden frame GET example to see how the process could be improved
using XMLHttp. The first change will be to GetCustomerData.php, which must be changed
from an HTML page to simply return an HTML snippet. The entire file now becomes
streamlined:
<?php

 header("Content-Type: text/plain");

 $sID = $_GET["id"];

 $sInfo = "";

 $sDBServer = "your.databaser.server";

 $sDBName = "your_db_name";

 $sDBUsername = "your_db_username";

 $sDBPassword = "your_db_password";

 $sQuery = "Select * from Customers where CustomerId=".$sID;

 $oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);

 @mysql_select_db($sDBName) or $sInfo=" Unable to open database";

 if($oResult = mysql_query($sQuery) and mysql_num_rows($oResult) >
0) {

 $aValues = mysql_fetch_array($oResult,MYSQL_ASSOC);

 $sInfo = $aValues['Name']."
".$aValues['Address']."
".

 $aValues['City']."
".$aValues['State']."
".

 $aValues['Zip']."

Phone:
".$aValues['Phone']."
".

 "".

 $aValues['E-mail']."";

 } else {

 $sInfo = "Customer with ID $sID doesn't exist.";

 }

 mysql_close($oLink);

 echo $sInfo;

?>

As you can see, there are no visible HTML or JavaScript calls in the page. All the main logic
remains the same, but there are two additional lines of PHP code. The first occurs at the
beginning, where the header() function is used to set the content type of the page. Even
though the page will return an HTML snippet, it's fine to set the content type as text/plain,
because it's not a complete HTML page (and therefore wouldn't validate as HTML). You should
always set the content type in any page that is sending non-HTML to the browser. The second
added line is towards the bottom, where the $sInfo variable is output to the stream by using
the echo command.

In the main HTML page, the basic setup is this:
<p>Enter customer ID number to retrieve information:</p>

<p>Customer ID: <input type="text" id="txtCustomerId" value="" /></p>

<p><input type="button" value="Get Customer Info"

 onclick="requestCustomerInfo()" /></p>

<div id="divCustomerInfo"></div>

The requestCustomerInfo() function previously created a hidden iframe but now must be
changed to use XMLHttp:
function requestCustomerInfo() {

 var sId = document.getElementById("txtCustomerId").value;

 var oXmlHttp = zXmlHttp.createRequest();

 oXmlHttp.open("get", "GetCustomerData.php?id=" + sId, true);

 oXmlHttp.onreadystatechange = function () {

 if (oXmlHttp.readyState == 4) {

 if (oXmlHttp.status == 200) {

 displayCustomerInfo(oXmlHttp.responseText);

 } else {

 displayCustomerInfo("An error occurred: "+
oXmlHttp.statusText);

 }

 }

 };

 oXmlHttp.send(null);

}

Note that the function begins the same way, by retrieving the ID the user entered. Then, an
XMLHttp object is created using the zXml library. The open() method is called, specifying an
asynchronous GET request for GetCustomerData.php (which has the aforementioned ID
added to its query string). Next comes the assignment of the event handler, which checks for a
readyState of 4 and then checks the status of the request. If the request was successful
(status of 200), the displayCustomerInfo() function is called with the response body
(accessed via responseText). If there was an error (status is not 200), then the error
information is passed to displayCustomerInfo().

There are several differences between this and the hidden frame/iframe example. First, no
JavaScript code is required outside of the main page. This is important because any time you
need to keep code in two different places there is the possibility of creating incompatibilities; in
the frame-based examples, you relied on separate scripts in the display page and the hidden
frames to communicate with one another. By changing GetCustomerInfo.php to return just
the data you're interested in, you have eliminated potential problems with JavaScript calling
between these locations. The second difference is that it's much easier to tell if there was a
problem executing the request. In previous examples, there was no mechanism by which you
could identify and respond to a server error in the request process. Using XMLHttp, all server
errors are revealed to you as a developer, enabling you to pass along meaningful error
feedback to the user. In many ways, XMLHttp is a more elegant solution than hidden frames for
in-page HTTP requests.

XMLHttp POST Requests
Now that you've seen how XMLHttp can simplify GET requests, it's time to take a look at POST
requests. First, you need to make the same changes to SaveCustomer.php as you did for
GetCustomerInfo.php, which means you need to remove extraneous HTML and JavaScript,
add the content type information, and output the text:
<?php

 header("Content-Type: text/plain");

 $sName = $_POST["txtName"];

 $sAddress = $_POST["txtAddress"];

 $sCity = $_POST["txtCity"];

 $sState = $_POST["txtState"];

 $sZipCode = $_POST["txtZipCode"];

 $sPhone = $_POST["txtPhone"];

 $sEmail = $_POST["txtEmail"];

 $sStatus = "";

 $sDBServer = "your.database.server";

 $sDBName = "your_db_name";

 $sDBUsername = "your_db_username";

 $sDBPassword = "your_db_password";

 $sSQL = "Insert into
Customers(Name,Address,City,State,Zip,Phone,'E-mail') ".

 " values ('$sName','$sAddress','$sCity','$sState',
'$sZipCode'".

 ", '$sPhone', '$sEmail')";

 $oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);

 @mysql_select_db($sDBName) or $sStatus = "Unable to open
database";

 if($oResult = mysql_query($sSQL)) {

 $sStatus = "Added customer; customer ID is
".mysql_insert_id();

 } else {

 $sStatus = "An error occurred while inserting; customer not
saved.";

 }

 mysql_close($oLink);

 echo $sStatus;

?>

This now represents the entirety of SaveCustomer.php. Note that the header() function is
called to set the content type, and echo is used to output $sStatus.

In the main page, the simple form that was set up to allow entry of new customer info is the
following:
<form method="post" action="SaveCustomer.php"

 onsubmit="sendRequest(); return false">

 <p>Enter customer information to be saved:</p>

 <p>Customer Name: <input type="text" name="txtName" value="" />

 Address: <input type="text" name="txtAddress" value="" />

 City: <input type="text" name="txtCity" value="" />

 State: <input type="text" name="txtState" value="" />

 Zip Code: <input type=" text" name="txtZipCode" value="" />

 Phone: <input type="text" name="txtPhone" value="" />

 E-mail: <input type="text" name="txtEmail" value="" /></p>

 <p><input type="submit" value="Save Customer Info" /></p>

</form>

<div id="divStatus"></div>

You'll note that the onsubmit event handler has now changed to call the function
sendRequest() (although the event handler still returns false to prevent actual form
submission). This method first assembles the data for the POST request and then creates the
XMLHttp object to send it. The data must be sent in the format as a query string:
name1=value1&name2=value2&name3=value3

Both the name and value of each parameter must be URL-encoded in order to avoid data loss
during transmission. JavaScript provides a built-in function called encodeURIComponent()
that can be used to perform this encoding. To create this string, you'll need to iterate over the
form fields, extracting and encoding the name and value. The getRequestBody() function
handles this:
function getRequestBody(oForm) {

 var aParams = new Array();

 for (var i=0 ; i < oForm.elements.length; i++) {

 var sParam = encodeURIComponent(oForm.elements[i].name);

 sParam += "=";

 sParam += encodeURIComponent(oForm.elements[i].value);

 aParams.push(sParam);

 }

 return aParams.join("&");

}

This function assumes that you will supply a reference to the form as an argument. An array
(aParams) is created to store each individual name-value pair. Then, the elements of the form
are iterated over, building up a string and storing it in sParam, which is then added to the array.
Doing this prevents multiple string concatenation, which can lead to slower code execution in
some browsers. The last step is to call join() on the array, passing in the ampersand
character. This effectively combines all the name-value pairs with ampersands, creating a single
string in the correct format.

Note String concatenation in most browsers is an expensive process because

strings are immutable, meaning that once created, they cannot have their
values changed. Thus, concatenating two strings involves first allocating a
new string and then copying the contents of the two other strings into it.
Repeating this process over and over causes a severe slowdown. For this
reason, it's always best to keep string concatenations at a minimum and use
the array's join() method to handle longer string concatenation.

The sendRequest() function calls getRequestBody() and sets up the request:
function sendRequest() {

 var oForm = document.forms[0];

 var sBody = getRequestBody(oForm);

 var oXmlHttp = zXmlHttp.createRequest();

 oXmlHttp.open("post", oForm.action, true);

 oXmlHttp.setRequestHeader("Content-Type", "application/x-www-form-
urlencoded");

 oXmlHttp.onreadystatechange = function () {

 if (oXmlHttp.readyState == 4) {

 if (oXmlHttp.status == 200) {

 saveResult(oXmlHttp.responseText);

 } else {

 saveResult("An error occurred: "+
oXmlHttp.statusText);

 }

 }

 };

 oXmlHttp.send(sBody);

}

As with previous examples, the first step in this function is to get a reference to the form and
store it in a variable (oForm). Then, the request body is generated and stored in sBody. Next
comes the creation and setup of the XMLHttp object. Note that the first argument of open() is
now post instead of get, and the second is set to oForm.action (once again, so this script
can be used on multiple pages). You'll also notice that a request header is being set. When a
form is posted from the browser to a server, it sets the content type of the request as
application/x-www-form-urlencoded. Most server-side languages look for this encoding
in order to parse the incoming POST data properly, so it is very important for it to be set.

The onreadystatechange event handler is very similar to that of the GET example; the only
change is the call to saveResult() instead of displayCustomerInfo(). The last line is
very important, as the sBody string is passed to send() so that it will become part of the
request body. This effectively mimics what the browser does, so all server-side logic should
work as expected.

Advantages and Disadvantages of XMLHttp
Undoubtedly, you can see the advantage of using XMLHttp for client-server communication
instead of hidden frames. The code you write is much cleaner and the intent of the code is
much more apparent than using numerous callback functions with hidden frames. You have
access to request and response headers as well as HTTP status codes, enabling you to
determine if your request was successful.

The downside is that, unlike hidden frames, there is no browser history record of the calls that
were made. The Back and Forward buttons do not tie in to XMLHttp requests, so you have
effectively cut off their use. It is for this reason that many Ajax applications use a mixture of
XMLHttp and hidden frames to make a truly usable interface.

Another disadvantage, which applies to Internet Explorer only, is that you depend on ActiveX
controls being enabled. If the user has your page set up in a particular security zone that
doesn't allow ActiveX controls, you cannot access the XMLHttp object. In that case, you may
have to default to using hidden frames.

Further Considerations

Whether you decide to use hidden frames or XMLHttp, there are several things you'll need to
consider when building an Ajax application. Expanding the role of JavaScript into the realm of
server-side logic brings with it a lot of power, but also several pitfalls that require vigilance on
the part of web developers.

The Same Origin Policy

Because web browsers run on a user's computer, browser manufacturers craft important
security restrictions to prevent malicious coders from doing damage to users' machines. The

most important security restriction in the JavaScript paradigm is called the same origin policy,
which determines the servers a certain page is allowed to communicate with.

An origin is considered a single domain, such as www.wrox.com, accessed through a single
protocol, most often HTTP. The same origin policy states that any page loaded from this origin
may access, download, and interact with (using JavaScript) any other resource from the same
origin. This is what enables the hidden frame technique to work: both frames load a page from
the same origin; thus, they are allowed to communicate using JavaScript. If you try to load a
frame with a page from another origin, you will not be able to interact with that page or access
any scripting features of it. The intent is to prevent malicious programmers from getting your
information out of a legitimate web page.

The same origin policy also affects how XMLHttp works. Using XMLHttp, you cannot access
any resource that is not from the same origin as the page running the code. This means that, by
default, you cannot use a URL beginning with http:// in the open() method; you can use only
absolute or relative URLs from within the same domain. If you need to access a URL located in
a different origin, you must create a server-side proxy to handle the communication (see Figure
2-4).

Figure 2-4

Using a server-side proxy, the browser makes a request to the web server. The web server then
contacts another web server outside of the domain to request the appropriate information.
When your web server receives the response, it is forwarded back to the browser. The result is
a seamless transmission of external data. You'll be using server-side proxies later in this book.

Important Internet Explorer doesn't have an explicit same origin policy. Instead, it

relies on its own security zones to determine what can and cannot be
accessed. Those pages belonging to the Internet security zone typically
follow rules similar to the same origin policy, whereas those in the
Trusted zone may be exempt.

Cache Control
Whenever you are dealing with repeat calls to the same page, you should be concerned about
browser caching. For those unaware, web browsers tend to cache certain resources to improve
the speed with which sites are downloaded and displayed. This can result in a tremendous
speed increase on frequently visited web sites, but can also cause problems for pages that
change frequently. If you are making several Ajax calls, you need to be aware that caching may
cause you problems.

The best way to deal with caching is to include a no-cache header on any data being sent
from the server to the browser. This can be done using the Cache-Control header, which
should be set up as follows:
Cache-Control: no-cache

This tells the browser not to cache the data coming from the specific URL. Instead, the browser
always calls a new version from the server instead of a saved version from its own cache.

Summary
This chapter introduced you to several Ajax techniques for client-server communication. It
began with an HTTP primer, exploring HTTP requests and responses. You learned about the

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig68%5F01%5F0%2Ejpg&image_id=12&previd=IMG_12&titlelabel=Figure+2%2D4%3A+
http://www.wrox.com/
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=776403583#ch02fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch02fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=776403583#ch02fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch02fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

format of HTTP messages and the differences between a GET request and a POST request.
The concepts of headers and message bodies were introduced.

The first Ajax technique you learned was the hidden frame technique, which uses a frame with a
width or height of zero, effectively hiding it from the user. This technique uses JavaScript calls
to and from the hidden frame to facilitate the client-server communication. Using the hidden
frame technique, you learned how to send both GET and POST requests.

Next, you learned about replacing hidden frames with hidden iframes. Because iframes can be
created dynamically using JavaScript, this may be a preferable way to initiate client-server
communication in modern browsers. The same techniques were used as with hidden frames,
although iframes provide a bit more flexibility in the design of your pages.

The chapter also introduced the use of XMLHttp for client-server communication. You learned
that Internet Explorer, Mozilla Firefox, Safari, and Opera all support some form of XMLHttp
object, and some extra coding is necessary to detect these differences. The differences
between asynchronous and synchronous requests were explained, and you learned how to
make GET and POST requests using XMLHttp. You also learned how to use request and
response headers along with HTTP status codes to better handle requests.

Lastly, considerations when initiating client-server communication were discussed. You learned
about the same origin policy and how it affects the ability to communicate with other servers.
The various security restrictions were discussed along with a brief introduction to server-side
proxies. You also learned about the importance of cache control when creating Ajax
functionality.

Chapter 3: Ajax Patterns
Overview
Design patterns describe programming techniques to solve common problems. Given that
programming has been around for several decades, chances are that many of the problems you
face every day have already been solved by someone else. Since the mid-1990s, a lot of
attention has been drawn to design patterns as a way to cut development time.

Even though the term Ajax has been around only since early 2005, the techniques that Ajax
describes have been used since the late 1990s, giving rise to several Ajax patterns that solve
specific problems. You've already seen some of these patterns in action, namely the hidden
frame technique and asynchronous XMLHttp calls. These are communication patterns between
the client and server using JavaScript. As you may have expected, there are many more types
of patterns.

Author and programmer Michael Mahemoff was the first to attempt to document Ajax design
patterns at his web site, www.ajaxpatterns.org. The patterns presented in this chapter are
a mixture of Mahemoff's and others that your authors have identified. Note that design patterns,
whether described on a web site or in a book, can never be official, only accepted. Design
patterns are not standards to be followed, merely designs of solutions that have worked
previously. It is up to the development community to generate a "collective wisdom" around
specific patterns; it's up to the individual developer to decide whether to implement a given
pattern in his or her own application.

Communication Control Patterns
You already know, from Chapter 2, how to communicate with the server from JavaScript. The
real question is: What is the best way to initiate and continue to make requests back to the
server? In some cases, it may be best to preload information from the server so that it is
available immediately upon some user action. In other cases, you may want to send data to, or
receive data from, the server in varying intervals. Perhaps everything shouldn't be downloaded
at once, and instead should be downloaded in a particular sequence. Ajax affords you fine
granularity in controlling the communication between client and server to achieve your desired
behavior.

Predictive Fetch

In a traditional web solution, the application has no idea what is to come next. A page is
presented with any number of links, each one leading to a different part of the site. This may be
termed "fetch on demand," where the user, through his or her actions, tells the server exactly
what data should be retrieved. While this paradigm has defined the Web since its inception, it
has the unfortunate side effect of forcing the start-and-stop model of user interaction upon the
user. With the help of Ajax, however, this is beginning to change.

The Predictive Fetch pattern is a relatively simple idea that can be somewhat difficult to
implement: the Ajax application guesses what the user is going to do next and retrieves the
appropriate data. In a perfect world, it would be wonderful to always know what the user is
going to do and make sure that the next data is readily available when needed. In reality,
however, determining future user action is just a guessing game depending on your intentions.

There are simple use cases where predicting user actions is somewhat easier. Suppose you
are reading an online article that is separated into three pages. It is logical to assume that if you
are interested in reading the first page, you're also interested in reading the second and third
page. So if the first page has been loaded for a few seconds (which can easily be determined
by using a timeout), it is probably safe to download the second page in the background.
Likewise, if the second page has been loaded for a few seconds, it is logical to assume that the
reader will continue on to the third page. As this extra data is being loaded and cached on the

http://www.ajaxpatterns.org/
http://www.books24x7.com/viewer.asp?bkid=13421&destid=79#79

client, the reader continues to read and barely even notices that the next page comes up almost
instantaneously after clicking the Next Page link.

Another simple use case happens during the writing of an e-mail. Most of the time, you'll be
writing an e-mail to someone you know, so it's logical to assume that the person is already in
your address book. To help you out, it may be wise to preload your address book in the
background and offer suggestions. This approach is taken by many web-based e-mail systems,
including Gmail and AOL Webmail. The key, once again, is the "logical-to-assume" criterion. By
anticipating and pre-loading information related to the user's most likely next steps, you can
make your application feel lighter and more responsive; by using Ajax to fetch information
related to any possible next step, you can quickly overload your server and make the browser
bog down with extra processing. As a rule of thumb, only pre-fetch information when you
believe it's logical to assume that information will be requisite to completing the user's next
request.

Page Preloading Example

As mentioned previously, one of the simplest and most logical uses of the Predictive Fetch
pattern is in the preloading of pages in an online article. With the advent of weblogs, or blogs for
short, everyone seems to have been bitten by the publishing bug, writing their own articles on
their own web sites. Reading long articles online is very difficult on the eyes, so many sites split
them into multiple pages. This is better for reading, but takes longer to load because each new
page brings with it all of the formatting, menus, and ads that were on the original page.
Predictive Fetch eases the load on both the client and server by loading only the text for the
next page while the reader is still reading the first page.

To begin, you'll need a page that handles the server-side logic for page preloading. The file
ArticleExample.php contains code for displaying an article online:
<?php

 $page = 1;]

 $dataOnly = false;

 if (isset($_GET["page"])) {

 $page = (int) $_GET["page"];

 }

 if (isset($_GET["data"]) && $_GET["dataonly"] == "true") {

 $dataOnly = true;

 }

 if (!$dataOnly) {

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang=" en" lang=" en">

 <head>

 <title>Article Example</title>

 <script type=" text/javascript" src=" zxml.js"></script>

 <script type=" text/javascript" src=" Article.js"></script>

 <link rel=" stylesheet" type=" text/css" href=" Article.css"
/>

 </head>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

 <body>

 <h1>Article Title</h1>

 <div id=" divLoadArea" style=" display:none"></div>

<?php

 $output = "<p>Page ";

 for ($i=1; $i < 4; $i++) {

 $output .= "<a href=\" ArticleExample.php?page=$i\"
id=\"aPage$i\"";

 if ($i==$page) {

 $output .= "class=\" current\"";

 }

 $output .= ">$i ";

 }

 echo $output;

 }

 if ($page==1) {

 echo $page1Text;

 } else if ($page == 2) {

 echo $page2Text;

 } else if ($page == 3) {

 echo $page3Text;

 }

 if (!$dataOnly) {

?>

 </body>

</html>

<?php

 }

?>

By default, this file displays the first page of text for the article. If the page query string
parameter is specified, such as page=2, then it shows the given page of the article. When the
query string contains dataonly=true, the page outputs only a <div/> element containing the
article text for the given page. Combining this with the page parameter enables you to retrieve
just any page of the article that you need.

The HTML in this page has a space for the article title as well as a <div/> element used for
loading extra pages. This <div/> element has its display property set to none to ensure that its
contents are not displayed accidentally. The PHP code immediately following contains logic to
output a list of pages available for the article. In this example, there will be three pages of
content, so there are three links output at the top (see Figure 3-1).

http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=421844660#ch03fig01#ch03fig01

Figure 3-1

The current page is assigned a CSS class of current so that the user knows which page he or
she is viewing. This class is defined in Article.css as:
a.current {

 color: black;

 font-weight: bold;

 text-decoration: none;

}

When the reader is viewing a particular page, the link for that page becomes black, bold, and is
no longer underlined, providing a clear indication of the page that he or she is reading. By
default, these links simply load the same page and change the page parameter of the query
string; this is the way that most web sites handle multipage articles. Using Predictive Fetch,
however, will improve the user's experience and the speed with which the data is available.

Several global JavaScript variables are required to implement Predictive Fetch for this example:
var oXmlHttp = null; //The XMLHttp object

var iPageCount = 3; //The number of pages

var iCurPage = -1; //The currently displayed page

var iWaitBeforeLoad = 5000; //The time (in ms) before loading new page

var iNextPageToLoad = -1; //The next page to load

The first variable is a global XMLHttp object that is used to make all requests for more
information. The second, iPageCount, is the number of pages used in this article. (This is hard
coded here, but in actual practice this would have to be generated.) The iCurPage variable
stores the page number currently being displayed to the user. The next two variables deal
directly with the preloading of data: iWaitBeforeLoad is the number of milliseconds to wait
before loading the next page, and iNextPageToLoad contains the page number that should
be loaded once the specified amount of time has passed. For this example, a new page is
loaded behind the scenes every 5 seconds (5000 milliseconds), which should be long enough
for someone to read the first few sentences of an article to determine if it's worth reading the
rest. If the reader leaves before 5 seconds are up, chances are they have no intention of
reading the rest of the article.

To begin the process, you'll need a function to determine the URL for retrieving a particular
page. This function, getURLForPage(), accepts a single argument that specifies the page
number you want to retrieve. Then, the current URL is extracted and the page parameter is
appended to the end:

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig74%5F01%5F0%2Ejpg&image_id=13&previd=IMG_13&titlelabel=Figure+3%2D1%3A+

function getURLForPage(iPage) {

 var sNewUrl = location.href;

 if (location.search.length > 0) {

 sNewUrl = sNewUrl.substring(0, sNewUrl.indexOf("?"))

 }

 sNewUrl += "?page=" + iPage;

 return sNewUrl;

}

This function begins by extracting the URL from location.href, which gives the complete
URL for the page, including the query string. Then, the URL is tested to see if there is a query
string specified by determining if the length of location.search is greater than 0
(location.search returns just the query string, including the question mark, if there is one
specified). If there is a query string, it is stripped off using the substring() method. The page
parameter is then appended to the URL and returned. This function will come in handy in a
number of different places.

The next function is called showPage(), and as you may have guessed, it is responsible for
displaying the next page of the article:
function showPage(sPage) {

 var divPage = document.getElementById("divPage" + sPage);

 if (divPage) {

 for (var i=0; i < iPageCount; i++) {

 var iPageNum = i+1;

 var divOtherPage = document.getElementById("divPage" +
iPageNum);

 var aOtherLink = document.getElementById("aPage" +
iPageNum);

 if (divOtherPage && sPage != iPageNum) {

 divOtherPage.style.display = "none";

 aOtherLink.className = "";

 }

 }

 divPage.style.display = "block";

 document.getElementById("aPage" + sPage).className =
"current";

 } else {

 location.href = getURLForPage(parseInt(sPage));

 }

}

This function first checks to see whether the given page has a <div/> element already loaded.
The <div/> element would be named divPage plus the page number (for example,
divPage1 for the first page, divPage2 for the second, and so on). If this <div/> element
exists, the page has been prefetched already, so you can just switch the currently visible page.
This is done by iterating through the pages and hiding all pages except the one indicated by the

argument sPage. At the same time, the links for each page are given an empty string for their
CSS class. Then, the <div/> element for the current page has its display property set to
block in order to show it, and the link for the page has its CSS class set to current.

If, on the other hand, the <div/> element doesn't exist, the page navigates to the next page in
the article the old-fashioned way, by getting the URL (using the getURLForPage() function
defined previously) and assigning it to location.href. This is a fallback functionality so that if
the user clicks a page link before 5 seconds are up, the experience falls back to the traditional
web paradigm.

The loadNextPage() function is used to load each new page behind the scenes. This
function is responsible for ensuring that requests are made only for valid pages and that pages
are retrieved in order and in the specified intervals:
function loadNextPage() {

 if (iNextPageToLoad <= iPageCount) {

 if (!oXmlHttp) {

 oXmlHttp = zXmlHttp.createRequest();

 } else if (oXmlHttp.readyState != 0) {

 oXmlHttp.abort();

 }

 oXmlHttp.open("get", getURLForPage(iNextPageToLoad)

 + "&dataonly=true", true);

 oXmlHttp.onreadystatechange = function () {

 //more code here

 };

 oXmlHttp.send(null);

 }

}

The function begins by ensuring that the page number stored in iNextPageToLoad is valid by
comparing it to iPageCount. Passing this test, the next step is to see if the global XMLHttp
object has been created yet. If not, it is created using the zXml library's createRequest()
method. If it has already been instantiated, the readyState property is checked to ensure that
it's 0. If readyState is not 0, the abort() method must be called to reset the XMLHttp object.

Next, the open() method is called, specifying that the request will get an asynchronous GET
request. The URL is retrieved by using the getURLForPage() function and then appending
the string "&dataonly=true" to ensure that only the page text is returned. With all of that set,
it's time to move on to the onreadystatechange event handler.

In this case, the onreadystatechange event handler is responsible for retrieving the article
text as well as creating the appropriate DOM structure to represent it:
function loadNextPage() {

 if (iNextPageToLoad <= iPageCount) {

 if (!oXmlHttp) {

 oXmlHttp = zXmlHttp.createRequest();

 } else if (oXmlHttp.readyState != 0) {

 oXmlHttp.abort();

 }

 oXmlHttp.open("get", getURLForPage(iNextPageToLoad)

 + "&dataonly=true", true);

 oXmlHttp.onreadystatechange = function () {

 if (oXmlHttp.readyState == 4) {

 if (oXmlHttp.status == 200) {

 var divLoadArea =
document.getElementById("divLoadArea");

 divLoadArea.innerHTML = oXmlHttp.responseText;

 var divNewPage = document.getElementById("divPage"

 +
iNextPageToLoad);

 divNewPage.style.display = "none";

 document.body.appendChild(divNewPage);

 divLoadArea.innerHTML = "";

 iNextPageToLoad++;

 setTimeout(loadNextPage, iWaitBeforeLoad);

 }

 }

 };

 oXmlHttp.send(null);

 }

}

As discussed in the previous chapter, the readyState property is checked to see when it is
equal to 4, and the status property is checked to make sure there was no error. Once you've
passed those two conditions, the real processing begins. First, a reference to the load area
<div/> element is retrieved and stored in divLoadArea. Then, the responseText from the
request is assigned to the load area's innerHTML property. Since the text coming back is an
HTML snippet, it will be parsed and the appropriate DOM objects will be created. Next, a
reference to the <div/> element that contains the next page is retrieved (you know the ID will
be divPage plus iNextPageToLoad) and its display property is set to none to ensure it
remains invisible when it is moved outside of the load area. The next line appends
divNewPage to the document's body, putting it into the regular viewing area for usage. Then
the load area's innerHTML property is set to an empty string to prepare for another page to be
loaded. After that, the iNextPageToLoad variable is incremented and a new timeout is set to
call this function again after the specified period of time. This function will continue to be called
every 5 seconds until all pages have been loaded.

http://www.books24x7.com/viewer.asp?bkid=13421&destid=79#79

Because this page should be functional without JavaScript, all this code is attached at runtime
after determining if the browser is capable of using XMLHttp. Fortunately, the zXmlHttp object
in the zXml library has a function, isSupported(), that can be used to determine this:
window.onload = function () {

 if (zXmlHttp.isSupported()) {

 //begin Ajax code here

 }

};

Inside this code block is where all the Predictive Fetch code will go, ensuring that browsers
without XMLHttp support will not have their usability adversely affected by half-functioning code.

The first step in the process of setting up Predictive Fetch for the article is to determine which
page the user is currently viewing. To do so, you must look into the URL's query string to see if
the page parameter is specified. If it is, you can extract the page number from there; otherwise,
you can assume that the page number is 1 (the default):
window.onload = function () {

 if (zXmlHttp.isSupported()) {

 if (location.href.indexOf("page=") > -1) {

 var sQueryString = location.search.substring(1);

 iCurPage =
parseInt(sQueryString.substring(sQueryString.indexOf("=")+1));

 } else {

 iCurPage = 1;

 }

 iNextPageToLoad = iCurPage+1;

 //more code here

 }

};

In this section of code, the page's URL (accessible through location.href) is tested to see if
page= has been specified. If so, the query string is retrieved by using location.search
(which returns only the query string, including the question mark, that the call to
substring(1) strips out). The next line retrieves just the part of the query string after the
equals sign (which should be the page number), converts it to an integer using parseInt(),
and stores the result in iCurPage. If, on the other hand, the page parameter isn't specified in
the query string, the page is assumed to be the first one, and 1 is assigned to iCurPage. The
last line in this section sets the iNextPageToLoad variable to the current page plus one,
ensuring that you don't end up reloading data that is already available.

The next step is to override the functionality of the page links. Remember, by default, these
links reload the same page with a different query string to specify which page should be
displayed. If XMLHttp is supported, you need to override this behavior and replace it with
function calls to the Ajax functionality:
window.onload = function () {

 if (zXmlHttp.isSupported()) {

 if (location.href.indexOf("page=") > -1) {

 var sQueryString = location.search.substring(1);

 iCurPage =
parseInt(sQueryString.substring(sQueryString.indexOf("=")+1));

 } else {

 iCurPage = 1;

 }

 iNextPageToLoad = iCurPage+1;

 var colLinks = document.getElementsByTagName("a");

 for (var i=0; i < colLinks.length; i++) {

 if (colLinks[i].id.indexOf("aPage") == 0) {

 colLinks[i].onclick = function (oEvent) {

 var sPage = this.id.substring(5);

 showPage(sPage);

 if (oEvent) {

 oEvent.preventDefault();

 } else {

 window.event.returnValue = false;

 }

 }

 }

 }

 setTimeout(loadNextPage, iWaitBeforeLoad);

 }

};

Here, a collection of links (<a/> elements) is retrieved using getElementsByTagName(). If
the link has an ID beginning with aPage, it is a page link and needs to be addressed; this is
determined by using indexOf() and checking for a value of 0, which indicates that aPage is
the first part of the string. Next, an onclick event handler is assigned to the link. Within this
event handler, the page number is extracted by using the ID of the link (accessible through
this.id) and using substring() to return everything after aPage. Then, this value is
passed into the showPage() function defined earlier in this section, which displays the
appropriate page. After that point, you need only worry about canceling the default behavior of
the link, which is to navigate to a new page. Because of differences in the Internet Explorer (IE)
and DOM event models, an if statement is necessary to determine the appropriate course of
action. If the event object was passed in to the function (the argument oEvent), then this is a
DOM-compliant browser and the preventDefault() method is called to block the default
behavior. If, however, oEvent is null, that means it's IE and so the event object is accessible
as window.event. The returnValue property is then set to false, which is the way IE
cancels default event actions.

After the links have been properly handled, a timeout is created for the initial call to
loadNextPage(). This first call will take place after 5 seconds and will automatically load the
second page at that point.

When you test this functionality yourself, try clicking the page links at different points in time. If
you click it before 5 seconds have passed, you will see the page navigate to a new URL with
the query string changed. The next time, wait about ten seconds and click a page link. You
should see that the text changes while the URL does not (it is also noticeably faster than
navigating to a URL).

Submission Throttling

Predictive Fetch is one pattern for retrieving data from the server; the other side of an Ajax
solution is the sending of data to the server. Since you want to avoid page refreshes, the
question of when to send user data is important. In a traditional web site or web application,
each click makes a request back to the server so that the server is always aware of what the
client is doing. In the Ajax model, the user interacts with the site or application without additional
requests being generated for each click.

One solution would be to send data back to the server every time a user action occurs, similar
to that of a traditional web solution. Thus, when the user types a letter, that letter is sent to the
server immediately. The process is then repeated for each letter typed. The problem with this
approach is that it has the possibility to create a large number of requests in a short amount of
time, which may not only cause problems for the server but may cause the user interface to
slow down as each request is being made and processed. The Submission Throttling design
pattern is an alternative approach to this problematic issue.

Using Submission Throttling, you buffer the data to be sent to the server on the client and then
send the data at predetermined times. The venerable Google Suggest feature does this
brilliantly. It doesn't send a request after each character is typed. Instead, it waits for a certain
amount of time and sends all the text currently in the text box. The delay from typing to sending
has been fine-tuned to the point that it doesn't seem like much of a delay at all. Submission
Throttling, in part, gives Google Suggest its speed.

Submission Throttling typically begins either when the web site or application first loads or
because of a specific user action. Then, a client-side function is called to begin the buffering of
data. Every so often, the user's status is checked to see if he or she is idle (doing so prevents
any interference with the user interface). If the user is still active, data continues to be collected.
When the user is idle, which is to say he or she is not performing an action, it's time to decide
whether to send the data. This determination varies depending on your use case; you may want
to send data only when it reaches a certain size, or you may want to send it every time the user
is idle. After the data is sent, the application typically continues to gather data until either a
server response or some user action signals to stop the data collection. Figure 3-2 outlines this
process.

http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=421844660#ch03fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch03fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Figure 3-2

Important The Submission Throttling pattern should never be used for mission-

critical data. If information must be posted to the server within a specific
amount of time, you are better off using a traditional form to ensure the
correct and timely delivery of the information.

Incremental Form Validation Example
As mentioned previously, Submission Throttling can be achieved through various user
interactions. When using forms, it's sometimes useful to upload data incrementally as the form
is being filled out. The most common usage is to validate data as the user is filling in the form
instead of waiting until the end to determine any errors. In this case, you would most likely use
the onchange event handler of each form element to determine when to upload the data.

The change event fires for a <select/> element whenever a different option is selected; it
fires for other controls when its value has changed and it has lost focus. For example, if you
typed a couple of letters into a text box and then clicked elsewhere on the screen (causing the
text box to lose focus), the change event fires and the onchange event handler is called. If you
click in the text box again, and then click elsewhere (or press the Tab key), the text box will lose
focus but the change event will not fire because no changes have been made. Using this event
handler for Submission Throttling can prevent extraneous requests.

Normally, the form validation is simply a precursor to submission. The form's submit button
starts out disabled, becoming enabled only when all fields in the form have been validated by
the server. For example, suppose you are running a web site where users must sign up to gain
access to certain features. This may be a shopping site that requires sign-in to purchase items

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig81%5F01%5F0%2Ejpg&image_id=14&previd=IMG_14&titlelabel=Figure+3%2D2%3A+

or a site that requires membership to access the message board. The items you'll want to be
sure of when creating this new account are:

 The user name must not be taken.
 The e-mail address must be valid.
 The birthday must be a valid date.

Of course, the type of data required will differ depending on your usage, but these items provide
a good starting point for most applications.

The first step in creating such interaction is to define the HTML form that will collect the data.
This form should stand alone so that it can be used even if Ajax calls aren't possible:
<form method=" post" action=" Success.php">

 <table>

 <tr>

 <td><label for="txtFirstName">First Name</label></td>

 <td><input type="text" id="txtFirstName" name="
txtFirstName" /></td>

 </tr>

 <tr>

 <td><label for="txtLastName">Last Name</label></td>

 <td><input type="text" id="txtLastName" name="
txtLastName" /></td>

 </tr>

 <tr>

 <td><label for="txtEmail">E-mail</label></td>

 <td><input type="text" id="txtEmail" name="txtEmail"
/><img

src=" error.gif" alt="Error" id="imgEmailError" style="display:none"
/></td>

 </tr>

 <tr>

 <td><label for=" txtUsername">Username</label></td>

 <td><input type=" text" id="txtUsername" name="
txtUsername" /><img

src=" error.gif" alt="Error" id="imgUsernameError" style="
display:none" /></td>

 </tr>

 <tr>

 <td><label for="txtBirthday">Birthday</label></td>

 <td><input type="text" id="txtBirthday" name="
txtBirthday" /><img

src=" error.gif" alt="Error" id="imgBirthdayError" style="
display:none" />

(m/d/yyyy)</td>

 </tr>

 <tr>

 <td><label for="selGender">Gender</label></td>

 <td><select id="selGender"

name="selGender"><option>Male</option></option>Female</option></select
></td>

 </tr>

 </table>

 <input type="submit" id="btnSignUp" value="Sign Up!" />

</form>

You should note a few things about this form. First, not all fields will be validated using Ajax
calls. The fields for first and last name as well as gender (represented by a combo box) don't
require validation. The other fields — for e-mail, user name, and birthday — will make use of
Ajax validation. Second, you'll note that these fields have a hidden image after the text box. This
image is used only in the event that there is a validation error. Initially the images are hidden,
because those browsers without Ajax capabilities should never see them. There is absolutely no
JavaScript on this form; all the appropriate functions and event handlers are defined in a
separate file.

A single function called validateField() is used to validate each form field. This is possible
because each field uses the same validation technique (call the server and wait for a response).
The only differences are the types of data being validated and which image to show if validation
is unsuccessful.

The server-side functionality is stored in a file named ValidateForm.php. This file expects a
name-value pair to be passed in the query string. The name should be the name of the control
whose value is being checked, and the value should be the value of that control. Depending on
the name of the control, this page runs the appropriate validation tests on the value. Then, it
outputs a simple string in the following format:
<true|false>||<error message>

The first part of this string indicates whether the value is valid (true if it is; false if not). The
second part, after the double pipes (||), is an error message that is provided only when the value
is invalid. Here are a couple of examples of what the returned string might look like:
true||

false||Invalid date.

The first line represents a valid value; the second represents an invalid date.

Important This is a plain-text message, although later in the book you will learn

about using other data formats, such as XML and JSON for this same
purpose.

The code that does the validation is as follows:
<?php

 $valid = "false";

 $message = "An unknown error occurred.";

 if (isset($_GET["txtUsername"])) {

 //load array of usernames

 $usernames = array();

 $usernames[] = "SuperBlue";

 $usernames[] = "Ninja123";

 $usernames[] = "Daisy1724";

 $usernames[] = "NatPack";

 //check usernames

 if (in_array($_GET["txtUsername"], $usernames)) {

 $message = "This username already exists. Please choose
another.";

 } else if (strlen($_GET["txtUsername"]) < 8) {

 $message = "Username must be at least 8 characters long.";

 } else {

 $valid = "true";

 $message = "";

 }

 } else if (isset($_GET["txtBirthday"])) {

 $date = strtotime($_GET["txtBirthday"]);

 if ($date < 0) {

 $message = "This is not a valid date.";

 } else {

 $valid = "true";

 $message = "";

 }

 } else if (isset($_GET["txtEmail"])) {

 if(!eregi(

 "^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-
]+)*(\.[a-z]{2,3})$",

 $_GET["txtEmail"])) {

 $message = "This e-mail address is not valid";

 } else {

 $valid = "true";

 $message = "";

 }

 }

echo "$valid||$message"; ?>

In this file, the first step is to determine which field to validate. This is done using the isset()
function to test the $_GET array for a value. If there is a value for a particular field, then the
validation commences. For the user name, the value is checked to see if it already exists in an
array of user names and then checked to ensure that it is at least eight characters long. The
birthday is passed directly into PHP's built-in strto time() function, which converts a date
string in any number of U.S. formats into a UNIX timestamp (the number of seconds since
January 1, 1970). If there is an error, this function returns –1, indicating that the string passed in
was not a valid date. The e-mail address is checked against a regular expression to ensure that
it is in the correct format. This regular expression was devised by John Coggeshall in his article,

"E-mail validation with PHP 4," available online at
www.zend.com/zend/spotlight/ev12apr.php.

Important Note that the user names in this example are stored in a simple array

and hard-coded into the page. In an actual implementation, the user
names should be stored in a database and the database should be
queried to determine whether the user name already exists.

The $valid and $message variables are initialized to false and An unknown error
occurred. This ensures that if the file is used incorrectly (passing in an unrecognized field
name, for example), a negative validation will always be returned. When a positive validation
occurs, however, this requires that both variables be reset to appropriate values (true for
$valid, an empty string for $message). In the case of a negative validation, only the
$message variable has to be set since $valid is already false. The very last step in this
page is to output the response string in the format mentioned previously.

Next, the JavaScript to perform the validation must be created. A single function,
validateField(), can be used to validate each field so long as it knows which field it should
be validating. This takes a little bit of work to counteract cross-browser compatibility issues:
function validateField(oEvent) {

 oEvent = oEvent || window.event;

 var txtField = oEvent.target || oEvent.srcElement;

 //more code to come

}

The first two lines of code inside this function equalize the differences between event models in
IE and DOM-compliant browsers (such as Mozilla Firefox, Opera, and Safari). DOM-compliant
browsers pass in an event object to each event handler; the control that caused the event is
stored in the event object's target property. In IE, the event object is a property of window;
therefore, the first line inside the function assigns the correct value to the oEvent variable.
Logical OR (||) returns a non-null value when used with an object and a null object. If you
are using IE, oEvent will be null; thus, the value of window.event is assigned to oEvent. If
you are using a DOM-compliant browser, oEvent will be reassigned to itself. The second line
does the same operation for the control that caused the event, which is stored in the
srcElement property in IE. At the end of these two lines, the control that caused the event is
stored in the txtField variable. The next step is to create the HTTP request using XMLHttp:
function validateField(oEvent) {

 oEvent = oEvent || window.event;

 var txtField = oEvent.target || oEvent.srcElement;

 var oXmlHttp = zXmlHttp.createRequest();

 oXmlHttp.open("get", "ValidateForm.php?" + txtField.name + "="

+encodeURIComponent(txtField.value), true);

 oXmlHttp.onreadystatechange = function () {

 //more code to come

 };

 oXmlHttp.send(null);

}

As in Chapter 2, you are using the zXml library for cross-browser XMLHttp support. The
XMLHttp object is created and stored in oXmlHttp. Next, the connection is initialized to a GET

http://www.zend.com/zend/spotlight/ev12apr.php
http://www.books24x7.com/viewer.asp?bkid=13421&destid=79#79

request using open(). Note that the query string for ValidateForm.php is created by
combining the name of the field, an equals sign, and the value of the field (which is URL
encoded using encodeURIComponent()). Also note that this is an asynchronous request.
This is extremely important for this use case, because you don't want to interfere with the user
filling out the rest of the form while you are checking the validity of a single field; remember that
synchronous requests made using XMLHttp objects freeze most aspects of the user interface
(including typing and clicking) during their execution‥ The last part of this function is to handle
the response from the server:
function validateField(oEvent) {

 oEvent = oEvent || window.event;

 var txtField = oEvent.target || oEvent.srcElement;

 var oXmlHttp = zXmlHttp.createRequest();

 oXmlHttp.open("get", "ValidateForm.php?" + txtField.name + "="

 +
encodeURIComponent(txtField.value), true);

 oXmlHttp.onreadystatechange = function () {

 if (oXmlHttp.readyState == 4) {

 if (oXmlHttp.status == 200) {

 var arrInfo = oXmlHttp.responseText.split("||");

 var imgError = document.getElementById("img"

 +
txtField.id.substring(3) + "Error");

 var btnSignUp = document.getElementById("btnSignUp");

 if (!eval(arrInfo[0])) {

 imgError.title = arrInfo[1];

 imgError.style.display = "";

 txtField.valid = false;

 } else {

 imgError.style.display = "none";

 txtField.valid = true;

 }

 btnSignUp.disabled = !isFormValid();

 } else {

 alert("An error occurred while trying to contact the
server.");

 }

 }

 };

 oXmlHttp.send(null);

}

After checking for the correct readyState and status, the responseText is split into an
array of strings (arrInfo) using the JavaScript split() method. The value in the first slot of
arrInfo will be the value of the PHP variable $valid; the value in the second slot will be the

value of the PHP variable $message. Also, a reference to the appropriate error image and the
Sign Up button is returned. The error image is gained by dissecting the field name, removing
the "txt" from the front (using substring()), prepending "img" and appending "Error" to the
end (so for the field "txtBirthday", the error image name is constructed as "imgBirthdayError").

The value in arrInfo[0] must be passed into eval() in order to get a true Boolean value out
of it. (Remember, it's a string: either true or false.) If this value is false, the error image's
title property is assigned the error message from arrInfo[1], the image is displayed, and
the custom valid property of the text box is set to false (this will come in handy later). When
a value is invalid, the error image appears, and when the user moves the mouse over it, the
error message appears (see Figure 3-3). If the value is valid, however, the error image is hidden
and the custom valid property is set to true.

Figure 3-3

You'll also notice that the Sign Up button is used in this function. The Sign Up button should be
disabled if there is any invalid data in the form. To accomplish this, a function called
isFormValid() is called. If this function returns false, the Sign Up button's disabled
property is set to true, disabling it. The isFormValid() function simply iterates through the
form fields and checks the valid property:
function isFormValid() {

 var frmMain = document.forms[0];

 var blnValid = true;

 for (var i=0; i < frmMain.elements.length; i++) {

 if (typeof frmMain.elements[i].valid == "boolean") {

 blnValid = blnValid && frmMain.elements[i].valid;

 }

 }

 return blnValid;

}

For each element in the form, the valid property is first checked to see if it exists. This is done
by using the typeof operator, which will return boolean if the property exists and has been
given a Boolean value. Because there are fields that aren't being validated (and thus won't have
the custom valid property), this check ensures that only validated fields are considered.

The last part of the script is to set up the event handlers for the text boxes. This should be done
when the form has finished loading, but only if XMLHttp is supported (because that is how the
Ajax validation is being performed here):

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig87%5F01%5F0%2Ejpg&image_id=15&previd=IMG_15&titlelabel=Figure+3%2D3%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=421844660#ch03fig03#ch03fig03

//if Ajax is enabled, disable the submit button and assign event
handlers

window.onload = function () {

 if (zXmlHttp.isSupported()) {

 var btnSignUp = document.getElementById("btnSignUp");

 var txtUsername = document.getElementById("txtUsername");

 var txtBirthday = document.getElementById("txtBirthday");

 var txtEmail = document.getElementById("txtEmail");

 btnSignUp.disabled = true;

 txtUsername.onchange = validateField;

 txtBirthday.onchange = validateField;

 txtEmail.onchange = validateField;

 txtUsername.valid = false;

 txtBirthday.valid = false;

 txtEmail.valid = false;

 }

};

This onload event handler assigns the onchange event handlers for each text box as well as
initializes the custom valid property to false. Additionally, the Sign Up button is disabled
from the start to prevent invalid data from being submitted. Note, however, that the button will
be disabled only if XMLHttp is supported; otherwise, the form will behave as a normal web form
and the validation will have to be done when the entire form is submitted.

When you load this example, each of the three validated text fields will make a request to the
server for validation whenever their values change and you move on to another field. The user
experience is seamless using the Submission Throttling pattern, but the form remains functional
even if JavaScript is turned off or XMLHttp is not supported.

Important Even when using this type of validation, it is essential that all the data be

validated again once the entire form is submitted. Remember, if the user
turns off JavaScript, you still need to be sure the data is valid before
performing operations using it.

Incremental Field Validation Example
Whereas the previous example validated each field when its value changed, the other popular
form of the Submission Throttling design pattern involves submitting a single field periodically as
changes are made. This is the version of Submission Throttling used for both Bitflux LiveSearch
and Google Suggest, where data is repeatedly sent to the server as the user types. In both of
these cases, the submission activates a search on the server; however, the same method can
be used to validate a single field repeatedly as the user types.

Suppose that instead of asking you to fill in a whole form, sign-up for a given site requires you
first to select a user name (maybe as step 1 of a multistep sign-up process). In this case, you'd
want to ensure that only a non-existent user name be used. Instead of waiting for the form to be
submitted, you can periodically upload the data to the server for validation, making sure that the
data can't be submitted until a valid user name is entered.

Important Note that this example is for demonstration purposes. If you were to use

the technique described in a production environment, you would have to
protect against spam bots that may use this feature to harvest user
names and passwords.

The form for this example is much simpler, made up of a single text box and a Next button:
<form method="post" action="Success.php">

 <table>

 <tr>

 <td><label for="txtUsername">Username</label></td>

 <td><input type="text" id="txtUsername" name="txtUsername"
/>

 <img src="error.gif" alt="Error" id="imgUsernameError"

 style="display:none" /></td>

 </tr>

 </table>

 <input type="submit" id="btnNext" value="Next" />

</form>

Note that the same basic format of the previous example has been kept, including the hidden
error image. Next, the validateField() function from the previous example is used, with a
few changes:
var oXmlHttp = null;

var iTimeoutId = null;

function validateField(oEvent) {

 oEvent = oEvent || window.event;

 var txtField = oEvent.target || oEvent.srcElement;

 var btnNext = document.getElementById("btnNext");

 btnNext.disabled = true;

 if (iTimeoutId != null) {

 clearTimeout(iTimeoutId);

 iTimeoutId = null;

 }

 if (!oXmlHttp) {

 oXmlHttp = zXmlHttp.createRequest();

 } else if (oXmlHttp.readyState != 0) {

 oXmlHttp.abort();

 }

 oXmlHttp.open("get", "ValidateForm.php?" + txtField.name + "="

 +
encodeURIComponent(txtField.value), true);

 oXmlHttp.onreadystatechange = function () {

 if (oXmlHttp.readyState == 4) {

 if (oXmlHttp.status == 200) {

 var arrInfo = oXmlHttp.responseText.split("||");

 var imgError = document.getElementById("img"

 +
txtField.id.substring(3) + "Error");

 if (!eval(arrInfo[0])) {

 imgError.title = arrInfo[1];

 imgError.style.display = "";

 txtField.valid = false;

 } else {

 imgError.style.display = "none";

 txtField.valid = true;

 }

 btnNext.disabled = !txtField.valid;

 } else {

 alert("An error occurred while trying to contact the
server.");

 }

 }

 };

 iTimeoutId = setTimeout(function () {

 oXmlHttp.send(null);

 }, 500);

};

The first thing to note about this updated function is the inclusion of two global variables:
oXmlHttp and iTimeoutId. The first, oXmlHttp, holds a global reference to an XMLHttp
object that is used repeatedly (as opposed to being used just once in the previous example); the
second, iTimeoutId, holds a timeout identifier used to delay sending a request. Inside the
function, the first new part sets the Next button to be disabled right away. This is important
because a request may not be sent out immediately following a call to this function. The next
block after that clears the timeout identifier if it's not null, which prevents the sending of too
many requests in succession. (If there is a pending request, this cancels it.)

Next, the global oXmlHttp object is tested to see if it is null. If so, a new XMLHttpobject is
created and assigned to it. If an XMLHttp object already exists, its readyState is checked to
see if it's ready for a request. As mentioned in the previous chapter, the readyState changes
from 0 to 1 when the open() method is called; therefore, any readyState other than 0
indicates that a request has already been started, so the abort() method must be called
before attempting to send a new request. Note that the same ValidateForm.php page is
used for validation purposes.

Inside of the onreadystatechange event handler, the only new line is one that changes the
Next button's disabled state based on the validity of user name. Toward the end of the function,
the setTimeout() function is called to delay the sending of the request by half a second (500
milliseconds). The identifier from this call is saved in iTimeoutId, so it is possible to cancel
the request the next time the function is called. By using the timeout functionality of JavaScript

http://www.books24x7.com/viewer.asp?bkid=13421&destid=79#79

in this way, you are ensuring that the user hasn't typed anything for at least half a second. If the
user types something quickly, the timeout will repeatedly be cleared and the request aborted.
It's only when there is a pause that the request will finally be sent.

The only part left now is to set up the event handler. Since this method uploads information as
the user types, you can't rely on the onchange event handler alone (although it is still needed).
In this case, you need to use the onkeyup event handler, which is called every time a key is
pressed and then released:
window.onload = function () {

 if (zXmlHttp.isSupported()) {

 var btnNext = document.getElementById("btnNext");

 var txtUsername = document.getElementById("txtUsername");

 btnNext.disabled = true;

 txtUsername.onkeyup = validateField;

 txtUsername.onchange = validateField;

 txtUsername.valid = false;

 }

};

Once again, this is very similar to the previous example. The only changes are the name of the
button (which is now btnNext) and the assignment of validateField() to the onkeyup
event handler. As the user types, the user name will be checked for validity. Every time a valid
user name is entered, the Next button becomes enabled. Whenever a request is being made,
the button is first disabled to accommodate a specific situation. It is possible that the user will
continue typing even after a valid user name has been entered. As a side effect, the extra
characters may cause the user name to become invalid, and you don't want to allow invalid data
to be submitted.

Important Although a nice feature, incremental field validation should be used

sparingly because it creates a high volume of requests. Unless your
server configuration is set up specifically to handle an increased amount
of requests, it is best to forego this approach.

Periodic Refresh
The Periodic Refresh design pattern describes the process of checking for new server
information in specific intervals. This approach, also called polling, requires the browser to keep
track of when another request to the server should take place.

This pattern is used in a variety of different ways on the Web:
 ESPN uses Periodic Refresh to update its online scoreboards automatically. For

example, the NFL Scoreboard, located at
http://sports.espn.go.com/nfl/scoreboard, shows up-to-the-minute scores and
drive charts for every NFL game being played at the time. Using XMLHttp objects and a
little bit of Flash, the page repeatedly updates itself with new information.

 Gmail (http://gmail.google.com) uses Periodic Refresh to notify users when new
mail has been received. As you are reading an e-mail or performing other operations,
Gmail repeatedly checks the server to see if new mail has arrived. This is done without
notification unless there is new mail, at which point the number of new e-mails received is
displayed in parentheses next to the Inbox menu item.

 XHTML Live Chat (www.plasticshore.com/projects/chat/) uses Periodic
Refresh to implement a chat room using simple web technologies. The chat room text is
updated automatically every few seconds by checking the server for new information. If
there is a new message, the page is updated to reflect it, thus creating a traditional chat
room experience.

http://sports.espn.go.com/nfl/scoreboard
http://gmail.google.com/
http://www.plasticshore.com/projects/chat/

 The Magnetic Ajax demo (www.broken-notebook.com/magnetic/) re-creates
online the experience of magnetic poetry (using single word magnets that can be
rearranged to make sentences). The full version polls the server for new arrangements
every few seconds, so if you and someone else are rearranging words at the same time,
you will see the movement.

Clearly, there are many different ways that Period Refresh can increase user experience, but
the basic purpose remains the same: to notify users of updated information.

New Comment Notifier Example

A feature that has been creeping into blogs across the Web since the beginning of 2005 is a
New Comment Notifier. A New Comment Notifier does exactly what it says it does: it alerts the
user when a new comment has been added. This can take the form of a simple text message
displayed on the page or an animated message that slides in from out of view, but the basic
idea is the same. In this example, Periodic Refresh is used to check a database table containing
comments to see which is the newest.

Suppose you have a simple MySQL table, defined as follows:
CREATE TABLE `BlogComments` (

`CommentId` INT NOT NULL AUTO_INCREMENT ,

`BlogEntryId` INT NOT NULL ,

`Name` VARCHAR(100) NOT NULL ,

`Message` VARCHAR(255) NOT NULL ,

`Date` DATETIME NOT NULL ,

PRIMARY KEY (`CommentId`)

) COMMENT = 'Blog Comments';

The SQL query to run this is:
select CommentId,Name,LEFT(Message, 50)

from BlogComments order by Date desc

limit 0,1

This query returns the comment ID (which is autogenerated), the name of the person who left
the comment, and the first 50 characters of the message text (using the LEFT() function) for
the most recent comment. The 50 characters are used as a preview of the actual comment (you
probably don't want to get the entire message because it could be long).

The page that runs this query is called CheckComments.php, and it outputs a string in the
following format:
<comment ID>||<name>||<message>

This format allows the JavaScript Array.split() method to be used in order to extract the
individual pieces of information with little effort. If there are no comments or there is an error, the
comment ID will be –1 and the other parts of the string will be blank. Here is the complete code
listing for CheckComments.php:
<?php

 header("Cache-control: No-Cache");

 header("Pragma: No-Cache");

 //database information

 $sDBServer = "your.database.server";

http://www.broken-notebook.com/magnetic/

 $sDBName = "your_db_name";

 $sDBUsername = "your_db_username";

 $sDBPassword = "your_db_password";

 //create the SQL query string

 $sSQL = "select CommentId,Name,LEFT(Message, 50) as ShortMessage
from

BlogComments order by Date desc limit 0,1";

 $oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);

 @mysql_select_db($sDBName) or die("-1|| || ");

 if($oResult = mysql_query($sSQL) and mysql_num_rows($oResult) > 0)
{

 $aValues = mysql_fetch_array($oResult,MYSQL_ASSOC);

 echo $aValues['CommentId']."||".$aValues['Name']."||".

 $aValues['ShortMessage'];

 } else {

 echo "-1|| || ";

 }

 mysql_free_result($oResult);

 mysql_close($oLink);

?>

Perhaps the most important parts of this file are the two headers included at the top. By setting
Cache-control and Pragma to No-Cache, you are telling the browser to always retrieve this
file from the server and not from the client cache. Without this, some browsers would return the
same information repeatedly, effectively nullifying this functionality altogether. The rest of this
file should look very familiar, as it uses essentially the same algorithm as previous examples
that make use of MySQL database calls.

Note You can also avoid caching problems by changing the query string every time

a request is made to this file. This is often done by assigning a timestamp into
the query string to trick the browser into getting a fresh copy from the server.

Next comes the JavaScript that calls this file. To start, you'll need a few global variables once
again:
var oXmlHttp = null; //The XMLHttp object

var iInterval = 1000; //The interval to check (in
milliseconds)

var iLastCommentId = -1; //The ID of the last comment received

var divNotification = null; //The layer to display the notification

As usual, the first global variable is an XMLHttp object called oXmlHttp, which will be used for
all requests. The second variable, iInterval, specifies the number of milliseconds that should
occur between each check for new comments. In this case it is set to 1000 milliseconds, or 1
second, although this can and should be customized based on your needs. Next, the
iLastCommentId variable is used to store the last comment ID in the database. It is by
comparing this value to the most recently retrieved comment ID that you can determine whether

a new comment has been added. The last variable, divNotification, holds a reference to
the <div/> element that is used to display a notification to the user about new comments.

When a new comment is detected, divNotification is filled with information about the new
comment, including the name of the person making the comment, a summary of the message,
and a link to view the entire comment. If the <div/> element hasn't yet been created, it must
be created and assigned the appropriate style information:
function showNotification(sName, sMessage) {

 if (!divNotification) {

 divNotification = document.createElement("div");

 divNotification.className = "notification";

 document.body.appendChild(divNotification);

 }

 divNotification.innerHTML = "New Comment
" +
sName

 + "says: "+ sMessage + "...
<a href=\"
ViewComment.php?id="

 + iLastCommentId + "\">View";

 divNotification.style.top = document.body.scrollTop + "px";

 divNotification.style.left = document.body.scrollLeft + "px";

 divNotification.style.display = "block";

 setTimeout(function () {

 divNotification.style.display = "none";

 }, 5000);

}

As you can see, the showNotification() function accepts two arguments: a name and a
message. However, before this information is used, you must ensure that divNotification
is not null. If necessary, a new <div/> element is created and its CSS class set to
notification before being added to the document's body. After that, the innerHTML
property is used to set the notification HTML, which says "New Comment" in bold, followed by
the name, the message, and the link to view the comment. The link points to
ViewComment.php and assigns a query string parameter id the value of iLastCommentId,
which indicates the comment to view. Then, the position of the notification is set by using the
scrollTop and scrollLeft properties of document.body. This ensures that the notification
is always visible at the upper-left corner of the page regardless of the scroll position (if you have
scrolled down or right). Following that, the display property is set to block to make the
notification visible.

The last part of this function is a timeout that hides the notification after 5 seconds (5000
milliseconds). It's not a good idea to leave the notification up unless you have a spot specifically
designated for such a purpose in your design; otherwise, you could be covering up important
information.

In this example, the notification CSS class is defined as follows:
div.notification {

 border: 1px solid red;

 padding: 10px;

 background-color: white;

 position: absolute;

 display: none;

 top: 0px;

 left: 0px;

}

This creates a white box with a red border around it. Of course, you'll want to style this in a
manner that's appropriate for the site or application in which it is used. The important parts for
this example are that position is set to absolute and display is set to none. Setting both
properties ensures that when the <div/> element is added to the page, it won't interrupt the
normal page flow or move any elements around. The result is a notification area, as displayed in
Figure 3-4.

Figure 3-4

Back to the JavaScript. The function that does the most work is checkComments(), which is
responsible for checking the server for updates. The code is very similar to the previous
examples:
function checkComments() {

 if (!oXmlHttp) {

 oXmlHttp = zXmlHttp.createRequest();

 } else if (oXmlHttp.readyState != 0) {

 oXmlHttp.abort();

 }

 oXmlHttp.open("get", "CheckComments.php", true);

 oXmlHttp.onreadystatechange = function () {

 if (oXmlHttp.readyState == 4) {

 if (oXmlHttp.status == 200) {

 var aData = oXmlHttp.responseText.split("||");

 if (aData[0] != iLastCommentId) {

 if (iLastCommentId != -1) {

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig95%5F01%5F0%2Ejpg&image_id=16&previd=IMG_16&titlelabel=Figure+3%2D4%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=421844660#ch03fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch03fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

 showNotification(aData[1], aData[2]);

 }

 iLastCommentId = aData[0];

 }

 setTimeout(checkComments, iInterval);

 }

 }

 };

 oXmlHttp.send(null);

}

This function creates an XMLHttp object and calls CheckComments.php asynchronously. The
important part of this code is highlighted (the rest is almost exactly the same as the previous
examples). In this section, the responseText is split into an array using the split() method.
The first value in the array, aData[0], is the comment ID that was added last. If it isn't equal to
the last comment ID stored, then a notification may be needed. Next, if the last comment ID is –
1, no comment IDs have been retrieved and thus a notification should not be shown. If the last
comment ID is not –1, at least one comment ID has been retrieved and since it's different from
the one just received from the server, the notification should be displayed. After that, the new ID
is assigned to iLastCommentId for future use. The very last step in the event handler is to set
another timeout for checkComments(), to continue checking for more comments.

The final step in the process is to initiate a call to checkComments() once the page has
loaded. This will retrieve the most recent comment ID in the database but won't display a
notification (because iLastCommentId will be equal to –1 initially). When the next call is made
to checkComments(), the ID retrieved from the database can be checked against the one
stored in iLastCommentId to determine if a notification must be displayed. As usual, this
functionality should be initiated only if the browser supports XMLHttp:
window.onload = function () {

 if (zXmlHttp.isSupported()) {

 checkComments();

 }

};

That's all it takes to create this Periodic Refresh solution. You need only remember to include
the necessary JavaScript and CSS files in any page that you would like this functionality on.

Important The files for this example are available for download at www.wrox.com.

Along with those files are other pages you can use to add and view
comments for the purpose of testing.

Multi-Stage Download
One of the lasting problems on the Web has been the speed at which pages download. When
everyone was using 56 Kbps modems, web designers were much more aware of how much
their pages "weighed" (the size of the page in total bytes). With the popularity of residential
broadband Internet solutions, many sites have upgraded, including multimedia, more pictures,

http://www.wrox.com/

and more content. This approach, while giving the user more information, also leads to slower
download times as everything is loaded in seemingly random order. Fortunately, there is an
Ajax solution for this problem.

Multi-Stage Download is an Ajax pattern wherein only the most basic functionality is loaded into
a page initially. Upon completion, the page then begins to download other components that
should appear on the page. If the user should leave the page before all of the components are
downloaded, it's of no consequence. If, however, the user stays on the page for an extended
period of time (perhaps reading an article), the extra functionality is loaded in the background
and available when the user is ready. The major advantage here is that you, as the developer,
get to decide what is downloaded and at what point in time.

This is a fairly new Ajax pattern and has been popularized by Microsoft's start.com. When you
first visit start.com, it is a very simple page with a search box in the middle. Behind the scenes,
however, a series of requests is being fired off to fill in more content on the page. Within a few
seconds, the page jumps to life as content from several different locations is pulled in and
displayed.

Although nice, Multi-Stage Download does have a downside: the page must work in its simplest
form for browsers that don't support Ajax technologies. This means that all the basic
functionality must work without any additional downloads. The typical way of dealing with this
problem is to provide graceful degradation, meaning that those browsers that support Ajax
technologies will get the more extensive interface while other browsers get a simple, bare-
bones interface. This is especially important if you are expecting search engines to crawl your
site; since these bots don't support JavaScript, they rely solely on the HTML in the page to
determine your site's value.

Additional Information Links Example

When reading through an article online, frequently there are Additional Information links
included for further reading on the topic. The key question here is this: What is the main
content? Clearly the article text is the main content on the page, so it should be downloaded
when the page is initially loaded. The additional links aren't as important, so they can be loaded
later. This example walks you through the creation of such a solution.

First, you'll need to lay out a page to hold the article. For this example, it's a very simple layout:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang=" en" lang=" en">

 <head>

 <title>Article Example</title>

 <script type="text/javascript" src="zxml.js"></script>

 <script type="ext/javascript" src="Article.js"></script>

 <link rel="stylesheet"type="text/css" href="Article.css" />

 </head>

 <body>

 <h1>Article Title</h1>

 <div id=" divAdditionalLinks"></div>

 <div id=" divPage1">

 <!-- article content here -->

 </div>

 </body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

The important part of the HTML is the <div/> with the ID of divAdditionalLinks. This is
the container for the additional links that will be downloaded for the article. By default, it is styled
to be right aligned and invisible:
#divAdditionalLinks {

 float: right;

 padding: 10px;

 border: 1px solid navy;

 background-color: #cccccc;

 display: none;

}

It's very important that the CSS display property be set to none so that the empty <div/>
element doesn't take up any space in the page layout. Without this, you would see a small
empty box to the right of the article.

Unlike the previous examples, the content to download is just plain text contained in a text file
containing links and a header. This file, AdditionalLinks.txt, contains some simple HTML
code:
<h4>Additional Information</h4>

 Wrox

 NCZOnline

 XWeb

This file could just as well be created dynamically using server-side logic, but for the purposes
of this example, static content works just as well.

The JavaScript that makes this work is very simple and quite similar to all the previous
examples in this chapter:
function downloadLinks() {

 var oXmlHttp = zXmlHttp.createRequest();

 oXmlHttp.open("get", "AdditionalLinks.txt", true);

 oXmlHttp.onreadystatechange = function () {

 if (oXmlHttp.readyState == 4) {

 if (oXmlHttp.status == 200) {

 var divAdditionalLinks =

document.getElementById("divAdditionalLinks");

 divAdditionalLinks.innerHTML = oXmlHttp.responseText;

 divAdditionalLinks.style.display = "block";

 }

 }

 }

 oXmlHttp.send(null);

}

http://www.wrox.com/
http://www.nczonline.net/
http://www.wdonline.com/

window.onload = function () {

 if (zXmlHttp.isSupported()) {

 downloadLinks();

 }

};

The function that does the work is downloadLinks(), which is called only if the browser
supports XMLHttp and only once the page is completely loaded. The code inside of
downloadLinks() is the standard XMLHttp algorithm that you've used before. After the
content from AdditionalLinks.txt has been retrieved, it is set into the placeholder <div/>
using the innerHTML property. The last step in the process is to set the <div/> element's
display property to block so it can be seen. The end result is displayed in Figure 3-5.

Figure 3-5

If XMLHttp isn't supported in the browser, the block containing the additional links will never
appear and so the first paragraph will stretch all the way across the top.

This technique can be done numerous times for any number of sections of a page; you certainly
aren't restricted to having only one section that is loaded after the initial page is complete. You
can create new XMLHttp objects for each request and then send them off one after the other, or
you can do it sequentially, waiting until a response has been received before sending off the
next request. The choice is completely up to you and your desired functionality.

Fallback Patterns
The previous section dealt with when to send or receive data from the server, which
presupposes that everything goes according to plan on the server-side: the request is received,
the necessary changes are made, and the appropriate response is sent to the client. But what
happens if there's an error on the server? Or worse yet, what if the request never makes it to
the server? When developing Ajax applications, it is imperative that you plan ahead for these
problems and describe how your application should work if one of these should occur.

Cancel Pending Requests

If an error occurs on the server, meaning a status of something other than 200 is returned, you
need to decide what to do. Chances are that if a file is not found (404) or an internal server error
occurred (302), trying again in a few minutes isn't going to help since both of these require an
administrator to fix the problem. The simplest way to deal with this situation is to simply cancel

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig99%5F01%5F0%2Ejpg&image_id=17&previd=IMG_17&titlelabel=Figure+3%2D5%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=421844660#ch03fig056F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch03fig056F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.books24x7.com/viewer.asp?bkid=13421&destid=140#140

all pending requests. You can set a flag somewhere in your code that says, "don't send any
more requests." This clearly has the highest impact on solutions using the Periodic Refresh
pattern.

The comment notification example can be modified to take this into account. This is a case
where the Ajax solution provides additional value to the user but is not the primary focus of the
page. If a request fails, there is no reason to alert the user; you can simply cancel any future
requests to prevent any further errors from occurring. To do so, you must add a global variable
that indicates whether requests are enabled:
var oXmlHttp = null;

var iInterval = 1000;

var iLastCommentId = -1;

var divNotification = null;

var blnRequestsEnabled = true;

Now, the blnRequestsEnabled variable must be checked before any request is made. This
can be accomplished by wrapping the body of the checkComments() function inside of an if
statement:
function checkComments() {

 if (blnRequestsEnabled) {

 if (!oXmlHttp) {

 oXmlHttp = zXmlHttp.createRequest();

 } else if (oXmlHttp.readyState != 0) {

 oXmlHttp.abort();

 }

 oXmlHttp.open("get", "CheckComments.php", true);

 oXmlHttp.onreadystatechange = function () {

 if (oXmlHttp.readyState == 4) {

 if (oXmlHttp.status == 200) {

 var aData = oXmlHttp.responseText.split("||");

 if (aData[0] != iLastCommentId) {

 if (iLastCommentId != -1) {

 showNotification(aData[1], aData[2]);

 }

 iLastCommentId = aData[0];

 }

 setTimeout(checkComments, iInterval);

 }

 }

 };

 oXmlHttp.send(null);

 }

}

But that isn't all that must be done; you must also detect the two different types of errors that
may occur: server errors that give status codes and a failure to reach the server (either the
server is down or the Internet connection is lost).

To begin, wrap everything inside of the initial if statement inside a try...catch block.
Different browsers react at different times when a server can't be reached, but they all throw
errors. Wrapping the entire request block in a try...catch ensures you catch any error that is
thrown, at which point you can set blnRequestsEnabled to false. Next, for server errors,
you can throw a custom error whenever the status is not equal to 200. This will be caught by
the try...catch block and have the same effect as if the server couldn't be reached (setting
blnRequestsEnabled to false):
function checkComments() {

 if (blnRequestsEnabled) {

 try {

 if (!oXmlHttp) {

 oXmlHttp = zXmlHttp.createRequest();

 } else if (oXmlHttp.readyState != 0) {

 oXmlHttp.abort();

 }

 oXmlHttp.open("get", "CheckComments.php", true);

 oXmlHttp.onreadystatechange = function () {

 if (oXmlHttp.readyState == 4) {

 if (oXmlHttp.status == 200) {

 var aData = oXmlHttp.responseText.split("||");

 if (aData[0] != iLastCommentId) {

 if (iLastCommentId != -1) {

 showNotification(aData[1], aData[2]);

 }

 iLastCommentId = aData[0];

 }

 setTimeout(checkComments, iInterval);

 } else {

 throw new Error("An error occurred.");

 }

 }

 };

 oXmlHttp.send(null);

 } catch (oException) {

 blnRequestsEnabled = false;

 }

 }

}

Now, when either of the two error types occurs, an error will be thrown (either by the browser or
by you) and the blnRequestsEnabled variable will be set to false, effectively canceling any
further requests if checkComments() is called again.

important You may also have noticed that a timeout for another request is created

only if the status is 200, which prevents another request from occurring
for any other status. That works fine for server errors, but it doesn't do
anything for communication errors. It's always better to have more than
one way to handle errors when they occur.

Try Again
Another option when dealing with errors is to silently keep trying for either a specified amount of
time or a particular number of tries. Once again, unless the Ajax functionality is key to the user's
experience, there is no need to notify him or her about the failure. It is best to handle the
problem behind the scenes until it can be resolved.

To illustrate the Try Again pattern, consider the Multi-Stage Download example. In that
example, extra links were downloaded and displayed alongside the article. If an error occurred
during the request, an error message would pop up in most browsers. The user would have no
idea what the error was or what caused it, so why bother displaying a message at all? Instead, it
would make much more sense to continue trying to download the information a few times before
giving up.

To track the number of failed attempts, a global variable is necessary:
var iFailed = 0;

The iFailed variable starts at 0 and is incremented every time a request fails. So, if iFailed
is ever greater than a specific number, you can just cancel the request because it is clearly not
going to work. If, for example, you want to try ten times before canceling all pending requests,
you can do the following:
function downloadLinks() {

 var oXmlHttp = zXmlHttp.createRequest();

 if (iFailed < 10) {

 try {

 oXmlHttp.open("get", "AdditionalLinks.txt", true);

 oXmlHttp.onreadystatechange = function () {

 if (oXmlHttp.readyState == 4) {

 if (oXmlHttp.status == 200) {

 var divAdditionalLinks =

document.getElementById("divAdditionalLinks");

 divAdditionalLinks.innerHTML =
oXmlHttp.responseText;

 divAdditionalLinks.style.display = "block";

 } else {

 throw new Error("An error occurred.");

 }

 }

 }

 oXmlHttp.send(null);

 } catch (oException) {

 iFailed++;

 downloadLinks();

 }

 }

}

This code is constructed similarly to the previous example. The try...catch block is used to
catch any errors that may occur during the communication, and a custom error is thrown when
the status isn't 200. The main difference is that when an error is caught, the iFailed
variable is incremented and downloadLinks() is called again. As long as iFailed is less
than 10 (meaning it's failed less than ten times), another request will be fired off to attempt the
download.

In general, the Try Again pattern should be used only when the request is intended to occur
only once, as in a Multi-Stage Download. If you try to use this pattern with interval-driven
requests, such as Periodic Refresh, you could end up with an ever-increasing number of open
requests taking up memory.

Summary
In this chapter, you learned about various design patterns for Ajax solutions. You first learned
about how to use Predictive Fetch to improve the user experience through preloading
information that is likely to be used in the future. You created an example using Predictive Fetch
to preload pages in an article after a few seconds, when it is likely that the user intends to read
the entire article.

Next, you learned about Submission Throttling, which is a way of incrementally sending data to
the server instead of doing it all at once. You learned how to use this pattern for data validation
in a form. It's sibling pattern, Periodic Refresh, was also discussed, which periodically receives
information from the server. You built an example using Periodic Refresh that displays a
notification when a new comment has been posted to a blog or message board.

This chapter also introduced you to the Multi-Stage Download pattern, which is a way of
continuing to download extra information after the page has loaded. You learned that this would
lead to faster initial download time for pages and that you can control the frequency and
sequence of requests in any way you see fit.

The last section discussed fallback patterns that are used to handle errors in client-server
communication. You learned that there are two types of errors you may encounter: server errors
(such as 404 not found) or communication errors (where the server cannot be contacted). Two
patterns, Cancel Pending Requests and Try Again, were discussed as ways of dealing with
these errors.

Chapter 4: XML, XPath, and XSLT
Overview
As the popularity of XML grew, web developers wanted to use the technology on both the
server and client-side, but only the former initially offered XML functionality. Starting with
Internet Explorer 5.0 and Mozilla 1.0, Microsoft and Mozilla began to support XML through
JavaScript in their browsers. Recently, Apple and Opera added some XML support to their
browsers, albeit not to the extent that Microsoft and Mozilla have. Browser makers continue to
broaden the availability of XML support with new features, giving web developers powerful tools
akin to those formerly found only on the server.

In this chapter, you will learn how to load and manipulate XML documents in an XML DOM
object, use XPath to select XML nodes that meet certain criteria, and transform XML documents
into HTML using XSLT.

XML Support in Browsers
Many web browsers are available today, but few have as complete support for XML and its
related technologies as Internet Explorer (IE) and Mozilla Firefox. Although other browsers are
starting to catch up, with Safari and Opera now able to open XML documents, the functionality
is either incomplete or incorrect. Because of these issues, this chapter focuses primarily on the
implementations in IE and Firefox.

XML DOM in IE

When Microsoft added XML support to IE 5.0, they did so by incorporating the MSXML ActiveX
library, a component originally written to parse Active Channels in IE 4.0. This original version
wasn't intended for public use, but developers became aware of the component and began
using it. Microsoft responded with a fully upgraded version of MSXML, which was included in IE
4.01. MSXML was primarily an IE-only component until 2001 when Microsoft released MSXML
3.0, a separate distribution available through the company's web site. Later that year, version
4.0 was released and MSXML was renamed Microsoft XML Core Services Component. Since
its inception, MSXML has gone from a basic, non-validating XML parser to a full-featured
component that can validate XML documents, perform XSL transformations, support
namespace usage, the Simple API for XML (SAX), and the W3C XPath and XML Schema
standards, all while improving performance with each new version.

To create an ActiveX object in JavaScript, Microsoft implemented a new class called
ActiveXObject that can be used to instantiate a number of ActiveX objects. Its constructor
takes one argument, a string containing the version of the ActiveX object to create; in this case,
it is the version of the XML document. The first XML DOM ActiveX object was called
Microsoft.XmlDom, whose creation looks like this:
var oXmlDom = new ActiveXObject("Microsoft.XmlDom");

The newly created XML DOM object behaves like any other DOM object, enabling you to
traverse the DOM tree and manipulate DOM nodes.

At the time of this writing, there are five different versions of the MSXML DOM document, and
their version strings are as follows:

 Microsoft.XmlDom
 MSXML2.DOMDocument
 MSXML2.DOMDocument.3.0
 MSXML2.DOMDocument.4.0
 MSXML2.DOMDocument.5.0

Important MSXML is an ActiveX implementation; therefore, it is available only on

Windows platforms. IE 5 on the Mac has no XML DOM support.

Because there are five different versions, and you presumably always want to use the latest, it
is helpful to use a function to determine which version to use. Doing so ensures you the most
up-to-date support and the highest performance. The following function, createDocument(),
enables you to create the correct MSXML DOM document:
function createDocument() {

 var aVersions = ["MSXML2.DOMDocument.5.0",

 "MSXML2.DOMDocument.4.0"," MSXML2.DOMDocument.3.0",

 "MSXML2.DOMDocument"," Microsoft.XmlDom"

];

 for (var i = 0; i < aVersions.length; i++) {

 try {

 var oXmlDom = new ActiveXObject(aVersions[i]);

 return oXmlDom;

 } catch (oError) {

 //Do nothing

 }

 }

 throw new Error("MSXML is not installed.");

 }

This function iterates through the aVersions array, which contains the version strings of
MSXML DOM documents. It starts with the latest version, MSXML2.DOMDocument.5.0, and
attempts to create the DOM document. If the object creation is successful, it is returned and
createDocument() exits; if it fails, an error is thrown and then caught by the try…catch
block, so the loop continues and the next version is tried. If the creation of an MSXML DOM
document fails, a thrown error states that MSXML is not installed. This function is not a class, so
its usage looks like any other function that returns a value:
var oXmlDom = createDocument();

Using createDocument() will ensure that the most up-to-date DOM document is used. Now
that you have an XML document at your disposal, it is time to load some XML data.

Loading XML Data in IE
MSXML supports two methods to load XML: load() and loadXML(). The load() method
loads an XML file at a specific location on the Web. As with XMLHttp, the load() method
enables you to load the data in two modes: asynchronously or synchronously. By default, the
load() method is asynchronous; to use synchronous mode, the MSXML object's async
property must be set to false, as follows:
oXmlDom.async = false;

When in asynchronous mode, the MSXML object exposes the readyState property, which
has the same five states as the XMLHttp readyState property.

Additionally, the DOM document supports the onreadystatechange event handler, enabling
you to monitor the readyState property. Because asynchronous mode is the default, setting
the async property to true is optional:
oXmlDom.async = true;

oXmlDom.onreadystatechange = function () {

 if (oXmlDom.readyState == 4) {

 //Do something when the document is fully loaded.

 }

};

oXmlDom.load("myxml.xml");

In this example, the fictitious XML document named myxml.xml is loaded into the XML DOM.
When the readyState reaches the value of 4, the document is fully loaded and the code
inside the if block will execute.

The second way to load XML data, loadXML(), differs from the load() method in that the
former loads XML from a string. This string must contain well-formed XML, as in the following
example:
var sXml = "<root><person><name>Jeremy McPeak</name></person></root>";

oXmlDom.loadXML(sXml);

Here, the XML data contained in the variable sXml is loaded into the oXmlDom document.
There is no reason to check the readyState property or to set the async property when using
loadXML() because it doesn't involve a server request.

Traversing the XML DOM in IE
Navigating an XML DOM is much like navigating an HTML DOM: it is a hierarchical node
structure. At the top of the tree is the documentElement property, which contains the root
element of the document. From there, you can access any element or attribute in the document
using the properties listed in Table 4-1.
Table 4-1: XML DOM Properties

Open table as spreadsheet

Property Description

attributes Contains an array of attributes for this node.

childNodes Contains an array of child nodes.

firstChild Refers to the first direct child of the node.

lastChild Refers to the last child of the node.

nextSibling Returns the node immediately following the current node.

nodeName Returns the qualified name of the node.

nodeType Specifies the XML DOM node type of the node.

nodeValue Contains the text associated with the node.

ownerDocument Returns the root element of the document.

parentNode Refers to the parent node of the current node.

previousSibling Returns the node immediately before the current node.

text Returns the content of the node or the concatenated text of the
current node and its descendants. It is an IE-only property.

xml Returns the XML of the current node and its children as a string. It

http://www.books24x7.com/book/id_13421/outputobject.asp?bookid=13421&chunkid=434399108&objectid=ch04table01&objecttype=spreadsheet
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=434399108#ch04table016F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch04table016F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.books24x7.com/book/id_13421/outputobject.asp?bookid=13421&chunkid=434399108&objectid=ch04table01&objecttype=spreadsheet

Table 4-1: XML DOM Properties
Open table as spreadsheet

Property Description
is an IE-only property.

Traversing and retrieving data from the DOM is a straight-forward process. Consider the
following XML document:
<?xml version="1.0" encoding=" utf-8"?>

<books>

 <book isbn="0471777781">Professional Ajax</book>

 <book isbn="0764579088">Professional JavaScript for Web
Developers</book>

 <book isbn="0764557599">Professional C#</book>

 <book isbn="1861002025">Professional Visual Basic 6
Databases</book>

</books>

This simple XML document includes a root element, <books/>, with four child <book/>
elements. Using this document as a reference, you can explore the DOM. The DOM tree is
based on the relationships nodes have with other nodes. One node may contain other nodes, or
child nodes. Another node may share the same parent as other nodes, which are siblings.

Perhaps you want to retrieve the first <book/> element in the document. This is easily
achieved with the firstChild property:
var oRoot = oXmlDom.documentElement;

var oFirstBook = oRoot.firstChild;

The assignment of the documentElement to oRoot will save space and typing, although it is
not necessary. Using the firstChild property, the first <book/> element is referenced and
assigned to the variable oFirstBook because it is the first child element of the root element
<books/>.

You can also use the childNodes collection to achieve the same results:
var oFirstBook2 = oRoot.childNodes[0];

Selecting the first item in the childNodes collection returns the first child of the node. Because
childNodes is a NodeList in JavaScript, you can retrieve the amount of children a node has
by using the length property, as follows:
var iChildren = oRoot.childNodes.length;

In this example, the integer 4 is assigned to iChildren because there are four child nodes of
the document element.

As already discussed, nodes can have children, which means they can have parents, too. The
parentNode property selects the parent of the current node:
var oParent = oFirstBook.parentNode;

You saw oFirstBook earlier in this section, but as a quick refresher, it is the first <book/>
element in the document. The parentNode property of this node refers to the <books/>
element, the documentElement of the DOM.

What if your current node is a book element and you want to select another book element? The
<book/> elements are siblings to each other because they share the same direct parent. Two
properties, nextSibling and previousSibling, exist to select adjacent nodes to the
current node. The nextSibling property references the next occurring sibling, whereas the
previousSibling property selects the preceding sibling:
var oSecondBook = oFirstBook.nextSibling;

oFirstBook2 = oSecondBook.previousSibling;

In this code, the second <book/> element is referenced and assigned to oSecondBook. The
oFirstBook2 variable is then reassigned to reference the oSecondBook sibling immediately
before it, resulting in oFirstBook2 to contain the same value as it did before. If a node has no
siblings after it, then nextSibling is null. The same holds true for previousSibling; if
there is no sibling immediately before the current node, previousSibling is null.

Now that you know how to traverse through the document hierarchy, you should know how to
retrieve data from nodes in the tree. For example, to retrieve the text contained within the third
<book/> element, you could use the text property, as follows:
var sText = oRoot.childNodes[2].text;

The text property retrieves all the text nodes contained within this node and is a Microsoft
proprietary property, but it is extremely helpful. Without the text property, you would have to
access the text node as follows:
var sText = oRoot.childNodes[2].firstChild.nodeValue;

This code achieves the same results as using the text property. Like the previous example,
the third <book/> element is referenced using the childNodes collection; the text node of the
<book/> element is then referenced with the use of firstChild because a text node is still a
node in the DOM. The text is then retrieved by using the nodeValue property that retrieves the
value of the current node.

The results from these two examples are identical; however, the text property behaves in a
different way than using the nodeValue property on a text node. The text property retrieves
the value of all text nodes contained within the element and its children, whereas the
nodeValue property gets only the value of the current node. It is a helpful property, but it has
the potential to return more text than desired. For example, consider this modified XML
document:
<?xml version="1.0" encoding=" utf-8"?>

<books>

 <book isbn="0471777781">

 <title>Professional Ajax</title>

 <author>Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett</author>

 </book>

 <book isbn="0764579088">Professional JavaScript for Web
Developers</book>

 <book isbn="0764557599">Professional C#</book>

 <book isbn="1861002025">Professional Visual Basic 6
Databases</book>

</books>

This new XML document adds two new children to the first <book/> element: the <title/>
element, which contains the title of the book, and the <author/> element, which holds the
author data. Once again, use the text property:
alert(oFirstChild.text);

There is nothing new in this code, as you have already seen it. However, look at the results, as
shown in Figure 4-1.

Figure 4-1

Notice that the text nodes from the <title/> and <author/> elements are retrieved and
concatenated. This is how text differs from nodeValue. The nodeValue property retrieves
only the value of the current node, whereas the text property retrieves all text nodes contained
in the current node and its children.

MSXML also provides a number of methods to retrieve specific nodes or values; the two most
often used are getAttribute() and getElementsByTagName().

The getAttribute() method takes a string argument containing the name of the attribute
and returns that attribute's value. If the attribute does not exist, the value returned is null.
Using the same XML document introduced earlier in this section, consider the following code:
var sAttribute = oFirstChild.getAttribute("isbn");

alert(sAttribute);

This code retrieves the value of the isbn attribute of the first <book/> element and assigns it to
the sAttribute variable. This value is then used in the alert() method to display the value.

The getElementsByTagName() method returns a NodeList of child elements with the name
specified by its argument. This method searches for elements within the given node only, so the
returned NodeList does not include any external elements. For example:
var cBooks = oRoot.getElementsByTagName("book");

alert(cBooks.length);

This code retrieves all <book/> elements within the document and returns the NodeList to
cBooks. With the sample XML document, an alert box will display that four <book/> elements
were found. To retrieve all child elements, pass "*" as the parameter to
getElementsByTagName(), as follows:
var cElements = oRoot.getElementsByTagName("*");

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig111%5F01%5F0%2Ejpg&image_id=18&previd=IMG_18&titlelabel=Figure+4%2D1%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=434399108#ch04fig016F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch04fig016F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Because the example XML document contains only <book/> elements, the resulting
NodeList of this code sample matches that of the previous example.

Retrieving XML Data in IE
Retrieving XML data is as simple as using a property, the xml property. This property serializes
the XML data of the current node. Serialization is the process of converting objects into an
easily storable or transmittable format. The xml property converts XML into a string
representation, complete with tag names, attributes, and text:
var sXml = oRoot.xml;

alert(sXml);

This code serializes the XML data starting with the document element, which is then passed to
the alert() method. A portion of the serialized XML looks like this:
<books><book isbn="0471777781">Professional Ajax</book></books>

You can load serialized data into another XML DOM object, send to a server application, or
pass to another page. The serialized XML data returned by the xml property depends on the
current node. Using the xml property at the documentElement node returns the XML data of
the entire document, whereas using it on a <book/> element returns only the XML data
contained in that <book/> element.

The xml property is read-only. If you want to add elements to the document, you will have to
use DOM methods to do so.

Manipulating the DOM in IE
Until this point, you have learned how to traverse the DOM, extract information from it, and
convert XML into string format. You also have the ability to add to, delete from, and replace
nodes in the DOM.

Creating Nodes

You can create a variety of nodes using DOM methods, the first of which is an element with the
createElement() method. This method takes one argument, a string containing the tag
name of the element to create, and returns an XMLDOMElement reference:
var oNewBook = oXmlDom.createElement("book");

oXmlDom.documentElement.appendChild(oNewBook);

This code creates a new <book/> element and appends it to documentElementl with the
appendChild() method. The appendChild() method appends the new element, specified
by its argument, as the last child node. This code, however, appends an empty <book/>
element to the document, so the element needs some text:
var oNewBook = oXmlDom.createElement("book");

var oNewBookText = oXmlDom.createTextNode("Professional .NET 2.0
Generics");

oNewBook.appendChild(oNewBookText);

oXmlDom.documentElement.appendChild(oNewBook);

This code creates a text node with the createTextNode() method and appends it to the
newly created <book/> element with appendChild(). The createTextNode() method
takes a string argument specifying the value applied to the text node.

At this point, you have programmatically created a new <book/> element, provided it a text
node, and appended it to the document. One last piece of information is required to get this new
element on par with its other siblings, the isbn attribute. Creating an attribute is as simple as
using the setAttribute() method, which is available on every element node:
var oNewBook = oXmlDom.createElement("book");

var oNewBookText = oXmlDom.createTextNode("Professional .NET 2.0
Generics");

oNewBook.appendChild(oNewBookText);

oNewBook.setAttribute("isbn","0764559885");

oXmlDom.documentElement.appendChild(oNewBook);

The new line of code in this example creates an isbn attribute and assigns it the value of
0764559885. The setAttribute() method takes two string arguments: the first is the name
of the attribute, and the second is the value to assign to the attribute. IE also provides other
methods to add attributes to an element; however, they hold no real advantage over
setAttribute() and require much more coding.

Removing, Replacing, and Inserting Nodes

If you can add nodes to a document, it seems only natural to be able to remove them as well.
The removeChild() method does just that. This method has one argument: the node to
remove. Suppose, for example, that you want to remove the first <book/> element from the
document. You could use the following code:
var oRemovedChild = oRoot.removeChild(oRoot.firstChild);

The removeChild() method returns the removed child node, so oRemoveChild now
references the removed <book/> element. You now have a reference to the old node, so you
can place it anywhere else into the document.

Perhaps you want to replace the third <book/> element with oRemovedChild. The
replaceChild() does that and returns the replaced node:
var oReplacedChild = oRoot.replaceChild(oRemovedChild,
oRoot.childNodes[2]);

The replaceChild() method accepts two arguments: the node to add and the node to
replace. In this code, the node referenced by oRemovedChild replaces the third <book/>
element, and the replaced node is now referenced by oReplacedChild.

Because oReplacedChild references the replaced node, you can easily insert it into the
document. You could use appendChild() to add the node to the end of the child list, or you
can use the insertBefore() method to insert the node before another sibling:
oRoot.insertBefore(oReplacedChild, oRoot.lastChild);

This code inserts the previously replaced node before the last <book/> element. You'll notice
the use of the lastChild property, which retrieves the last child node, much like firstChild
selects the first child node. The insertBefore() method takes two arguments: the node to

insert and the node to insert before. This method also returns the value of the inserted node, but
it is not necessary for this example.

As you have seen, the DOM is a powerful interface from which you can retrieve, remove, and
add data.

Error Handling in IE
When XML data is loaded, errors can be thrown for a variety of reasons. For example, the
external XML file may not be found or the XML may not be well formed. To handle these
occasions, MSXML provides the parseError object, which contains the error information. This
object is a property of every XML DOM document MSXML creates.

To check for errors, the parseError object exposes the errorCode property, which can be
compared to the integer 0; if errorCode does not equal 0, an error has occurred. The following
example is designed specifically to cause an error:
var sXml = "<root><person><name>Jeremy McPeak</name></root>";

var oXmlDom = createDocument();

oXmlDom.loadXML(sXml);

if (oXmlDom.parseError.errorCode != 0) {

 alert("An Error Occurred: "+ oXmlDom.parseError.reason);

} else {

 //Code to do for successful load.

}

In the highlighted line, notice that the <person/> element is not closed. Because the XML
being loaded is not well formed, an error occurs. The errorCode is then compared to 0; if they
do not match (and they don't in this example), an alert will display what caused the error. To do
this, it uses the reason property of the parseError object, which describes the reason for the
error.

The parseError object provides the following properties to enable you to better understand an
error:

 errorCode: The error code as a long integer
 filePos: A long integer specifying the position in the file where the error occurred
 line: The line number that contains the error as a long integer
 linePos: The character position in the line where the error occurred (long integer)
 reason: A string specifying why the error happened
 srcText: The text of the line where the error happened
 url: The URL of the XML document as a string

Although all of these properties provide information about each error, it is up to you which ones
make the most sense given your needs.

Important The errorCode property can be positive or negative; only when

errorCode is 0 can you be sure that no error occurred.

XML DOM in Firefox
When it came time to implement the XML DOM in Mozilla Firefox, the developers took a more
standards-centric approach in making it a part of the JavaScript implementation. In doing so,
Mozilla ensured XML DOM support on all platforms in all Gecko-based browsers.

To create an XML DOM in Firefox, the createDocument() method of the
document.implementation object is called. This method takes three arguments: the first is
a string containing the namespace URI for the document to use, the second is a string
containing the qualified name of the document's root element, and the third is the type of
document (also called doctype) to create. To create an empty DOM document, you can do this:
var oXmlDom = document.implementation.createDocument("", "", null);

By passing in an empty string for the first two arguments, and null for the last, you ensure a
completely empty document. In fact, there is currently no JavaScript support for doctypes in
Firefox, so the third argument must always be null. To create an XML DOM with a document
element, specify the tag name in the second argument:
var oXmlDom = document.implementation.createDocument("", "books",
null);

This code creates an XML DOM whose documentElement is <books/>. You can take it a
step further and specify a namespace in the creation of the DOM by specifying the namespace
URI in the first argument:
var oXmlDom =
document.implementation.createDocument("http://www.site1.com","books",
null);

When a namespace is specified in the createDocument() method, Firefox automatically
assigns the prefix a0 to represent the namespace URI:
<a0:books xmlns:a0="http://www.site1.com" />

From here, you can populate the XML document programmatically; generally, however, you will
want to load preexisting XML documents into a blank XML DOM object.

Loading XML Data in Firefox
Loading XML into an XML DOM is similar to Microsoft's approach with one glaring difference:
Firefox supports only the load() method. Therefore, you can use the same code to load
external XML data in both browsers:
oXmlDom.load("books.xml");

Also like Microsoft, Firefox implemented the async property, and its behavior matches that of
Microsoft's: setting async to false forces the document to be loaded in synchronous mode;
otherwise, the document is loaded asynchronously.

Another difference between the Firefox and Microsoft XML DOM implementations is that Firefox
does not support the readyState property or the onreadystatechange event handler.
Instead, it supports the load event and the onload event handler. The load event fires after
the document is completely loaded:
oXmlDom.load("books.xml");

oXmlDom.onload = function () {

 //Do something when the document is fully loaded.

};

As mentioned previously, the loadXML() method does not exist in the Firefox implementation;
however, it is possible to emulate the loadXML() behavior through the Firefox DOMParser
class. This class has a method called parseFromString(), which loads a string and parses it
into a document:
var sXml = "<root><person><name>Jeremy McPeak</name></person></root>";

var oParser = new DOMParser();

var oXmlDom = oParser.parseFromString(sXml," text/xml");

http://www.site1.com/

In this code, a string of XML is created to pass to the DOMParser parseFromString()
method. The two arguments for parseFromString() are the XML string and the content type
of the data (typically set to "text/xml"). The parseFromString() method returns an XML
DOM object, so you can treat oXmlDom in this code as one.

Retrieving XML Data in Firefox
Despite all their differences, IE and Firefox do share many properties and methods used to
retrieve XML data contained in the document. As in IE, you can retrieve the root element of the
document by using the documentElement property, as follows:
var oRoot = oXmlDom.documentElement;

Firefox also supports the W3C standards properties of attributes, childNodes,
firstChild, lastChild, nextSibling, nodeName, nodeType, nodeValue,
ownerDocument, parentNode, and previousSibling. Unfortunately, Firefox does not
support the Microsoft-proprietary text and xml properties, but thanks to its flexibility, you can
emulate their behavior.

As a quick recap, the text property returns the content of the node or the concatenated text of
the current node and its descendants. Therefore, not only does it return the text of the existing
node, but also the text of all child nodes; this is easy enough to emulate. A simple function that
takes a node as an argument can provide the same result:
function getText(oNode) {

 var sText = "";

 for (var i = 0; i < oNode.childNodes.length; i++) {

 if (oNode.childNodes[i].hasChildNodes()) {

 sText += getText(oNode.childNodes[i]);

 } else {

 sText += oNode.childNodes[i].nodeValue;

 }

 }

 return sText;

}

In getText(), sText is used to store every piece of text that is retrieved. As the for loop
iterates through the oNode children, each child is checked to see if it contains children. If it
does, the childNode is passed through getText() and goes through the same process. If no
children exist, then the nodeValue of the current node is added to the string (for text nodes,
this is just the text string). After all children have been processed, the function returns sText.

The IE xml property serializes all XML contained in the current node. Firefox accomplishes the
same result by providing the XMLSerializer object. This object has a single method that is
accessible using JavaScript called serializeToString(). Using this method, XML data is
serialized:
function serializeXml(oNode) {

 var oSerializer = new XMLSerializer();

 return oSerializer.serializeToString(oNode);

}

The serializeXml() function takes an XML node as an argument. An XMLSerializer
object is created, and the node is passed to the serializeToString() method. The result of
this method, a string representation of the XML data, is returned to the caller.

Note Firefox shares the same DOM methods for manipulating nodes as IE. Refer to

the "Manipulating the DOM in IE" section for a refresher.

Error Handling in Firefox

Firefox, unsurprisingly, handles errors differently from IE. When IE runs into an error, it
populates the parseError object; when Firefox runs into an error, it loads an XML document
containing the error into the XML DOM document. Consider the following example:
var sXml = "<root><person><name>Jeremy McPeak</name></root>";

var oParser = new DOMParser();

var oXmlDom = oParser.parseFromString(sXml," text/xml");

if (oXmlDom.documentElement.tagName != "parsererror") {

 //No error occurred. Do something here.

} else {

 alert("An Error Occurred");

}

In the highlighted line, you'll see what will cause the error: a malformed XML string (because the
person/> element is not closed). When the malformed XML is loaded, the XML DOM object
loads an error document with a documentElement of <parsererror/>. You can easily
determine if an error occurred by checking the documentElement tagName property; if it's
not parsererror, you can be assured that an error did not occur.

The error document created in this example looks like this:
<parsererror
xmlns="http://www.mozilla.org/newlayout/xml/parsererror.xml">XML

Parsing Error: mismatched tag. Expected: </person>.

Location: http://yoda/fooreader/test.htm

Line Number 1, Column 43:<sourcetext><root><person><name>Jeremy

McPeak</name></root>

--^</sourcetext></parsererror>

All of the information about the error is available as text in the error document. If you want to
use this information programmatically, you have to parse it first. The easiest way to do so is to
use a rather lengthy regular expression:
var reError = />([\s\S]*?)Location:([\s\S]*?)Line Number (\d+), Column

 (\d+):<sourcetext>([\s\S]*?)(?:\-*\^)/;

This regular expression divides the error document into five sections: the error message, the file
name where the error happened, the line number, the position in the line where the error
occurred, and the source code that caused the error. Using the test() method of the regular
expression object will enable you to use these pieces of data:
if (oXmlDom.firstChild.tagName != "parsererror") {

 //No error occurred. Do something here.

} else {

 var oXmlSerializer = new XMLSerializer();

 var sXmlError = oXmlSerializer.serializeToString(oXmlDom);

 var reError = />([\s\S]*?)Location:([\s\S]*?)Line Number (\d+),
Column

http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=434399108#ch04lev3sec46F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch04lev3sec46F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.mozilla.org/newlayout/xml/parsererror.xml
http://yoda/fooreader/test.htm

 (\d+):<sourcetext>([\s\S]*?)(?:\-*\^)/;

 reError.test(sXmlError);

The first chunk of data captured by the regular expression is error message, the second is the
file name, the third is the line number, the fourth is the position in the line, and the fifth is source
code. You can now use this parsed information to create your own error message:
var str = "An error occurred!!\n" +

 "Description: "+ RegExp.$1 + "\n" +

 "File: "+ RegExp.$2 + "\n" +

 "Line: "+ RegExp.$3 + "\n" +

 "Line Position: "+ RegExp.$4 + "\n" +

 "Source Code: "+ RegExp.$5;

alert(str);

If an error occurs, an alert box will display the relevant error information in an easy-to-read
fashion.

Cross-Browser XML

In an Ajax application, and most JavaScript code, you always need to consider cross-browser
differences. When using an XML-based solution in IE and Firefox, you have two options: create
your own functions that use the correct code based on the browser, or use a ready-made
library. Most of the time it's easiest to use a pre-existing library, such as the zXml library
introduced in Chapter 2. Along with XMLHttp support, zXml also has common interfaces for
XML operations.

For example, to create an XML DOM document, you can use zXmlDom.createDocument():
var oXmlDom = zXmlDom.createDocument();

This single line of code can be used instead of doing separate browser-dependent code each
time a DOM document is needed. Additionally, zXml adds a host of IE functionality to the
standard Firefox DOM document.

One of the major things zXml does for convenience is to add support for the readyState
property and the onreadystatechange event handler. Instead of needing to use the separate
onload event handler in Firefox, you can write one set of code without browser detection, such
as:
oXmlDom.onreadystatechange = function ()

 { if (oXmlDom.readyState == 4) {

 //Do something when the document is fully loaded.

 }

};

The zXml library also adds the xml and text attributes to all nodes in Firefox. Instead of using
an XMLSerializer or a standalone function to get these values, you can use them the same
way as in IE:
var oRoot = oXmlDom.documentElement;

var sFirstChildText = oRoot.firstChild.text;

http://www.books24x7.com/viewer.asp?bkid=13421&destid=79#79

var sXml = oRoot.xml;

zXml also provides a loadXML() method for the Firefox DOM document, eliminating the need
to use a DOMParser object.
var oXmlDom2 = zXmlDom.createDocument();

oXmlDom2.loadXML(sXml);

Last, the zXml library adds a parseError object to the Firefox implementation. This object
emulates fairly closely the corresponding object in IE. The one major difference is the
errorCode property, which is simply set to a non-zero number when an error occurs.
Therefore, you shouldn't use this property to look for a specific error, only to see if an error has
occurred. Other than that, you can use the other properties as you would in IE:
if (oXmlDom.parseError.errorCode != 0) {

 var str = "An error occurred!!\n" +

 "Description: "+ oXmlDom.parseError.reason + "\n" +

 "File: "+ oXmlDom.parseError.url + "\n" +

 "Line: "+ oXmlDom.parseError.line + "\n" +

 "Line Position: "+ oXmlDom.parseError.linePos + "\n" +

 "Source Code: "+ oXmlDom.parseError.srcText;

 alert(str);

} else {

 //Code to do for successful load.

}

You certainly aren't required to use a cross-browser XML library for your solutions, but it can
definitely help. The following section develops an example using the zXml library.

A Basic XML Example

XML is a semantic, describing language. Generally, the elements contained in any given XML
document describe the data of that document, thus making it a decent data store for static
information, or information that doesn't change often.

Imagine you run an online bookstore and have a list of Best Picks whose information is stored in
an XML document, books.xml. You need to display this information to the user, but you want
to do so without using a server component, so you turn to a JavaScript solution. You are going
to write a JavaScript solution using the zXml library that will load the XML file, parse through it,
and display the information in a web page using DOM methods.

The books.xml file contains the following XML data:
<?xml version="1.0" encoding=" utf-8"?>

<bookList>

 <book isbn="0471777781">

 <title>Professional Ajax</title>

 <author>Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett</author>

 <publisher>Wrox</publisher>

 </book>

 <book isbn="0764579088">

 <title>Professional JavaScript for Web Developers</title>

 <author>Nicholas C. Zakas</author>

 <publisher>Wrox</publisher>

 </book>

 <book isbn="0764557599">

 <title>Professional C#</title>

 <author>Simon Robinson, et al</author>

 <publisher>Wrox</publisher>

 </book>

 <book isbn="1861006314">

 <title>GDI+ Programming: Creating Custom Controls Using
C#</title>

 <author>Eric White</author>

 <publisher>Wrox</publisher>

 </book>

 <book isbn="1861002025">

 <title>Professional Visual Basic 6 Databases</title>

 <author>Charles Williams</author>

 <publisher>Wrox</publisher>

 </book>

</bookList>

As you can see, the document element <bookList/> contains a few <book/> elements,
which include information about a given book.

Loading XML Data
The first step is to create an XML DOM document and load the XML data into it. Because
books.xml will be loaded asynchronously, you need to set the onreadystatechange event
handler:
var oXmlDom = zXmlDom.createDocument();

oXmlDom.onreadystatechange = function () {

 if (oXmlDom.readyState == 4) {

 }

};

When the readystatechange event fires and the event handler is called, you check the
readyState property; a value of 4 lets you know that the document is completely loaded and
the DOM is ready to use.

The next step is to check for errors because even though the document is loaded, that is not
necessarily a sign that everything works as it should:
var oXmlDom = zXmlDom.createDocument();

oXmlDom.onreadystatechange = function () {

 if (oXmlDom.readyState == 4) {

 if (oXmlDom.parseError.errorCode == 0) {

 parseBookInfo(oXmlDom);

 } else {

 var str = "An error occurred!!\n" +

 "Description: "+ oXmlDom.parseError.reason + "\n" +

 "File: "+ oXmlDom.parseError.url + "\n" +

 "Line: "+ oXmlDom.parseError.line + "\n" +

 "Line Position: "+ oXmlDom.parseError.linePos + "\n" +

 "Source Code: "+ oXmlDom.parseError.srcText;

 alert(str);

 }

 }

};

If no error occurred, the XML DOM document is passed to parseBookInfo(), the function
that parses the book list. If an error did occur, the error information collected in the
parseError object is displayed in an alert.

With the onreadystatechange event handler written, the load() method is used to load the
XML data:
oXmlDom.load("books.xml");

The XML document is now loaded. The next step in the process is to parse the XML data.

Parsing the Book List
The parseBookInfo() function is in charge of parsing the DOM document. This function
accepts one argument, which is the DOM document itself:
function parseBookInfo(oXmlDom) {

 var oRoot = oXmlDom.documentElement;

 var oFragment = document.createDocumentFragment();

The variable oRoot is set to the documentElement of the XML document. This is merely a
convenience, because it is far easier and faster to type oRoot than
oXmlDom.documentElement. You also create a document fragment. The
parseBookInfo() function generates many HTML elements and thus, many changes to the
HTML DOM loaded in the browser. Adding each element to the HTML DOM individually is an
expensive process in terms of the time it takes to display the changes. Instead, each element is
added to a document fragment, which will be added to the document once all HTML elements
are created. Doing so allows the HTML DOM to be updated only once instead of multiple times,
resulting in faster rendering.

You know that only <book/> elements are children of the document element, so you can iterate
through the childNodes collection:
var aBooks = oRoot.getElementsByTagName("book");

for (var i = 0; i < aBooks.length; i++) {

 var sIsbn = aBooks[i].getAttribute("isbn");

 var sAuthor, sTitle, sPublisher;

Inside the for loop, the actual parsing begins. To start, the isbn attribute of the <book/>
element is retrieved with getAttribute() and stored in sIsbn. This value is used to display
the book cover as well as the actual ISBN value to the user. The variables sAuthor, sTitle,
and sPublisher are also declared; these variables will hold the values of the <author/>,
<title/>, and <publisher/> elements, respectively.

Next, you retrieve the book's data, which can be done in a number of different ways. You could
use the childNodes collection and loop through the children, but this example uses a different
approach. You can accomplish the same result using a do…while loop, which makes use of
the firstChild and nextSibling properties:
var oCurrentChild = aBooks[i].firstChild;

do {

 switch (oCurrentChild.tagName) {

 case "title":

 sTitle = oCurrentChild.text;

 break;

 case "author":

 sAuthor = oCurrentChild.text;

 break;

 case "publisher":

 sPublisher = oCurrentChild.text;

 break;

 default:

 break;

 }

 oCurrentChild = oCurrentChild.nextSibling;

} while (oCurrentChild = oCurrentChild.nextSibling);

In the first line, the variable oCurrentChild is assigned the first child of the current <book/>
element. (Remember, this occurs inside of the for loop.) The child tagName is used in a
switch block to determine what should be done with its data. The switch block then does its
work assigning the data variable of the corresponding tagName of the current node. To retrieve
this data, you use the node's text property, which retrieves all text nodes within the element.
The oCurrentChild variable is assigned the node immediately following the current node by
using the nextSibling property. If a next sibling exists, the loop continues; if not,
oCurrentChild is null and the loop exits.

When all data variables contain the needed data, you can start generating HTML elements to
display that data. The HTML structure of the elements you create programmatically looks like
this:
<div class=" bookContainer">

 <img class=" bookCover" alt=" Professional Ajax"
src="0471777781.png" />

 <div class=" bookContent">

 <h3>Professional Ajax</h3>

 Written by: Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett

 ISBN #0471777781

 <div class=" bookPublisher">Published by Wrox</div>

 </div>

</div>

To add some readability to the list, the containing <div/> element will have alternating
background colors. Books that are an odd number in the list will have a grayish background
color and a class name of bookContainer-odd, whereas even books will have a white
background defined by the bookContainer CSS class.

Generating this coding through DOM methods is an easy but lengthy process. The first step is
to create the containing <div/>, the , and the content <div/> elements, which is done
through the createElement() DOM method:
var divContainer = document.createElement("div");

var imgBookCover = document.createElement("img");

var divContent = document.createElement("div");

var sOdd = (i % 2)?"":"-odd";

divContainer.className = "bookContainer" + sOdd;

Along with the element creation, the differing class names are processed here as well. The
current book is judged to be odd or even by the use of the modulus (%) operator. The sOdd
variable is assigned the appropriate appendix, an empty string for even and "-odd" for odd, and
used in the className assignment.

You can then assign the properties of the book cover image. These PNG images use the ISBN
number as their file names:
imgBookCover.src = "images/" + sIsbn + ".png";

imgBookCover.className = "bookCover";

divContainer.appendChild(imgBookCover);

Here, the src and className properties are assigned and the image is appended to
divContainer. With the image finished, you can add the content. The first piece of
information to be added is the book's title, which is a heading level 3 element (<h3/>). Again,
this element is created with createElement():
var h3Title = document.createElement("h3");

h3Title.appendChild(document.createTextNode(sTitle));

divContent.appendChild(h3Title);

To create a text node containing the title, you use the createTextNode() method, which is
appended to the <h3/> element, and then append the completed heading to divContent.

The author and ISBN information are next to be added. These two pieces of information are text
nodes and have no parent element other than divContent. There is, however, one breaking
element in between the two text nodes:
divContent.appendChild(document.createTextNode("Written by: "+
sAuthor));

divContent.appendChild(document.createElement("br"));

divContent.appendChild(document.createTextNode("ISBN: #" + sIsbn));

This code creates this information. First, the text node containing the author information is
appended to divContent, followed by the creation and appending of the breaking element
(
). Last, you append the text node containing the ISBN information.

The last piece of information to add is the publisher:
var divPublisher = document.createElement("div");

divPublisher.className = "bookPublisher";

divPublisher.appendChild(document.createTextNode("Published by: "+
sPublisher));

divContent.appendChild(divPublisher);

The publisher is displayed in a <div/> element. After its creation, the className is assigned
"bookPublisher" and the text node containing the publisher's name is appended to the
element. The divPublisher element is complete, so you can append it to divContent.

At this point, all data operations are complete. However, divContent still lacks its class name
and must be appended to divContainer, which in turn must be appended to the document
fragment. The following three lines of code do this:
divContent.className = "bookContent";

divContainer.appendChild(divContent);

oFragment.appendChild(divContainer);

The last step is to append the document fragment to the page body after the book nodes are
iterated through:
document.body.appendChild(oFragment);

This code doesn't actually append the document fragment itself; instead, it appends all the child
nodes of the document fragment, making all the changes to the HTML DOM at once. With this
final line of code, parseBookInfo() is complete.

Tying it Together
The body of this web page is generated entirely by JavaScript. Because of this, the element
creation and insertion code must execute after the document is loaded. Remember,
parseBookInfo() is called after books.xml is loaded, so the XML DOM object creation
code needs to execute at the page load. Create a function called init() to house the XML
DOM creation code:
function init() {

 var oXmlDom = zXmlDom.createDocument();

 oXmlDom.onreadystatechange = function () {

 if (oXmlDom.readyState == 4) {

 if (oXmlDom.parseError.errorCode == 0) {

 parseBookInfo(oXmlDom);

 } else {

 alert("An Error Occurred: " +
oXmlDom.parseError.reason);

 }

 }

 };

 oXmlDom.load("book.xml");

}

You'll use init() to handle the window.onload event. This will help ensure that the
JavaScript-generated elements are added to the page without causing errors.

This mini application houses itself in an HTML document. All that is required are two
<script/> elements, a <link/> element for the CSS, and the assignment of the onload
event handler:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<htmlxmlns="http://www.w3.org/1999/xhtml" >

<head>

 <title>Book XML Exercise</title>

 <link rel=" stylesheet" type=" text/css" href=" books.css" />

 <script type=" text/javascript" src=" zxml.js"></script>

 <script type=" text/javascript" src=" books.js"></script>

</head>

<body onload=" init()">

</body>

</html>

When you run this code, you will see the result shown in Figure 4-2.

Figure 4-2

XPath Support in Browsers
As XML grew in popularity, the need to access specific pieces of data directly became apparent.
In July 1999, XML Path Language (XPath) was introduced in the Extensible Stylesheet
Language (XSL) specification as a means to find any node within an XML document. XPath
uses a non-XML syntax that closely resembles the path syntax of a file system. The language
consists of location paths and expressions, as well as a few helpful functions to aid in retrieving
specific data.

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig126%5F01%5F0%2Ejpg&image_id=19&previd=IMG_19&titlelabel=Figure+4%2D2%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=434399108#ch04fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch04fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.mysql.org/

Introduction to XPath

An XPath expression consists of two parts: a context node and a selection pattern. The context
node is the context from which the selection pattern begins. Referring to books.xml from the
previous section, consider this XPath expression:
book/author

If this expression were executed at the root level (its context), all <author/> nodes would be
returned because the <book/> element is a child of the document element and contains an
<author/> element. This expression is not very specific, so all <author/> elements are
returned.

What if you want to retrieve only the <book/> element that has a specific ISBN? The XPath
expression would look like this:
book[@isbn='0471777781']

The book part of the expression describes which element to retrieve. Inside of the square
brackets is a condition that this element must match. The @isbn part represents the isbn
attribute (@ being short for attribute). So, this expression reads "find the book elements that
have an isbn attribute of '041777781'."

XPath expressions can also be very complex. Consider the following expression:
book[author[contains(text(),'McPeak')]]

This expression reads, "find the book elements that have author elements whose text contains
the string 'McPeak'." Since this is a more complicated expression, it helps to break it down,
working from the outside towards the inside. Removing all conditions, you have this expression:
book[...]

First, you know that a <book/> element will be returned since it is the outermost element; next
come the conditions. Inside the first set of brackets, you notice the <author/> element:
author[...]

You now know you are looking for a book element with a child <author/> element. However,
the children of the <author/> element need to be checked as well because the expression
doesn't end there:
contains(text(),'McPeak')

The contains() function takes two arguments and returns true if the first string argument
contains the second string argument. The text() function returns all the text in the given
context, so the text contents of the <author/> element are passed as the first argument in
contains(). The second argument passed to contains() is the search text, in this case
'McPeak'.

Important Note that the contains() function, like all XPath functions, is case-

sensitive.

The resulting node set is one <book/> element, because there is only one book with an author
(or coauthor) whose name is McPeak.

As you can see, XPath is a useful language that makes finding specific nodes in XML data
rather simple. It is no wonder Microsoft and Mozilla implemented XPath in their browsers for
client-side use.

http://www.books24x7.com/viewer.asp?bkid=13421&destid=195#195

XPath in IE

Microsoft's implementation of XPath is a part of MSXML 3.0 and later. If you are using any
version of Windows XP, or have IE 6.0 or higher installed, then your computer has this
capability. If not, you will need to download and install the latest MSXML package.

Microsoft chose to implement two methods that select nodes based on XPath expressions. The
first, selectSingleNode(), returns the first node within its context that matches the
expression. For example:
var oFirstAuthor =
oXmlDom.documentElement.selectSingleNode("book/author");

This code returns the first <author/> element that is a child of a <book/> element in the
context of documentElement. The result of this is the following node:
<author>Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett</author>

The second method in Microsoft's XPath implementation is selectNodes(). This method
returns a NodeList, a collection of all nodes that match the pattern in the XPath expression:
var cAuthors = oXmlDom.documentElement.selectNodes("book/author");

As you may have guessed, all <author/> elements with a parent of <book/> in the context of
the document element are returned. If the pattern cannot be matched in the document, a
NodeList is still returned but it has a length of 0. It is a good idea to check the length of a
returned NodeList before attempting to use it:
var cAuthors = oXmlDom.documentElement.selectNodes("book/author");

if (cAuthors.length > 0) {

 //Do something

}

Working with Namespaces

The X in XML stands for eXtensible. There are no predefined elements in an XML document; a
developer created every element in any given XML document. This extensibility is part of what
makes XML so popular, but it also inherently causes a problem: naming conflicts. For example,
consider the following XML document:
<?xml version="1.0" encoding=" utf-8"?>

<addresses>

 <address>

 <number>12345</number>

 <street>Your Street</street>

 <city>Your City</city>

 <state>Your State</state>

 <country>USA</country>

 </address>

</addresses>

There is nothing out of the ordinary in this document. It simply describes an address located in
the USA. But what if the following lines were added:

<?xml version="1.0" encoding=" utf-8"?>

<addresses>

 <address>

 <number>12345</number>

 <street>Your Street</street>

 <city>Your City</city>

 <state>Your State</state>

 <country>USA</country>

 </address>

 <address>

 <ip>127.0.0.1</ip>

 <hostname>localhost</hostname>

 </address>

</addresses>

This document now describes two types of addresses: a physical mailing address and a
computer address. While both addresses are legitimate addresses, handling this information
requires different approaches, especially since both <address/> elements contain completely
different child elements. An XML processor will not distinguish the difference between these two
<address/> elements, so it is up to you to do it. This is where namespaces come into play.

Namespaces consists of two parts: a namespaceURI and a prefix. The namespaceURI
identifies the namespace. Generally, namespaceURIs are web site URLs, because they must
be unique to access different web sites. The prefix is a local name in the XML document for the
namespace. Every tag name in the namespace uses the namespace prefix. The syntax of
namespace declarations are as follows:
xmlns:namespace-prefix=" namespaceURI"

The xmlns keyword tells the XML parser that a namespace declaration is taking place. The
namespaceprefix is the local name used in the elements that fall under this namespace, and
namespaceURI is the universal resource locator that the prefix represents.

Namespace declarations must appear before the namespace is used in the XML document. In
the example, the root element contains the namespaces declarations:
<?xml version="1.0" encoding=" utf-8"?>

<addresses xmlns:mail="http://www.wrox.com/mail"

 xmlns:comp="http://www.wrox.com/computer">

 <mail:address>

 <mail:number>12345</mail:number>

 <mail:street>Your Street</mail:street>

 <mail:city>Your City</mail:city>

 <mail:state>Your State</mail:state>

 <mail:country>USA</mail:country>

 </mail:address>

http://www.wrox.com/mail
http://www.wrox.com/computer

 <comp:address>

 <comp:ip>127.0.0.1</comp:ip>

 <comp:hostname>localhost</comp:hostname>

 </comp:address>

</addresses>

This newly edited XML document defines two namespaces: one with the prefix mail to
represent a mailing address, and the other with a prefix of comp to represent a computer
address. Probably the first thing you noticed was the usage of the prefixes. Every element
associated with a certain address type is associated with the corresponding namespace, so
every element associated as a mailing address has the mail prefix while every computer-
based address has the comp prefix.

The use of namespaces avoids naming conflicts, and XML processors now understand the
difference between the two address types.

Namespaces in XPath add a slight complication when using selectSingleNode() and
selectNodes(). Consider the following modified version of books.xml:
<?xml version="1.0" encoding=" utf-8"?>

<bookList xmlns="http://site1.com" xmlns:pub="http://site2.com">

 <book isbn="0471777781">

 <title>Professional Ajax</title>

 <author>Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett</author>

 <pub:name>Wrox</pub:name>

 </book>

 <book isbn="0764579088">

 <title>Professional JavaScript for Web Developers</title>

 <author>Nicholas C. Zakas</author>

 <pub:name>Wrox</pub:name>

 </book>

 <book isbn="0764557599">

 <title>Professional C#</title>

 <author>Simon Robinson, et al</author>

 <pub:name>Wrox</pub:name>

 </book>

 <book isbn="1861006314">

 <title>GDI+ Programming: Creating Custom Controls Using
C#</title>

 <author>Eric White</author>

http://site1.com/
http://site2.com/

 <pub:name>Wrox</pub:name>

 </book>

 <book isbn="1861002025">

 <title>Professional Visual Basic 6 Databases</title>

 <author>Charles Williams</author>

 <pub:name>Wrox</pub:name>

 </book>

</bookList>

This newly revised document has two namespaces in use: the default namespace specified by
xmlns="http://site1.com", followed by the pub namespace specified as
xmlns:pub="http://site2.com". A default namespace does not have a prefix; therefore,
all nonprefixed elements in the document use the default namespace. Notice that the
<publisher/> elements are replaced by <pub:name/> elements.

When dealing with an XML document that contains namespaces, these namespaces must be
declared in order to use XPath expressions. The MSXML DOM document exposes a method
called setProperty() which is used to set second-level properties for the object. The specific
property SelectionNamespaces should be set with an alias namespace for any default or
external namespace. Aside from using the setProperty() method, namespace declarations
are assigned just as they are in XML documents:
var sNameSpace = "xmlns:na='http://site1.com'
xmlns:pub='http://site2.com'";

oXmlDom.setProperty("SelectionNamespaces", sNameSpace);

The namespaces na and pub represent the namespaces used in the XML document. Notice
that the namespace prefix na is defined for the default namespace. MSXML will not recognize a
default namespace when selecting nodes with XPath, so the declaration of an alias prefix is
necessary. Now that the SelectionNamespace property is set, you can select nodes within
the document:
var oRoot = oXmlDom.documentElement;

var sXPath = "na:book/pub:name";

var cPublishers = oRoot.selectNodes(sXPath);

if (cPublishers.length > 0) {

 alert(cPublishers.length + " <pub:name/> elements found with "+
sXPath);

}

The XPath expression uses the namespaces specified in the SelectionNamespaces property
and selects all <pub:name/> elements. In the case of this example, a NodeList consisting of
five elements is returned, which you can then use.

XPath in Firefox

The Firefox XPath implementation follows the DOM standard, which is quite different from the IE
implementation. The Firefox implementation allows XPath expressions to be run against HTML

http://site1.com/
http://site2.com/
http://site1.com/
http://site2.com/

and XML documents alike. At the center of this are two primary objects: XPathEvaluator and
XPathResult.

The XPathEvaluator class evaluates a given XPath expression using the evaluate()
method, which takes five arguments: the XPath expression string to be evaluated, the context
node that the expression should be run against, a namespace resolver (which is a function that
will handle the namespaces in the expression), the result type you want (ten different result
types are available), and an XPathResult object to contain the results (if this argument is
null, then a new XPathResult object is returned).

Before moving on, it's important to understand the various result types that can be returned from
evaluate(). These are:

 XPathResult.ANY_TYPE, which returns no specific type. The method returns the
type that naturally results from the evaluation of the expression.

 XPathResult.ANY_UNORDERED_NODE_TYPE, which returns a node set of one node
that is accessed through the singleNodeValue property; null is returned if there are no
matching nodes. The returned node may or may not be the first occurring node.

 XPathResult.BOOLEAN_TYPE, which returns a Boolean value.
 XPathResult.FIRST_ORDERED_NODE_TYPE, which returns a node set consisting of

one node. This node is accessed with the singleNodeValue property of the
XPathResult class. The node returned is the first occurring one in the document.

 XPathResult.NUMBER_TYPE, which returns a number value.
 XPathResult.ORDERED_NODE_ITERATOR_TYPE, which returns a document-ordered

node set that can be iterated through using the iterateNext() method; therefore, you
can easily access each individual node in the set.

 XPathResult.ORDERED_NODE_SNAPSHOT_TYPE, which returns a document-ordered
node set that is a snapshot of the result set. Any modifications made to the nodes in the
document do not affect the retrieved results.

 XPathResult.STRING_TYPE, which returns a string value.
 XPathResult.UNORDERED_NODE_ITERATOR_TYPE, which returns a node set that

can be iterated through; however, the results may or may not be in the same order as they
appear in the document.

 XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE, which returns an unordered
snapshot node set. Any modifications made to the nodes in the document do not affect the
result set.

The most common result type is XPathResult.ORDERED_NODE_ITERATOR_TYPE:
var oEvaluator = new XPathEvaluator();

var sXPath = "book/author";

var oResult = oEvaluator.evaluate(sXPath,oXmlDom.documentElement,null,

 XPathResult.ORDERED_NODE_ITERATOR_TYPE, null);

var aNodes = new Array;

if (oResult != null) {

 var oElement;

 while (oElement = oResult.iterateNext()) {

 aNodes.push(oElement);

 }

}

In this code, an XPathEvaluator object is created and used to evaluate the XPath expression
book/author in the context of the document's root element. Because the result type is
ORDERED_NOE_ITERATOR_TYPE, the evaluation returns a node set that you can iterate
through using the iterateNext().

The iterateNext() method resembles the nextSibling property of a DOM node in that it
selects the next node in the result set and returns null when the end of the result set is
reached. This function enables you to use it in a while loop as in the previous example; as
long as oElement is not null, it is added to the aNodes array through the push() method.
Populating an array gives you IE-like functionality; therefore, you can use it in a for loop or
access separate array elements easily.

Working with Namespace Resolver

In the syntax of the evaluate() method, you saw a reference to a namespace resolver. A
namespace resolver is a function that resolves any namespace prefixes appearing in the XPath
expression to a namespace URI. The namespace resolver function can be named any name
you want, but it requires that a string argument be accepted (which is the prefix to check).

The resolver checks for the prefix provided by the argument and should return the namespace
URI associated with it. To use the values from the IE example, you can write the following
resolver:
function nsResolver(sPrefix) {

 switch (sPrefix) {

 case "na":

 return "http://site1.com";

 break;

 case "pub":

 return "http://site2.com";

 break;

 default:

 return null;

 break;

 }

}

With the resolver written, you can use the following XPath expression on the modified
books.xml document from the IE namespace example:
var sXPath = "na:book/pub:name";

var oEvaluator = new XPathEvaluator();

var oResult =
oEvaluator.evaluate(sXPath,oXmlDom.documentElement,nsResolver,

 XPathResult.ORDERED_NODE_ITERATOR_TYPE, null);

var aNodes = new Array;

if (oResult != null) {

http://site1.com/
http://site2.com/

 var oElement;

 while (oElement = oResult.iterateNext()) {

 aNodes.push(oElement);

 }

}

This example resembles the last evaluation code. However, notice the addition to the
evaluate() method: the pointer to the nsResolver() function, written earlier, is passed to
the evaluate() method to handle the namespaces in the XPath expression. The remainder of
the code should look familiar to you. The resulting NodeList is converted to an array by using
the iterateNext() method of the XPathResult class to iterate through the result.

As you can see, the Firefox XPath implementation is quite different from the Microsoft
approach; so it is helpful to use a cross-browser library that enables you to perform XPath
evaluations easily.

Cross-Browser XPath

The zXml library created by the authors provides cross-browser XPath functionality through a
common interface. The object responsible for providing XPath functionality is zXPath, which
has two methods.

The first method is selectSingleNode(). This method, like the IE method of the same name,
returns the first node that matches a pattern. Unlike the IE implementation, this method accepts
three arguments: the context node, the XPath expression string, and a string containing the
namespace declarations. The namespace string should be in the following format:
"xmlns:na='http://site1.com' xmlns:pub='http://site2.com'

 xmlns:ns='http://site3.com'"

If you are not working with namespaces, then the first two arguments of
selectSingleNode() are the only required arguments.

The returned result of selectSingleNode() is the selected XML node, or null if a match
cannot be found. If the browser does not support XPath, an error is thrown stating that the
browser does not have an XPath engine installed. The following example evaluates an XPath
expression against the document element:
var oRoot = oXmlDom.documentElement;

var oNode = zXPath.selectSingleNode(oRoot, "book/author", null);

if (oNode) {

 alert(oNode.xml);

}

This example searches for the first <author/> element contained in a <book/> element in the
context of the document root. If found, the serialized form of the XML data is displayed to the
user in an alert box.

The second method of zXPath is selectNodes(), which returns a node set much like the IE
selectNodes() method. The syntax closely resembles that of the selectSingleNode()
method above, and the arguments are exactly the same, and the same namespace rules apply.
Also like selectSingleNode() an error is thrown in the event the browser does not have an
XPath engine installed. The next example demonstrates the selectNodes() method:

http://site1.com/
http://site2.com/
http://site3.com/

var sNameSpace = "xmlns:na='http://site1.com'
xmlns:pub='http://site2.com'";

var oRoot = oXmlDom.documentElement;

var sXPath = "na:book/pub:name";

var oNodes = zXPath.selectNodes(oRoot, sXPath, sNameSpace);

if (oNodes.length > 0) {

 alert(oNodes.length);

}

This example, much like the selectSingleNode() example, searches for all author elements
of a document that incorporates namespaces. If the result set has a length greater than 0, the
length of the result is displayed to the user.

XPath is a powerful tool to navigate through and select certain nodes in an XML document,
although it was never intended to be used as a standalone tool. Instead, it was created for use
in XSL Transformations.

XSL Transformation Support in Browsers
Extensible Stylesheet Language (XSL) is a family of languages that are designed to transform
XML data. XSL refers to three main languages: XSL Transformations (XSLT), which is a
language that transforms XML documents into other XML documents; XPath, which was
discussed in the previous section; and XSL Formatting Objects (XSL-FO), which describes how
the transformed data should be rendered when presented. Since no browser currently supports
XSL-FO, any transformations must be accomplished through the use of XSLT.

Introduction to XSLT

XSLT is an XML-based language designed to transform an XML document into another data
form. This definition may make XSLT to be a not-so-useful technology, but the truth is far from
the matter. The most popular use of XSLT is to transform XML documents into HTML
documents, which is precisely what this introduction covers.

XSLT documents are nothing more than specialized XML documents, so they must conform to
the same rules as all XML documents: they must contain an XML declaration, they must have a
single root element, and they must be well formed.

As an example, you'll once again be using books.xml. The information contained in this file
can be transformed into HTML using XSLT, without the need to build the DOM structure
manually. For starters, you need an XSLT document, books.xsl, which begins with an XML
declaration and a root element:
<?xml version="1.0" encoding=" UTF-8" ?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html" omit-xml-declaration="yes" indent="yes" />

</xsl:stylesheet>

http://site1.com/
http://site2.com/
http://www.books24x7.com/viewer.asp?bkid=13421&destid=237#237
http://www.w3.org/1999/XSL/Transform

The document element of an XSLT document is <xsl:stylesheet/>. In this element, the
XSL version is specified, and the xsl namespace is declared. This required information
determines the behavior of the XSLT processor; without it, an error will be thrown. The xsl
prefix is also important, as this allows all XSL directives to be visibly and logically separate from
other code in the document.

The <xsl:output/> element defines the format of the resulting output. In this example, the
resulting transformation results in HTML data, with the XML declaration omitted, and the
elements indented. You can specify the format to be plain text, XML, or HTML data.

Just like any application, a transformation must have an entry point. XSLT is a template-based
language, and the processor works on an XML document by matching template rules. In this
example, the first element to match is the root of the XML document. This is done by using the
<xsl:template/> directive. Directives tell the processor to execute a specific function. The
<xsl:template/> directive creates a template that is used when the pattern in the match
attribute is matched:
<?xml version="1.0" encoding="UTF-8" ?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html>

 <head>

 <link rel="stylesheet" type="text/css" href="books.css" />

 <title>XSL Transformations</title>

 </head>

 <body>

 <xsl:apply-templates />

 </body>

</html>

</xsl:template>

</xsl:stylesheet>

The match attribute takes an XPath expression as its value to select the proper XML node. In
this case, it is the root element of books.xml (the XPath expression / always selects the
document element). Inside of the template, you'll notice HTML elements. These elements are a
part of the transformation's output. Inside of the <body/> element, another XSL directive is
found. The <xsl:apply-templates /> element tells the processor to start parsing all
templates within the context of the document element, which brings the next template into play:
<?xml version="1.0" encoding="UTF-8" ?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html" omit-xml-declaration="yes" indent="yes" />

<xsl:template match="/">

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

<html>

 <head>

 <link rel="stylesheet" type="text/css" href="books.css" />

 <title>XSL Transformations</title>

 </head>

 <body>

 <xsl:apply-templates />

 </body>

</html>

</xsl:template>

<xsl:template match="book">

 <div class="bookContainer">

 <xsl:variable name="varIsbn" select="@isbn" />

 <xsl:variable name="varTitle" select="title" />

 <img class="bookCover" alt="{$varTitle}" src="{$varIsbn}.png"
/>

 <div class="bookContent">

 <h3><xsl:value-of select="$varTitle" /></h3>

 Written by: <xsl:value-of select="author" />

 ISBN #<xsl:value-of select="$varIsbn" />

 <div class="bookPublisher"><xsl:value-of
select="publisher" /></div>

 </div>

 </div>

</xsl:template>

</xsl:stylesheet>

This new template matches all <book/> elements, so when the processor reaches each
<book/> in the XML document, this template is used. The first two XSL directives in this
template are <xsl:variable/>, which define variables.

Variables in XSL are primarily used in XPath expressions or attributes (where elements cannot
be used without breaking XML syntax). The <xsl:variable/> element has two attributes:
name and select. As you may have guessed, the name attribute sets the name of the variable.
The select attribute specifies an XPath expression and stores the matching value in the
variable. After the initial declaration, variables are referenced to with the $ sign (so the variable
defined as varIsbn is later referenced as $varIsbn).

The first variable, $varIsbn, is assigned the value of the <book/> element's isbn attribute.
The second, $varTitle, is assigned the value of the <title/> element. These two pieces of
information are used in the attributes of the HTML element. To output variables in
attributes, you surround the variable name in braces:

Without the braces, the output would use the string literals "$varTitle" and "$varIsbn"
instead.

Important Using variables in attributes of XSL directives, like select, are the

exception to this rule. Using curly braces in these types of attributes will
cause an error, and the document transformation will fail.

The remainder of XSL directives in this example are <xsl:value-of/> elements. These
elements retrieve the value of the matched variable or node according to the select attribute.
The select attribute behaves in the same way as the select attributes of
<xsl:variable/> do: they take an XPath expression and select the node or variable that
matches that expression. The first instance of <xsl:value-of/> in this template references
the $varTitle variable (notice the lack of braces), so the value of the variable is used. Next,
the value of the <author/> element is used; the same with $varTitle and <publisher/>.

In order for an XML document to transform in the browser, it must have a stylesheet specified.
In books.xml, add the following line immediately after the XML declaration:
<?xml-stylesheet type="text/xsl" href="books.xsl"?>

This tells the XML processor to apply the stylesheet books.xsl to this document. Viewing this
modified XML document in a web browser will no longer show the XML structure, but it will show
the resulting transformation to HTML. However, using this directive won't work through
JavaScript. For that, you'll need to use some special objects.

XSLT in IE

There are two ways to transform an XML document in IE, both of which require the use of
MSXML. Starting with version 3.0, MSXML has full support for XSLT 1.0. If you don't have
Windows XP or IE 6, it is time to upgrade. You can find the latest MSXML downloads at
http://msdn.microsoft.com/XML/XMLDownloads/.

The first and easiest method loads both the XML and XSLT documents into separate XML DOM
objects:
var oXmlDom = zXmlDom.createDocument();

var oXslDom = zXmlDom.createDocument();

oXmlDom.async = false;

oXslDom.async = false;

oXmlDom.load("books.xml");

oXslDom.load("books.xsl");

When both documents are loaded, you call the transformNode() method to start the
transformation:
var sResults = oXmlDom.transformNode(oXslDom);

The transformNode() method takes an XML DOM object as an argument (in this case, the
XSL document) and returns the transformed data as a string. But you don't have to call
transformNode() at the document level; it can be called from any element in the XML
document:
var sResults =
oXmlDom.documentElement.firstChild.transformNode(oXslDom);

The transformNode() method will transform only the element it was called from and its
children. In this example, the first <book/> element is transformed, as shown in Figure 4-3.

http://msdn.microsoft.com/XML/XMLDownloads/
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=923967979#ch04fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch04fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

This is because you transformed only one node by calling transformNode() on an element
with no children.

Figure 4-3

The second method of transformations in IE is a bit more involved, but it also gives you more
control and features. This process involves creating multiple objects in the MSXML library. The
first step in this somewhat lengthy process is to create a thread-safe XML DOM object, which
the XSL stylesheet is loaded into:
var oXmlDom = zXmlDom.createDocument();

oXmlDom.async = false;

oXmlDom.load("books.xml");

var oXslDom = new ActiveXObject("Msxml2.FreeThreadedDOMDocument.3.0");

oXslDom.async = false;

oXslDom.load("books.xsl");

The FreeThreadedDOMDocument class is yet another ActiveX class and a part of the MSXML
library. You must use the FreeThreadedDomDocument class to create XSLTemplate objects,
which this example does (the next example shows the creation of a XSLTemplate object). In
early versions of MSXML, every call to the transformNode() method forced a recompile of
the XSL stylesheet slowing the transformation process considerably. With a
FreeThreadedDOMDocument, the compiled stylesheet is cached and ready to use until it's
removed from memory.

After the XML DOM object creation, you must create another ActiveX object, an XSL template:
var oXslTemplate = new ActiveXObject("Msxml2.XSLTemplate.3.0");

oXslTemplate.stylesheet = oXslDom;

The XSLTemplate class is used to cache XSL stylesheets and create an XSLProcessor; so
after the template is created, the XSL document is assigned to the XSLTemplate class's
stylesheet property, which caches and loads the XSL stylesheet.

The next step in this process is to create an XSLProcessor, which is created by calling the
createProcessor() method of the XSLTemplate class:
var oXslProcessor = oXslTemplate.createProcessor();

oXslProcessor.input = oXmlDom;

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig139%5F01%5F0%2Ejpg&image_id=20&previd=IMG_20&titlelabel=Figure+4%2D3%3A+

After creation of the processor, its input property is assigned oXmlDom, the XML DOM object
containing the XML document to transform. At this point, everything the processor requires is in
place, so all that remains is the actual transformation and the retrieval of the output:
oXslProcessor.transform();

document.body.innerHTML = oXslProcessor.output;

Unlike transformNodes(), the transform() method does not return the resulting output as
a string. To retrieve the output of the transformation, use the output property of the
XSLProcessor object. This entire process requires much more coding than the
transformNode() method and yields the same result. So why use this process?

MSXML provides a few extra methods that can be used in these transformations. The first is
addObject(). This method adds a JavaScript object to the stylesheet, and can even call
methods and output property values in the transformed document. Consider the following
object:
var oBook = {

 propertyOne : "My Current Books",

 methodOne : function () {

 alert("Welcome to my Book List");

 return "";

 }

};

What if you wanted to use this information in the transformation? Using the addObject()
method, you can pass this information into the XSLT stylesheet passing in two arguments: the
oBook object and a namespace URI to identify it. So, to add this object with a namespace URI
of "http://my-object", you could do the following:
var oXmlDom = zXmlDom.createDocument();

oXmlDom.async = false;

oXmlDom.load("books.xml");

var oXslDom = new ActiveXObject("Msxml2.FreeThreadedDOMDocument.3.0");

oXslDom.async = false;

oXslDom.load("books.xsl");

var oXslTemplate = new ActiveXObject("Msxml2.XSLTemplate.3.0");

oXslTemplate.stylesheet = oXslDom;

var oXslProcessor = oXslTemplate.createProcessor();

oXslProcessor.input = oXmlDom;

oXslProcessor.addObject(oBook, "http://my-object");

oXslProcessor.transform();

document.body.innerHTML = oXslProcessor.output;

The oBook object is now passed to the XSLProcessor, meaning that the XSLT stylesheet can
use it. Now the XSL document must be changed to look for this object and use its information.
The first requirement is to add a new namespace to the root element, <xsl:stylesheet/>.
This namespace will match the one used in addObject():
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:bookObj="http://my-object">

The prefix bookObj will be used to access this information. Now that the namespace and prefix
are ready to go, some <xsl:value-of/> elements should be added to the document to
retrieve the object's members:
<xsl:template match="/">

<html>

 <head>

 <link rel="stylesheet" type="text/css" href="books.css" />

 </head>

 <body>

 <xsl:value-of select="bookObj:methodOne()" />

 <div align="center">

 <xsl:value-of select="bookObj:get-propertyOne()" />

 </div>

 <xsl:apply-templates />

 </body>

</html>

</xsl:template>

Remember that the <xsl:value-of/> XSL directive retrieves the value of an element, or in
this case, an object. The first <xsl:value-of/> directive retrieves (or calls) methodOne(),
which sends an alert welcoming the user to the page. The second <xsl:value-of/> directive
is similar to the first, except that it retrieves the value of the propertyOne property of the
oBook object. When the transformed output is displayed in the browser, the user will see the
phrase My Current Books at the top of the page.

Important When using an object in transformations, all properties and methods

must return a value that the XSLProcessor can understand. String,
number, and Boolean values all work as expected; returning any other
value will throw a JavaScript error when the transformation executes.

The next useful feature of the XSLProcessor is the addParameter() method. Unlike
sending an object into a transformation, parameters are a standard part of XSLT. Parameters
are passed to the XSL stylesheet and used as variables. To specify a parameter, pass the
name and its value, like this:
var oXslProcessor = oXslTemplate.createProcessor();

oXslProcessor.input = oXmlDom;

oXslProcessor.addParameter("message", "My Book List");

http://www.w3.org/1999/XSL/Transform

This code adds the "message" parameter to the XSLProcessor. When the XSL
transformation executes, the processor uses the value of the parameter, "My Book List",
and places it in the according location. Parameters in XSL use the <xsl:param/> directive:
<xsl:param name="message" />

Notice that the name attribute matches the name passed in addParameter(). This parameter
receives the value "My Book List" which is retrieved using the variable syntax you learned
earlier:
<xsl:value-of select="$message" />

In this example, the <xsl:value-of/> directive retrieves the parameters value. The updated
XSL stylesheet would look like this:
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:param name="message" />

<xsl:template match="/">

<html>

 <head>

 <link rel="stylesheet" type="text/css" href="books.css" />

 </head>

 <body>

 <xsl:value-of select="$message" />

 <xsl:apply-templates />

 </body>

</html>

</xsl:template>

The updated stylesheet adds two new lines of code. The first is the addition of the
<xsl:param/> directive, and the second is the <xsl:value-of/> directive that retrieves the
value of the parameter. Parameter declarations can exist anywhere in the XSL document. This
code shows the parameter declaration at the top of the document, but you are not limited to this
location.

One final feature of using an XSLProcessor is its speed; it compiles the XSL stylesheet, so
subsequent transformations using the same stylesheet result in faster transformations
(compared to using transformNodes()). To do this, use the reset() method of the
XSLProcessor object. This method clears the input and output properties but not the
stylesheet property. This readies the processor for the next transformation with the same
stylesheet.

http://www.w3.org/1999/XSL/Transform

XSLT in Firefox

Like XML and XPath, the Firefox implementation of XSLT transformations varies from the IE
implementation. Firefox does implement an XSLTProcessor class to perform transformations,
but the similarities end there.

The first step in performing a transformation in Firefox is to load the XML and XSL documents
into a DOM object:
var oXmlDom = zXmlDom.createDocument();

var oXslDom = zXmlDom.createDocument();

oXmlDom.async = false;

oXslDom.async = false;

oXmlDom.load("books.xml");

oXslDom.load("books.xsl");

The XSLTProcessor class exposes the importStylesheet() method, which takes an XML
DOM object containing the XSLT document as an argument:
var oXsltProcessor = new XSLTProcessor();

oXsltProcessor.importStylesheet(oXslDom);

Last, the transformation methods are called. There are two of these methods:
transformToDocument() and transformToFragment(). The
transformToDocument() method takes an XML DOM object as an argument and returns a
new XML DOM document containing the transformation. Normally, this is the method you want
to use:
var oNewDom = oXsltProcessor.transformToDocument(oXmlDom);

The resulting DOM object can be used like any other XML DOM object. You can select certain
nodes with XPath, traverse the node structure with properties and methods, or even use it in
another transformation.

The transformToFragment() method returns a document fragment, as its name suggests,
to append to another DOM document. This method takes two arguments: the first is the XML
DOM object you want to transform, and the second is the DOM object you intend to append the
result to:
var oFragment = oXsltProcessor.transformToFragment(oXmlDom, document);

document.body.appendChild(oFragment);

In this example, the resulting document fragment is appended to the body of the document
object. Note that you can append the resulting fragment to any node within the DOM object
passed to the transformToFragment() method.

But what if you wanted a string returned as the result of transformation like the
transformNode() method implemented by Microsoft? You could use the XMLSerializer
class you learned of earlier. Just pass the transformation result to the serializeToString()
method:
var oSerializer = new XMLSerializer();

var str = oSerializer.serializeToString(oNewDom);

If using the zXml library, this is simplified by using the xml property:
var str = oFragment.xml;

The XSLTProcessor class also enables you to set parameters to pass to the XSL stylesheet.
The setParameter() method facilitates this functionality; it accepts three arguments: the
namespace URI, the parameter name, and the value to assign the parameter. For example:
oXsltProcessor.importStylesheet(oXslDom);

oXsltProcessor.setParameter(null, "message", "My Book List");

var oNewDom = oXsltProcessor.transformToDocument(oXmlDom);

In this example, the parameter message is assigned the value "My Book List". The value of
null is passed for the namespace URI, which allows the parameter to be used without having
to specify a prefix and corresponding namespace URI in the stylesheet:
<xsl:param name=" message" />

The setParameter() method must be called before the calling of
transformToDocument() or transformToFragment(), or else the parameter value will
not be used in the transformation.

Cross-Browser XSLT

In the previous sections, you've seen how the zXml library makes handling XML data across
both main platforms easier. Now you will use the library to perform XSLT transformations. There
is only one method for XSLT in the library: transformToText(). This method, which returns
text from a transformation, takes two arguments: the XML document to transform and the XSL
document:
var sResult = zXslt.transformToText(oXmlDom, oXslDom);

As the name of the method suggests, the returned result is a string. You can then add the result
of the transformation (sResult) to an HTML document:
var oDiv = document.getElementById("transformedData");

oDiv.innerHTML = sResult;

This is perhaps the simplest object in the zXml library.

Best Picks Revisited

Imagine once again that you run an online bookstore. Your visitors like the Best Picks feature
you implemented, but you start to receive feedback that they want the picks of the previous
week as well. You decide to roll with an Ajax solution.

Using XMLHttp, the browser retrieves the book list and the request's responseText is loaded
into an XML DOM object. The stylesheet also is loaded into its own XML DOM object, and the
XML data from the book list is transformed into HTML, which is then written to the page. To
provide some usability, you provide a link in the upper right-hand corner to change from one list
to another.

The first step in this solution is to retrieve the XML file with XMLHttp. This is the beginning of the
code and the entry point for the mini application, so you'll encapsulate the code in a function
called init():
function init(sFilename) {

 var oReq = zXmlHttp.createRequest();

 oReq.onreadystatechange = function () {

 if (oReq.readyState == 4) {

 // only if "OK"

 if (oReq.status == 200) {

 transformXml(oReq.responseText);

 }

 }

 };

 oReq.open("GET", sFilename, true);

 oReq.send();

}

The init() function accepts one argument: the file name of the XML file to load. For cross-
browser compatibility (not to mention easier coding for you) you create an XMLHttp object using
the zXml library. This is an asynchronous request, so the readyState property must be
checked using the onreadystatechange event handler. When the request returns as OK, the
responseText is sent to the transformXml() function:
function transformXml(sResponseText) {

 var oXmlDom = zXmlDom.createDocument();

 oXmlDom.async = false;

 oXmlDom.loadXML(sResponseText);

 var oXslDom = zXmlDom.createDocument();

 oXslDom.async = false;

 oXslDom.load("books.xsl");

 var str = zXslt.transformToText(oXmlDom,oXslDom);

 document.getElementById("divBookList").innerHTML = str;

}

Calling transformXml() loads the passed response text into an XML DOM object using the
loadXML() method. The XSL stylesheet is also loaded, and both objects are passed to the
transformToText() method in the zXml library. The transformation's result, a string, is then
added to an element in the document via the innerHTML property. As a result of this function,
this week's book list is visible to the user.

A good portion of the code is written, but you still lack the list-changing feature. To facilitate this
ability, another function needs writing, but first, the application needs to know what list to load
as the user clicks the link. This is easily handled by Boolean variable called bIsThisWeek.
When this week's book list is loaded, bIsThisWeek becomes true, otherwise it's false.
Since this week's list is already loaded, bIsThisWeek is set to true:
var bIsThisWeek = true;

The link that the user clicks to change the list uses the onclick event, so the next function will
handle that event:
function changeList() {

 var aChanger = document.getElementById("aChanger");

 if (bIsThisWeek) {

 aChanger.innerHTML = "This Week's Picks";

 init("lastweekbooks.xml");

 bIsThisWeek = false;

 } else {

 aChanger.innerHTML = "Last Week's Picks";

 init("thisweekbooks.xml");

 bIsThisWeek = true;

 }

 return false;

}

In this code, the link (aChanger) is retrieved with the getElementById() method. The
variable bIsThisWeek is checked. According to its value, the proper list is loaded by sending
the file name to the init() function. This retrieves the new list, transforms the data, and writes
it to the page. Also, note that the link text changes to cue users of what happens the next time
they click the link. The bIsThisWeek variable also changes so that the correct list is loaded the
next time the user clicks the link. Last, the function returns false. Since this function is an
event handler for a link, returning any other value would cause the link to behave as a link and
could take the user away from the application.

Finally, you can complete the mini application with the HTML, and here is the entire document:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

 <title>Book XML Exercise</title>

 <link rel="stylesheet" type="text/css" href="books.css" />

 <script type="text/javascript" src="zxml.js"></script>

 <script type="text/javascript">

 function init(sFilename) {

 var oReq = zXmlHttp.createRequest();

 oReq.onreadystatechange = function () {

 if (oReq.readyState == 4) {

 // only if "OK"

 if (oReq.status == 200) {

 transformXml(oReq.responseText);

 }

 }

 };

 oReq.open("GET", sFilename, true);

 oReq.send();

 }

 function transformXml(sResponseText) {

 var oXmlDom = zXmlDom.createDocument();

 oXmlDom.async = false;

 oXmlDom.loadXML(sResponseText);

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

 var oXslDom = zXmlDom.createDocument();

 oXslDom.async = false;

 oXslDom.load("books.xsl");

 var str = zXslt.transformToText(oXmlDom,oXslDom);

 document.getElementById("divBookList").innerHTML = str;

 }

 var bIsThisWeek = true;

 function changeList() {

 var aChanger = document.getElementById("aChanger");

 if (bIsThisWeek) {

 aChanger.innerHTML = "This Week's Picks";

 init("lastweekbooks.xml");

 bIsThisWeek = false;

 } else {

 aChanger.innerHTML = "Last Week's Picks";

 init("thisweekbooks.xml");

 bIsThisWeek = true;

 }

 return false;

 }

 </script>

</head>

<body onload=" init('thisweekbooks.xml')">

 Last Week's
Picks

 <div id=" divBookList"></div>

</body>

</html>

To run this mini application, you must run it from a web server because XMLHttp is used. Any
web server software will work fine. Just place this HTML file, the zXml library, and the CSS file
into a directory called booklists on your web server. Then fire up your browser and point it to
http://localhost/booklists/book.htm.

Summary
In this chapter, you learned how to create and traverse the XML DOM objects in both Internet
Explorer and Firefox, as well as the differences between the two browser implementations. You
once again used the cross-browser XML library zXml, which enables you to create, traverse,
and manipulate XML DOM objects easily using a single interface. You also learned how to load
XML data using JavaScript and output it to the page.

In the second section, a brief introduction to XPath showed you the power the language offers
for XML documents. You learned the IE and Firefox ways of supporting XPath and

namespaces, which are quite different from one another. To ease this difficulty, the zXPath
object of the zXml library was introduced, again providing one interface to select desired nodes
easily for both browsers.

Finally, you learned about XSLT transformations, and how to perform them using MSXML and
the Firefox XSLTProcessor class. Although the two interfaces have a few things in common,
another crossbrowser object of the zXml library was introduced to smooth out the wrinkles: the
zXslt object, which allows XSLT transformations to be performed on both platforms with one
method call.

Chapter 5: Syndication with RSS/Atom
The introduction of XML ushered in a new era of sharing information. Previously, data sharing
was difficult at best. Companies often had their own proprietary transmission protocols and data
formats, and neither was available to the public. The idea of transmitting information on a web
site using anything other than HTML was a strange, if unheard of, idea. But this changed in
1998 when Microsoft introduced Internet Explorer 4.0 with a new feature called Active
Channels. Built upon the Microsoft-developed Channel Definition Format (CDF), Active
Channels allowed web site content to be transmitted (or syndicated) to users' desktops using
the bundled Active Desktop. The problem with Active Channels, however, was its poor support
for the everyday user. Anyone could make a channel, but the industry lacked tools to create and
manage CDF files easily. The primary users of Active Channels, big media companies, pushed
users away with excessive ads that increased the amount of bandwidth the channel used.
Additionally, there was little demand or perceived value in using Active Channels. The whole
concept of syndication seemed to have died with Active Channels and the failure of CDF to
reach recommendation status from the World Wide Web Consortium. And then came RSS.

RSS
In March of 1999, Netscape launched the My Netscape portal, a single place for users to visit
for all their news. The idea was simple: to pull information from any number of news sources
and display them on My Netscape. To facilitate this idea, Dan Libby of Netscape
Communications developed RDF Site Summary (RSS), an XML data format based on the
Resource Description Framework (RDF). It would later become known as RSS 0.9.

Shortly after the introduction of RSS 0.9, Dave Winer of Userland Software contacted Libby
regarding the RSS 0.9 format. Winer had developed an XML format to use with his site,
ScriptingNews, and believed that it and RSS 0.9 could be combined and simplified to make a
better, more usable, format. In July of 1999, Libby released a prototype of the new Rich Site
Summary (also RSS), which became RSS 0.91. My Netscape then began using RSS 0.91 and
continued to do so until 2001, when support for external RSS feeds was dropped. Netscape
soon lost interest in RSS and left it without an owner. What would follow splintered the RSS
format into two different versions.

A mailing list of developers and other interested parties formed in order to continue the
development of RSS. This group, called RSS-DEV
(http://groups.yahoo.com/group/rss-dev/), produced a specification called RSS 1.0,
in December 2000. RSS 1.0 was based on the original RDF Site Summary (RSS 0.9) and
sought to extend it by modularizing the original 0.9 version. These modules are namespaces
that can be created by anyone, allowing new functionality to be added without changing the
specification. It's important to note that RSS 1.0 is a descendant of RSS 0.9 but not related to
RSS 0.91.

At the same time, Winer declared himself the owner of RSS and continued to develop his own
version, releasing what he deemed RSS 2.0 (Really Simple Syndication). This new RSS format
was based on RSS 0.91, the version that Winer and Libby developed together. The emphasis
for RSS 2.0 was the simplicity of the format. When Winer ended up working at Harvard, he
assigned ownership of RSS 2.0 to Harvard's Berkman Center for the Internet & Society, which
now manages and publishes the specification at
http://blogs.law.harvard.edu/tech/rss. RSS 2.0 is the most widely used RSS
format today.

Note Today, the term RSS encompasses three different versions of the RSS

format: RSS 0.91, RSS 1.0, and RSS 2.0.

RSS 0.91
RSS 0.91 is based upon Document Type Declarations (DTDs) and was possibly the most
popular RSS version until the release of RSS 2.0. Some statistics show RSS 0.91 capturing 52
percent of the syndication market in 2001, with a steady increase until the introduction of 2.0. It

http://groups.yahoo.com/group/rss-dev/
http://blogs.law.harvard.edu/tech/rss

owes its popularity to its dropdead simplicity. Only a handful of 0.91 feeds are in use today, but
RSS 2.0 owes much of its current success to RSS 0.91.

RSS 0.91's DTD lists 24 elements (14 more than RSS 0.9); it is easily read by humans and
machines alike.

Take a peek at this 0.91 example:
<?xml version="1.0" encoding=" UTF-8" ?>

<!DOCTYPE rss PUBLIC "-//Netscape Communications//DTD RSS 0.91//EN"

 "http://my.netscape.com/publish/formats/rss-0.91.dtd">

<rss version="0.91">

 <channel>

 <title>My Revenge</title>

 <link>http://sithboys.com</link>

 <description>Dedicated to having our revenge</description>

 <item>

 <title>At last!</title>

 <link>http://sithboys.com/atlast.htm</link>

 <description>

 At last we will reveal ourselves to the Jedi. At last
we will have

 our revenge.

 </description>

 </item>

 </channel>

</rss>

A defining feature of RSS 0.91 (and 2.0, for that matter) is the inclusion of all data inside the
<channel/> element. All defining site information, as well as the <item/> elements, are
contained by <channel/>. This is in stark contrast to the next RSS version: RSS 1.0.

RSS 1.0

RSS 1.0 is a departure from the then 0.91 standard and follows the RDF format of 0.9. RSS 1.0
is far more verbose than previous versions, and its extensibility makes it an attractive format,
especially for developers of RDF-based applications.

RSS 1.0, although it maintains some resemblance to RSS 0.91, is structurally different and is
akin to RSS 0.9.
<?xml version="1.0"?>

<rdf:RDF xmlns:rdf=" http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns=" http://purl.org/rss/1.0/">

 <channel rdf:about=" http://sithboys.com/about.htm">

 <title>My Revenge</title>

 <link> http://sithboys.com</link>

http://my.netscape.com/publish/formats/rss-0.91.dtd
http://sithboys.com/
http://sithboys.com/
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://purl.org/rss/1.0/
http://sithboys.com/about.htm
http://sithboys.com/

 <description>

 Dedicated to having our revenge

 </description>

 <image rdf:resource="http://sithboys.com/logo.jpg" />

 <items>

 <rdf:Seq>

 <rdf:li resource="http://sithboys.com/atlast.htm" />

 </rdf:Seq>

 </items>

 <textinput rdf:resource="http://sithboys.com/search/" />

 </channel>

 <image rdf:about="http://sithboys.com/logo.jpg">

 <title>The Logo of the Sith</title>

 <link>http://sithboys.com/</link>

 <url>http://sithboys.com/logo.jpg</url>

 </image>

 <item rdf:about="http://sithboys.com/atlast.htm">

 <title>At last!</title>

 <link>http://sithboys.com/atlast.htm</link>

 <description>

 At last we will reveal ourselves to the Jedi. At last we
will have

 our revenge.

 </description>

 </item>

</rdf:RDF>

Notice that the <item/> elements are outside the <channel/> element. The <items/>
element inside of the <channel/> element contains a list of values, the <rdf:Seq/> element,
of the included items outside of <channel/>. As you can see, it is far more complex than RSS
0.91, and although RSS 1.0 has gained a following, it does not compare to the popularity the
other formats enjoy.

Note RSS 1.0 is not DTD-based like version 0.91, so it is not necessary to have

one in the document.

RSS 2.0
RSS 2.0 almost exactly mirrors RSS 0.91. Version 2.0 brings many new elements to the table,
like the <author/> element in the following example, while allowing modularized extensions
like RSS 1.0. Because of the simplicity inherited from RSS 0.91, and the extensibility similar to
RSS 1.0, it is no wonder that RSS 2.0 is the most used RSS format today.

The following is an example of a basic RSS 2.0 document:
<?xml version="1.0" encoding=" UTF-8" ?>

<rss version="2.0">

http://sithboys.com/logo.jpg
http://sithboys.com/atlast.htm
http://sithboys.com/search/
http://sithboys.com/logo.jpg
http://sithboys.com/
http://sithboys.com/
http://sithboys.com/atlast.htm
http://sithboys.com/

 <channel>

 <title>My Revenge</title>

 <description>Dedicated to having our revenge</description>

 <link>http://sithboys.com</link>

 <item>

 <title>At last!</title>

 <link>http://sithboys.com/atlast.htm</link>

 <author>DarthMaul@sithboys.com</author>

 <description>

 At last we will reveal ourselves to the Jedi. At last
we will have

 our revenge.

 </description>

 </item>

 </channel>

</rss>

RSS 2.0's popularity makes it a sought-after format to support. The application that this chapter
covers supports one RSS format, and it is RSS 2.0.

Atom
Atom is the newest entry to the syndication scene. Since its inception, Atom has received quite
a bit of coverage and usage. Atom, unlike RSS, is a strict specification. One of the problems of
the RSS spec is the lack of information on how a developer handles HTML markup in its
elements. Atom's specification addresses this issue and gives developers strict rules they must
follow, as well as a host of new features, enabling developers to choose the content type of an
element and specify attributes that designate how a specific element should be handled. With
such features, it is no wonder powerhouses like Google and Movable Type are getting behind
Atom.

Atom resembles RSS somewhat; aside from the different element names, the document
structure is also different:
<?xml version="1.0" encoding=" iso-8859-1"?>

<feed version="0.3" xmlns=" http://www.w3.org/2005/Atom" xml:lang="
en">

 <title>My Revenge</title>

 <link rel=" alternate" type=" text/html" href="
http://sithboys.com" />

 <modified>2005-06-30T15:51:21-06:00</modified>

 <tagline>Dedicated to having our revenge</tagline>

 <id>tag:sithboys.com</id>

 <copyright>Copyright (c) 2005</copyright>

 <entry>

 <title>At last!</title>

 <link rel=" alternate" type=" text/html" href="

 http://sithboys.com/atlast.htm" />

http://sithboys.com/
http://sithboys.com/
mailto:DarthMaul@sithboys.com
http://www.w3.org/2005/Atom
http://sithboys.com/
http://sithboys.com/atlast.htm

 <modified>2005-06-30T15:51:21-06:00</modified>

 <issued>2005-06-30T15:51:21-06:00</issued>

 <id>tag:sithboys.com/atlast</id>

 <author>

 <name>Darth Maul</name>

 </author>

 <content type=" text/html" xml:lang=" en" xml:base="
http://sithboys.com">

 At last we will reveal ourselves to the Jedi. At last we
will have

 our revenge.

 </content>

 </entry>

</feed>

FooReader.NET
Syndication with RSS and Atom is about the sharing of information. In order to view information
from several different sources, an application called an aggregator is used to assimilate the
different feeds into one location. An aggregator makes it easier and faster to stay up-to-date
with information collected from around the Web (much easier than visiting several web sites
each day). The rest of this chapter focuses on the design and development of such an
aggregator.

FooReader.NET is a web-based, .NET RSS/Atom aggregator ported from ForgetFoo's
ColdFusion-based FooReader (http://reader.forgetfoo.com/). With many conventional
applications filling the aggregator void, including popular e-mail applications, why build a web-
based RSS/Atom aggregator? Consider the following reasons:

 The Web is cross-platform. Building a web-based aggregator ensures that anyone
with a modern browser can access it.

 The Web is centrally located. One of the problems with conventional aggregators that
are installed on the computer is the upkeep of data in many locations. If you like to read
syndicated feeds at work and at home, you must install an aggregator on each computer
and load it with the appropriate feeds. A web-based aggregator eliminates this problem
because any change made to the feed list is seen regardless of the user's location.

The next sections explain how FooReader.NET is built using Ajax. As with any web application,
there are two main components: client-side and server-side.

Client-Side Components

As described earlier, the client-side components of an Ajax solution are in charge of presenting
the data to the user and communicating with the server. For FooReader.NET, several client-
side components are necessary to manage the overall user experience.

 XParser, the JavaScript class responsible for requesting information and parses it
when the data is received.

 The user interface ties the user to their data. Because the user interface is essentially a
web page, the usual suspects of web browser technologies are used: HTML, CSS, and
JavaScript.

 The JavaScript code that takes the information XParser received and displays it to the
UI.

Note Although JavaScript has no formal definition of classes, it does have the

logical equivalent. To aid in your understanding, this text refers to functions

http://sithboys.com/
http://reader.forgetfoo.com/

that create objects as classes.

XParser

The first component in FooReader.NET is XParser, a JavaScript class that parses RSS and
Atom feeds into JavaScript objects that can be easily used in web applications. The primary
goal of XParser is to provide an interface for developers to easily access the most important
elements. Not only does this save lines of code (not to mention download time), but extra,
unnecessary work for the client as well.

The class-centric .NET Framework primarily inspires its design: with three classes comprising
the main XParser class: XParserItem, XParserElement, and XParserAttribute.

Starting with the simplest class in XParser, XParserAttribute is a representation of an
element's attribute. Attributes tend to have only one desired piece of data: its value, and that is
the only property of XParserAttribute.
function XParserAttribute(oNode) {

 this.value = oNode.nodeValue;

}

The XParserAttribute constructor takes one argument, the DOM attribute node. From this
node, the attribute's value is accessed and stored to the value property by the node's
nodeValue property. Simple, eh?

The XParserElement class represents an XML element and is responsible for accessing and
retrieving the element's value and attributes. The class's constructor accepts two arguments:
the XML element's node and the value of that node.
function XParserElement(oNode,sValue) {

 this.node = oNode || false;

 this.value = sValue || (this.node && this.node.text) || false;

In these first few lines, two of the four class properties are set according to the values of the
parameters. Notice the use of the OR (| |) operator in the assignment.

In the assignment of node, using the OR operator is a shorthand version of the ternary operator
and produces the same results as this.node = (oNode)?oNode:false;. The assignment
of value works more like an if…else if block.
if (sValue) {

 this.value = sValue;

}else if (this.node && this.node.text) {

 this.value = this.node.text;

} else {

 this.value = false;

}

The shorthand version removes over half of the characters of the if...else if block, and
cutting excess characters is always good.

Note There is no text property for an element in the Firefox DOM. To gain this

functionality, XParser uses the zXml library introduced in previous chapters,
which extends the Firefox DOM to include the text and xml properties.

The next few lines build the attributes collection, a collection of XParserAttribute
objects.

if (this.node) {

 this.attributes = [];

 var oAtts = this.node.attributes;

 for (var i = 0; i < oAtts.length; i++) {

 this.attributes[i] = new XParserAttribute(oAtts[i]);

 this.attributes[oAtts[i].nodeName] = new

 XParserAttribute(oAtts[i]);

 }

} else {

 this.attributes = false;

}

this.isNull = (!this.node && !this.value && !this.attributes);

The existence of the node is checked first. (There's no sense in creating a collection of
attributes of a node that doesn't exist.) Then an array is created, and the element's attributes
are collected through the DOM property attributes. Using a for loop, the attribute node is
used in the creation of XParserAttribute objects; one using an integer key, and one using
the attribute's name as a key that is retrieved with the nodeName property. The latter is to allow
easy access to specific attributes where the name of the attribute is known.

If the element's node does not exist, attributes is set to false. (You can't divide by 0, and
you can't get attributes from a node that doesn't exist.) Last, isNull is assigned. The isNull
property enables you to check if the resulting object is null or not. If the node, value, and
attributes properties are all false, then the XParserElement object is considered to be
null.

The XParserItem class represents an <rss:item/> or an <atom:entry/> element (from
now on, these elements will be referred to as simply items). Items consist of several elements,
so naturally there will be quite a bit of parsing. The XParserItem constructor takes one
argument called itemNode, which represents the item's DOM node.
function XParserItem(itemNode) {

 this.title=this.link=this.author=this.description=this.date =

 new XParserElement();

This first line of this class is important. Even though RSS and Atom are standards, it does not
necessarily mean that everyone follows the given standards. An RSS feed may leave out the
<author/> element in one or all items, or an Atom feed may disregard the <content/> tag in
favor of the <summary/> tag. Because of these discrepancies, it is important that the
XParserItem properties have a default value in order to avoid errors down the road. This
default value is a null XParserElement. Now it is time to start parsing the child elements.
for (var i = 0; i < itemNode.childNodes.length; i++) {

 var oNode = itemNode.childNodes[i];

 if (oNode.nodeType == 1) {

 switch (oNode.tagName.toLowerCase()) {

To begin, a for loop cycles through the child elements. The node's type is then checked; if
nodeType is 1, then the current node is an element. Checking a node's type may seem like an
odd thing to do, but it is necessary. Mozilla can count white space between elements as
children; therefore, checking the nodeType avoids errors when the node is sent to
XParserElement. When it is confirmed that the current node is indeed an element, the tag

name is used in a switch…case block and the item's properties are assigned according to
their tag name counterparts.
//Shared Tags

case "title":

 this.title = new XParserElement(oNode);

break;

case "link":

 if (oNode.getAttribute("href")) {

 this.link = new
XParserElement(oNode,oNode.getAttribute("href"));

 } else {

 this.link = new XParserElement(oNode);

 }

break;

case "author":

 this.author = new XParserElement(oNode);

break;

Although different in many ways, RSS and Atom do have a few elements in common. In this
code these like elements are the <title/>, <link/>, and <author/> elements. The only
difference is in the <link/> element; in an Atom feed the desired value is located in the href
attribute. The RSS value is simply the element's value.
//RSS Tags

case "description":

 this.description = new XParserElement(oNode);

break;

case "pubdate":

 this.date = new XParserElement(oNode);

break;

Following the shared elements are the RSS-specific elements, where the <description/>
and <pub-date /> elements are matched and sent to XParserElement.
//Atom Tags

case "content":

 this.description = new XParserElement(oNode);

break;

case "issued":

 this.date = new XParserElement(oNode);

break;

In this code, the Atom-specific elements <content/> and <issued/> are matched. The last
elements checked are extensions:
//Extensions

case "dc:date":

 this.date = new XParserElement(oNode);

break;

default:

break;

This code checks for the <dc:date/> element, a part of the Dublin Core extension
(http://dublincore.org/documents/dcmi-terms/). This extension is widely used, so it
is a good idea to check for it and use its value.

If for some reason a feed does not have an element in the switch block, the property
representing the element defaults to a blank XParserElement object (from the first line of the
XParserItem class). Because XParser is a JavaScript class, not every element needs to be
parsed. However, the use of switch easily allows for the addition of other elements, if needed.

The XParser class is the main class that encompasses all the previous classes discussed. Its
constructor accepts an argument sFileName and an optional argument called bIsXml. For
maximum flexibility, XParser is designed either to make its own XMLHttp requests or to have
the responseText of an external request passed to the constructor. If bIsXml is false or
undefined, then sFileName is treated as a URL and XParser will make its own request;
otherwise, sFileName is treated as an XML string and will be loaded into an XML DOM object.
var oThis = this;

this.title=this.link=this.description=this.copyright=this.generator=
this.modified=

 this.author = new XParserElement();

this.onload = null;

It may seem strange to assign a variable to contain the object's reference, but this technique
comes in handy when dealing with the onreadystatechange() event handler of an XMLHttp
object, which will be seen later. The next line of code is similar in idea and function to the first
line in XParserItem. It sets the object's properties that represent important elements with a
default value. The following line declares onload, an event handler, which fires when the feed
is completely loaded.

XParser's load() method is called when the XML data is retrieved. When XML is passed to
the constructor, the load() method is immediately called and the XML data contained in
sFileName is passed to the method.
if (bIsXml) {

 this.load(sFileName);

}

However, when a URL is passed to the constructor (and bIsXml is false or undefined),
XParser makes its own request.
else {

 var oReq = zXmlHttp.createRequest();

 oReq.onreadystatechange = function () {

 if (oReq.readyState == 4) {

 //only if "OK"

 if (oReq.status == 200) {

 oThis.load(oReq.responseText);

 }

 }

 };

 oReq.open("GET", sFileName, true);

http://dublincore.org/documents/dcmi-terms/

 oReq.send(null);

}

Note that this code uses the zXmlHttp cross-browser factory introduced earlier in the book
using the onreadystatechange() event, the status of the request is checked and the
responseText is passed to the load() method when the request is successful. This is where
the oThis variable comes into play. Had this.load(oReq.responseText) been used, an
error would have been thrown stating this.load() is not a function. This particular error is
thrown because while inside the onreadystate change event handler, the this keyword
references the event handler, not the XParser object.

Finally, the request is sent via the send() method.

The load() method is called only when XML data is ready to parse. It takes one argument,
sXml, which is the XML data to parse.
XParser.prototype.load = function (sXml) {

 var oXmlDom = zXmlDom.createDocument();

 oXmlDom.loadXML(sXml);

In this code, the XML data is loaded into an XMLDOM object created from the cross-browser
XML DOM factory discussed in Chapter 4. Now that the DOM is ready to go, the parsing can
begin.
this.root = oXmlDom.documentElement;

The first step is to parse the simple properties of the file. Using the root property, which
references the XML document element, it's possible to determine what type of feed is being
parsed.
this.isRss = (this.root.tagName.toLowerCase() == "rss");

if (this.isRss && parseInt(this.root.getAttribute("version")) < 2) {

 throw new Error("RSS version is less than 2");

}

this.isAtom = (this.root.tagName.toLowerCase() == "feed");

this.type = (this.isRss)?" RSS":" Atom";

To find out what type of feed it is, the document's root element is checked. If the tag name is
rss, then a version of RSS is being used. If the document's root element is feed, then it is an
Atom feed. The Boolean properties isRss and isAtom are assigned their values according to
the feed type. Last, the type property is set to reflect the feed type. This particular property is
displayed to the user.

Note If the feed is RSS, it is important to check the version of the feed. XParser

was written to parse RSS 2.x feeds, and if the version is less than 2, an error
is thrown and all parsing is stopped.

Both RSS and Atom have elements that contain information about the feed itself, but they are
located in different parts of the document. In RSS, this information is contained in a <channel
/> element that encloses all other elements in the feed. Atom, on the other hand, uses its root
element to enclose the information. This similarity can be used to parse the feed easily:
var oChannel =
(this.isRss)?this.root.getElementsByTagName("channel")[0]:this.root;

If the feed is RSS, the oChannel variable is set to the <channel/> element; otherwise, it's set
to the document element of the feed. After this common starting point, parsing the non-items
can begin:
for (var i = 0; i < oChannel.childNodes.length; i++) {

http://www.books24x7.com/viewer.asp?bkid=13421&destid=192#192

 var oNode = oChannel.childNodes[i];

 if (oNode.nodeType == 1) {

A for loop is used to loop through the children of the channel. Once again, the nodeType
property of the current node is checked. If confirmed to be an element, parsing continues. Just
like XParserItem, a switch block is used.
switch (oNode.tagName.toLowerCase()) {

 //Shared Tags

 case "title":

 this.title = new XParserElement(oNode);

 break;

 case "link":

 if (this.isAtom) {

 if (oNode.getAttribute("href")) {

 this.link = new
XParserElement(oNode,oNode.getAttribute("href"));

 }

 } else {

 this.link = new XParserElement(oNode);

 }

 break;

 case "copyright":

 this.copyright = new XParserElement(oNode);

 break;

 case "generator":

 this.generator = new XParserElement(oNode);

 break;

RSS and Atom have quite a few elements in this part of their specifications that are similar, and
this makes life easier (and keeps the amount of code down). The main difference in these few
elements is the <link/> element (just like in XParserItem). Atom feeds contain a <link/>
element, but the value you want to use is an attribute. Using the getAttribute() method, the
href attribute's value is retrieved and is included in the XParserElement constructor. Next
are the RSS-specific elements.
//RSS Tags

case "description":

 this.description = new XParserElement(oNode);

break;

case "lastbuilddate":

 this.modified = new XParserElement(oNode);

break;

case "managingeditor":

 this.author = new XParserElement(oNode);

break;

And then the Atom-specific elements.

//Atom Tags

case "tagline":

 this.description = new XParserElement(oNode);

break;

case "modified":

 this.modified = new XParserElement(oNode);

break;

case "author":

 this.author = new XParserElement(oNode);

break;

default:

break;

The feed's informational elements are parsed, and then it is time to create and populate the
items array. As the name implies, the items array is a collection is of XParserItem objects.
The <rss:item/> and <atom:entry/> elements will be looped through and sent to the
XParserItem constructor:
var oItems = null;

if (this.isRss) {

 oItems = oChannel.getElementsByTagName("item");

} else {

 try {

 oXmlDom.setProperty('SelectionLanguage', 'XPath');

 oXmlDom.setProperty("SelectionNamespaces",

 "xmlns:atom='http://www.w3.org/2005/Atom'");

 oItems = oXmlDom.selectNodes("/atom:feed/atom:entry");

 } catch (oError) {

 oItems = oChannel.getElementsByTagName("entry");

 }

}

Since the Microsoft XML DOM version 4, the getElementsByTagName() method has
changed some what. In version 3 and below, qualified names were ignored when using
getElementsByTagName(), so retrieving any element was as simple as passing the tag
name to the method.

In version 4 and later, however, selecting an element with a default namespace requires the use
of the selectNodes() method, which takes an XPath expression. The setProperty()
method, which sets additional properties for the XML DOM parser, is used to set the
namespace in order make selections with selectNode() possible. In the previous example, a
try…catch block is used to discern which method should be used. The newer
selectNodes() method is tried; if it fails, then getElementsByTagName() is used to
retrieve the elements.

Important selectNodes() is an Internet Explorer-only method, as it is a part of

MSXML. Mozilla-based browsers continue to allow
getElementsByTagName() to retrieve elements with a default
namespace.

After the retrieval of the <rss:item/> and <atom:entry/> elements, each individual node is
passed to the XParserItem class constructor to create the items array:

http://www.w3.org/2005/Atom

for (var i = 0; i < oItems.length; i++) {

 this.items[i] = new XParserItem(oItems[i]);

}

At this point, all of the important elements are parsed and contained in their corresponding
properties. The only thing left to do is fire the onload event:
if (typeof this.onload == "function") {

 this.onload();

}

When onload was first declared, it was assigned the value of null. Because of this, it is
important to check the onload type. If it is a function (meaning that the event now has a
handler), then the onload() method is called. Use of this event will be seen later in the
chapter.

The User Experience
The user interface may be the most important part of any application; if the user cannot use the
application, there is no reason for the application to exist. FooReader.NET was designed to be
easily used and understood by the user. In fact, it borrows heavily from the Microsoft Outlook
2003 user interface. It has a threepane interface where the first two panes are a fixed width
while the third pane is fluid (see Figure 5-1).

Figure 5-1

The first pane, called the feeds pane, displays the different feeds as links that the user can click
on. A <div/> element with an id of divFeedList in the feeds pane allows the feeds list to be
written to the document. Because this pane is populated dynamically, only the containing
elements are statically written:
<div id=" divFeedsPane">

 <div class=" paneheader">Feeds</div>

 <div id=" divFeedList"></div>

</div>

When the user clicks on a feed, the feed items are loaded into the middle pane: the items pane.
This second pane has two elements that are used to display information. The first is a <div/>
element with an id of divViewingItem. This element displays two things to the user: which
feed they are currently reading and the feed document type (RSS or Atom). The second
element is another <div/> element whose id attribute is set to divItemList. This element
will contain a list of <item/> RSS elements or <entry/> Atom elements. Like the feeds pane,
only the containing elements are statically written to the page:

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig161%5F01%5F0%2Ejpg&image_id=21&previd=IMG_21&titlelabel=Figure+5%2D1%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=152253880#ch05fig01#ch05fig01

<div id=" divItemPane">

 <div class=" paneheader">Items</div>

 <div id=" divViewingItem"></div>

 <div id=" divItemList"></div>

</div>

If the user single-clicks an item, it loads the item into the last pane: the reading pane. This pane
has three elements that display the item's information. The first, whose id is
divMessageTitle, is where the <title/> element of RSS and Atom feeds is displayed.
The second element has an id of aMessageLink whose href attribute is changed
dynamically. Finally, the last element is divMessageBody, where the <rss:description/>
and <atom:content/> elements are displayed:
<div id=" divReadingPane">

 <div class=" contentcontainer">

 <div class=" messageheader">

 <div id=" divMessageTitle"></div>

 <a href="" id=" aMessageLink" title=" Click to goto
posting."

 target="_new">Travel to Post

 </div>

 <div id=" divMessageBody"></div>

 </div>

</div>

Usability
There are a few usability issues that you should be concerned with. For one, users expect web
applications to function like any other application. In Outlook 2003, from which this application
borrows heavily, double-clicking an item in the items pane pulled up the specific e-mail
message in a new window. Since FooReader.NET is based on that model, double-clicking an
item opens a new window and takes the user to the specific blog post or article. To achieve this,
the ondblclick event on the items is assigned the doubleClick() handler (you'll see this
assignment later):
function doubleClick() {

 var oItem = oFeed.items[this.getAttribute("frFeedItem")];

 var oWindow = window.open(oItem.link.value);

}

Second, the user needs to know when the application is working to fill a request. The only time
a request is made to the server is when a feed is loaded, so some type of visual cue needs to
show the user that something is happening. For this purpose, a loading screen is shown when a
feed is requested and is hidden when the feed is loaded. Figure 5-2 shows this user interface
cue in action.

http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=152253880#ch05fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch05fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Figure 5-2

This loading cue is controlled by a JavaScript function called toggleLoadingDiv(). It takes
one argument, a Boolean value that determines whether the cue is shown:
function toggleLoadingDiv(bShow) {

 var oToggleDiv = document.getElementById("loadingDiv");

 oToggleDiv.style.display = (bShow)?" block":" none";

}

Server-Side Components

In a perfect world, a simple application such as FooReader.NET would be strictly client-side.
JavaScript would be able to retrieve XML feeds across domains with XMLHttp, and there would
be no need to make any calls to a server component. Because of the Internet Explorer and
Firefox security restrictions, however, it is not possible to retrieve data from a different domain;
thus, a server-side component is required.

Possible Paradigms
The server's job in FooReader.NET is to retrieve the remote XML feeds for the client to use.
Following this model, there are two possible design paths for the server; both have their pros
and cons.

The first method is a cached feed architecture. The server program would act as a service,
fetching a list of feeds at a certain time interval, caching them, and serving the cached feeds to
the client when requested. This option potentially saves bandwidth, but it also risks the reader
not having up-to-date feeds. More user action would be required to display the current, up-to-
date feeds, which goes against the Ajax ideology.

The second method is a delivery on demand architecture, where the server would retrieve any
given feed when the user requests it. This may use more bandwidth, but it ensures the reader
will have up-to-date information; moreover, this design is inline with the Ajax concepts and is
what the user would expect.

Implementation
FooReader.NET uses the delivery on demand model, with the exception that a feed is cached
when it is fetched. The cached version is used only in the event that the remote host cannot be
contacted and an up-to-date feed cannot be retrieved. This ensures that the user has something
to read, even though it is older data.

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig163%5F01%5F0%2Ejpg&image_id=22&previd=IMG_22&titlelabel=Figure+5%2D2%3A+

Because the server is responsible only for pulling and caching remote feeds, it makes sense to
have one ASP.NET page responsible for these operations. This page, called xml.aspx, will
have a code-behind file where a good deal of ASP.NET code is contained.

Note Code-behind is a method for authoring web pages for the ASP.NET platform.

Unlike inline programming models, where the server-side code is interspersed
with HTML markup (like PHP and ASP), codebehind enables you to remove
all logic from the HTML code and place it in a separate class file. This results
in a clean separation of HTML and your .NET programming language of
choice.

The entry point for the server-side is the Page_Load event handler, where a method called
StartFooReader() is called. It is in StartFooReader() where your code will be contained.

The language of choice for this project is C#, which is the language created specifically for the
.NET Framework.

Setting the Headers

For this application, you must set a few headers. Settings headers in ASP.NET is a simple task:
Response.ContentType = "text/xml";

Response.CacheControl = "No-cache";

Headers are set with the Response object, which encapsulates HTTP response information.
Setting the MIME content type is imperative to the operation of the application. Mozilla-based
browsers will not load an XML file as XML unless the MIME specifies an XML document, and
"text/xml" is one of many types that do this.

It is also important to make sure that the XML data retrieved with XMLHttp is not cached.
Internet Explorer (IE) caches all data retrieved with XMLHttp unless explicitly told not to with the
CacheControl header. If this header is not set, IE will use the cached data until the browser's
cache is dumped.

Getting the Remote Data

To determine the feeds to display, FooReader.NET uses a proprietary XML document,
feeds.xml, which contains a list of feeds that are available for the user to request. This file
contains a set of <link/> elements divided into sections by <section/> elements. Each
<link/> element has a filename attribute which is similar to an id attribute in HTML; it must
be unique, and it is an identifier for the <link/> element:
<?xml version="1.0" encoding=" utf-8"?>

<feeds>

 <section name=" News">

 <link name=" Yahoo! Top Stories" filename=" yahoo_topstories"

href="http://rss.news.yahoo.com/rss/topstories" />

 </section>

</feeds>

The example shows a basic feeds list. A typical list can contain as many <section/> and
<link/> elements as you desire. Note that <section/> elements can only be children of the
root element, and <link/> elements can only be contained in <section/> elements.

Note The name attribute of the <section/> and <link/> elements is displayed

to the user in the feeds pane and is not used in any other operation.

When requesting a feed, the value of the filename attribute is assigned to the xml variable in
the query string.

http://rss.news.yahoo.com/rss/topstories

xml.aspx?xml=fileName

In ASP.NET, the Request object contains a NameValueCollection called QueryString.
Using this collection, you can extract the value of the xml variable in the query string:
if (Request.QueryString["xml"] != null)

{

 string xml = Request.QueryString["xml"];

 FeedsFile feedsFile = new FeedsFile(Server.MapPath("feeds.xml"));

In the first line, the existence of the xml variable in the query string is checked. That value is
then assigned to the xml variable, and a FeedsFile object is then instantiated.

The FeedsFile class contains a method called GetLinkByFileName, which returns a
FeedsFileLink object and contains the information of a specific <link/> element. A string
variable, fileName, is assigned the value of the cached feed's path that is used later.
FeedsFileLink link = feedsFile.GetLinkByFileName(xml);

string fileName = string.Format(

 @"{0}\xml\{1}.xml",Server.MapPath(String.Empty),link.FileName);

Note String.Format(), as its name implies, formats strings (duh!). The first

argument passed to the method is the string to format. This string most likely
contains characters called format items that look like {0}, {1}, {2}, and
so on. These format items are replaced with the corresponding arguments
passed to the method. In the example above, {0} is replaced with the
resulting string that Server.MapPath(String.Empty) returns.

The @ operator before a string tells the compiler not to process escape
strings. The string in the above example could have been written like
"{0}\\xml\\{1}.xml" with the same results.

The .NET Framework provides the HttpWebRequest class, contained in the System.Net
namespace, to request data from remote web hosts. The .NET Framework provides a few
classes to perform this task (such as the generic WebRequest class), but the
HttpWebRequest class provides HTTP-specific functionality, so it is best suited for this
application. To create an HttpWebRequest object, you call the Create() method of the
WebRequest class and cast it as HttpWebRequest:
HttpWebRequest getFeed = (HttpWebRequest) WebRequest.Create(link.Url);

getFeed.UserAgent = "FooReader.NET (http://reader.wdonline.com)";

string feedXml = String.Empty;

One HTTP-specific member, HttpWebRequest, provides is the UserAgent property. It is not
completely necessary to use this property, but it accurately documents what is hitting the
remote server. Many conventional aggregators have their own user agent string; so too does
FooReader.NET. The variable feedXml is created as an empty string. This variable will later be
assigned the contents of the remote feed. The next step in this process is to make the request
and get the remote host's response:
//Get the response.

using (HttpWebResponse responseFeed = (HttpWebResponse)
getFeed.GetResponse())

{

 //Create a stream reader.

 using (StreamReader reader = new

http://reader.wdonline.com/

 StreamReader(responseFeed.GetResponseStream()))

 {

 //Read the contents.

 feedXml = reader.ReadToEnd();

 }

}

An HttpWebResponse object is created when the GetResponse() method of the
HttpWebRequest class is invoked. The server's response is then read by creating a
StreamReader object through the GetResponseStream() method, a member of the
HttpWebResponse class. That stream is "read" to the feedXml variable, which was declared
earlier. Since the using statement is used for the creation of the HttpWebResponse and
StreamReader objects, they will be properly disposed of and do not require closing.

Caching the Feed

Although not entirely necessary, caching the feed is beneficial to the user in case the remote
server cannot be reached. FooReader.NET is a newsreader, and it is desirable for the user to
have something to read, even if it is an older version. There is primarily only one instance when
the cached version is served to the user: when the remote host cannot be contacted because of
Internet traffic or the route to the remote host is down.

A StreamWriter is perfect for this job for its ease of use and its default UTF-8 encoding:
using (StreamWriter strmWriter = new StreamWriter(fileName))

{

 strmWriter.Write(feedXml);

}

The fileName variable, which was created earlier, is passed to the constructor of the
StreamWriter. This creates the file or overwrites an existing one with the same name. The
XML data contained in feedXml is then written to the file using the Write() method.

The feed is cached; now the XML data is written to the page using Response.Write().
Response.Write(feedXml);

Error Handling

There are two main areas where an error takes place. The first is when the xml variable cannot
be found in the query string. Without this variable, the application doesn't know what feed to
locate in feeds.xml; an error document, which is a static RSS document, is loaded using the
GetLocalFile() method (which is discussed later) and is written to the page.
if (Request.QueryString["xml"] != null)

{

 //Code goes here

}

else

{

 Response.Write(GetLocalFile(Server.MapPath("error.xml")));

}

Because the error document is an RSS document, the reader displays the error message like it
would a feed.

The second area where an error can be thrown is when the remote host cannot be contacted.
To catch this error, the request and response code is placed within a try…catch block.
try

{

 //Web request code here

}

catch (WebException webEx)

{

 string fileToUse =
File.Exists(fileName)?fileName:Server.MapPath("error.xml");

 Response.Write(GetLocalFile(fileToUse));

}

Note Catching only a WebException forces other errors to not be handled.

ASP.NET error reporting is very informational; if an
UnauthorizedAccessException is thrown (which can happen in the
try…catch block because of the caching operations) then permissions are
not correctly set, and the error message can be helpful in deciding upon a
solution.

This is where the cached file comes into play. When the error is caught, the application needs to
know what file to write to the page: either the cached feed or the error document. It first checks
to see if there is a cached copy using File.Exists(). If the cached file exists, the resulting
file is retrieved with GetLocalFile() and written to the page. The GetLocalFile()
method, which has been used a few times already, is a simple file-reading function. It opens the
designated file, reads it, and returns the contents as a string:
public string GetLocalFile(string path)

{

 string contents = string.Empty;

 using (StreamReader file = File.OpenText(path))

 {

 contents = file.ReadToEnd();

 }

 return contents;

}

This really is just a convenience function since the application requires a great deal of file
reading.

Parsing the Feeds File

The FeedsFile class opens the feeds file into an XmlDocument that can be used to retrieve
any element desired through the DOM.
private XmlDocument _doc;

public FeedsFile(string path)

{

 _doc = new XmlDocument();

 _doc.Load(path);

}

FeedsFile exposes the GetLinkByFileName() method. This method takes one argument,
fileName, and returns a FeedsFileLink object.
public FeedsFileLink GetLinkByFileName(string fileName)

{

 string pathToNode =

String.Format("/feeds/section/link[@filename='{0}']",fileName);

 XmlNode linkNode = _doc.SelectSingleNode(pathToNode);

 return new FeedsFileLink(linkNode);

}

The XmlDocument SelectSingleNode() method selects a specific XmlNode according to
the XPath expression passed to it. The XPath expression used in this particular instance is
formatted using String.Format() and selects a specific <link/> with a specific filename
attribute. The selected XmlNode is then passed to the FeedsFileLink constructor and the
object reference is returned.

FeedsFileLink takes an XmlNode and retrieves the information required from that node and
assigns it to private members.
private string _name;

private string _filename;

private Uri _uri;

public FeedsFileLink(XmlNode myNode)

{

 _name = myNode.Attributes["name"].Value;

 _filename = myNode.Attributes["filename"].Value;

 _uri = new Uri(myNode.Attributes["href"].Value);

}

_name holds the value of the node's name attribute, _filename is assigned the filename
attribute's value, and a System.Uri object is created and assigned to _uri.

Note Yes, a string could be used instead of an Uri object, as most .NET classes

and methods that take Uri objects are also overloaded to take a string,
but Uri objects are so much cooler.

The members mentioned above are private. Without an accessor, a private member cannot be
accessed outside of the class. Accessors in C# allow read and/or write access to private
members, among many other things:
public string Name

{

 get

 {

 return _name;

 }

}

public string FileName

{

 get

 {

 return _filename;

 }

}

public Uri Url

{

 get

 {

 return _uri;

 }

}

The accessors in FeedsFileLink provide read-only access to the private members. These
particular accessors, called getters, return the value of the private members. This ensures that
the data contained in the class is not mistakenly overwritten or corrupted.

Tying the Client to the Server

The glue of FooReader.NET is the JavaScript code that uses the data retrieved by XParser
and the JavaScript FeedsFile class and sends it to the user interface to be displayed. This
code is contained in feedsfileparser.js and fooreader.js.

Parsing the Feeds File — Client Style
The FeedsFile class, located in feedsfileparser.js, closely resembles its server-side
counterpart; it is responsible for parsing feeds.xml into JavaScript objects.

The FeedsFileElement class represents an element in feeds.xml. Because only two
different elements are used in the document, the class is fairly simple. It takes one argument:
the element's node.
function FeedsFileElement(oNode) {

 if (oNode.tagName.toLowerCase() == "section") {

 this.links = [];

 var linkNodes = oNode.getElementsByTagName("link");

 for (var i = 0; i < linkNodes.length; i++) {

 this.links[i] = new FeedsFileElement(linkNodes[i]);

 }

 }

If oNode is a <section/> element, then an array of the contained <link/> elements must be
made. The links array is populated by passing the <link/> elements through the
FeedsFileElement constructor. When oNode is a <link/> element, the fileName property
is assigned the value of the <link/> element's filename attribute by using the
getAttribute() method:

else {

 this.fileName = oNode.getAttribute("filename");

}

this.name = oNode.getAttribute("name");

Because both <section/> and <link/> elements have a name attribute, the name property it
is assigned the value of the name attribute after all logic is complete.

The feeds file is loaded using the cross-browser XML library introduced in Chapter 4. The XML
DOM is used instead of XMLHttp for a variety of reasons. For one, feeds.xml is a static XML
file. Using XMLHttp in IE would require more back-end coding to specify the no-cache header;
IE would continue to load its cached version of feeds.xml even after changes were made to
the file.
function FeedsFile() {

 var oThis = this;

 this.sections = [];

 this.onload = null;

 var oXmlDom = zXmlDom.createDocument();

 oXmlDom.load("feeds.xml");

Even though the feeds file is loaded using the XML DOM, you should still use the asynchronous
abilities (the default behavior) of the XML DOM object. Had the file been loaded synchronously,
the application would wait until the document is fully loaded before continuing, which could
appear to the user that the application has frozen. The onreadystatechange event is used to
monitor the loading status:
oXmlDom.onreadystatechange = function () {

 if (oXmlDom.readyState == 4) {

 var oSections =
oXmlDom.documentElement.getElementsByTagName("section");

 for (var i = 0; i < oSections.length; i++) {

 oThis.sections[i] = new FeedsFileElement(oSections[i]);

 }

 }

 oXmlDom = null;

 if (typeof oThis.onload == "function") {

 oThis.onload();

 }

};

The <section/> elements are retrieved with the getElementsByTagName() DOM method,
and the sections array is populated with FeedsFileElement objects. Once all DOM
operations are complete, the document is released from memory by setting oXmlDom to null,
and the onload event is fired.

http://www.books24x7.com/viewer.asp?bkid=13421&destid=192#192

The FeedsFile class has one method called getLinkByFileName() (which you should
remember from the C# version). This method searches the links array of each section and
returns the link object with the matching file name. Again, file names are unique (they have to
be), so this is the identifier of a link:
this.getLinkByFileName = function (sFileName) {

 for (var i = 0; i < this.sections.length; i++) {

 var section = this.sections[i];

 for (var j = 0; j < section.links.length; j++) {

 var link = section.links[j];

 if (sFileName.toLowerCase() ==
link.fileName.toLowerCase()) {

 return link;

 }

 }

 }

 alert("Cannot fine the specified feed information.");

 return this.sections[0].link[0];

};

When a match cannot be found, an error message is displayed via the alert() method, and
the first <link/> element in the feeds list is returned.

Drawing the User Interface Elements
The code within fooreader.js is responsible for generating the dynamic elements required to
display the data to the user. The feeds list in the feeds pane and the items in the item pane are
all dynamically generated according to the data they receive. This dynamic content is generated
by both DOM methods and innerHTML. Elements created via the DOM are primarily created at
the page load and when a new feed is loaded.

The contents of the message pane are displayed using innerHTML. This is necessary because
many feeds include CDATA sections, which contain HTML formatting; using DOM methods to
display the text could generate some confusing results (for example, text that is supposed to be
bold could look like text goes here).

init()

The entry point for the client-side components is the init() function, which is responsible for
populating the feeds pane and loading the first feed. A clean, easy-to-follow layout is key for the
feeds pane, and to that end, unordered lists are used to format the data.
var divFeedList = document.getElementById("divFeedList");

var oFragment = document.createDocumentFragment();

for (var i = 0; i < oFeedsFile.sections.length; i++) {

 var oSection = oFeedsFile.sections[i];

The destination element for the feeds list is retrieved via getElementById() and stored in
divFeedList. Creating the feed list updates the page constantly, which can lower the
performance of the UI (and annoy the user). To correct this problem, the feeds list is first
appended to a document fragment. When all append operations are complete, the fragment is
then appended to the document (which appends all of the fragment's child nodes).

As mentioned earlier, sections should be easily and plainly defined in the UI, and having an icon
next to the section's name is a good way to do this:
var oIcon = document.createElement("img");

oIcon.src = "img/category_icon.gif";

oIcon.border = "0";

oIcon.alt = "";

var oSpan = document.createElement("span");

oSpan.appendChild(document.createTextNode(section.name));

oSpan.className = "navheading";

The DOM method createElement() allows the creation of the icon, an image, and the
section's name, which is encapsulated in a element. The creation of the section
heading is complete so they are appended to the document fragment; an unordered list is also
created to contain the section's feeds:
oFragment.appendChild(oIcon);

oFragment.appendChild(oSpan);

var oUl = document.createElement("UL");

oUl.className = "navlist";

The individual feeds are displayed as links, so <a/> and elements are created:
for (var j = 0; j < section.links.length; j++) {

 var oLink = oSection.links[j];

 var oLi = document.createElement("li");

 var oA = document.createElement("a");

 oA.appendChild(document.createTextNode(oLink.name));

 oA.href = "#";

 oA.onclick = loadFeed;

 oA.className = "navlinks";

 oA.title=" Load "+ oLink.name;

 oA.setAttribute("frFileName",link.fileName);

 oLi.appendChild(oA);

 oUl.appendChild(oLi);

}

The <a/> elements have an attribute called frFileName, which will contain the file name
associated with the feed. When all links and sections are created, the unordered list is
appended to the document fragment:
oFragment.appendChild(oUl);

And the document fragment is then appended to divFeedList, and the first feed is loaded in
the user interface.
divFeedList.appendChild(oFragment);

loadFeed(feedsFile.sections[0].links[0].fileName);

The application is almost fully loaded at this point. The feeds list is completely populated, but
the items pane is empty. Control is passed to loadFeed().

loadFeed()

The loadFeed() function is responsible for loading a specified feed in an XParser object and
populating the items pane. This function also doubles as an onclick event handler for the links
in the feeds pane. It takes one argument, sFileName, which corresponds with the filename
attribute of a <link/> element in feeds.xml. If loadFeed() is fired because of an event,
sFileName is changed to the value of the frFileName attribute mentioned earlier:
function loadFeed(sFileName) {

 sFileName = (typeof sFileName == "string")?sFileName:

 this.getAttribute("frFileName");

There are two elements in the user interface that must first be found and referenced in order to
display the items list and feed information, divItemList and divViewingItem:
var divItemList = document.getElementById("divItemList");

var divViewingItem = document.getElementById("divViewingItem");

The list of items will appear to divItemList, and divViewingItem will contain the feed's
name and type.
var sName = feedsFile.getLinkByFileName(sFileName).name;

toggleLoadingDiv(true);

The feed's name is retrieved via the getListByFileName() method of the feedsFile
object. The toggleLoadingDiv() function is then called to cue the user that the application is
working to fill the request.

The item list is nothing more than <a/> elements created by DOM methods. But first, any
existing items must be removed from the document to be replaced with the new list. This is
easily handled in a while loop:
while (divItemList.hasChildNodes()) {

 divItemList.removeChild(divItemList.lastChild);

}

Since the only children in divItemList are items, it is safe to remove every child. With all old
items removed, it is time to create the XParser object:
sFileName = "xml.aspx?xml=" + sFileName;

oFeed = new XParser(sFileName);

The sFileName variable is changed to reflect the URL of the server application and is passed
to the XParser constructor.

Performing an XMLHttp request can take several moments, and errors can be thrown if this is
not taken into account. To solve this issue, XParser exposes an event called onload, which is
fired when the XMLHttp request reaches a status of OK (status code 200). In FooReader.NET,
the XParser onload event is used to write the items to divItemList, load the first item into
the reading pane, and hide the loading user interface cue.
oFeed.onload = function () {

 var oFragment = document.createDocumentFragment();

 divViewingItem.innerHTML = sTitle + "("+ oFeed.type + ")";

Just as in init(), a document fragment is created here to reduce the load on the user
interface. As stated earlier, divViewItem will display the feed's name and type by using the
innerHTML property. This type of user feedback is critical to creating a good Ajax application.
Although the information may not be necessary for the application to function properly, it gives
the user an understanding of what he or she is doing.

Note The innerHTML property is used for simplicity's sake. In this situation, it

takes fewer characters and less space to change the contents of the element
with innerHTML than to use DOM methods. The innerText property would
be ideal; Firefox, however, doesn't support the property.

Now it is time to create the items. Items are block style <a/> elements that contain two <div/>
elements: one <div/> encloses the item's title, whereas the other houses the item's date. Like
the list in the feed pane, the elements making up the items are created using the
createElement() DOM method.
for (var i = 0; i < oFeed.items.length; i++) {

 var oItem = oFeed.items[i];

 var oA = document.createElement("a");

 oA.className = "itemlink";

 oA.href = "#";

 oA.onclick = itemClick;

 oA.ondblclick = doubleClick;

 oA.id = "oA" + i;

 oA.setAttribute("frFeedItem",i);

The first element created is the <a/> element. The anchor's attributes are typical: the class
attribute is set to the CSS class itemlink, href is set to "#", onclick is set to itemClick,
the ondbclick event, which fires when the anchor is double clicked, is handled by
doubleClick(), and the id attribute is set to contain the string oAx, where x is the item's
number.

Note The itemClick() function is covered in the next section.

The first <div/> element is then created. This element will contain the item's title:
var divTitle = document.createElement("div");

divTitle.className = "itemheadline";

divTitle.innerHTML = oItem.title.value;

You'll notice the use of innerHTML again instead of createTextNode(). This is due to the
use of HTML formatting some use in their titles (be they HTML entities or elements). This leaves
one more <div/> element to hold the date:
var divDate = document.createElement("div");

divDate.className = "itemdate";

divDate.appendChild(document.createTextNode("Date: "+
oItem.date.value));

Creating the element for the date is much like the one for the title, except you'll notice the use of
createTextNode() to append the text to the element (this is done because there shouldn't be
any HTML formatting in the date).

Both <div/> elements are appended to the <a/> element which is, in turn, appended to the
document fragment:
oA.appendChild(divTitle);

http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=152253880#ch05lev4sec8#ch05lev4sec8

oA.appendChild(divDate);

oFragment.appendChild(oA);

After the loop is exited and all items are created, the document fragment is appended to the
document, or more specifically, the item list:
divItemList.appendChild(oFragment);

itemClick() is then called to load the first item into the reading pane, and the loading user
interface cue is hidden from view:
itemClick(0);

toggleLoadingDiv();

The items pane is now fully populated. All that remains is to load the first item into the reading
pane, which is done by calling itemClick().

itemClick()

The itemClick() function is called when the user clicks a link in the item pane (like
loadFeed(), itemClick() also doubles as an event handler); it takes one parameter,
iItem, which is an integer representing the item to display. It is also responsible for showing
the user the last link that was clicked by changing its background color. This change of
background color is achieved by changing the CSS class of the element to itemlink-
selected. Making the style differences with CSS allows easy customization of the application.

For this user interface feature to work properly, a global variable is used to keep track of the
selected item. This variable is called oSelected and will be assigned the selected element's
reference:
iItem = (typeof iItem ==
"number")?iItem:this.getAttribute("frFeedItem");

var oEl = document.getElementById("oA"+iItem);

if (oSelected != oEl) {

 if (oSelected) oSelected.className = "itemlink";

 oEl.className += "-selected";

 oSelected = oEl;

The clicked link's object reference is retrieved with getElementById() and is assigned to
oEl. oEl is then compared to oSelected to determine if it is a new link that was clicked. If
the two objects are the same reference, nothing happens because the link that was clicked is
the link that is currently selected. If the references do not match, then the oSelected class is
set back to itemlink, the new link's class is set to itemlink-selected, and oSelected is
set to the new link's reference.

To display the item in the reading pane, a few elements' references must be retrieved.
var divTitle = document.getElementById("divMessageTitle");

var aLink = document.getElementById("aMessageLink");

var divBody = document.getElementById("divMessageBody");

The divTitle element, as its name implies, is where the item's title will be displayed. The
aLink element provides the user a link to click that loads the actual news item. The divBody
element is where the <rss:description/> or <atom:content/> element is displayed:
var oItem = oFeed.items[iItem];

divTitle.innerHTML = oItem.title.value;

aLink.href = oItem.link.value;

divBody.innerHTML = oItem.description.value;

The item object is then assigned to oItem and is used to retrieve the data from oFeed. The
item's title is then displayed in divTitle, and the link's href attribute is changed to reflect the
new value. The item's description is displayed in divBody via innerHTML. Using innerHTML
for divBody ensures that the item is displayed in a readable fashion for the user. HTML entities
like & will correctly be displayed as "&".

Setup

Generally, web applications are simple to set up and use‥NET web applications, however,
require a few extra steps during setup.

The first requirement in installing FooReader.NET is to make sure that Internet Information
Services (IIS) is installed on the machine. IIS is Microsoft's web server and is only available for
owners of Windows 2000 Professional, Windows 2000 Server, Windows XP Professional, and
Windows Server 2003. Installing IIS requires the Windows CD and can be done in the
Add/Remove Windows Components section of the Add/Remove Programs Control Panel applet
(see Figure 5-3).

Figure 5-3

You also must install the .NET Framework in order to run FooReader.NET. You need version
1.1 or greater. It is freely available at
http://msdn.microsoft.com/netframework/downloads/updates/default.aspx
for users of Windows 98 and later versions.

When IIS and the .NET Framework are installed, create a folder called FooReader in the IIS
wwwroot directory, located at c:\Inetpub\, and move all FooReader.NET files and folders to
the newly created FooReader folder. After the files have been placed in the FooReader
directory, you need to register the application in IIS, which you can do in the IIS Management
Console (see Figure 5-4). In the computer's Control Panel (Start⇨Control Panel), double-click
Administrative Tools, and then double-click the Internet Information Services icon.

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig177%5F01%5F0%2Ejpg&image_id=23&previd=IMG_23&titlelabel=Figure+5%2D3%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=580572268#ch05fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch05fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://msdn.microsoft.com/netframework/downloads/updates/default.aspx
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=580572268#ch05fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch05fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Figure 5-4

In the console, you will see a list of files and folders. These items are contained in the IIS root
folder. In the left-hand pane, locate the FooReader folder. Right-click the folder and choose
Properties from the context menu. You are now looking at the web properties of the FooReader
folder (see Figure 5-5).

Figure 5-5

On the Directory tab, you see an Application Settings section in the bottom part of the window.
Click the Create button, and the Properties window is displayed (see Figure 5-6).

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig177%5F02%5F0%2Ejpg&image_id=24&previd=IMG_24&titlelabel=Figure+5%2D4%3A+
http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig178%5F01%5F0%2Ejpg&image_id=25&previd=IMG_25&titlelabel=Figure+5%2D5%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=580572268#ch05fig056F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch05fig056F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=580572268#ch05fig066F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch05fig066F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Figure 5-6

Click OK. IIS now knows to treat the FooReader folder as an application, and will run it as one.
The FooReader.NET application is now installed.

Testing
Before deploying any web application, it is always a good idea to test the installation. For testing
purposes, feeds.xml contains only one feed: Yahoo! News.

Open your browser and navigate to
http://localhost/fooreader/xml.aspx?xml=yahoo_topstories.

This tests to make sure that the server-side component is able to retrieve an external news feed
properly. If everything is working correctly, you should see the XML feed displayed in your
browser (see Figure 5-7).

Figure 5-7

If for some reason you see an ASP.NET error, the error message will tell you what you should
do. The most common error is an Access Denied error, in which case the proper modify rights
should be given to the ASP.NET user account (or NETWORK SERVICE for Windows 2003).

If you do not have access to set permissions for the web server, such as when you rent web
space from a provider, you may be able to solve Access Denied errors by turning on
impersonation. The impersonation settings are located in the web.config file.

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig178%5F02%5F0%2Ejpg&image_id=26&previd=IMG_26&titlelabel=Figure+5%2D6%3A+
http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig179%5F01%5F0%2Ejpg&image_id=27&previd=IMG_27&titlelabel=Figure+5%2D7%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=773795520#ch05fig076F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch05fig076F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

The web.config file is an XML-based configuration file for a web application. The root element
of web.config is <configuration/>, which is usually followed by the <system.web/>
element. You can add the following line to the <system.web/> element:
<identity impersonate=" true"/>

Bear in mind that this solution is highly situational and depends on the web server's settings.
However, it may solve unauthorized access errors you may encounter in a rented server
environment.

Once the application is tested and is confirmed to work, you can edit feeds.xml to contain
whatever feeds you desire.

Summary
In this chapter, you learned the history of online syndication, including the rise of RSS and Atom
as the two dominant XML formats for syndication. You also learned how RSS aggregators, such
as FooReader.NET, make using news feeds much easier.

This chapter walked through the creation and implementation of a web-based RSS/Atom
aggregator, FooReader.NET. Starting with the client components, you learned how to create
XParser, a JavaScript RSS/Atom parser that provides an easy to use interface for developers
of web applications based on RSS and Atom. You also learned how XParser uses the XML
DOM present in Microsoft Internet Explorer and Mozilla-based browsers.

You learned that while the client-side components of a web application are a necessity to
properly display data to the user, server-side components are needed to retrieve the necessary
data. Using C# and the .NET Framework, you learned how to retrieve remote XML feeds, cache
them, and output them to a page. You also learned how to set HTTP headers so that browsers
will know what to expect, and remote servers will know what is hitting them.

Finally, you learned how to set up the application in IIS and test it to make sure it was properly
installed.

Chapter 6: Web Services
Overview
When XML use began to take off just after the year 2000, businesses, developers, and others
looked for new ways to use it. The promise of separating content and presentation had been
met, but how could this capability be capitalized on? The answer came in the form of web
services.

Web services provide a way to exchange data between applications and servers. To facilitate
this communication, web services use the Internet to send messages composed of XML data
back and forth between a consumer (the application that uses the data) and a provider (the
server that contains the data). This is not unlike traditional distributed computing models, such
as CORBA, DCOM, and RMI, where method calls are executed over a network connection. The
major difference with web services is that the data being transmitted is XML text instead of a
binary format.

The promise behind web services is that of having software components available, on demand,
to any application in the world. Whether that be a web application or a traditional desktop
application, it is possible to use the same service to perform the same task.

Related Technologies
Web services aren't a single technology or platform; in fact, they are a mixture of several
protocols, languages, and formats. And although several different platforms have incorporated
web services into their current offerings, there are still some basic parts that remain consistent.

SOAP

SOAP is a combination of an XML-based language and any number of common protocols for
transmitting this data. The SOAP specification describes an intricate language with numerous
elements and attributes, intended to describe most types of data. This information can be
transported over any number of protocols, but is most commonly sent over HTTP along with
other web traffic.

important Originally an acronym for Simple Object Access Protocol, the

specification now simply goes by SOAP.

There are two main ways of using SOAP, the remote procedure call (RPC) style and the
document style.

RPC-Style SOAP
The RPC style of SOAP treats the web service as though it were an object containing one or
more methods (in much the same way you would use a local class to establish communication
with a database). A request is made to the service detailing the method name to call and the
parameters, if any, to pass. The method is executed on the server, and an XML response is
dispatched containing the return value, if any, or an error message if something went awry.
Imagine a web service that provides simple arithmetic operations: addition, subtraction,
multiplication, and division. Each method takes two numbers and returns a result. An RPC-style
request for the add operation would look something like this:
<?xml version="1.0" encoding=" utf-8" ?>

<soap:Envelope xmlns:soap=" http://schemas.xmlsoap.org/soap/envelope/"

 soap:encodingStyle="
http://schemas.xmlsoap.org/soap/encoding/">

 <soap:Body>

 <w:add xmlns:w=" http://www.wrox.com/services/math">

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/
http://www.wrox.com/services/math

 <w:op1>4.5</w:op1>

 <w:op2>5.4</w:op2>

 </w:add>

 </soap:Body>

</soap:Envelope>

Whenever you are dealing with non-trivial XML documents, for example documents that are to
be shared across businesses and applications, namespaces come into play. Namespaces are
especially important in SOAP because these documents need to be produced and read by
different systems. The SOAP namespace, specified in this example as
http://schemas.xmlsoap.org/soap/envelope/, is for version 1.1, and can vary
depending on which version you are using. The version 1.2 namespace is
http://www.w3.org/2003/05/soap-envelope.

The <w:add/> element specifies the name of the method to call (add) and contains the other
namespace in the example, http://www.wrox.com/services/math. This namespace is
specific to the service that is being called and can be defined by the developer. The
soap:encodingStyle attribute points to a URI indicating how the data is encoded in the
request. There are a variety of other encoding styles available as well, such as the type system
employed in XML schemas.

important An optional <soap:Header/> element can be used to contain

additional information, such as security credentials. If used, this element
comes immediately before <soap:Body/>.

If the request to add two numbers executed successfully, the response message would look like
this:
<?xml version="1.0" encoding=" utf-8" ?>

<soap:Envelope xmlns:soap=" http://schemas.xmlsoap.org/soap/envelope/"

 soap:encodingStyle="
http://schemas.xmlsoap.org/soap/encoding/">

 <soap:Body>

 <w:addResponse xmlns:w=" http://www.wrox.com/services/math">

 <w:addResult>9.9</w:addResult>

 </w:addResponse>

 </soap:Body>

</soap:Envelope>

As you can see, the format is similar to the initial request. The standard way of supplying the
result is to create an element with the name of the method followed by the word "Response." In
this case, the element is <w:addResponse/>, and has the same namespace as the
<w:add/> element in the request. The actual result is returned in the <w:addResult/>
element. Note that the web service developer can define all these element names.

Were there a problem processing the SOAP request on the server, assuming the request
actually reached that far, then a <soap:Fault> element will be returned. For instance, if the
first operand in the example had been wrongly entered as a letter instead of the number, you
might receive the following:
<?xml version="1.0" encoding=" utf-8" ?>

<soap:Envelope xmlns:soap="
http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <soap:Fault>

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2003/05/soap-envelope
http://www.wrox.com/services/math
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/
http://www.wrox.com/services/math
http://schemas.xmlsoap.org/soap/envelope/

 <faultcode>soap:Client</faultcode>

 <faultstring>Server was unable to read request.

 Input string was not in a correct format.

 There is an error in XML document (4, 13).

 </faultstring>

 <detail/>

 </soap:Fault>

 </soap:Body>

</soap:Envelope>

The <soap:Fault> element, of which there can be only one, gives a clue as to the problem
encountered. The most telling information is that contained in <faultcode/>. There are a
limited number of options for this value, of which the two common ones are soap:Server and
soap:Client. A soap:Server fault code could indicate a problem such as the server being
unable to connect to a database. In this case, resending the message may well succeed. If
soap:Client is specified, it often means that the message is incorrectly formatted and will not
succeed without some modification.

A more human-readable error message is stored in the <faultstring/> element, which
contains application-specific error details. If a secondary system, such as a database, is the
primary cause of a web service error, information pertaining to this error may be returned in an
optional <faultactor/> element (not shown in the previous example).

Document-Style SOAP
The document style of SOAP relies on XML schemas to designate the format of the request and
response. This style seems to be gaining in popularity and some predict that it will eventually all
but replace the RPC style. For a lucid explanation of why people are shying away from RPC
with SOAP encoding, see http://msdn.microsoft.com/library/en-
us/dnsoap/html/argsoape.asp.

A document-style request may not look that different from an RPC-style request. For example,
the RPC request example from the previous section could be a valid document-style request by
simply removing the soap:encodingStyle attribute. The difference is that an RPC request
always follows the same style, with the method name in a containing element around its
parameters; the document-style request has no such constraints. Here's an example that is
completely different from an RPC request:
<?xml version="1.0" encoding=" utf-8" ?>

<soap:Envelope xmlns:soap="
http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <w:add xmlns:w=" http://www.wrox.com/services/math" op1="4.5"
op2="5.4" />

 </soap:Body>

</soap:Envelope>

Note that the highlighted line contains the method name (add) and two operands (op1 and op2)
in a single element. This construct is not possible using RPC-style requests. The document
style has this flexibility because there is an accompanying XML schema. A web service can use
this XML schema to validate the structure of the request; the service is then free to use the
information in the request appropriately. Responses follow the same basic rules as requests:
they can be very similar to RPC style or completely different, again based on an XML schema.

important Web services created using Visual Studio .NET are, by default, in

document style (although this can be changed by applying various

http://msdn.microsoft.com/library/en-us/dnsoap/html/argsoape.asp
http://msdn.microsoft.com/library/en-us/dnsoap/html/argsoape.asp
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=210707104#ch06lev3sec16F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch06lev3sec16F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://schemas.xmlsoap.org/soap/envelope/
http://www.wrox.com/services/math

attributes to the underlying code).

At this point, you might be wondering where the XML schema is kept and how it is made
available to both the client and the service. The answer to those questions lies in yet another
abbreviation: WSDL.

WSDL

Web Services Description Language (WSDL) is another XML-based language that was created
to describe the usage of a particular web service, or rather, how a particular service could be
called. The resulting specification describes an incredibly dense language, designed to be
extremely flexible and allow for as much re-use as possible; it is the sort of document that is
manually constructed only by the most ardent enthusiast. Typically, a software tool is used for
the initial WSDL file creation and then hand tweaked, as necessary.

The following is a WSDL file describing a sample math service with a single add method (which
you will be building later):
<?xml version="1.0" encoding=" utf-8"?>

<wsdl:definitions

 xmlns:http=" http://schemas.xmlsoap.org/wsdl/http/"

 xmlns:soap=" http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:s=" http://www.w3.org/2001/XMLSchema"

 xmlns:tns=" http://www.wrox.com/services/math"

 xmlns:wsdl=" http://schemas.xmlsoap.org/wsdl/"

 targetNamespace=" http://www.wrox.com/services/math">

 <wsdl:types>

 <s:schema elementFormDefault="qualified"

 targetNamespace=" http://www.wrox.com/services/math">

 <s:element name=" add">

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="1" maxOccurs="1" name=" op1" type="
s:float" />

 <s:element minOccurs="1" maxOccurs="1" name=" op2" type="
s:float" />

 </s:sequence>

 </s:complexType>

 </s:element>

 <s:element name=" addResponse">

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="1" maxOccurs="1" name=" addResult"

 type=" s:float" />

 </s:sequence>

 </s:complexType>

 </s:element>

 </s:schema>

http://schemas.xmlsoap.org/wsdl/http/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/2001/XMLSchema
http://www.wrox.com/services/math
http://schemas.xmlsoap.org/wsdl/
http://www.wrox.com/services/math
http://www.wrox.com/services/math

 </wsdl:types> <wsdl:message name=" addSoapIn">

 <wsdl:part name=" parameters" element=" tns:add" />

 </wsdl:message>

 <wsdl:message name=" addSoapOut">

 <wsdl:part name=" parameters" element=" tns:addResponse" />

 </wsdl:message>

 <wsdl:portType name=" MathSoap">

 <wsdl:operation name=" add">

 <wsdl:documentation>

 Returns the sum of two floats as a float

 </wsdl:documentation>

 <wsdl:input message=" tns:addSoapIn" />

 <wsdl:output message=" tns:addSoapOut" />

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name=" MathSoap" type=" tns:MathSoap">

 <soap:binding transport=" http://schemas.xmlsoap.org/soap/http"

 style=" document" />

 <wsdl:operation name=" add">

 <soap:operation soapAction="
http://www.wrox.com/services/math/add"

 style=" document" />

 <wsdl:input>

 <soap:body use=" literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use=" literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name=" Math">

 <wsdl:documentation>

 Contains a number of simple arithmetical functions

 </wsdl:documentation>

 <wsdl:port name=" MathSoap" binding=" tns:MathSoap">

 <soap:address location=" http://localhost/Math/Math.asmx" />

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

Remember that this WSDL is describing only a basic service that adds two numbers; for
simplicity, the three other methods you will be implementing have been removed. Although this
WSDL file is long and complex, you should understand what its various sections mean.

http://schemas.xmlsoap.org/soap/http
http://www.wrox.com/services/math/add

The document element, <wsdl:definitions/>, encompasses the content and allows the
declaration of various namespaces. The next element, <wsdl:types/>, contains the XML
schema used by the service. Inside of this element is <s:schema/>, which describes the
format of all elements that can appear in the <soap:Body/> of either the request or the
response.

The first element described in the schema is <add/>. Since the <s:schema/> element has
elementFormDefault set to qualified, <add/> is assumed to be in the namespace
designated by the targetNamespace attribute, http://www.wrox.com/services/math.
The <add/> element is then declared to contain a sequence of two other elements, <op1/>
and <op2/>. Both of these elements have minOccurs and maxOccurs set to 1, which means
that they must both appear once and once only. They also both have a type attribute of
s:float, which is one of the built-in XML schema types.

Note You can find a complete list of XML schema data types at

www.w3.org/TR/xmlschema-0/#CreatDt. If your service needs more
complicated types than these, you can construct complex types by
aggregating and restricting these base types.

Next in the schema is another <s:element/>, this one describing <addResponse/>. This
element is defined to have one child element, <addResult/>, which contains the result of the
operation (also defined as type s:float). This is the last entry in the included XML schema.

Back in the main body of the WSDL file is a short section describing two <wsdl:message/>
elements: addSoapIn and addSoapOut. Each of these elements has a <wsdl:part/>
element that specifies the element in the XML schema to use. These both refer to the two
elements add and addResponse, respectively. This section states the format of each
message.

The following section, <wsdl:portType/>, is used to group the <wsdl:message> elements
into operations. An operation is considered to be a single unit of work and, therefore, comprises
of a <wsdl:input> and normally a <wsdl:output> and an optional <wsdl:fault>
element. The preceding example has one <wsdl:portType> and describes a
<wsdl:operation/> named add. The message attributes on its <wsdl:input> and
<wsdl:output> children refer back to the <wsdl:message> elements previously defined.
There is also a <wsdl:documentation/> element containing a user-friendly description of
the method. (You will learn where this information comes from later in the chapter.)

After the port type is a <wsdl:binding/> block. A binding pairs an operation with a protocol
used to communicate with the service. There are three bindings described in the WSDL
specification, SOAP, HTTP GET/POST, and MIME.

important This chapter concentrates on the SOAP binding. The HTTP GET/POST

binding deals with how URLs are constructed (for GET requests) or how
the form data is encoded (for POST requests). The MIME binding allows
parts of the message, normally the output, to be expressed in different
mime types. This means that one part of the response could be in XML,
whereas a second part could be in HTML.

You can read more about these alternative bindings at
www.w3.org/TR/2002/WD-wsdl12-bindings-20020709/.

First, the name of the binding is set to MathSoap, and the type points to the MathSoap port
type defined in the <wsdl:portType> section. Second, the <soap:binding/> element uses
the transport attribute to specify that the service operates over HTTP. The
<wsdl:operation/> element simply defines the name of the method, add. The
<soap:operation/> element contains the soapAction that needs to be incorporated into
the header of the HTTP request as well as the style attribute, which specifies that the SOAP
message will be a document type rather than an RPC type.

http://www.wrox.com/services/math
http://www.w3.org/TR/xmlschema-0/#CreatDt
http://www.w3.org/TR/2002/WD-wsdl12-bindings-20020709/

Note The main difference between a document-style message and an RPC-style

message is that the document style sends the message as elements within
the <soap:body> that can have whatever structure the sender and receiver
agree on using the embedded schema as a guide. An RPC-style message,
however, has an element named after the method being called. This in turn
will have one element for each parameter the method accepts.

The <soap:operation/> element has two children, <wsdl:input> and <wsdl:output>,
which are used to further describe the request and response format. In this case, the
<soap:body> specifies a use attribute of literal. In practical terms, this is the only option
with document-style services; with RPC-style services the choice extends to encoded, in which
case the <soap:body> would further specify exactly which encoding type was to be used for
the parameter types.

The final part of the document, <wsdl:service/>, deals with how to call the service from a
client. It also contains a human-readable description of the service and the <wsdl:port/>
element, which references the MathSoap binding in the last document section. Perhaps the
most important element in this section is <soap:address/>, which contains the crucial
location attribute containing the URL needed to access the service.
<wsdl:service name=" Math">

 <wsdl:documentation>

 Contains a number of simple arithmetical functions

 </wsdl:documentation>

 <wsdl:port name=" MathSoap" binding=" tns:MathSoap">

 <soap:address location=" http://localhost/Math/Math.asmx" />

 </wsdl:port>

</wsdl:service>

Looking at a complete WSDL file may be a bit daunting for new developers, but the good news
is that you will probably never have to hand code one yourself. In fact, the example file in this
section was created automatically by the .NET web service, which examines the underlying
code and generates the necessary XML.

Note XML schemas are a vast topic and a full discussion is outside the scope of

this book. If you'd like to learn more about XML schemas, consider picking up
Beginning XML, 3rd Edition (Wiley Publishing, ISBN 0-7645-7077-3), or for a
web tutorial, visit www.w3schools.com/schema/default.asp.

REST
Representational State Transfer, often abbreviated as REST, describes a way of using the
existing HTTP protocol to transmit data. Although used mostly for web services, REST can be
used for any type of HTTP-based request and response systems as well. In regard to web
services, REST enables you to call a given URL in a specific format to return data (which will
also be in a specific format). This data may contain further information on how to retrieve even
more data. For the web service usage, the data will be returned as XML.

For example, suppose Wrox would like to provide a way for others to retrieve a list of all
authors. REST-style web services use simple URLs to access data; the Wrox Book service
could use this URL to retrieve the list of authors:

 http://www.wrox.com/services/authors/

This service may return an XML representation of the known authors along with information on
how to access details about each one, such as:
<?xml version="1.0" encoding=" utf-8" ?>

<authors xmlns:xlink="http://www.w3.org/1999/xlink"

http://www.w3schools.com/schema/default.asp
http://www.wrox.com/services/authors/
http://www.wrox.com/services/authors/
http://www.w3.org/1999/xlink

 xmlns="http://www.wrox.com/services/authors-books"

 xlink:href="http://www.wrox.com/services/authors/">

 <author forenames="Michael" surname="Kay"

 xlink:href="http://www.wrox.com/services/authors/kaym"

 id=" kaym"/>

 <author forenames="Joe" surname=" Fawcett"

 xlink:href="http://www.wrox.com/services/authors/fawcettj"

 id=" fawcettj"/>

 <author forenames="Jeremy" surname=" McPeak"

 xlink:href="http://www.wrox.com/services/authors/mcpeakj"

 id=" mcpeakj"/>

 <author forename=" Nicholas" surname=" Zakas"

 xlink:href="http://www.wrox.com/services/authors/zakasn"

 id=" zakasn"/>

 <!--

 More authors

 -->

</authors>

There are a couple of things to note about this XML. First, a default namespace of
http://www.wrox.com/services/authors-books is declared so that any un-prefixed
elements, such as <authors/>, are assumed to belong to this namespace. This means that
the <authors/> element can be differentiated from another element with a similar name but
from a different namespace. The namespace URI,
http://www.wrox.com/services/authors-books, is used simply as a unique string;
there is no guarantee that an actual resource is available at that location. The key is that it is a
Uniform Resource Identifier (URI), which is simply an identifier, not a Uniform Resource Locator
(URL), which would indicate that a resource is available at a specific location.

Second, note the use of the href attribute from the http://www.w3.org/1999/xlink
namespace. Although not essential, many REST-style services have now standardized on this
notation for what, in HTML, would be a standard hyperlink.

Note XLink is a way of linking documents that goes way beyond the straightforward

hyperlinks of HTML. It provides capabilities to specify a two-way dependency
so that documents can be accessible from each other as well as indicating
how a link should be activated — for example, by hand, automatically, or after
a preset time. Its cousin, XPointer, is concerned with specifying sections
within a document and arose from the need for a more powerful notation than
the simple named links within HTML pages.

Although they have both reached recommendation status at the W3C, they
are still not widely used. For more information, visit
www.w3.org/XML/Linking.

If used in a web site or web application, the XML returned from the REST service would be
transformed, either client-side or server-side, to a more user-friendly format (most likely HTML)
— perhaps something like this:
<html>

 <head>

 <title>Wrox Authors</title>

 </head>

http://www.wrox.com/services/authors-books
http://www.wrox.com/services/authors/
http://www.wrox.com/services/authors/kaym
http://www.wrox.com/services/authors/fawcettj
http://www.wrox.com/services/authors/mcpeakj
http://www.wrox.com/services/authors/zakasn
http://www.wrox.com/services/authors-books
http://www.wrox.com/services/authors-books
http://www.w3.org/1999/xlink
http://www.w3.org/XML/Linking

 <body>

 Michael
Kay

 Joe
Fawcett

 Jeremy
McPeak

 Nicholas
Zakas

 </body>

</html>

The user could then retrieve individual author data by following one of the links, which may
return XML similar to this:
<?xml version="1.0" encoding=" utf-8" ?>

<author xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns="http://www.wrox.com/services/authors-books"

 xlink:href="http://www.wrox.com/services/authors/fawcettj"

 id=" fawcettj" forenames=" Joe" surname=" Fawcett">

 <books>

 <book

 xlink:href="http://www.wrox.com/services/books/0764570773"

 isbn="0764570773" title=" Beginning XML"/>

 <book

 xlink:href="http://www.wrox.com/services/books/0471777781"

 isbn="0471777781" title=" Professional Ajax"/>

 </books>

</author>

Again, you see that the elements are in the http://www.wrox.com/services/authors-
books namespace and the xlink:href attribute is a way to extract further information. An
HTML representation of this data may look like this:
<html>

 <head>

 <title>Author Details</title>

 </head>

 <body>

 <p>Details for

 Joe
Fawcett</p>

 <p>Books</p>

Beginning
XML

 Professional
Ajax

 </body>

</html>

http://www.wrox.com/services/authors/kaym
http://www.wrox.com/services/authors/fawcettj
http://www.wrox.com/services/authors/mcpeakj
http://www.wrox.com/services/authors/zakasn
http://www.w3.org/1999/xlink
http://www.wrox.com/services/authors-books
http://www.wrox.com/services/authors/fawcettj
http://www.wrox.com/services/books/0764570773
http://www.wrox.com/services/books/0471777781
http://www.wrox.com/services/authors-books
http://www.wrox.com/services/authors-books
http://www.wrox.com/services/authors/fawcettj
http://www.wrox.com/services/books/0764570773
http://www.wrox.com/services/books/0471777781

And if, per chance, the user feels like following the link for Professional Ajax, he or she may
receive the following XML in response:
<?xml version="1.0" encoding=" utf-8" ?>

<book xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns="http://www.wrox.com/services/authors-books"

 xlink:href="http://www.wrox.com/services/books/0471777781"

 isbn="0471777781">

 <genre>Web Programming</genre>

 <title>Professional AJAX</title>

 <description>How to take advantage of asynchronous JavaScript

 and XML to give your web pages a rich UI.</description>

 <authors>

 <author forenames=" Nicholas" surname=" Zakas"

 xlink:href="http://www.wrox.com/services/authors/zakasn"

 id=" zakasn" />

 <author forenames=" Jeremy" surname=" McPeak"

 xlink:href="http://www.wrox.com/services/authors/mcpeakj"

 id=" mcpeakj" />

 <author forenames=" Joe" surname=" Fawcett"

 xlink:href="http://www.wrox.com/services/authors/fawcettj"

 id=" fawcettj" />

 </authors>

</book>

REST-style services are fairly straightforward and follow a repeating pattern. For example, you
may get a complete list of authors by using http://www.wrox.com/services/authors/,
whereas a slight modification, adding an author ID at the end, may retrieve information about a
single author, perhaps from http://www.wrox.com/services/authors/fawcettj.

The service can be implemented in any number of ways. It could be through static web pages
or, more likely, some sort of server-side processing such as ASP, JSP, or PHP, that fetch data
from a database and return the appropriately constructed XML. In this case the URL would be
mapped by the server into an application-specific way of retrieving the data, possibly by
invoking a stored procedure on the database in question.

Note You can read more about REST-style services (also called RESTful services)

at www.network.world.com/ee/2003/eerest.html.

The .NET Connection
By most accounts, Microsoft spearheaded the web services movement with the introduction of
SOAP. When Microsoft presented SOAP to IBM as a way of transporting data, IBM quickly
came on board, helping to develop what later became WSDL. With the combined force of
Microsoft and IBM, many more big companies jumped on board, such as Oracle, Sun, and HP.
The standards were established and the beginning of the web service era was on the horizon,
but there was a catch: there were no tools to facilitate the creation of web services. That's
where .NET came in.

Microsoft released the .NET Framework in 2000 with the aim of providing a platform-
independent development framework to compete with Java. Since Microsoft started nearly from

http://www.w3.org/1999/xlink
http://www.wrox.com/services/authors-books
http://www.wrox.com/services/books/0471777781
http://www.wrox.com/services/authors/zakasn
http://www.wrox.com/services/authors/mcpeakj
http://www.wrox.com/services/authors/fawcettj
http://www.wrox.com/services/authors/
http://www.wrox.com/services/authors/fawcettj
http://www.network.world.com/ee/2003/eerest.html

scratch with the .NET initiative, they built in strong support for XML, as well as the creation and
consumption of web services using SOAP and WSDL. Using .NET, there are simple ways to
provide a web services wrapper around existing applications as well as exposing most .NET
classes using web services.

When developing web services, you can decide how much interaction with SOAP and WSDL is
necessary. There are tools to shield developers from the underlying structure, but you can also
change fine details if necessary. The 2005 version of the .NET Framework makes even more
use of XML and web services.

Design Decisions
Although the .NET Framework makes web service development easier, it is by no means the
only way to create them. Just like any other programming task, there are several design and
development decisions that must be made. Remember, web services provide a platform-
independent way of requesting and receiving data, so the service consumer doesn't need (or in
many cases want) information about how it is implemented. Unfortunately, there are some
things to be aware of when interoperability is a concern:

 Not all platforms support the same data types. For example, many services return
an ADO.NET dataset. A system without .NET will be unlikely to understand this data form.
Similarly, arrays can be problematic because they can be represented in any number of
ways.

 Some services are more tolerant of missing or extra headers in the request. This
problem is allied to consumers that do not send all the correct headers, which can create
problems, especially when it comes to securing a service.

In an effort to overcome these and other related issues, the Web Services Interoperability
Organization was formed. You can find its aims, findings, and conformance recommendations
at www.ws-i.org/.

When creating a web service, your first decision is which platform to use. If you choose
Windows, you'll almost certainly use IIS as your web server. You can use ASP.NET to create
your web services, or ASP for older versions of IIS (though this is more difficult). The examples
in this chapter use ASP.NET.

If you are using UNIX or Linux, you will likely be using JSP or PHP, both of which have open
source web servers available. Using these, you need to program in Java or PHP, respectively,
to create web services.

Note The Axis project (http://ws.apache.org/axis/) has development tools

for both Java and C++.

For PHP there are also plenty of options, including PhpXMLRPC
(http://phpxmlrpc.sourceforge.net/) and Pear SOAP
(http://pear.php.net/package/SOAP).

After you've chosen your language, you'll need to decide who will have access to your service.
Will your application be the only one calling it, or will your service be accessible publicly? If the
latter, you will need to take into account the interoperability issues discussed previously; if the
former, you can take advantage of some of the specialized features provided by the client or the
server.

With a web service created, the next step is to consume it. Any application that calls a web
service is considered a consumer. Typically, consuming a web service follows a distinct pattern:
create a request, send the request, and act on the response received. The exact method for
taking these steps is up to the functionality that is accessible by the consumer.

http://www.ws-i.org/
http://ws.apache.org/axis/
http://phpxmlrpc.sourceforge.net/
http://pear.php.net/package/SOAP

Creating a Windows Web Service
Now it's time to move away from the specifications and theories to create a simple web service.
The web service described in this section uses document-style SOAP requests and responses
to implement the Math service described in the WSDL file earlier in this chapter. Note that this
process uses free tools available from Microsoft, which involve a little more work than if you
were to use, say, Visual Studio .NET. However, the extra work you'll do in this section will aid in
your understanding of web services and could pay handsome dividends later in your
development career should anything go wrong with an auto-generated service.

System Requirements

To create this service, you will need three minimum requirements:
 A Windows machine running IIS 5 or greater. This comes as standard on all XP

Professional machines and on all servers from Windows 2000 onwards.
 The .NET Framework must be installed on the machine running IIS. You will also need

the .NET Software Development Kit (SDK) on the machine you are developing on. For the
purposes of this example, it is assumed that you are developing on the machine that is
running IIS. (You can download both the .NET Framework and the SDK from
http://msdn.microsoft.com/netframework/downloads/updates/default.as
px.)

 A text editor to write the code. This can simply be Notepad, which is standard on all
Windows machines and is more than adequate for the purposes of this example (although
for serious development an editor that supports syntax highlighting is preferable).

Configuring IIS

The first task is to create a home for your service. Go to Start Administrative Tools and select
Internet Information Services. (Alternatively, enter %SystemRoot%\System32\inetsrv\iis.msc
in the Start Run box and click the OK button.) Expand the tree on the left to show the Default
Web Site node, and then right-click and choose New Virtual Directory, as shown in Figure 6-1.
This will bring up the Virtual Directory Creation Wizard, where you choose the name of the web
service folder as seen by the client (see Figure 6-2).

Figure 6-1

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig193%5F01%5F0%2Ejpg&image_id=28&previd=IMG_28&titlelabel=Figure+6%2D1%3A+
http://msdn.microsoft.com/netframework/downloads/updates/default.aspx.
http://msdn.microsoft.com/netframework/downloads/updates/default.aspx.
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=383535599#ch06fig016F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch06fig016F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=383535599#ch06fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch06fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Figure 6-2

Name the folder Math, and then click Next. On the next screen, browse to the standard IIS
directory of C:\InetPub\wwwroot. Create a new folder, also named Math, directly below this
folder. Accept the defaults for the remaining screens of the wizard. When this is done, use
Windows Explorer to create a new folder underneath Math named bin, which will hold the DLL
once the service is built. Your folder hierarchy should now look like Figure 6-3.

Figure 6-3

Coding the Web Service
The web service you are creating is quite simple. Its name is Math, and it implements the four
basic arithmetic operations: addition, subtraction, multiplication, and division. These four
operations each accept two parameters, defined as floats, and return a float as the result. The
class itself will be coded in C#, and the web service will be published in ASP.NET.

Create a new file in your favorite text editor and add the following three lines:
using System;

using System.Web;

using System.Web.Services;

This code doesn't add any extra functionality, but it does save you from having to type fully
qualified class names. Since you will be using several classes from these namespaces, it saves
space to reference them here.

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig193%5F02%5F0%2Ejpg&image_id=29&previd=IMG_29&titlelabel=Figure+6%2D2%3A+
http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig194%5F01%5F0%2Ejpg&image_id=30&previd=IMG_30&titlelabel=Figure+6%2D3%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=383535599#ch06fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch06fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Next, create a namespace called Wrox.Services and a class called Math that inherits from
System.Web.Services.WebService:
namespace Wrox.Services

{

 [WebService (Description = "Contains a number of simple arithmetical
functions",

 Namespace = "http://www.wrox.com/services/math")]

 public class Math : System.Web.Services.WebService

 {

 //class code here

 }

}

The namespace keyword is used to in a similar way as namespaces in XML; it means the full
name of the Math class is Wrox.Services.Math. Immediately inside the namespace
definition is an attribute called WebService, which marks the class on the following line as a
web service. Doing this enables extra functionality for the class, such as generating a WSDL
file. You will also notice that a Description parameter is included (and will also appear in the
WSDL file).

Then comes the class name, Math, which inherits from the base class of
System.Web.Services.WebService. Inheriting from this class means that you don't need to
worry about any specific code for writing web services; the base class handles all of this. You
can simply focus on writing the methods that will be published as part of the web service.

Defining a method to be used in a web service is as easy as writing a regular method and
tagging it with the special WebMethod attribute:
[WebMethod(Description = "Returns the sum of two floats as a float")]

public float add(float op1, float op2)

{

 return op1 + op2;

}

Once again, the code is very simple. (What could be simpler than an addition operation?) Any
method that has a WebMethod attribute preceding it is considered part of the web service. The
Description parameter will become part of the generated WSDL file. Although you can write
as many methods as you'd like, here is the complete code for this example, including the four
arithmetic methods:
using System;

using System.Web;

using System.Web.Services;

namespace Wrox.Services

{

 [WebService (Description = "Contains a number of simple arithmetical
functions",

 Namespace = "http://www.wrox.com/services/math")]

 public class Math : System.Web.Services.WebService

 {

http://www.wrox.com/services/math
http://www.wrox.com/services/math

 [WebMethod(Description = "Returns the sum of two floats as a
float")]

 public float add(float op1, float op2)

 {

 return op1 + op2;

 }

 [WebMethod(Description = "Returns the difference of two floats as
a float")]

 public float subtract(float op1, float op2)

 {

 return op1 - op2;

 }

 [WebMethod(Description = "Returns the product of two floats as a
float")]

 public float multiply(float op1, float op2)

 {

 return op1 * op2;

 }

 [WebMethod(Description = "Returns the quotient of two floats as a
float")]

 public float divide(float op1, float op2)

 {

 return op1 / op2;

 }

 }

}

Save this file in the Math directory and name it Math.asmx.cs.

Create another text file and enter the following line:
<%@WebService Language=" c#" Codebehind=" Math.asmx.cs" Class="
Wrox.Services.Math" %>

This is the ASP.NET file that uses the Math class you just created. The @WebService
directive tells the page to act like a web service. The meaning of the other attributes should be
fairly obvious: Language specifies the language of the code to use; Codebehind specifies the
name of the file that the code exists in; and Class specifies the fully qualified name of the class
to use. Save this file in Math directory as well, with the name Math.asmx.

Creating the Assembly

After you have created these two files, you can proceed with the next stage: compiling the
source code into an assembly that will be housed in a DLL. To do this, you can use the C#
compiler that comes with the .NET SDK. This will be in your Windows directory below the

Microsoft.Net\Framework\ <version number> folder (for example,
C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\).

The easiest way to compile and debug the code is to create a batch file. Create another text file
and enter the following (it should all be on one line despite the formatting of the book):
C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\csc.exe /r:System.dll

/r:System.Web.dll

/r:System.Web.Services.dll /t:library /out:bin\Math.dll Math.asmx.cs

Remember to modify the path to csc.exe if necessary and save it to the Math folder as
MakeService.bat.

Important If you are using Notepad, be careful using the Save As dialog box. Make

sure that the File Type box is set to All Files, or else enclose the file
name in double quotes. Otherwise, Notepad adds a .txt extension to
your file.

Next, you need to compile the DLL. Open a command prompt from Start Run and type cmd.
Now navigate to the Math folder by typing cd \inetpub\wwwroot\Math. Finally, run the following
batch file:
C:\inetpub\wwwroot\Math\MakeService.bat

If all is well, you should be greeted with the compiler displaying some version and copyright
information, and then a blank line. This is good news and indicates that the compilation was
successful. (If there were any errors, they will be outputted to the console. Check the lines
indicated and correct any syntax or spelling mistakes.)

Assuming the DLL has compiled, you are ready to test the service. One of the joys of .NET web
services is that a whole test harness is created automatically for you. Open your web browser
and navigate to http://localhost/Math/math.asmx. You should soon see a page similar
to the one displayed in Figure 6-4.

Figure 6-4

You have the choice to try any of the four methods or you can view the generated WSDL file by
clicking the Service Description link. This reveals a WSDL file similar to the example earlier in
the chapter, but this will have entries for all four methods.

Important Another way of viewing the WSDL file is to add ?WSDL to the web

service URL, such as http://localhost/Math/math.asmx?WSDL.

Since you have probably had enough of the add method, try the divide method. Clicking the
link from the previous screen should display the page in Figure 6-5.

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig197%5F01%5F0%2Ejpg&image_id=31&previd=IMG_31&titlelabel=Figure+6%2D4%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=383535599#ch06fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch06fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=383535599#ch06fig056F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch06fig056F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Figure 6-5

Below the divide heading is the description you used with the WebMethod attribute, and
below that is a small test form. If you enter two numbers, such as 22 and 7, you'll receive a
response such as the one displayed in Figure 6-6.

Figure 6-6

In a production environment, you can now remove the Math.asmx.cs file, as it is no longer
needed. The Math.asmx simply passes on all requests directly to the DLL.

This test harness does not use SOAP for the request and response. Instead, it passes the two
operands as a POST request; the details of how to do this are shown at the bottom of the divide
page in Figure 6-5. Now that you have a web service defined, it's time to use Ajax to call it.

Web Services and Ajax
Now that you have a basic understanding of web services, and have created your own, you're
probably wondering what this has to do with Ajax. Quite simply, web services are another
avenue for Ajax applications to retrieve information. In the last chapter, you learned how to
retrieve and use RSS and Atom feeds to display information to the user, which is very similar to
using web services. The main difference is that by using web services, you are able to pass
information to the server that can be manipulated and sent back; you aren't simply pulling
information.

You can use JavaScript to consume a web service from within a web page so long as your
users have a modern browser. Internet Explorer 5.0 and higher, as well as the Mozilla family of

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig198%5F01%5F0%2Ejpg&image_id=32&previd=IMG_32&titlelabel=Figure+6%2D5%3A+
http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig199%5F01%5F0%2Ejpg&image_id=33&previd=IMG_33&titlelabel=Figure+6%2D6%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=383535599#ch06fig066F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch06fig066F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=383535599#ch06fig056F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch06fig056F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

browsers (including Firefox), all have some functionality that allows web services to be
consumed.

Creating the Test Harness

First, you'll need a test harness to test the various approaches to calling web services from the
browser. This test harness is fairly simple: there is a list box to select one of the four arithmetic
operations to execute, a text box for each of the two operands, and a button to invoke the
service. These controls are disabled until the page has fully loaded. Below those controls is
another text box to display any valid result as well as two text areas to display the request and
response data:
<html>

 <head>

 <title>Web Service Test Harness</title>

 <script type=" text/javascript">

 var SERVICE_URL = "http://localhost/Math/Math.asmx";

 var SOAP_ACTION_BASE = "http://www.wrox.com/services/math";

 function setUIEnabled(bEnabled)

 {

 var oButton = document.getElementById("cmdRequest");

 oButton.disabled = !bEnabled;

 var oList = document.getElementById("lstMethods");

 oList.disabled = !bEnabled

 }

 function performOperation()

 {

 var oList = document.getElementById("lstMethods");

 var sMethod = oList.options[oList.selectedIndex].value;

 var sOp1 = document.getElementById("txtOp1").value;

 var sOp2 = document.getElementById("txtOp2").value;

 //Clear the message panes

 document.getElementById("txtRequest").value = "";

 document.getElementById("txtResponse").value = "";

 document.getElementById("txtResult").value = "";

 performSpecificOperation(sMethod, sOp1, sOp2);

 }

 </script>

 </head>

 <body onload=" setUIEnabled(true)">

 Operation: <select id=" lstMethods" style=" width: 200px"
disabled=" disabled">

 <option value=" add" selected=" selected">Add</option>

http://www.wrox.com/services/math

 <option value=" subtract">Subtract</option>

 <option value=" multiply">Multiply</option>

 <option value=" divide">Divide</option>

 </select>

 Operand 1: <input type=" text" id=" txtOp1" size="10"/>

 Operand 2: <input type=" text" id=" txtOp2" size="10"/>

 <input type=" button" id=" cmdRequest"

 value=" Perform Operation"

 onclick=" performOperation();" disabled=" disabled"/>

 Result: <input type=" text" size="20" id=" txtResult">

 <textarea rows="30" cols="60" id=" txtRequest"></textarea>

 <textarea rows="30" cols="60" id=" txtResponse"></textarea>

 </body>

</html>

The setUIEnabled() function is used to enable and disable the user interface of the test
harness. This ensures that only one request is sent at a time. There are also two constants
defined, SERVICE_URL and SOAP_ACTION_BASE, that contain the URL for the web service
and the SOAP action header required to call it, respectively. The button calls a function named
performOperation(), which gathers the relevant data and clears the text boxes before
calling performSpecificOperation(). This method must be defined by the particular test
being used to execute the web service call (which will be included using a JavaScript file).
Depending on your personal browser preferences, the page resembles Figure 6-7.

Figure 6-7

The Internet Explorer Approach
In an early effort to get developers excited about web services, Microsoft developed and
released a web service behavior for Internet Explorer. Behaviors enable you to redefine the
functionality, properties, and methods of an existing HTML element or to create an entirely new
one. The advantage of behaviors is the encapsulation of functionality into a single file, ending
with the .htc extension. Although the promise of behaviors never lived up to the hype, the web
service behavior is a solid component that can be very useful to web developers. You can
download the behavior from

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig201%5F01%5F0%2Ejpg&image_id=34&previd=IMG_34&titlelabel=Figure+6%2D7%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=312668455#ch06fig07#ch06fig07

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/web
service/webservice.asp.

Note This file and the others associated with this chapter are included in the code

download for Professional Ajax, at www.wrox.com.

You can add behaviors to elements in a number of ways. The most straightforward is to use the
element's CSS style property. To add the web service behavior to a <div/>, the code would
be:
<div id=" divServiceHandler" style=" behavior:
url(webservice.htc);"></div>

This assumes that the behavior is in the same folder on the server as the web page.

To show how to use this behavior, create a new version of the test harness and insert the
highlighted line directly below the <body/> element, as follows:
<body onload=" setUIEnabled(true);">

<div id=" divServiceHandler" style=" behavior:
url(webservice.htc);"></div>

Operation: <select id=" lstMethods" style=" width: 200px" name="
lstMethods"

 disabled=" disabled">

The next step is to define the performSpecificOperation() method specific to using the
web service behavior. This method accepts three arguments: the method name and the two
operands. The code is as follows:
var iCallId = 0;

function performSpecificOperation(sMethod, sOp1, sOp2)

{

 var oServiceHandler = document.getElementById("divServiceHandler");

 if (!oServiceHandler.Math)

 {

 oServiceHandler.useService(SERVICE_URL + "?WSDL", "Math");

 }

 iCallId =
oServiceHandler.Math.callService(handleResponseFromBehavior,

 sMethod, sOp1, sOp2);

}

A variable, iCallId, is initialized to zero. Although this plays no part in the test, it can be used
to keep track of multiple simultaneous calls. Then, a reference to the <div/> element that has
the behavior attached is stored in oServiceHandler. Next, a test is done to see if the
behavior has already been used by checking to see whether the Math property exists. If it
doesn't exist, you must set up the behavior by passing the URL of the WSDL file and a
identifying name for the service to useService(). The reason for the identifier is to enable the
behavior to use more than one service at a time. The callService() method is then
executed, passing in a callback function (handleResponseFromBehavior()), the name of
the method, and the two arguments.

When the response is received, the callback function, handleResponseFromBehavior(),
will be called:
function handleResponseFromBehavior(oResult)

{

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/webservice/webservice.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/webservice/webservice.asp
http://www.wrox.com/

 var oResponseOutput = document.getElementById("txtResponse");

 if (oResult.error)

 {

 var sErrorMessage = oResult.errorDetail.code

 + "\n" + oResult.errorDetail.string;

 alert("An error occurred:\n"

 + sErrorMessage

 + "See message pane for SOAP fault.");

 oResponseOutput.value = oResult.errorDetail.raw.xml;

 }

 else

 {

 var oResultOutput = document.getElementById("txtResult");

 oResultOutput.value = oResult.value;

 oResponseOutput.value = oResult.raw.xml;

 }

}

The callback function is passed an oResult object containing details about the call. If the
error property is not zero, the relevant SOAP fault details are displayed; otherwise
oResult.value, the returned value, is displayed on the page.

You can place the performSpecificOperation() and
handleResponseFromBehavior() functions in an external JavaScript file and include them
in the test harness page using the <script/> element, as follows:
<script type=" text/javascript" src="
WebServiceExampleBehavior.js"></script>

As you can see, using the web service behavior is fairly straightforward. All the work is done by
the behavior behind the scenes, and although the webservice.htc file is a bit large for a
script file (51KB), it can provide some very useful functionality.

Note If you want to see how the behavior works, feel free to examine the

webservice.htc file in a text editor. Be warned, however; it was not meant
as a tutorial and contains nearly 2300 lines of JavaScript.

The Mozilla Approach
Modern Mozilla-based browsers, such as Firefox and Netscape, have some high-level SOAP
classes built into their implementation of JavaScript. These browsers seek to wrap the basic
strategy of making SOAP calls with easier-to-use classes. As with the previous example, you
first must define the performSpecificOperation() function:
function performSpecificOperation(sMethod, sOp1, sOp2)

{

 var oSoapCall = new SOAPCall();

 oSoapCall.transportURI = SERVICE_URL;

 oSoapCall.actionURI = SOAP_ACTION_BASE + "/" + sMethod;

 var aParams = [];

 var oParam = new SOAPParameter(sOp1, "op1");

 oParam.namespaceURI = SOAP_ACTION_BASE;

 aParams.push(oParam); oParam = new SOAPParameter(sOp2, "op2");

 oParam.namespaceURI = SOAP_ACTION_BASE;

 aParams.push(oParam);

 oSoapCall.encode(0, sMethod, SOAP_ACTION_BASE, 0, null,
aParams.length, aParams);

 var oSerializer = new XMLSerializer();

 document.getElementById("txtRequest").value =

oSerializer.serializeToString(oSoapCall.envelope);

 setUIEnabled(false);

 //more code here}

This script takes advantage of a number of built-in classes, the first of which is SOAPCall. This
class wraps web service functionality in a similar way to the web service behavior for Internet
Explorer. After creating an instance of SOAPCall, you set two properties: transportURI,
which points to the web service location, and actionURI, which specifies the SOAP action and
method name.

Next, two parameters are created using the SOAPParameter constructor, which takes the
value and the name of the parameter to create. Each parameter has its namespace URI set to
the value of the targetNamespace in the WSDL schema section. In theory this shouldn't be
necessary, but the Mozilla SOAP classes seem to be designed with the RPC style in mind and
our service uses the document style, so this extra step is needed. Both of these parameters are
pushed onto the aParams array. The encode() method prepares all the data for the call.
There are seven parameters for this call. The first is the version of SOAP being used, which can
be set to zero unless it is important that a specific version is needed. The second parameter is
the name of the method to use, and the third is that of the targetNamespace from the schema
portion of the WSDL file. The next parameter is the count of how many extra headers are
needed in the call (none in this case), followed by an array of these headers (here set to null).
The last two parameters contain the number of SOAPParameter objects being sent and the
actual parameters, respectively.

Next, you actually need to send the request, which you can do by using the asyncInvoke()
method, as follows:
function performSpecificOperation(sMethod, sOp1, sOp2)

{

 var oSoapCall = new SOAPCall();

 oSoapCall.transportURI = SERVICE_URL;

 oSoapCall.actionURI = SOAP_ACTION_BASE + "/" + sMethod;

 var aParams = [];

 var oParam = new SOAPParameter(sOp1, "op1");

 oParam.namespaceURI = SOAP_ACTION_BASE;

 aParams.push(oParam);

 oParam = new SOAPParameter(sOp2, "op2");

 oParam.namespaceURI = SOAP_ACTION_BASE;

 aParams.push(oParam); oSoapCall.encode(0, sMethod, SOAP_ACTION_BASE,
0, null,

 aParams.length, aParams);

 document.getElementById("txtRequest").value =

oSerializer.serializeToString(oSoapCall.envelope);

 setUIEnabled(false);

 oSoapCall.asyncInvoke(

 function (oResponse, oCall, iError)

 {

 var oResult = handleResponse(oResponse,
oCall, iError);

 showSoapResults(oResult);

 }

);

}

The asyncInvoke() method accepts only one argument: a callback function
(handleResponse()). This function will be passed three arguments by the SOAP call: a
SOAPResponse object, a pointer to the original SOAP call (to track multiple instances, if
necessary), and an error code. These are all passed to the handleResponse function for
processing, when the call returns:
function handleResponse(oResponse, oCall, iError)

{

 setUIEnabled(true);

 if (iError != 0)

 {

 alert("Unrecognized error.");

 return false;

 }

 else

 {

 var oSerializer = new XMLSerializer();

 document.getElementById("txtResponse").value =

 oSerializer.serializeToString(oResponse.envelope);

 var oFault = oResponse.fault;

 if (oFault != null)

 {

 var sName = oFault.faultCode;

 var sSummary = oFault.faultString;

 alert("An error occurred:\n" + sSummary

 + "\n" + sName

 + "\nSee message pane for SOAP
fault");

 return false;

 }

 else

 {

 return oResponse;

 }

 }

}

If the error code is not zero, an error has occurred that can't be explained. This happens only
rarely; in most cases an error will be returned through the fault property of the response
object.

Another built-in class is used now, XMLSerializer. This takes an XML node and can convert
it to a string or a stream. In this case a string is retrieved and displayed in the right-hand text
area.

If oResponse.fault is not null, a SOAP fault occurred, so an error message is built and
displayed to the user and no further action taken. Following a successful call, the response
object is passed out as the function's return value and processed by the showSoapResults()
function:
function showSoapResults(oResult)

{

 if (!oResult) return;

 document.getElementById("txtResult").value =

 oResult.body.firstChild.firstChild.firstChild.data;

}

After checking that oResult is valid, the value of the <methodResult> element is extracted
using the DOM.

Note There is a method of the SoapResponse named getParameters, which, in

theory, can be used to retrieve the parameters in a more elegant manner. It
does not seem to work as advertised with document style calls, however,
necessitating the need to examine the structure of the soap:Body using
more primitive methods.

The Universal Approach
The only way to consume web services on almost all modern browsers is by using XMLHttp.
Because Internet Explorer, Firefox, Opera, and Safari all have some basic support for XMLHttp,
this is your best bet for cross-browser consistency. Unfortunately, this type of consistency
comes at a price — you are responsible for building up the SOAP request by hand and posting
it to the server. You are also responsible for parsing the result and watching for errors.

The two protagonists in this scenario are the XmlHttp ActiveX class from Microsoft and the
XmlHttpRequest class that comes with the more modern Mozilla-based browsers listed
above. They both have similar methods and properties, although in the time-honored fashion of
these things Microsoft was first on the scene before standards had been agreed on, so the later
released Mozilla version is more W3C compliant. The basic foundation of these classes is to
allow an HTTP request to be made to a web address. The target does not have to return XML
— virtually any content can be retrieved — and the ability to post data is also included. For
SOAP calls, the normal method is to send a POST request with the raw <soap:Envelope> as
the payload.

In this example, you'll once again be calling the test harness. This time, however, you'll be using
the zXML library to create XMLHttp objects and constructing the complete SOAP call on your
own. This library uses a number of techniques to examine which XML classes are supported by
the browser. It also wraps these classes and adds extra methods and properties so that they

can be used in a virtually identical manner. The generation of the SOAP request string is
handled in a function called getRequest():
function getRequest(sMethod, sOp1, sOp2)

{

 var sRequest = "<soap:Envelope xmlns:xsi=\""

 + "http://www.w3.org/2001/XMLSchema-instance\" "

 + "xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\" "

 + "xmlns:soap=\"
http://schemas.xmlsoap.org/soap/envelope/\">\n"

 + "<soap:Body>\n"

 + "<" + sMethod + "xmlns=\"" + SOAP_ACTION_BASE +
"\">\n"

 + "<op1>" + sOp1 + "</op1>\n"

 + "<op2>" + sOp2 + "</op2>\n"

 + "</" + sMethod + ">\n"

 + "</soap:Body>\n"

 + "</soap:Envelope>\n";

 return sRequest;

}

The getRequest() function is pretty straightforward; it simply constructs the SOAP string in
the appropriate format. (The appropriate format can be seen using the .NET test harness
described in the creation of the Math service.) The completed SOAP string is returned by
getRequest() and is used by performSpecificOperation() to build the SOAP
request:
function performSpecificOperation(sMethod, sOp1, sOp2) {

 oXmlHttp = zXmlHttp.createRequest();

 setUIEnabled(false);

 var sRequest = getRequest(sMethod, sOp1, sOp2);

 var sSoapActionHeader = SOAP_ACTION_BASE + "/" + sMethod;

 oXmlHttp.open("POST", SERVICE_URL, true);

 oXmlHttp.onreadystatechange = handleResponse;

 oXmlHttp.setRequestHeader("Content-Type", "text/xml");

 oXmlHttp.setRequestHeader("SOAPAction", sSoapActionHeader);

 oXmlHttp.send(sRequest);

 document.getElementById("txtRequest").value = sRequest;

}

First, a call is made on the zXmlHttp library to create an XMLHttp request. As stated
previously, this will be an instance of an ActiveX class if you are using Internet Explorer or of
XmlHttpRequest if you are using a Mozilla-based browser. The open method of the object
received attempts to initialize the request. The first parameter states that this request will be a
POST request containing data, and then comes the URL of the service, followed by a Boolean
parameter specifying whether this request will be asynchronous or whether the code should
wait for a response after making the call.

The onreadystatechange property of the request specifies which function will be called
when the state of the request alters.

http://www.w3.org/2001/XMLSchema-instance/
http://www.xmlns:xsd=/%22http:/www.w3.org/2001/XMLSchema/
http://schemas.xmlsoap.org/soap/envelope/

The performSpecificOperation() function then adds two headers to the HTML request.
The first specifies the content type to be text/xml, and the second adds the SOAPAction
header. This value can be read from the .NET test harness page or can be seen in the WSDL
file as the soapAction attribute of the relevant <soap:operation/> element. Once the
request is sent, the raw XML is displayed in the left text box. When the processing state of the
request changes, the handleResponse() function will be called:
function handleResponse()

{

 if (oXmlHttp.readyState == 4)

 {

 setUIEnabled(true);

 var oResponseOutput = document.getElementById("txtResponse");

 var oResultOutput = document.getElementById("txtResult");

 var oXmlResponse = oXmlHttp.responseXML;

 var sHeaders = oXmlHttp.getAllResponseHeaders();

 if (oXmlHttp.status != 200 || !oXmlResponse.xml)

 {

 alert("Error accessing Web service.\n"

 + oXmlHttp.statusText

 + "\nSee response pane for further details.");

 var sResponse = (oXmlResponse.xml ? oXmlResponse.xml :
oXmlResponseText);

 oResponseOutput.value = sHeaders + sResponse;

 return;

 }

 oResponseOutput.value = sHeaders + oXmlResponse.xml;

 var sResult =

oXmlResponse.documentElement.firstChild.firstChild.firstChild.firstChi
ld.data;

 oResultOutput.value = sResult;

 }

}

The handleResponse() function reacts to any change of state in the request. When the
readyState property equals 4, which equates to complete, there will be no more processing
and it can be checked to see if there is a valid result.

If the oXmlHttp.status does not equal 200 or the responseXML property is empty, an error
has occurred and a message is displayed to the user. Should the error be a SOAP fault, that
information is also displayed in the message pane. If, however, the error wasn't a SOAP fault,
the responseText is displayed. If the call has succeeded, the raw XML is displayed in the
right text box.

Assuming that the XML response is available, there are a number of ways to extract the actual
result including XSLT, using the DOM or text parsing; unfortunately, very few of these work
across browsers in a consistent manner. The DOM method of gradually stepping through the
tree is not very elegant, but it does have the merit of being applicable to whichever variety of
XML document is in use.

Cross-Domain Web Services
So far in this chapter you've been calling a service that resides on the same domain as the page
accessing it. By doing this, you have avoided the problem of cross-domain scripting (also known
as cross-site scripting, or XSS). As discussed earlier in this book, this problem is caused by the
fact that there are security risks in allowing calls to external web sites. If the web service is on
the same domain as the calling page, the browser will permit the SOAP request, but what if you
want to use one of the Google or Amazon.com services?

For this you'll need to use a server-side proxy, which runs on your web server and makes calls
on behalf of the client. The proxy then returns the information it receives back to the client. The
setup resembles that of a web proxy server that is commonplace in corporate networks. In that
model, all requests are passed to a central server that retrieves the web page and passes it to
the requestor.

The Google Web APIs Service

Google provides a number of methods that can be called through its web service, including
methods for retrieving cached copies of pages as well as the more obvious results for a given
search phrase. The method you will use to demonstrate a server-side proxy is
doSpellingSuggestion, which takes a phrase and returns what Google believes you meant
to type. If your phrase is not misspelled or is so obscure that it cannot hazard a suggestion, an
empty string is returned.

Important The developers' kit for the Google Web APIs service can be found at

www.google.com/apis/index.html. The kit contains the service's
SOAP and WSDL standards, as well as examples in C#, Visual Basic
.NET, and Java.

You will need to register with Google to receive a security key to allow
you to access the service. There are also rules about how it can be used
both commercially and for development purposes.

Setting Up the Proxy
After you have downloaded the Google documentation and received your key, you need to set
up a service on your own server that will accept the calls from your users and pass them to
Google. The basic service is built in the same way as the Math service discussed earlier.

To begin, open the IIS admin tool (Start Administrative Tools Internet Information Services).
Expand the tree on the left to show the Default Web Site node, and then right-click and choose
New Virtual Directory. In the Alias field of the Virtual Directory Creation Wizard, name your
new directory GoogleProxy, and then click Next. On the next screen, browse to the standard
IIS directory of C:\InetPub\wwwroot, and create a new folder, also named GoogleProxy.
Accept the defaults for the remaining screens of the wizard, and then use Windows Explorer
to create a new folder below GoogleProxy named bin.

Next, open your text editor and create the following file, all on one line:
<%@ WebService Language=" c#"

 Codebehind=" GoogleProxy.asmx.cs" Class="
Wrox.Services.GoogleProxyService" %>

Save this as GoogleProxy.asmx in the GoogleProxy directory.

Now create the main file, GoogleProxy.asmx.cs:
using System;

using System.Web;

using System.Web.Services;

http://www.google.com/apis/index.html

using GoogleService;

namespace Wrox.Services

{

 [WebService (Description = "Enables calls to the Google API",

 Namespace =
"http://www.wrox.com/services/googleProxy")]

 public class GoogleProxyService : System.Web.Services.WebService

 {

 readonly string GoogleKey = "EwVqJPJQFHL4inHoIQMEP9jExTpcf/KG";

 [WebMethod(

 Description = "Returns Google spelling suggestion for a given
phrase.")]

 public string doSpellingSuggestion(string Phrase)

 {

 GoogleSearchService s = new GoogleSearchService();

 s.Url = "http://api.google.com/search/beta2";

 string suggestion = "";

 try

 {

 suggestion = s.doSpellingSuggestion(GoogleKey, Phrase);

 }

 catch(Exception Ex)

 {

 throw Ex;

 }

 if (suggestion == null) suggestion = "No suggestion found.";

 return suggestion;

 }

 }

}

Remember to enter the value of your Google key for the GoogleKey variable, and then save
this file to the same location as the others.

The code itself is fairly straightforward; all the real work is done by the
GoogleSearchService. The method doSpellingSuggestion creates an instance of the
GoogleSearchService class. The URL of the service is then set. This step is not always
necessary, but we've found that it often helps to be able to change the URL of services easily.
In a production environment the URL would be read from a configuration file, enabling you to
move between servers easily.

The doSpellingSuggestion method is now called, passing in the Google key and the
Phrase argument. This is another advantage of using a server-side proxy: you can keep
sensitive information such as your key away from the client-side environment of the browser.

http://www.wrox.com/services/googleProxy
http://api.google.com/search/beta2

If an exception is thrown, it will be re-thrown and returned as a SOAP fault. If the returned
suggestion is null, a suitable string is returned; otherwise, the suggestion is passed back
directly.

You now create the class to interact with Google. Begin by copying the GoogleSearch.wsdl
file into the GoogleProxy folder, and then open a command prompt, navigate to GoogleProxy,
and run the following (you can ignore warnings about a missing schema):
WSDL /namespace:GoogleService /out:GoogleSearchService.cs
GoogleSearch.wsdl

The WSDL utility reads the GoogleSearch.wsdl file and creates the source code for a class
to communicate with the service. The class will reside in the GoogleService namespace, as
instructed by the first parameter to WSDL. This source code needs to be turned into a DLL and
to do this you need to use the C# compiler as you did before. Enter the following at the
command prompt or use the batch file named MakeGoogleServiceDLL.bat from the code
download:

Important WSDL.exe seems to be installed in a number of different places,

depending on what other Microsoft components are on the machine. On
machines with Visual Studio .NET installed, it is likely to be in
C:\Program Files\Microsoft Visual Studio.NET
2003\SDK\v1.1\Bin, but you may need to search for it on your
machine.

C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\csc.exe /r:System.dll

/r:System.Web.dll /r:System.Web.Services.dll /t:library

/out:bin\GoogleSearchService.dll GoogleSearchService.cs

As before, the /r: parameters are telling the compiler which DLLs are needed to provide
support classes to the target DLL of GoogleSearchService.

The last stage is to compile the GoogleProxy class itself:
C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\csc.exe /r:System.dll

/r:System.Web.dll /r:System.Web.Services.dll
/r:bin\GoogleSearchService.dll

/t:library /out:bin\GoogleProxy.dll GoogleProxy.asmx.cs

Notice that a reference is passed in for the GoogleSearchService.dll just created.

You are now ready to test the service by entering the following URL in your browser:
http://localhost/GoogleProxy/GoogleProxy.asmx

You should be greeted with the standard screen, as shown in Figure 6-8.

http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=424185991#ch06fig086F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch06fig086F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Figure 6-8

Click the doSpellingSuggestion link to try out the method using the built-in test harness, as
shown in Figure 6-9.

Figure 6-9

When you click the Invoke button, you will see the XML returned, as shown in Figure 6-10.

Figure 6-10

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig211%5F01%5F0%2Ejpg&image_id=35&previd=IMG_35&titlelabel=Figure+6%2D8%3A+
http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig212%5F01%5F0%2Ejpg&image_id=36&previd=IMG_36&titlelabel=Figure+6%2D9%3A+
http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig212%5F02%5F0%2Ejpg&image_id=37&previd=IMG_37&titlelabel=Figure+6%2D10%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=424185991#ch06fig096F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch06fig096F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=424185991#ch06fig106F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch06fig106F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Summary
This chapter introduced you to the concept of web services, an architecture allowing the transfer
of data from one location on the Internet to another. You learned about the evolution of web
services and associated technologies, such as SOAP, WSDL, and REST. The similarities and
differences between SOAP and REST services were also discussed.

Next, you learned how to create your own web service using ASP.NET and C#. This involved
downloading the .NET SDK and using the built-in web service creation and management tools.
You learned how to inspect and test your web service using the generated .NET test harness.

You then moved on to create a test harness client for Internet Explorer, and then one for
Mozilla, using different techniques to call the web service. You were introduced to the web
service behavior for Internet Explorer and the high-level SOAP classes in Mozilla. The last test
harness created is intended to be universal, using XMLHttp to send and receive SOAP
messages.

Last, you learned about cross-domain issues with web services and how to avoid them using a
serverside proxy.

In this chapter the SOAP specifications were used to pass arguments between the client and
the server. Although this is a robust and flexible method, it adds a lot of overhead to the process
and means that the client must be able to handle XML and all its attendant complexity. The next
chapter shows a simpler and less formal way of passing data between machines called
JavaScript Object Notation (JSON).

http://www.books24x7.com/viewer.asp?bkid=13421&destid=409#409
http://www.books24x7.com/viewer.asp?bkid=13421&destid=409#409

Chapter 7: JSON
Overview
With the still-rising popularity of web services, XML has practically become the de facto
standard for data transmission. However, XML is not without its detractors. For example, some
consider it to be overly verbose for data transmission purposes, necessitating many more bytes
of information to be sent across the Internet to accomplish what could have been done in a
much smaller form. To take this into consideration, new forms of XML compression and even
entire new XML formats, such as Binary XML, have been developed. All these solutions work
on extending or adding on to XML, making backwards compatibility an issue. Douglas
Crockford, a long-time software engineer, proposed a new data format built on JavaScript called
JavaScript Object Notation (JSON).

Up until this point, you've used either plain text or XML to transmit data back and forth to the
server. This chapter introduces the use of JSON in Ajax communication as an alternative to
these more traditional data formats.

What Is JSON?
JSON is a very lightweight data format based on a subset of the JavaScript syntax, namely
array and object literals. Because it uses JavaScript syntax, JSON definitions can be included
within JavaScript files and accessed without the extra parsing that comes along with XML-
based languages. But before you can use JSON, it's important to understand the specific
JavaScript syntax for array and object literals.

Array Literals

For those unfamiliar with JavaScript literal notation, array literals are specified by using square
brackets ([and]) to enclose a comma-delimited list of JavaScript values (meaning a string,
number, Boolean, or null value), such as:
var aNames = ["Benjamin", "Michael", "Scott"];

You can then access the values in the array by using the array name and bracket notation:
alert(aNames[0]); //outputs "Benjamin"

alert(aNames[1]); //outputs "Michael"

alert(aNames[2]); //outputs "Scott"

Note that the first position in the array is 0, and the value in that position is "Benjamin".

Because arrays in JavaScript are not typed, they can be used to store any number of different
data types:
var aValues = ["string", 24, true, null];

This array contains a string, followed by a number, followed by a Boolean, followed by a null
value. This is completely legal and perfectly fine JavaScript.

If you were to define an array without using literal notation, you would have to use the Array
constructor, such as:
var aValues = new Array("string", 24, true, null);

Important It's important to note that either way is acceptable when writing

JavaScript, but only array literals are valid in JSON.

Object Literals
Object literals are used to store information in name-value pairs, ultimately creating an object.
An object literal is defined by two curly braces ({ and }). Inside of these can be placed any
number of name-value pairs, defined with a string, a colon, and the value. Each name-value
pair must be followed with a comma, except for the last one (making this more like defining an
associative array in Perl). For example:
var oCar = {

 "color" : "red",

 "doors" : 4,

 "paidFor" : true

};

This code creates an object with three properties named color, doors, and paidFor, each
containing different values. You can access these properties by using the object name and dot
notation, such as:
alert(oCar.color); //outputs "red"

alert(oCar.doors); //outputs "4"

alert(oCar.paidFor); //outputs "true"

You can also use bracket notation and pass in the name of the property as a string value (like
the way it was defined using object literal notation):
alert(oCar["color"]); //outputs "red"

alert(oCar["doors"]); //outputs "4"

alert(oCar["paidFor"]); //outputs "true"

The same object could be created using the JavaScript Object constructor, like this:
var oCar = new Object();

oCar.color = "red";

oCar.doors = 4;

oCar.paidFor = true;

As you can see, the object literal notation requires much less code than using the Object
constructor.

Important Once again, although either approach is valid in JavaScript, only object

literal notation is valid in JSON.

Mixing Literals
It's possible to mix object and array literals, creating an array of objects or an object containing
an array. Suppose you wanted to create an array of car objects similar to the one created in the
last section. You could do so as follows:
var aCars = [

 {

 "color" : "red",

 "doors" : 2,

 "paidFor" : true

 },

 {

 "color" : "blue",

 "doors" : 4,

 "paidFor" : true

 },

 {

 "color" : "white",

 "doors" : 2,

 "paidFor" : false

 }

];

This code defines an array, aCars, which has three objects in it. The three objects each have
properties named color, doors, and paidFor. (Each object represents a car, of course.)
You can access any of the information in the array by using a combination of bracket and dot
notation. For example, to get the number of doors on the second car in the array, the following
line will do the trick:
alert(aCars[1].doors); //outputs "4"

In this example, you are first getting the value in the second position of the array (position 1)
and then getting the property named doors.

You can also define the array to be inside of object literals, such as:
var oCarInfo = {

 "availableColors" : ["red", "white", "blue"],

 "availableDoors" : [2, 4]

};

This code defines an object called oCarInfo that has two properties, availableColors and
availableDoors. Both of these properties are arrays, containing strings and numbers,
respectively. To access a value here, you just reverse the order of the bracket and dot notation.
So, to get to the second available color, you can do this:
alert(oCarInfo.availableColors[1]);

In this example, you are first returning the property named availableColors, and then
getting the value in the second position (position 1). But what does all this have to do with
JSON?

JSON Syntax

JSON syntax is really nothing more than the mixture of object and array literals to store data.
The only difference from the examples in the last section is that JSON doesn't have variables.
Remember, JSON represents only data; it has no concept of variables, assignments, or
equality. Therefore, the JSON code for the last example is simply:
{

 "availableColors" : ["red", "white", "blue"],

 "availableDoors" : [2, 4]

}

Note that the variable oCarInfo has been removed, as has the semicolon following the closing
curly brace. If this were transmitted via HTTP to a browser, it would be fairly quick because of
the small number of characters. Suppose this data was retrieved by using XMLHTTP (or some

other form of client-server communication) and stored in a variable named sJSON. You now
have a string of information, not an object and certainly not an object with two arrays. To
transform it into an object, you can simply use the JavaScript eval() function, like so:
var oCarInfo = eval("(" + sJSON + ")");

This example surrounds the JSON text with parentheses and then passes that string into the
eval() function, which acts like a JavaScript interpreter. The result of this operation is a
JavaScript object identical to the oCarInfo object defined in the last section. You can access
information in this object in the exact same way:
alert(oCarInfo.availableColors[0]); //outputs "red"

alert(oCarInfo.availableDoors[1]); //ouputs "4"

Important It's very important to include the extra parentheses around any JSON

string before passing it into eval(). Remember, curly braces also
represent statements in JavaScript (such as used with the if
statement). The only way the interpreter knows that the curly braces
represent an object and not a statement is to look for an equals sign
before it or to look for parentheses around it (which indicates that the
code is an expression to be evaluated instead of a statement to be run).

You can see the obvious benefits of using JSON as a data format for JavaScript
communication: it takes the evaluation of the data out of your hands and, therefore, grants you
faster access to the information contained within.

JSON Encoding/Decoding

As part of his resource on JSON, Crockford has created a utility that can be used to decode and
encode between JSON and JavaScript objects. The source for this tool can be downloaded at
www.crockford.com/JSON/json.js.

You may be asking yourself, "Didn't I just learn to decode JSON using the eval() function?"
The answer is yes, but there is an inherent flaw in using eval(): it will evaluate any JavaScript
code passed into it, not just JSON. This could be a huge security risk when dealing with
enterprise web applications. To deal with this issue, you can use the JSON.parse() method
(defined in the aforementioned file), which will parse and convert only JSON code into
JavaScript. For example:
var oObject = JSON.parse(sJSON);

Also provided with the utility is a way to convert JavaScript objects into a JSON string for
transmission. (There is no such built-in way to do this in JavaScript.) All you need to do is pass
an object into the JSON.stringify() method. Consider the following example:
var oCar = new Object();

oCar.doors = 4;

oCar.color = "blue";

oCar.year = 1995;

oCar.drivers = new Array("Penny", "Dan", "Kris");

document.write(JSON.stringify(oCar));

This code outputs the following JSON string:
{"doors":4,"color":"blue","year":1995,"drivers":["Penny","Dan","Kris"]
}

http://www.crockford.com/JSON/json.js
http://www.crockford.com/JSON/json.js

With this, you're now ready to transmit the information to whatever destination makes sense for
you.

JSON versus XML
As mentioned previously, one of the advantages of JSON over XML is that it's more compact.
XML is considered by some to be overly verbose for its purpose. But what does this mean
exactly? Consider the following XML data:
<classinfo>

 <students>

 <student>

 <name>Michael Smith</name>

 <average>99.5</average>

 <age>17</age>

 <graduating>true</graduating>

 </student>

 <student>

 <name>Steve Johnson</name>

 <average>34.87</average>

 <age>17</age>

 <graduating>false</graduating>

 </student>

 <student>

 <name>Rebecca Young</name>

 <average>89.6</average>

 <age>18</age>

 <graduating>true</graduating>

 </student>

 </students>

</classinfo>

This example contains information about three students in a class. Right away, there is some
XML information that isn't entirely necessary: the <classinfo> and <students/> elements.
These elements help to define the overall structure and meaning of the information, but the
actual information you're interested in is the students and their information. Plus, for each piece
of information about the students, the name of the information is repeated twice, although the
actual data is repeated only once (for example, "name" appears both in <name> and </name>.
Consider the same information formatted as JSON:
{ "classinfo" :

 {

 "students" : [

 {

 "name" : "Michael Smith",

 "average" : 99.5,

 "age" : 17,

 "graduating" : true

 },

 {

 "name" : "Steve Johnson",

 "average" : 34.87,

 "age" : 17,

 "graduating" : false

 },

 {

 "name" : "Rebecca Young",

 "average" : 89.6,

 "age" : 18,

 "graduating" : true

 }

]

 }

}

As you can see, a lot of the superfluous information isn't present. Since closing tags aren't
necessary to match opening tags, it greatly reduces the number of bytes needed to transmit the
same information. Not including spaces, the JSON data is 224 bytes, whereas the comparable
XML data is 365 bytes, saving more than 100 bytes. (This is why Crockford, JSON's creator,
calls it the "fat free alternative to XML.")

The disadvantage to JSON-formatted data as compared to XML is that it's less readable to the
layperson. Because XML is verbose, it's fairly easy to understand what data is being
represented. JSON, with its shorthand notation, can be difficult to decipher using the naked eye.
Of course, an argument can be made that data exchange formats should never be viewed with
the naked eye. If you're using tools to create and parse the data being passed back and forth,
then there is really no reason to have the data be human readable. But this begs the question:
Are there any JSON tools available? The answer is yes.

Server-Side JSON Tools
As you know by now, Ajax has to do with the interaction between the client and the server, so
JSON would be of no use for this purpose unless there were server-side tools to aid in the
encoding and decoding. As luck would have it, there are quite a few JSON utilities for server-
side languages. Although it is beyond the scope of this book to discuss every one of these tools,
it is useful to take a look at one and then develop a solution using it.

JSON-PHP

JSON-PHP is a PHP utility to ease the encoding and decoding of JSON information. This utility,
written by Michal Migurski, is available for free at http://mike.teczno.com/json.html.
All you need to begin using JSON in PHP is to include the JSON.php file in your page and
make use of the JSON object.

Creating new instance of the JSON object is quite simple:
<?php

 require_once("JSON.php");

 $oJSON = new JSON();

?>

http://mike.teczno.com/json.html

The first line includes the JSON.php file that contains the JSON object definition. The second
line simply instantiates the object and stores it in the variable $oJSON. Now you're ready to start
encoding and decoding JSON in your PHP page.

To encode a PHP object into a JSON string, use the encode() method, which accepts a single
argument: an object to encode, which can be an array or a full-fledged object. It doesn't matter
how the object or array was created, whether using a class definition or not; all objects can be
encoded using this method. Consider the following class definition:
<?php

 class Person {

 var $age;

 var $hairColor;

 var $name;

 var $siblingNames;

 function Person($name, $age, $hairColor) {

 $this->name = $name;

 $this->age = $age;

 $this->hairColor = $hairColor;

 $this->siblingNames = array();

 }

 }

?>

This PHP code defines a class called Person that stores some personal information. You
would use this class as follows:
<?php

 $oPerson = new Person("Mike", 26, "brown");

 $oPerson->siblingNames[0] = "Matt";

 $oPerson->siblingNames[1] = "Tammy";

?>

To encode the $oPerson object, you simply pass it into the encode() method, like this:
<?php

 $sJSONText = $oJSON->encode($oPerson);

?>

This creates a JSON string of:
{"age":26,"hairColor":"brown","name":"Mike","siblingNames":["Matt","Ta
mmy"]}

The $oPerson object is now ready to be transferred to JavaScript or any other language that
can support JSON-encoded information.

But what if you already have a JSON string? That's where the decode() method is used.

Suppose you have the JSON string displayed previously and want to create a PHP object from
it. Just pass the string into the decode() method:

<?php

 $oPerson = $oJSON->decode($sJSONText);

?>

Now the $oPerson variable can be used just like the one in the previous example, as if it were
created using the Person class:
<?php

 print("<h3>Person Information</h3>");

 print("<p>Name: ".$oPerson->name."
");

 print("Age: ".$oPerson->age."
");

 print("Hair Color: ".$oPerson->hairColor."
");

 print("Sibling Names:</p>");

 for ($i=0; $i < count($oPerson->siblingNames); $i++) {

 print("".$oPerson->siblingNames[$i]."");

 }

 print("");

?>

This code prints out the information contained in the $oPerson object, proving that the object
has been constructed appropriately. JSON-PHP will be used in several projects throughout this
book because it is quite simply the easiest way to deal with JSON in a server-side language.

Other Tools

You can find a number of JSON tools for server-side languages, so no matter what your
preference is, you can use the power of JSON:

 C#/.NET: The C# JSON library, written by Douglas Crockford, is available at
www.crockford.com/JSON/cs/.

 ColdFusion: The CFJSON library, written by Jehiah Czebotar, is available at
http://jehiah.com/projects/cfjson/.

 Java: The JSON in Java utilities, written by Douglas Crockford, are available at
www.crockford.com/JSON/java/. Can be used in JSP.

 Perl: The JSON library, written by Makamaka Hannyaharamitu, is available at
http://search.cpan.org/dist/JSON/.

 PHP: In addition to JSON-PHP, there is also php-json, a C extension for PHP written by
Omar Kilani and available at www.aurore.net/projects/php-json/. You must be
comfortable with compiling PHP with extensions.

 Python: The json-py library, written by Patrick D. Logan, is available at
https://sourceforge.net/projects/json-py/.

Douglas Crockford also maintains a fairly comprehensive list of JSON utilities at
www.crockford.com/JSON/index.html. Check there before searching for JSON utilities
for any other language.

http://www.crockford.com/JSON/cs/
http://jehiah.com/projects/cfjson/
http://www.crockford.com/JSON/java/
http://search.cpan.org/dist/JSON/
http://www.aurore.net/projects/php-json/
http://www.https:/sourceforge.net/projects/json-py/
http://www.crockford.com/JSON/index.html

Creating an Autosuggest Text Box
The best way to learn about any new programming concept is to put it into a practical example.
Google Suggest (located at www.google.com/webhp?complete=1) is a very simple Ajax
application that many programmers have spent time dissecting, analyzing, and re-creating. If
you haven't yet taken a look at the live application, please do so now; it will greatly aid in your
understanding of the following example.

Functionality such as this, suggesting to the user values to type in, has been around in desktop
applications for some time now. Google Suggest brought the idea to the Web and generated a
lot of excitement while doing it. As mentioned earlier in the book, Google Suggest really was
one of the early Ajax applications that got developers excited about the concept. It seems fitting
to attempt to emulate the behavior of Google Suggest to help others understand Ajax.

The example built in this section aids in the selection of states or provinces in a personal
information form. For sites that deal with international customers, it is often vital to include the
state or province along with the country. However, it's not optimal to load every state and
province in the entire world into a drop-down box for the user to select from. It's much easier to
let the user start typing, and then retrieve only those results that would make the most sense.
Autosuggest functionality is perfect for this use case.

Functionality Overview

Before building anything, it's always helpful to understand exactly what you're building. Anyone
can say they are going to emulate the functionality of Google Suggest, but what does that
mean? The example you will build in this section has the following functionality:

 Typeahead: As the user is typing, the rest of the text box fills in with the best
suggestion at the time. As the user continues to type, the text box automatically adjusts its
suggestion. The suggested text always appears selected (highlighted). This should work no
matter how fast the user types.

 Suggestions list: Also as the user is typing, a drop-down list of other suggestions is
displayed. These suggestions are generated automatically while the user types so that
there is no discernible delay.

 Keyboard controls: When the suggestions are displayed, the user is able to scroll up
and down the list by using the up and down arrows on the keyboard and select a
suggestion. Pressing Enter places the value into the text box and hides the suggestion list.
The Esc key can also be used to hide the suggestions.

 Hide suggestions: The drop-down suggestion list is smart enough to hide itself
whenever the text box is not used or when the browser window is hidden.

You probably didn't realize that Google Suggest was doing so much. This is the key with Ajax:
you don't think about what's going on because it works in an intuitive way.

The HTML

The first step in any client-side component is to build the HTML that will be used. For the
autosuggest text box, this includes the text box itself as well as the drop-down list of
suggestions. You're probably familiar with the HTML text box:
<input type=" text" name=" txtAutosuggest" value="" />

In most cases, this line would be enough to use a text box. The problem is that some browsers
(notably Internet Explorer on Windows and Mozilla Firefox on all operating systems) provide
autocomplete functionality that drops down a list of suggestions based on values you've entered
before. Since this would compete directly with the suggestions you'll be providing, this has to be
turned off. To do so, set the autocomplete attribute to off:

http://www.google.com/webhp?complete=1

<input type=" text" name=" txtAutosuggest" value="" autocomplete="
off" />

Now you can be assured that there will be no interference from the autocomplete browser
behavior. The only other user interface component to design is the drop-down list of
suggestions.

The suggestion drop-down list is nothing more than an absolutely positioned <div/> element
that is positioned below the text box so as to give the illusion of being a drop-down list (see
Figure 7-1).

Figure 7-1

Inside of this <div/> element are several other <div/> elements, one for each suggestion. By
changing the style of these elements, it's possible to achieve the look of highlighting a given
suggestion. The HTML to create the list displayed in Figure 7-1 is as follows:
<div class=" suggestions">

 <div class=" current">Maine</div>

 <div>Maryland</div>

 <div>Massachusetts</div>

 <div>Michigan</div>

 <div>Minnesota</div>

 <div>Mississippi</div>

 <div>Missouri</div>

 <div>Montana</div>

</div>

This HTML won't be coded directly into the main HTML file; instead, it will be created
dynamically by JavaScript code. However, you need to know the general format of the HTML in
order to create it appropriately.

Of course, some CSS is needed to make the drop-down list function properly. The outermost
<div/> has a class of suggestions, which is defined as:
div.suggestions {

 -moz-box-sizing: border-box;

 box-sizing: border-box;

 background-color: white;

 border: 1px solid black;

 position: absolute;

}

http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=338831486#ch07fig016F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch07fig016F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=338831486#ch07fig016F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch07fig016F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

The first two lines of this CSS class are for browsers that support two forms of box sizing:
content box and border box (for more information, read
www.quirksmode.org/css/box.html). In quirks mode, Internet Explorer defaults to border
box; in standards mode, Internet Explorer defaults to content box. Most other DOM-compliant
browsers (Mozilla, Opera, and Safari) default to content box, meaning that there is a difference
in how the <div/> element will be rendered among browsers. To provide for this, the first two
lines of the CSS class set rendering to border box. The first line, -moz-box-sizing, is
Mozilla-specific and used for older Mozilla browsers; the second line is for browsers that support
the official CSS3 box-sizing property. Assuming that you use quirks mode in your page, this
class will work just fine. (If you use standards mode, simply remove these first two lines.)

The remaining styles simply add a border and specify that the <div/> element be absolutely
positioned.

Next, a little bit of formatting is needed for the drop-down list items:
div.suggestions div {

 cursor: default;

 padding: 0px 3px;

}

The first line specifies the default cursor (the arrow) to be displayed when the mouse is over an
item in the drop-down list. Without this, the cursor would display as the caret, which is the
normal cursor for text boxes and web pages in general. The user needs to believe that the drop-
down item is not a part of the regular page flow, but an attachment to the text box, and changing
the cursor helps. The second line simply applies some padding to the item (which you can
modify as you wish).

Last, some CSS is needed to format the currently selected item in the drop-down list. When an
item is selected, the background will be changed to blue and the text color will be changed to
white. This provides a basic highlight that is typically used in drop-down menus:
div.suggestions div.current {

 background-color: #3366cc;

 color: white;

}

All these styles are to be contained in an external CSS file named autosuggest.css.

The Database Table

In order to easily query the states and provinces that match a particular text snippet, it is
necessary to use a database table. There are a few open source database products that can be
paired nicely with PHP, but the most common one is MySQL (available at www.mysql.org).
Many web hosting companies that offer PHP hosting also offer one or more MySQL databases
as well, so for this example, MySQL will be the database used.

Important Although this example is intended to be used with MySQL, it should be

able to run on other databases with little or no modification.

The database table can be very simple for this example, although you may need more
information to make it practical for your needs. To get this to work, you really need only a single
column to store the state and province names. However, it's always best to define a primary
key, so this table will include a second column containing an auto-incremented ID number for
each state or province. The following SQL statement creates a table named
StatesAndProvinces with two columns, Id and Name:
CREATE TABLE StatesAndProvinces (

 Id INT NOT NULL AUTO_INCREMENT,

http://www.quirksmode.org/css/box.html
http://www.mysql.org/

 Name VARCHAR(255) NOT NULL,

 PRIMARY KEY (Id)

) COMMENT = 'States and Provinces';

Of course, the time-consuming part is to fill in state and province names from various countries
around the world. The code download for this example, available at www.wrox.com, includes a
SQL file that will populate the table with all U.S. states as well as one that will insert all
Canadian provinces and territories.

Setting up this information in a database table enables you to quickly get a list of suggestions
for text the user has typed in. If the user has typed the letter M, for example, you can run the
following query to get the first five suggestions:
SELECT *

FROM StatesAndProvinces

WHERE Name LIKE 'M%'

ORDER BY Name ASC

LIMIT 0, 5

This statement returns a maximum of five suggestions, in alphabetical order, for all names
starting with M. Later, this will be used in the PHP code that returns the suggestions.

The Architecture

In Chapter 1, you saw the basic architecture of an Ajax solution involving the user interface and
Ajax engine on the client. The autosuggest architecture follows this general format, where the
user interface is the autosuggest control and the Ajax engine is a suggestion provider (see
Figure 7-2).

Figure 7-2

In this architecture, the autosuggest control has no idea where the suggestions are coming
from; they could be coming from the client or the server. All the autosuggest control knows is
how to call the suggestion provider to get suggestions for the text contained within the text box.
The suggestion provider handles all the server communication and notifies the autosuggest
control when the suggestions are available. To accomplish this, both the autosuggest control
and the suggestion provider need to implement specific interfaces so that each knows what
method to call on the other.

The Classes

Two classes are necessary to represent the two client-side components of the autosuggest
functionality, appropriately called AutoSuggestControl and SuggestionProvider. The
AutoSuggestControl is assigned a SuggestionProvider when it is created so that all
requests go through it. The SuggestionProvider has only one method,
requestSuggestions(), which is called by the AutoSuggestControl whenever
suggestions are needed. This method takes two arguments: the AutoSuggestControl itself
and a Boolean value indicating whether the control should type ahead when the suggestions
are returned.

When the suggestions have been retrieved, the SuggestionProvider calls the
autosuggest() method of the AutoSuggestControl, passing in the array of suggestions

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig227%5F01%5F0%2Ejpg&image_id=39&previd=IMG_39&titlelabel=Figure+7%2D2%3A+
http://www.wrox.com/
http://www.books24x7.com/viewer.asp?bkid=13421&destid=36#36
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=338831486#ch07fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch07fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

as well as the typeahead flag that was passed into it. This allows for a delay between the
request for suggestions and the response, making it possible to use asynchronous requests.
This approach sounds more complicated than it is; Figure 7-3 represents the interaction
between these two objects in a clearer manner.

Figure 7-3

With the architecture designed, it's time to start coding.

The AutoSuggest Control

The AutoSuggestControl class is the wrapper for all autosuggest functionality. To work
properly, the control needs to know which text box to work on and the suggestion provider to
use. This makes for a relatively simple constructor:
function AutoSuggestControl(oTextbox, oProvider) {

 this.provider = oProvider;

 this.textbox = oTextbox;

}

It's upon this simple base that the complex functionality of an autosuggest text box will be built.

Since the AutoSuggestControl class is quite complicated, it's much simpler to break up its
explanation into specific types of functionality. The following sections build on each other, and
the complete code can be downloaded from www.wrox.com.

Implementing Typeahead
To implement the first feature, typeahead, it's helpful to understand exactly how it works.
Typeahead text boxes look at what the user has typed and then makes a suggestion,
highlighting only the part that was added automatically. For example, if you were to type Ma into
a text box, the suggestion may be Maine, but only ine would be highlighted. Doing this allows
the user to continue typing without interruption because any new characters simply replace the
highlighted section.

Originally, the only type of highlighting possible using JavaScript was to highlight all the text in
the text box using the select() method, as follows:
var oTextbox = document.getElementById("txtState");

oTextbox.select();

This code gets a reference to a text box with the ID of txtState and then selects all the text
contained within it. Although this functionality is fine for many everyday uses, it's not very helpful
for implementing typeahead. Thankfully, both Internet Explorer and Firefox have ways of
selecting parts of the text instead of the entire item (for other browsers, this feature is not
available). But as usual, the two biggest combatants in the browser world do things in two
completely different ways.

The Internet Explorer solution is to use a text range. Not to be confused with DOM ranges, an
Internet Explorer text range is an invisible selection of text on the page, beginning on a single
character and ending on a single character. When a text range is filled out, you can highlight
just the text contained within it, which is perfect for typeahead. To create a text range for a
specific text box, you use the createTextRange() method that Internet Explorer provides on
every text box.

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig228%5F01%5F0%2Ejpg&image_id=40&previd=IMG_40&titlelabel=Figure+7%2D3%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=338831486#ch07fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch07fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.wrox.com/

Once you have a text range, its methods enable you to select certain parts of the text. Although
there are many text range methods, the only ones of interest for this example are
moveStart() and moveEnd(), both of which accept two arguments: a unit and a number. The
unit can be character, word, sentence, or textedit, whereas the number indicates the
number of units to move from the start or end of the text (this should be a positive number for
moveStart() and a negative for moveEnd()). When the endpoints of the text range are set,
you can call its select() method to highlight just those characters. For example, to select just
the first three characters in a text box, you could do this:
var oRange = oTextbox.createTextRange();

oRange.moveStart("character", 0);

oRange.moveEnd("character", 3 - oTextbox.value.length);

oRange.select();

oTextbox.focus();

Note that to get the appropriate value for moveEnd(), it's necessary to subtract the length of
the text in the text box from the number of characters to select (3). The last step is to set the
focus to the text box so that the selection is visible. (Text can be selected only when the text
box has focus.) The process is a bit involved in Internet Explorer, but pretty easy to script.
Firefox, on the other hand, is very straightforward.

Text boxes in Firefox have a non-standard method called setSelectionRange(), which
accepts two arguments: the index of the character to start with and the index of character after
the last character to select. So, to select the first three characters in a text box using Mozilla,
you need only two lines of code:
oTextbox.setSelectionRange(0,3);

oTextbox.focus();

The first method you'll need in the AutoSuggestControl class is a method to select a range
of characters in a browser-specific way. This method, called selectRange(), handles all the
dirty work for you:
AutoSuggestControl.prototype.selectRange = function (iStart, iEnd) {

 if (this.textbox.createTextRange) {

 var oRange = this.textbox.createTextRange();

 oRange.moveStart("character", iStart);

 oRange.moveEnd("character", iEnd- this.textbox.value.length);

 oRange.select();

 } else if (this.textbox.setSelectionRange) {

 this.textbox.setSelectionRange(iStart, iEnd);

 }

 this.textbox.focus();

};

This method uses feature detection, the process of detecting certain browser features, to
determine how to select the characters. It tests for the existence of the createTextRange()
method to determine whether the Internet Explorer text ranges should be used, and tests for the
setSelectionRange() method to determine whether the Firefox method should be used.
The arguments are the first character to select and the number of characters to select. These
values are then passed to the browser-specific methods of text selection.

The typeAhead() Method

Now that you can select specific parts of the text box, it's time to implement the typeahead
functionality. To do this, a typeAhead() method is defined that accepts a single argument: the
suggestion to display in the textbox. The suggestion being passed in is assumed to be
appropriate (and assumed to have at least one character). This method then does three things:

1. It gets the length of the text already in the text box.
2. It places the suggestion into the text box.
3. It selects only the portion of the text that the user didn't type using the information from

step 1.

Additionally, since typeahead can be supported only in Internet Explorer and Firefox, you should
check to make sure one of those browsers is being used. If the browser doesn't support text
selection, then none of the steps should be executed so as not to interrupt the user's typing.
Once again, testing for the createTextRange() and setSelectionRange() methods of
the text box is the way to go:
AutoSuggestControl.prototype.typeAhead = function (sSuggestion) {

 if (this.textbox.createTextRange ||
this.textbox.setSelectionRange) {

 var iLen = this.textbox.value.length;

 this.textbox.value = sSuggestion;

 this.selectRange(iLen, sSuggestion.length);

 }

};

With this method complete, you now need another method to call it and pass in the suggestion.
This is where the autosuggest() method comes in.

The autosuggest() Method

Perhaps the most important method in the control is autosuggest(). This single method is
responsible for receiving an array of suggestions for the text box and then deciding what to do
with them. Eventually, this method will be used to implement the full autosuggest functionality
(including drop-down suggestions), but for now, it's used to implement typeahead only.

Because autosuggest() will be passed an array of suggestions, you have your pick as to
which one to use for the typeahead value. It's recommended to always use the first value in the
array to keep it simple. The problem is that there may not always be suggestions for a value, in
which case an empty array will be passed. You shouldn't call typeAhead() if there are no
suggestions, so it's important to check the length of the array first:
AutoSuggestControl.prototype.autosuggest = function (aSuggestions) {

 if (aSuggestions.length > 0) {

 this.typeAhead(aSuggestions[0]);

 }

};

But where do the suggestions come from? It's actually the job of the suggestion provider to call
this method and pass in the suggestions. Implementation of this feature is discussed later in the
chapter.

Handling Key Events

Of course the autosuggest functionality has to be tied into the text box using events. There are
three events that deal with keys: keydown, keypress, and keyup. The keydown event fires
whenever the user presses a key on the keyboard but before any changes occur to the text box.
This obviously won't help with autosuggest because you need to know the full text of the text
box; using this event would mean being one keystroke behind. For the same reason, the

keypress event can't be used. It is similar to key-down, but fires only when a character key is
pressed. The keyup event, however, fires after changes have been made to the text box, which
is exactly when autosuggest should begin working.

Setting up an event handler for the text box involves two steps: defining a function and
assigning it as an event handler. The function is actually a method of the autosuggest control,
called handleKeyUp(). This method expects the event object to be passed in as an
argument (how to accomplish this is discussed later) so that it can tell whether the key being
pressed should enact the autosuggest functionality. Since keyup fires for all keys, not just
character keys, you'll receive events when someone uses a cursor key, the Tab key, and any
other key on the keyboard. To avoid interfering with how a text box works, suggestions should
be made only when a character key is pressed. This is where the event object's keyCode
property enters the picture.

The keyCode property is supported by most modern browsers (including Internet Explorer on
Windows and Macintosh, Firefox, Opera, and Safari) and returns a numeric code representing
the key that was pressed. Using this property, it's possible to set up behaviors for specific keys.
Since the autosuggest functionality should happen only when character keys are pressed, you
need to check this property for an appropriate value before proceeding. Believe it or not, the
easiest way to do this is actually to detect the keys that you want to ignore. This approach is
more efficient because there are more character keys than non-character keys. The following
table displays the key codes for all keys that should be ignored:

Open table as spreadsheet Key Code Key Code

Backspace 8 Print Screen 44

Tab 9 Delete 46

Enter 13 F1 112

Shift 16 F2 113

Ctrl 17 F3 114

Alt 18 F4 115

Pause/Break 19 F5 116

Caps Lock 20 F6 117

Esc 27 F7 118

Page Up 33 F8 119

Page Down 34 F9 120

End 35 F10 121

Home 36 F11 122

Left Arrow 37 F12 123

Up Arrow 38

Right Arrow 39

Down Arrow 40

You may notice a pattern among the key codes. It looks like all keys with a code less than or
equal to 46 should be ignored and all keys with codes between 112 and 123 should be ignored.
This is generally true, but there is an exception. The space bar has a key code of 32, so you
actually need to check to see if the code is less than 32, between 33 and 46, or between 112
and 123. If it's not in any one of these groups, then you know it's a character key.

http://www.books24x7.com/book/id_13421/outputobject.asp?bookid=13421&chunkid=338831486&objectid=nr-N837&objecttype=spreadsheet
http://www.books24x7.com/book/id_13421/outputobject.asp?bookid=13421&chunkid=338831486&objectid=nr-N837&objecttype=spreadsheet

Here's what the handleKeyUp() method looks like:
AutoSuggestControl.prototype.handleKeyUp = function (oEvent) {

 var iKeyCode = oEvent.keyCode;

 if (iKeyCode < 32 || (iKeyCode >= 33 && iKeyCode <= 46)

 || (iKeyCode >= 112 && iKeyCode <= 123)) {

 //ignore

 } else {

 this.provider.requestSuggestions(this);

 }

};

When a user presses a character key, the autosuggest functionality begins by calling the
suggestion provider's requestSuggestions() method and passing a pointer to the
autosuggest control as an argument. Remember, it's the suggestion provider that will call the
autosuggest() method defined earlier. The requestSuggestions() method begins the
process of retrieving suggestions for usage.

With this method defined, it must be assigned as the event handler for the text box. It's best to
create a separate method to handle initializations for the control such as this (there will be more
in the future). The init() method serves this purpose:
AutoSuggestControl.prototype.init = function () {

 var oThis = this;

 this.textbox.onkeyup = function (oEvent) {

 if (!oEvent) {

 oEvent = window.event;

 }

 oThis.handleKeyUp(oEvent);

 };

};

The init() method starts by creating a pointer to the this object so that it may be used later.
An anonymous function is defined for the text box's onkeyup event handler. Inside of this
function, the handleKeyUp() method is called using the oThis pointer. (Using this here
would refer to the text box instead of the autosuggest control.)

Since this method requires the event object to be passed in, it's necessary to check for both
DOM and Internet Explorer event objects. The DOM event object is passed in as an
argument to the event handler, whereas the Internet Explorer event object is a property of
window. Instead of doing a browser detect, you can check to see if the oEvent object is
passed into the event handler. If not, then assign window.event into the oEvent variable.
The oEvent variable can then be passed directly into the handleKeyUp() event handler.

The init() method should be called from within the AutoSuggestControl constructor:
function AutoSuggestControl(oTextbox, oProvider) {

 this.provider = oProvider;

 this.textbox = oTextbox;

 this.init();

}

That's all it takes to implement the typeahead functionality of the autosuggest control. At this
point, you are displaying a single suggestion to the user as they type. The goal is, of course, to
provide multiple suggestions using a drop-down list.

Showing Multiple Suggestions

Earlier in the chapter you took a look at the HTML and CSS used for the drop-down list of
suggestions. Now the task is to create the HTML programmatically and apply the CSS to create
the actual functionality; this is a multistep process. First, a property is needed to store the
<div/> element because various methods of the AutoSuggestControl need access to it.
This property is called layer and is initially set to null:
function AutoSuggestControl(oTextbox, oProvider) {

 this.layer = null;

 this.provider = oProvider;

 this.textbox = oTextbox;

 this.init();

}

The drop-down list will be created after you define a few simple methods to help control its
behavior. The simplest method is hideSuggestions(), which hides the drop-down list after it
has been shown:
AutoSuggestControl.prototype.hideSuggestions = function () {

 this.layer.style.visibility = "hidden";

};

Next, a method is needed for highlighting the current suggestion in the drop-down list. The
highlightSuggestion() method accepts a single argument, which is the <div/> element
containing the current suggestion. The purpose of this method is to set the <div/> element's
class attribute to current on the current suggestion and clear the class attribute on all
others in the list. Doing so provides a highlighting effect on the drop-down list similar to the
regular form controls. The algorithm is quite simple: iterate through the child nodes of the layer.
If the child node is equal to the node that was passed in, set the class to current; otherwise,
clear the class attribute by setting it to an empty string:
AutoSuggestControl.prototype.highlightSuggestion = function
(oSuggestionNode) {

 for (var i=0; i < this.layer.childNodes.length; i++) {

 var oNode = this.layer.childNodes[i];

 if (oNode == oSuggestionNode) {

 oNode.className = "current"

 } else if (oNode.className == "current") {

 oNode.className = "";

 }

 }

};

With these two methods defined, it's time to create the drop-down list <div/>. The
createDropDown() method creates the outermost <div/> element and defines the event

handlers for the drop-down list. To create the <div/> element, use the createElement()
method and then assign the various styling properties:
AutoSuggestControl.prototype.createDropDown = function () {

 this.layer = document.createElement("div");

 this.layer.className = "suggestions";

 this.layer.style.visibility = "hidden";

 this.layer.style.width = this.textbox.offsetWidth;

 document.body.appendChild(this.layer);

 //more code to come

};

This code first creates the <div/> element and assigns it to the layer property. From there,
the className (equivalent to the class attribute) is set to suggestions, as is needed for the
CSS to work properly. The next line hides the layer, since it should be invisible initially. Then,
the width of the layer is set equal to the width of the text box by using the text box's
offsetWidth property (this is optional depending on your individual needs). The very last line
adds the layer to the document. With the layer created, it's time to assign the event handlers to
control it.

At this point, the only concern is making sure that the drop-down list is functional if the user
uses the mouse. That is, when the drop-down list is visible, moving the mouse over a
suggestion should highlight it. Likewise, when a suggestion is clicked on, it should be placed in
the text box and the drop-down list should be hidden. To make this happen, you need to assign
three event handlers: onmouseover, onmousedown, and onmouseup.

The onmouseover event handler is used simply to highlight the current suggestion;
onmousedown is used to select the given suggestion (place the suggestion in the text box and
hide the drop-down list); and onmouseup is used to set the focus back to the text box after a
selection has been made. Because all these events are fired by the drop-down list itself, it's best
just to use a single function for all of them, as follows:
AutoSuggestControl.prototype.createDropDown = function () {

 this.layer = document.createElement("div");

 this.layer.className = "suggestions";

 this.layer.style.visibility = "hidden";

 this.layer.style.width = this.textbox.offsetWidth;

 document.body.appendChild(this.layer);

 var oThis = this;

 this.layer.onmousedown = this.layer.onmouseup =

 this.layer.onmouseover = function (oEvent) {

 oEvent = oEvent || window.event;

 oTarget = oEvent.target || oEvent.srcElement;

 if (oEvent.type == "mousedown") {

 oThis.textbox.value = oTarget.firstChild.nodeValue;

 oThis.hideSuggestions();

 } else if (oEvent.type == "mouseover") {

 oThis.highlightSuggestion(oTarget);

 } else {

 oThis.textbox.focus();

 }

 };

};

The first part of this section is the assignment of oThis equal to the this object. This is
necessary so that a reference to the AutoSuggestControl object is accessible from within
the event handler. Next, a compound assignment occurs, assigning the same function as an
event handler for onmousedown, onmouseup, and onmouseover. Inside of the function, the
first two lines are used to account for the different event models (DOM and IE), using a logical
OR (||) to assign the values for oEvent and oTarget. (The target will always be a <div/>
element containing a suggestion.)

If the event being handled is mousedown, then set the value of the text box equal to the text
inside of the event target. The text inside of the <div/> element is contained in a text node,
which is the first child node. The actual text string is contained in the text node's nodeValue
property. After the suggestion is placed into the text box, the drop-down list is hidden.

When the event being handled is mouseover, the event target is passed into the
highlightSuggestion() method to provide the hover effect; when the event is mouseup,
the focus is set back to the text box (this fires immediately after mousedown).

Positioning the Drop-Down List

To get the full effect of the drop-down list, it's imperative that it appears directly below the text
box. If the text box were absolutely positioned, this wouldn't be much of an issue. In actual
practice, text boxes are rarely absolutely positioned and more often are placed inline, which
presents a problem in aligning the drop-down list. To calculate the position where the drop-
down list should appear, you can use the text box's offsetLeft, offsetTop, and
offsetParent properties.

The offsetLeft and offsetTop properties tell you how many pixels away from the left and
top of the offsetParent an element is placed. The offsetParent is usually, but not always,
the parent node of the element, so to get the left position of the text box, you need to add up the
offsetLeft properties of the text box and all of its ancestor elements (stopping at <body/>),
as seen below:
AutoSuggestControl.prototype.getLeft = function () {

 var oNode = this.textbox;

 var iLeft = 0;

 while(oNode.tagName != "BODY") {

 iLeft += oNode.offsetLeft;

 oNode = oNode.offsetParent;

 }

 return iLeft;

};

The getLeft() method begins by pointing oNode at the text box and defining iLeft with an
initial value of 0. The while loop will continue to add oNode.offsetLeft to iLeft as it
traverses up the DOM structure to the <body/> element.

The same algorithm can be used to get the top of the text box:
AutoSuggestControl.prototype.getTop = function () {

 var oNode = this.textbox;

 var iTop = 0;

 while(oNode.tagName != "BODY") {

 iTop += oNode.offsetTop;

 oNode = oNode.offsetParent;

 }

 return iTop;

};

These two methods will be used to place the drop-down list in the correct location.

Adding and Displaying Suggestions

The next step in the process is to create a method that adds the suggestions into the drop-down
list and then displays it. The showSuggestions() method accepts an array of suggestions as
an argument and then builds up the necessary DOM elements to display them. From there, the
method positions the drop-down list underneath the text box and displays it to the user:
AutoSuggestControl.prototype.showSuggestions = function (aSuggestions)
{

 var oDiv = null;

 this.layer.innerHTML = "";

 for (var i=0; i < aSuggestions.length; i++) {

 oDiv = document.createElement("div");

 oDiv.appendChild(document.createTextNode(aSuggestions[i]));

 this.layer.appendChild(oDiv);

 }

 this.layer.style.left = this.getLeft() + "px";

 this.layer.style.top = (this.getTop()+this.textbox.offsetHeight) +
"px";

 this.layer.style.visibility = "visible";

};

The first line simply defines the variable oDiv for later use. The second line clears the contents
of the drop-down list by setting the innerHTML property to an empty string. Then, the for loop
creates a <div/> element and a text node for each suggestion before adding it to the drop-
down list layer.

The next section of code starts by setting the left position of the layer using the getLeft()
method. To set the top position, you need to add the value from getTop() to the height of the
text box (retrieved by using the offsetHeight property). Without doing this, the drop-down list
would appear directly over the text box. (Remember, getTop() retrieves the top of the text
box, not the top of the drop-down list layer.) Last, the layer's visibility property is set to
visible to show it.

Updating the Functionality

In order to show the drop-down list of suggestions, you'll need to make several changes to the
functionality defined previously.

The first update is the addition of a second argument to the autosuggest() method, which
indicates whether the typeahead functionality should be used (the reason why will be explained
shortly). Naturally, the typeAhead() method should be called only if this argument is true. If
there's at least one suggestion, typeahead should be used and the drop-down list of
suggestions should be displayed by calling showSuggestions(); if there's no suggestions,
the drop-down list should be hidden by calling hideSuggestions():
AutoSuggestControl.prototype.autosuggest = function (aSuggestions,
bTypeAhead) {

 if (aSuggestions.length > 0) {

 if (bTypeAhead) {

 this.typeAhead(aSuggestions[0]);

 }

 this.showSuggestions(aSuggestions);

 } else {

 this.hideSuggestions();

 }

};

It's also necessary to update the handleKeyUp() method for a couple of different reasons.
The first reason is to add the bTypeAhead argument to the requestSuggestions() call.
When called from here, this argument will always be true:
AutoSuggestControl.prototype.handleKeyUp = function (oEvent) {

 var iKeyCode = oEvent.keyCode;

 if (iKeyCode < 32 || (iKeyCode >= 33 && iKeyCode <= 46)

 || (iKeyCode >= 112 && iKeyCode <= 123)) {

 //ignore

 } else {

 this.provider.requestSuggestions(this, true);

 }

};

http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=338831486#ch07lev4sec66F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch07lev4sec66F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Remember, the requestSuggestions() method is defined on the suggestion provider, which
is described later in this chapter.

This functionality now works exactly as it did previously, but there are a couple of other keys
that require special attention: Backspace and Delete. When either of these keys is pressed, you
don't want to activate the typeahead functionality because it will disrupt the process of removing
characters from the text box. However, there's no reason not to show the drop-down list of
suggestions. For the Backspace (key code of 8) and Delete (key code of 46) keys, you can call
requestSuggestions(), but this time, pass in false to indicate that typeahead should not
occur:
AutoSuggestControl.prototype.handleKeyUp = function (oEvent) {

 var iKeyCode = oEvent.keyCode;

 if (iKeyCode == 8 || iKeyCode == 46) {

 this.provider.requestSuggestions(this, false);

 } else if (iKeyCode < 32 || (iKeyCode >= 33 && iKeyCode <= 46)

 || (iKeyCode >= 112 && iKeyCode <= 123)) {

 //ignore

 } else {

 this.provider.requestSuggestions(this, true);

 }

};

Now when the user is removing characters, suggestions will still be displayed and the user can
click one of them to select the value for the text box. This is acceptable, but to really be usable
the autosuggest control needs to respond to keyboard controls.

Adding Keyboard Support

The desired keyboard functionality revolves around four keys: the up arrow, the down arrow,
Esc, and Enter (or Return). When the drop-down suggestion list is displayed, the user should be
able to press the down arrow to highlight the first suggestion, then press it again to move to the
second, and so on. The up arrow should then be used to move back up the list of suggestions.
As each suggestion is highlighted, the value must be placed in the text box. If the user presses
Esc, the suggestions should be hidden and the suggestion should be removed from the text
box. When the Enter key is pressed, the suggestions should also be hidden, but the last
suggestion should remain highlighted in the text box.

In order for the user to use the up and down arrow keys, you'll need to keep track of the
currently selected item in the suggestions list. To do this, you must add two properties to the
AutoSuggestControl definition, as follows:
function AutoSuggestControl(oTextbox, oProvider) {

 this.cur = -1;

 this.layer = null;

 this.provider = oProvider;

 this.textbox = oTextbox;

 this.userText = oTextbox.value;

 this.init();

}

The cur property stores the index of the current suggestion in the suggestions array. By
default, this value is set to -1 because there are no suggestions initially. When the arrow keys
are pressed, cur will change to point to the current suggestion. The second added property,
userText, holds the current value of the text box and changes to reflect what the user actually
typed.

As cur changes, the highlighted suggestion changes as well. To encapsulate this functionality,
a method called goToSuggestion() is used. This method accepts only one argument, a
number whose sign indicates which direction to move in. For instance, any number greater than
0 moves the selection to the next suggestion; any number less than or equal to 0 moves the
selection to the previous suggestion. Here's the code:
AutoSuggestControl.prototype.goToSuggestion = function (iDiff) {

 var cSuggestionNodes = this.layer.childNodes;

 if (cSuggestionNodes.length > 0) {

 var oNode = null;

 if (iDiff > 0) {

 if (this.cur < cSuggestionNodes.length-1) {

 oNode = cSuggestionNodes[++this.cur];

 }

 } else {

 if (this.cur > 0) {

 oNode = cSuggestionNodes[--this.cur];

 }

 }

 if (oNode) {

 this.highlightSuggestion(oNode);

 this.textbox.value = oNode.firstChild.nodeValue;

 }

 }

};

This method begins by obtaining the collection of child nodes in the drop-down layer. Since only
<div/> elements containing suggestions are child nodes of the layer, the number of child
nodes accurately matches the number of suggestions. This number can be used to determine if
there are any suggestions (in which case it will be greater than zero). If there are no
suggestions, the method need not do anything.

When there are suggestions, a variable named oNode is created to store a reference to the
suggestion node to highlight, and the method checks to see which direction to go in. If iDiff is
greater than 0, it tries to go to the next suggestion. In doing so, the method first checks to
ensure that cur isn't greater than the number of suggestions minus 1 (because the index of the
last element in a collection with n elements is n-1). Assuming there is a next suggestion, cur is
prefix incremented (meaning it assumes its new value before the line it's on executes) to
retrieve the node for the next suggestion.

If iDiff is less than or equal to zero, then that means the previous suggestion needs to be
highlighted. In that case, you must first check to ensure cur is greater than 0 (if cur isn't at
least 1, then there isn't a previous suggestion to go to). Passing that test, cur is then prefix
decremented to get a reference to the correct suggestion node.

The last step in the method is to ensure that oNode isn't null. If it's not, then the node is
passed to highlightSuggestion() and the suggestion text is placed into the text box; if it is
null, then no action is taken.

Another part of keeping track of the selected suggestion is to be sure cur is reset at the correct
point; otherwise, you can get some very odd behavior. The correct place to reset cur to –1 is in
the autosuggest() method, just before the drop-down list is displayed:
AutoSuggestControl.prototype.autosuggest = function (aSuggestions,
bTypeAhead){

 this.cur = -1;

 if (aSuggestions.length > 0) {

 if (bTypeAhead) {

 this.typeAhead(aSuggestions[0]);

 }

 this.showSuggestions(aSuggestions);

 } else {

 this.hideSuggestions();

 }

};

Along the same lines, it's important to set userText to the correct value. This should be done
in the handleKeyUp() method:
AutoSuggestControl.prototype.handleKeyUp = function (oEvent) {

 var iKeyCode = oEvent.keyCode;

 this.userText = this.textbox.value;

 if (iKeyCode == 8 || iKeyCode == 46) {

 this.provider.requestSuggestions(this, false);

 } else if (iKeyCode < 32 || (iKeyCode >= 33 && iKeyCode <= 46)

 || (iKeyCode >= 112 && iKeyCode <= 123)) {

 //ignore

 } else {

 this.provider.requestSuggestions(this, true);

 }

};

This small addition saves what the user typed before asking for suggestions. This will be very
useful when dealing with the Esc key. With these two methods updates, all that's left is to make
sure that goToSuggestion() gets called at the right time.

To handle the up arrow, down arrow, Esc, and Enter keys, a handleKeyDown() method is
necessary. Similar to handleKeyUp(), this method also requires the event object to be
passed in. And once again, you'll need to rely on the key code to tell which key was pressed.
The key codes for the up arrow, down arrow, Esc, and Enter keys are 38, 40, 27, and 13,
respectively. The handleKeyDown() method is defined as follows:
AutoSuggestControl.prototype.handleKeyDown = function (oEvent) {

 switch(oEvent.keyCode) {

 case 38: //up arrow

 this.goToSuggestion(-1);

 break;

 case 40: //down arrow

 this.goToSuggestion(1);

 break;

 case 27: //esc

 this.textbox.value = this.userText;

 this.selectRange(this.userText.length, 0);

 /* falls through */

 case 13: //enter

 this.hideSuggestions();

 oEvent.returnValue = false;

 if (oEvent.preventDefault) {

 oEvent.preventDefault();

 }

 break;

 }

};

When the up arrow is pressed (key code 38), the goToSuggestion() method is called with an
argument of –1, indicating that the previous selection should be selected. Likewise, when the
down arrow is pressed (key code 40), goToSuggestion() is called with 1 as an argument to
highlight the next suggestion. If Esc is pressed (key code 27), there are a couple of things to do.

First, you need to set the text box value back to the original text that the user typed. Second,
you need to set the selection of the text box to be after what the user typed so that he or she
can continue typing. This is done by setting the selection range to the length of the text with a
selection length of zero. Then, this case falls through to the Enter key's case (key code 13),
which hides the suggestions list. This way, the code contains only one call to
hideSuggestions() instead of two. Remember, when the user presses the up or down
arrows, the suggestion is automatically placed into the text box. This means that when the Enter
key is pressed, you need only hide the drop-down list of suggestions.

For both Esc and Enter, you also must block the default behavior for the key press. This is
important to prevent unintended behavior, such as the Enter key submitting the form when the
user really just wanted to select the current suggestion. The default behavior is blocked first by
setting event.returnValue equal to false (for IE) and then calling preventDefault() (if
it's available, for Firefox).

Updating init()

Now that all this new functionality has been added, it must be initialized. Previously, the init()
method was used to set up the onkeyup event handler; now it must be extended to also set up
the onkeydown and onblur event handlers, as well as to create the drop-down suggestion list.
The onkeydown event handler is set up in a similar manner as onkeyup:
AutoSuggestControl.prototype.init = function () {

 var oThis = this;

 this.textbox.onkeyup = function (oEvent) {

 if (!oEvent) {

 oEvent = window.event;

 }

 oThis.handleKeyUp(oEvent);

 };

 this.textbox.onkeydown = function (oEvent) {

 if (!oEvent) {

 oEvent = window.event;

 }

 oThis.handleKeyDown(oEvent);

 };

 //more code to come

};

As you can see, the same algorithm is used with the onkeydown event handler: first, determine
the location of the event object, and then pass it into the handleKeyDown() method.

Up to this point, the only way the drop-down list is hidden is when the user presses the Enter
key. But what if the user clicks elsewhere on the screen or uses the Tab key to switch to a new
form field? To prepare for this event, you must set up an onblur event handler, which hides the
suggestions whenever the text box loses focus:
AutoSuggestControl.prototype.init = function () {

 var oThis = this;

 this.textbox.onkeyup = function (oEvent) {

 if (!oEvent) {

 oEvent = window.event;

 }

 oThis.handleKeyUp(oEvent);

 };

 this.textbox.onkeydown = function (oEvent) {

 if (!oEvent) {

 oEvent = window.event;

 }

 oThis.handleKeyDown(oEvent);

 };

 this.textbox.onblur = function () {

 oThis.hideSuggestions();

 };

 this.createDropDown();

};

You'll also notice that the createDropDown() method is called to create the initial drop-down
list structure. This completes the keyboard support for the autosuggest control, but there is one
more thing to take into account.

Fast-Type Support
Because the handleKeyUp() method requests suggestions whenever a key is pressed, you
may be wondering if it can keep up when someone is typing quickly. The answer is no. You may
be surprised to know that it is possible to type too fast for the event handling to keep up. In this
case, you get suggestions that are too late (including letters you never typed) and a very
choppy user experience (with long pauses as you type). So, how can you make sure that fast
typists aren't left out of this functionality?

Quite simply, you should wait a short amount of time before requesting suggestions from the
server. This can be done using the setTimeout() method, which delays the calling of a
function for a set time interval. The new functionality works like this: a timeout ID is saved in the
AutoSuggestControl object. If another key is pressed before the timeout has been activated,
the existing timeout is cleared and a new one is put in its place. So basically, when a user
presses a key, the control waits a certain amount of time before requesting suggestions. If
another key is pressed before the request is made, the control cancels the original request (by
clearing the timeout) and asks for a new request to be made after the same amount of time. In
this way, you can be sure that the request for suggestions goes out only while the user has
paused typing.

To implement this functionality, the first thing you need is a property to hold the timeout ID. You
can add the timeoutId property directly to the AutoSuggestControl class, as follows:
function AutoSuggestControl(oTextbox, oProvider) {

 this.cur = -1;

 this.layer = null;

 this.provider = oProvider;

 this.textbox = oTextbox;

 this.timeoutId = null;

 this.userText = oTextbox.value;

 this.init();

}

Next, update the handleKeyUp() method to make use of this new property:
AutoSuggestControl.prototype.handleKeyUp = function (oEvent
/*:Event*/) {

 var iKeyCode = oEvent.keyCode;

 var oThis = this;

 this.userText = this.textbox.value;

 clearTimeout(this.timeoutId);

 if (iKeyCode == 8 || iKeyCode == 46) {

 this.timeoutId = setTimeout(function () {

 oThis.provider.requestSuggestions(oThis, false);

 }, 250);

 } else if (iKeyCode < 32 || (iKeyCode >= 33 && iKeyCode < 46)

 || (iKeyCode >= 112 && iKeyCode <= 123)) {

 //ignore

 } else {

 this.timeoutId = setTimeout(function () {

 oThis.provider.requestSuggestions(oThis, true);

 }, 250);

 }

};

The first new line in this method stores a reference to the this object, which is important when
using the setTimeout() method. The second new line of code clears any timeout that may
have already been started; this cancels and suggestion request that may have been initiated.
The other two sections of new code change the call to the requestSuggestions() to occur
after 250 milliseconds (which is plenty of time for this purpose). Each call is wrapped in an
anonymous function that is passed into setTimeout(). The result of setTimeout(), the
timeout ID is stored in the new property for later usage. All in all, this ensures that no requests
will be made unless the user has stopped typing for at least 250 milliseconds.

This completes the code for the AutoSuggestControl class. All of the functionality has been
implemented, and all that's left is to create a suggestion provider to call.

The Suggestion Provider

The SuggestionProvider class is relatively simple compared to the AutoSuggestControl
since it has only one purpose: to request suggestions from the server and forward them to the
control. To do so, SuggestionProvider needs an instance of XmlHttp. Instead of using a
new object for each request, the same object will be used over and over, to avoid the overhead
of creating and destroying objects in rapid succession. This single instance is created using the
zXML library's zXmlHttp factory and stored in a property called http:
function SuggestionProvider() {

 this.http = zXmlHttp.createRequest();

}

The lone method of the suggestion provider is requestSuggestions(), which you may
remember from the architecture discussion. This method accepts two arguments: the
AutoSuggestControl to work on and a flag indicating whether typeahead should be used.
The complete code is as follows:
SuggestionProvider.prototype.requestSuggestions = function
(oAutoSuggestControl,

bTypeAhead) {

 var oHttp = this.http;

 //cancel any active requests

 if (oHttp.readyState != 0) {

 oHttp.abort();

 }

 //define the data

 var oData = {

 requesting: "StatesAndProvinces",

 text: oAutoSuggestControl.userText,

 limit: 5

 };

 //open connection to server

 oHttp.open("post", "suggestions.php", true);

 oHttp.onreadystatechange = function () {

 if (oHttp.readyState == 4) {

 //evaluate the returned text JavaScript (an array)

 var aSuggestions = JSON.parse(oHttp.responseText);

 //provide suggestions to the control

 oAutoSuggestControl.autosuggest(aSuggestions, bTypeAhead);

 }

 };

 //send the request

 oHttp.send(JSON.stringify(oData));

};

The first line inside the method sets oHttp equal to the stored XmlHttp object. This is done
simply for convenience and keeping the code clean. Next, you check to make sure that there
isn't already a request waiting for a response. If the XmlHttp object is ready to be used cleanly,
its readyState will be 0; otherwise, you must cancel the existing request (by calling abort())
before making another request.

Because the data being sent to the server is to be JSON-encoded, you first need to create an
object (oData) to hold the information. There are three pieces of information being sent: the
table to get the data out of, the current value in the text box, and the maximum number of
suggestions to retrieve (5). The maximum number of suggestions is important because it
prevents long database queries from being executed repeatedly.

Next, a request is opened to suggestions.php, the server-side component of the control.
This request is asynchronous (last argument of open() is set to true), so it's necessary to
provide an onreadystate-change event handler. The event handler first checks to ensure
that the readyState is 4, and then parses the returned text as a JSON array of values. This
array, along with the original typeahead flag, is then passed back to the
AutoSuggestControl via the autosuggest() method.

The last step in this method is, of course, to send the request. Note that since the request is
doing a POST, the data has to be passed into the send() method. The oData object is first
encoded into JSON before being sent.

With that, the SuggestionProvider class is complete. The only thing left to do is to write the
suggestions.php file that uses the data that is sent.

The Server-Side Component

In many ways, the server-side component for the autosuggest control is the most
straightforward: it's just a single thread being executed from top to bottom, with no functions or
methods to be concerned about. Note that because this is a PHP page, all the code discussed
in this section must be contained within a PHP code block (<?php . . . ?>).

The first part of the page is to set the content type to text/plain, indicating that this is a plain
text file and shouldn't be handled as anything else. You can optionally specify a character set,
but make sure that it is Unicode-compatible, such as UTF-8, since all Unicode characters are
valid in JavaScript. Here's the line that accomplishes assigning the content type:
header("Content-Type: text/plain; charset=UTF-8");

Next, include the JSON-PHP library and create a new instance of the JSON object:
require_once("JSON.php");

$oJSON = new JSON();

Normally when data is sent to a PHP page, you can use $_GET, $_POST, or $_REQUEST to
retrieve it. In this case, however, the data isn't being sent in traditional name/value pairs;
instead, it's being sent as a JSON string, and there is no built-in support for this specific type of
data. Instead, you need to get the body of the request and decode it manually. The body of any
request is available in PHP through $HTTP_RAW_POST_DATA, which contains the original,
encoded content that was sent. Because the JSON string wasn't URL encoded, however, you
can just pass this directly into the decode() method to reconstitute the oData object:

$oData = $oJSON->decode($HTTP_RAW_POST_DATA);

You'll also need an array to store the suggestions in:
$aSuggestions = array();

If there are no suggestions, no values will be added to the array and an empty array ([]) will be
returned to the client.

Before tapping the database for suggestions, make sure that there is actually text in the text
box. Suggestions are requested when the user hits Delete or Backspace, so there's a possibility
that the text box could be empty. You should check for this first by seeing if the length of the text
is greater than 0; if so, you can continue on to query the database.

The query string itself is built up from the data submitting from the client. The name of the table,
the LIKE statement, and the number of results to return are all incorporated into the SQL query.
The following code creates a connection to the database, executes the query, and then adds
the results of the query to the $aSuggestions array:
if (strlen($oData->text) > 0) {

 //create the SQL query string

 $sQuery = "Select Name from ".$oData->requesting." where Name like
'".

 $oData->text."%' order by Name ASC limit 0,".$oData-
>limit;

 //make the database connection

 $oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);

 @mysql_select_db($sDBName) or die("Unable to open database");

 if($oResult = mysql_query($sQuery)) {

 while ($aValues = mysql_fetch_array($oResult,MYSQL_ASSOC)) {

 array_push($aSuggestions, $aValues['Name']);

 }

 }

 mysql_free_result($oResult);

 mysql_close($oLink);

}

This code should be fairly familiar to you as it is the same basic algorithm used throughout the
book to access a MySQL database using PHP. (You must fill in the appropriate values for
$sDBServer, $sDBUsername, and $sDBPassword to reflect your database settings.) The only
unique part is that the results are being stored in an array, which facilitates the conversion into a
JSON string to be sent back to the client.

The actual encoding is the very last step of the page. In one step, you can encode the array and
output it to the page:
echo($oJSON->encode($aSuggestions));

Now it's up to the client to parse the JSON code correctly.

The Client-Side Component

So far, you've built the HTML, CSS, JavaScript, and PHP to be used by the autosuggest control.
The only thing left to do is to assemble it all into a page that you can use. The most important
thing to remember is the inclusion of all necessary JavaScript files. In this case, you need to
include json.js, zxml.js, and autosuggest.js. Also important is the inclusion of the
style sheet file, autosuggest.css.

It's also necessary to instantiate the AutoSuggestControl after the page has completely
loaded, using the onload event handler. The complete code for the example page is:
<html>

 <head>

 <title>Autosuggest Example</title>

 <script type=" text/javascript" src=" json.js"></script>

 <script type=" text/javascript" src=" zxml.js"></script>

 <script type=" text/javascript" src="
autosuggest.js"></script>

 <link rel=" stylesheet" type=" text/css" href="
autosuggest.css" />

 <script type=" text/javascript">

 window.onload = function () {

 var oTextbox = new

AutoSuggestControl(document.getElementById("txtState"), new
SuggestionProvider());

 }

 </script>

 </head>

 <body>

 <form method=" post" action=" your_action.php">

 <table border="0">

 <tr>

 <td>Name:</td>

 <td><input type=" text" name=" txtName" id="
txtName" /></td>

 </tr>

 <tr>

 <td>Address 1:</td>

 <td><input type=" text" name=" txtAddress1"

 id=" txtAddress1" /></td>

 </tr>

 <tr>

 <td>Address 2:</td>

 <td><input type=" text" name=" txtAddress2"

 id=" txtAddress2" /></td>

 </tr>

 <tr>

 <td>City:</td>

 <td><input type=" text" name=" txtCity" id="
txtCity" /></td>

 </tr>

 <tr>

 <td>State/Province:</td>

 <td><input type=" text" name=" txtState" id="
txtState"

 autocomplete=" off" /></td>

 </tr>

 <tr>

 <td>Zip Code:</td>

 <td><input type=" text" name=" txtZip" id="
txtZip" /></td>

 </tr>

 <tr>

 <td>Country:</td>

 <td><input type=" text" name=" txtCountry"

 id=" txtCountry" /></td>

 </tr>

 </table>

 <input type=" submit" value=" Save Information" />

 </form>

 </body>

</html>

Note that once the necessary files are included, you need to place only one line of JavaScript in
the window.onload event handler to set up the functionality:
var oTextbox = new
AutoSuggestControl(document.getElementById("txtState"),

 new SuggestionProvider());

This line creates a new AutoSuggestControl object, passing a reference to the text box with
the id of txtState and a new SuggestionProvider() class. It's important that this line be
executed in the onload event handler because document.getElementById() isn't 100
percent accurate until the entire page has been loaded.

The example itself is done in a way in which this control may be used: filling in personal
information. This could be a page where customers can update their information or it could be a
shipping form. Whichever way you choose to use this functionality, it is sure to improve the
usability of your form. An autosuggest control, although not as flashy as some Ajax solutions,
really is a good example of how Ajax can be used in a non-interfering way.

Summary
In this chapter, you learned all about JavaScript Object Notation (JSON) as an alternative data
transmission format to XML. You learned that JSON has several advantages over XML for data
transmission needs, including a smaller amount of code to represent the same data and a
logical object-and-array structure that most programming languages can understand and use.

You also learned that while JavaScript can understand and interpret JSON natively, there are
several server-side libraries that provide the same functionality. You learned about a JavaScript
utility for parsing and encoding JSON data, as well as the JSON-PHP library that can be used to
do the same for PHP.

The chapter went on to describe how to make an Ajax-assisted autosuggest control that
enables you to display suggestions based on what the user has typed. This control works
similar to the way that Google Suggest does and takes into account user interaction with the
mouse and keyboard as well as providing for fast typists. This control helped to illustrate the
power of simple Ajax solutions.

The next chapter will expand on what you've learned here to create reusable Ajax widgets for
your web site. These widgets can use a variety of data transmission formats, including JSON.

Chapter 8: Web Site Widgets
Overview
Both on the desktop and on the Web, widgets have become a highly sought-after commodity. A
widget is a mini, self-containing application that performs a specific purpose. Programs like
Konfabulator (www.konfabulator.com) offered users a platform to run widgets on their
computers. Ranging from newsreaders to eBay feedback monitors, these widgets provide
useful information to people that want them. They are applications that require little to no setup
and perform only their allotted function.

On the Web, most widgets were primarily limited to static DHTML widgets, designed to emulate
operating system controls such as menus, structure trees, and toolbars. While these widgets
provided a means to emulate traditional applications, they didn't offer much more than that.

Thanks to the capabilities of XMLHttp, web widgets are beginning to change to incorporate data
manipulation and retrieval with DHTML, creating rich web widgets that normally are found only
on the desktop.

In this chapter, you will create four web widgets using PHP, ASP.NET, DHTML, and Ajax: a
news ticker, a weather widget, a web search widget, and a site search widget. The following
sections will walk you through the creation of these widgets and how to apply them to your web
page.

Creating a News Ticker Widget
Popular on both television news networks and web sites, the news ticker displays current
events in a scrolling format. Unlike the static nature of television, the Web enables users to
interact with these tickers. If something catches their eyes, they can click the news item and it
takes them to their desired information.

The widget built in this section, a news ticker, provides this functionality (see Figure 8-1). Like
any other Ajax-enabled application, it comes in two parts: a server application and a client
application.

http://www.books24x7.com/viewer.asp?bkid=13421&destid=482#482
http://www.konfabulator.com/
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=361169545#ch08fig01#ch08fig01

Figure 8-1

For this project, you will use PHP to perform the server's function: to behave as a proxy to
retrieve requested feeds for the client. The client application consists of the usual suspects:
DHTML and JavaScript.

The Server-Side Component

The server application, written in PHP as already stated, is extremely simple. To request
information from the server, the URL should contain a url variable in the query string:
newsticker.php?url=http://rss.news.yahoo.com/rss/topstories

Because the server's only job is to retrieve remote information, the server application code is
only a few lines:
<?php

header("Content-Type: text/xml");

header("Cache-Control: no-cache");

if (isset($_GET["url"])) {

 $remoteUrl = $_GET["url"];

 $xml = file_get_contents($remoteUrl);

 echo $xml;

}

?>

The first two lines set the Content-Type and Cache-Control headers, respectively. As
mentioned in Chapter 5, it is important to set the MIME content type to text/xml; otherwise,
Mozilla Firefox doesn't recognize the data as XML. It also is important to set the Cache-
Control header to no-cache because Internet Explorer caches all data retrieved via XMLHttp
unless explicitly told not to.

In the next line of code, the query string is checked for the url query item. To do this, use the
isset() function, which returns a Boolean value based on whether a variable, function, or

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig252%5F01%5F0%2Ejpg&image_id=41&previd=IMG_41&titlelabel=Figure+8%2D1%3A+
http://rss.news.yahoo.com/rss/topstories
http://www.books24x7.com/viewer.asp?bkid=13421&destid=274#274

object exists. The value of url is assigned to the $remoteUrl variable and passed to
file_get_contents(). This function opens a file (local or remote), reads the file, and returns
its contents as a string. Last, the file's contents, stored in the $xml variable, are written to the
page.

With the proxy completed, a client needs to be authored to take advantage of the proxy's
service.

The Client-Side Component

Before delving into the code, the client's functionality should be discussed. The client:
1. Builds the HTML to display the news feeds.
2. Requests data from the server application. When the server responds with the

requested data, the client parses the data with XParser.
3. Places the parsed data into the HTML.
4. Uses DHTML to animate the ticker.
5. Polls for updated data every 1.5 minutes.

In addition, a few user interface criteria must be met:
 The data in the ticker, news article titles, should be links that take the user to the

specified news article.
 The ticker should stop scrolling when the user's mouse enters the ticker and resume

scrolling when the user mouses out.

The client-side code consists of two classes: the NewsTicker class, which builds the ticker in
HTML format, animates the ticker with a scrolling animation, and provides the ability to add
news feeds into the ticker, and the NewsTickerFeed class, which requests the feed, parses it,
places it in the HTML, and polls for new data.

The NewsTicker Class
The NewsTicker class is the main class of the client-side code. The constructor accepts one
argument: the HTMLElement to append the news ticker:
function NewsTicker(oAppendTo) {

 var oThis = this;

 this.timer = null;

 this.feeds = [];

These first few lines of code initialize the properties of the NewsTicker class. First, a pointer to
the object is created by assigning the variable oThis. The timer property, initially set to null,
will control the scrolling animation (setTimeout() returns a unique timer identifier). The
feeds property is an array of NewsTickerFeeds objects.

The next two properties create the primary elements of this widget:
this.tickerContainer = document.createElement("div");

this.ticker = document.createElement("nobr");

this.tickerContainer.className = "newsTickerContainer";

this.ticker.className = "newsTicker";

These properties, tickerContainer and ticker, reference newly created <div/> and
<nobr/> elements, respectively. The tickerContainer element does what its name implies:
it contains all elements of the widget, whereas the ticker element scrolls the news feeds
contained in it. The <nobr/> tag is chosen because it does not allow any breaks in the text;

otherwise, text would pop into view instead of scrolling as a result of word wrapping. The HTML
code output by this constructor is:
<div class=" newsTickerContainer">

 <nobr class=" newsTicker"></nobr>

</div>

As a part of the user interface, remember that the scrolling animation stops when users move
their mouse over the news ticker. To facilitate this functionality, assign event handlers for the
onmouseover and onmouseout events of tickerContainer:
this.tickerContainer.onmouseover = function () {

 clearTimeout(oThis.timer);

};

this.tickerContainer.onmouseout = function () {

 oThis.tick();

};

In the onmouseover event handler, clearTimeout() clears the timer property, which stops
the animation. Notice the use of the oThis pointer, since the scope changes inside the event
handler. The onmouseout event handler causes the animation to begin again by calling the
tick() method, which performs the animation.

The next step is to append the ticker element to tickerContainer, and to append the
widget's HTML to its parent HTMLElement:
this.tickerContainer.appendChild(this.ticker);

var oToAppend = (oAppendTo)?oAppendTo:document.body;

oToAppend.appendChild(this.tickerContainer);

The first line of this code appends ticker to tickerContainer, which results in the HTML
seen earlier in this section. The next line offers a convenience for developers. If oAppendTo
exists, the constructor's argument, then the widget is appended to the value of oAppendTo. If it
doesn't, however, the HTML is appended to document.body. This gives the argument a
default value, so if you want to append the widget directly to the document, you do not have to
pass an argument.

The final lines of the constructor initialize the ticker:
this.ticker.style.left = this.tickerContainer.offsetWidth + "px";

this.tick();

The first line of code positions the ticker at the farthest right edge of tickerContainer. (The
animation scrolls from right to left.)

Note Internet Explorer and Firefox have different modes in which they render

markup differently according to the doctype specified in the HTML page.
Under what is known as standards mode, you must add + "px" to any line of
code that positions an element, or the browser will not position the element.

Finally, calling the tick() method starts the animation, and the final constructor code looks like
this:
function NewsTicker(oAppendTo) {

 var oThis = this;

 this.timer = null;

 this.feeds = [];

 this.tickerContainer = document.createElement("div");

 this.ticker = document.createElement("nobr");

 this.tickerContainer.className = "newsTickerContainer";

 this.ticker.className = "newsTicker";

 this.tickerContainer.onmouseover = function () {

 clearTimeout(oThis.timer);

 };

 this.tickerContainer.onmouseout = function () {

 oThis.tick();

 };

 this.tickerContainer.appendChild(this.ticker);

 var oToAppend = (oAppendTo)?oAppendTo:document.body;

 oToAppend.appendChild(this.tickerContainer);

 this.ticker.style.left = this.tickerContainer.offsetWidth + "px";

 this.tick();

}

Doing the Animation

The basic logic of any animation is to move an element by a set amount of pixels and repeat
this operation until the element reaches a specific location on the page. The scrolling animation
used in this widget is probably the simplest type of animation you can perform: a linear, right-to-
left movement until the ticker's right edge reaches the container's left edge. This last part is the
limit of the animation and can be expressed by -this.ticker.offsetWidth. When the
ticker reaches this position in the page, the animation begins again.

The tick() method begins by gathering this information:
NewsTicker.prototype.tick = function () {

 var iTickerLength = -this.ticker.offsetWidth;

 var oThis = this;

The iTickerWidth variable contains the ending point of the animation: the negative
offsetWidth of the ticker. Once again, a pointer to the NewsTicker object is assigned to
oThis.

To perform animations, a timeout is set at a low interval of time to repeat a function that moves
the desired element. In the case of this animation, it is a function inside the tick() method:
var doSetTimeout = function() {

 oThis.tick();

};

You could use external variables, functions, or methods to aid in the animation, but that
approach isn't very object oriented. Keeping the animation logic inside the tick() method
makes the widget easier to deploy and maintain.

The first step in the animation is to decide whether the ticker contains any data, as there's no
use in scrolling an empty <nobr/> element:
if (this.ticker.innerHTML) {

}

This code checks the element's innerHTML property; any HTML present in the ticker means
data exists and the animation should begin:
if (this.ticker.innerHTML) {

 if (this.ticker.offsetLeft > iTickerLength) {

 var iNewLeft = this.ticker.offsetLeft - 1;

 this.ticker.style.left = iNewLeft + "px";

 }

}

This new code moves the ticker. The first new line checks the location of the ticker
(offsetLeft) in relation to the animation's boundary (iTickerLength). If the location is
greater than the limit, the animation continues. The next line gets the new left position of the
ticker: one pixel to the left. The last line of this code block sets the left position to reflect the
value contained in iNewLeft. This, however, is only one part of the animation. The ticker
continues to move until it reaches the boundary; therefore, you must reset the ticker to its
original location:
NewsTicker.prototype.tick = function () {

 var iTickerLength = this.ticker.offsetWidth;

 var oThis = this;

 var doSetTimeout = function() {

 oThis.tick();

 };

 if (this.ticker.innerHTML) {

 if (this.ticker.offsetLeft > -iTickerLength) {

 var iNewLeft = this.ticker.offsetLeft - 1;

 this.ticker.style.left = iNewLeft + "px";

 } else {

 this.ticker.style.left = this.tickerContainer.offsetWidth
+ "px";

 }

 }

 this.timer = setTimeout(doSetTimeout,1);

};

The first block of new code does this. At the end of the animation, the ticker is once again
placed at the right edge of the container. The last new line sets a timeout for the

doSetTimeout() function contained within tick(). This causes tick() to run every
millisecond, so the animation is ongoing until it is stopped by clearing the timeout (when the
user mouses over the container).

Adding Feeds

One final method of the NewsTicker class is the add() method, which adds a feed to the
ticker and populates the feeds array:
NewsTicker.prototype.add = function (sUrl) {

 var feedsLength = this.feeds.length;

 this.feeds[feedsLength] = new NewsTickerFeed(this, sUrl);

};

This method accepts one argument: the URL to the remote feed. A NewsTickerFeed object is
then created as an element of the feeds array. This array isn't used in any of the class's code,
other than initializing and populating the array. It exists merely for convenience for developers
that may want to access the different feeds in the ticker.

The NewsTickerFeed Class
A news ticker isn't so handy without content to display. The NewsTickerFeed class pulls the
required feeds, parses them with XParser, and assembles and adds the HTML to the ticker.
The class's constructor accepts two arguments: The first argument is a reference to its parent
NewsTicker object; this allows access to the NewsTicker object's properties and methods
when needed. The second argument is the URL of the feed you want to obtain.
function NewsTickerFeed(oParent, sUrl) {

 this.parent = oParent;

 this.url = sUrl;

 this.container = null;

 this.poll();

}

Compared to the NewsTicker class's constructor, the NewsTickerFeed class's constructor is
relatively simple. This class has three properties: parent, a reference to the parent
NewsTicker object; url, the URL of the feed; and container, a element that
contains the feed's information.

Polling for New Information

The poll() method, called before the constructor exits, makes the request to the server
application. It also automatically checks for updates every minute and a half:
NewsTickerFeed.prototype.poll = function () {

 var oThis = this;

 var oReq = zXmlHttp.createRequest();

 oReq.onreadystatechange = function () {

 if (oReq.readyState == 4) {

 if (oReq.status == 200) {

 oThis.populateTicker(oReq.responseText);

 }

 }

 };

 var sFullUrl = encodeURI("newsticker.php?url=" + this.url);

 oReq.open("GET", sFullUrl, true);

 oReq.send(null);

}

This code creates the XMLHttp object. First, you'll notice the ever-popular technique of
assigning a pointer to the NewsTickerFeed object to oThis. The next code block creates an
XMLHttp object with the zXml library and defines the onreadystatechange event handler. On
a successful request, the responseText property is sent to the populateTicker() method.

Before making the actual request, it is important to encode the URL. This ensures any
characters such as white space, ampersands, quote marks, and so on are converted to their
corresponding escape sequence for proper transmission.

One final addition to poll() is the automatic updating. To facilitate this, use a similar approach
to the tick() method of the NewsTicker class:
NewsTickerFeed.prototype.poll = function () {

 var oThis = this;

 var oReq = zXmlHttp.createRequest();

 oReq.onreadystatechange = function () {

 if (oReq.readyState == 4) {

 if (oReq.status == 200) {

 oThis.populateTicker(oReq.responseText);

 }

 }

 };

 var sFullUrl = encodeURI("newsticker.php?url=" + this.url);

 oReq.open("GET", sFullUrl, true);

 oReq.send(null);

 var doSetTimeout = function () {

 oThis.poll();

 };

 setTimeout(doSetTimeout, 90000);

}

This new code creates another function called doSetTimeout() to pass to the
setTimeout() method. Because this version of doSetTimeout() exists only in the scope of
the poll() method, it will not interfere with the previous function of the same name in tick().
The poll() method is now set to run every 1.5 minutes and will update the feed.

Adding Content

The final method of the NewsTickerFeed class is populateTicker(), mentioned earlier
because it's called in poll(). This method accepts the XMLHttp responseText property as
its argument and parses it with XParser:
NewsTickerFeed.prototype.populateTicker = function (sXml) {

 var oParser = new XParser(sXml, true);

}

By passing the second argument with the value of true, XParser treats the first argument as
serialized XML and will not make its own XMLHttp request. With the XML now parsed, you can
start to create the HTML:
NewsTickerFeed.prototype.populateTicker = function (sXml) {

 var oParser = new XParser(sXml, true);

 var spanLinkContainer = document.createElement("span");

 var aFeedTitle = document.createElement("a");

 aFeedTitle.className = "newsTicker-feedTitle";

 aFeedTitle.href = oParser.link.value;

 aFeedTitle.target = "_new";

 aFeedTitle.innerHTML = oParser.title.value;

 spanLinkContainer.appendChild(aFeedTitle);

}

The first step is to create an element to encapsulate all the links. This element serves a purpose
of convenience: when the feed is updated, it is easier to remove one element with several
children than it is to remove several elements one at a time. Also, don't confuse this container
with the container property. The latter contains spanLinkContainer.

To separate the different feeds in the ticker, the feed's title is used. This too is a link; so if the
user clicks on the link, a new window pops up taking them to the feed's web site. This link is
given a CSS class of newsTicker-feedTitle and is appended to spanLinkContainer.

Next, create the link items by iterating through the items array of the XParser object:
NewsTickerFeed.prototype.populateTicker = function (sXml) {

 var oParser = new XParser(sXml, true);

 var spanLinkContainer = document.createElement("span");

 var aFeedTitle = document.createElement("a");

 aFeedTitle.className = "newsTicker-feedTitle";

 aFeedTitle.href = oParser.link.value;

 aFeedTitle.target = "_new";

 aFeedTitle.innerHTML = oParser.title.value;

 spanLinkContainer.appendChild(aFeedTitle);

 for (var i = 0; i < oParser.items.length; i++) {

 var item = oParser.items[i];

 var aFeedLink = document.createElement("a");

 aFeedLink.href = item.link.value;

 aFeedLink.target = "_new";

 aFeedLink.className = "newsTicker-feedItem";

 aFeedLink.innerHTML = item.title.value;

 spanLinkContainer.appendChild(aFeedLink);

 }

}

Each link opens a new window when clicked and has a CSS class of newsTicker-feedItem.
When the link is completed, it is appended to spanLinkContainer, which you now add to the
ticker:
NewsTickerFeed.prototype.populateTicker = function (sXml) {

 var oParser = new XParser(sXml, true);

 var spanLinkContainer = document.createElement("span");

 var aFeedTitle = document.createElement("a");

 aFeedTitle.className = "newsTicker-feedTitle";

 aFeedTitle.href = oParser.link.value;

 aFeedTitle.target = "_new";

 aFeedTitle.innerHTML = oParser.title.value;

 spanLinkContainer.appendChild(aFeedTitle);

 for (var i = 0; i < oParser.items.length; i++) {

 var item = oParser.items[i];

 var aFeedLink = document.createElement("a");

 aFeedLink.href = item.link.value;

 aFeedLink.target = "_new";

 aFeedLink.className = "newsTicker-feedItem";

 aFeedLink.innerHTML = item.title.value;

 spanLinkContainer.appendChild(aFeedLink);

 }

 if (!this.container) {

 this.container = document.createElement("span");

 this.container.className = "newsTicker-feedContainer";

 this.parent.ticker.appendChild(this.container);

 } else {

 this.container.removeChild(this.container.firstChild);

 }

 this.container.appendChild(spanLinkContainer);

}

When a NewsTickerFeed class is first created, remember the container property is
declared but given a null value. This is done for a couple of reasons. First, remember that the
ticker's animation does not begin until it contains HTML. To keep the animation from running
prematurely, the element referenced by container should not be added until the feed's data is
retrieved, parsed, and assembled into HTML. This makes appending the container to the
ticker occur in populateTicker().

Second, because this operation takes place in populateTicker(), it is important to not add
the same container to the ticker over and over again, or else the ticker will exhibit strange
behavior (not to mention the browser could crash). Therefore, when the previous code
executes, it checks if container has been initialized. If not, the element is created
and appended to the ticker; otherwise, the link container is removed from container, and the
newly created link container is added to the widget.

Of course, displaying the data is meaningless if you don't spice it up to your own liking.

Styling the News

Before looking at the CSS, it is important to know the HTML structure:
<div class=" newsTickerContainer">

 <nobr class=" newsTicker">

 <a />

 <a />

 <a />

 <a />

 </nobr>

</div>

The outermost <div/> element is important for two reasons. First, it encapsulates every part of
the widget. Second, it is the viewing box for the news items. Because it contains every element
in the widget, it must be an extremely wide box, but you don't want to all the data seen until it
enters the visible area. Therefore, you must set the CSS overflow property:
.newsTickerContainer {

 overflow: hidden;

 position: relative;

 background-color: silver;

 height: 20px;

 width: 100%;

 padding-top: 2px;

}

Setting the overflow property to hidden hides any contained content not currently visible.
Also, set the position property to relative to ensure that the ticker moves in relation to
newsTickerContainer and not the document's body. Any other CSS property is up to you to
set. In the example code, the height, width, padding, and background color are assigned.

The next element, the ticker, contains all the feeds added to the widget. This <nobr/> element
is absolutely positioned so that it can be moved through JavaScript:
.newsTicker {

 position: absolute;

 height: 25px;

}

The only required property is position, or else the ticker may not scroll. Any other CSS
property can be placed to give it the look and feel you desire.

The last two elements exposing CSS classes are the links: newsTicker-feedTitle and
newsTicker-feedItem. The first is the link to the news site. Although none of the following
properties are required, they set the feed's title apart from the remaining links:
.newsTicker-feedTitle {

 margin: 0px 6px 0px 6px;

 font-weight: bold;

 color: black;

 text-decoration: none;

}

There are six pixels of space on the left and right sides, giving distance from the feed items. The
text is bold, black, and has no underline, thus causing more separation in likeness between this
link and the others.

The only formatting the feed items have are four pixels of space on each side, giving the links a
defined look while still maintaining what the user expects (links!).
.newsTicker-feedItem {

 padding: 4px;

}

The beauty of CSS is its ability to change the look and feel of any page or widget, regardless of
markup (in most circumstances). Play around with it to come up with your own look to make it fit
within your web page.

Implementing the News Ticker Widget

Because the back-end code is PHP, setting up this widget is as simple as uploading files and
referencing them in your HTML. (PHP is required, of course). To add the JavaScript and CSS
into your page, simply add the <script/> and <link/> tags:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

 <title>Ajax News Ticker</title>

 <link rel=" stylesheet" type=" text/css" href="
css/newsticker.css" />

 <script type=" text/javascript" src=" js/zxml.js"></script>

 <script type=" text/javascript" src=" js/xparser.js"></script>

 <script type=" text/javascript" src=" js/newsticker.js"></script>

</head>

<body>

</body>

</html>

You'll also need to instantiate a new instance of NewsTicker. Remember, NewsTicker adds
itself to an HTMLElement, so it's best to create the object when the page loads with the
onload event:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

 <title>Ajax News Ticker</title>

 <link rel=" stylesheet" type=" text/css" href="
css/newsticker.css" />

 <script type=" text/javascript" src=" js/zxml.js"></script>

 <script type=" text/javascript" src=" js/xparser.js"></script>

 <script type=" text/javascript" src=" js/newsticker.js"></script>

 <script type=" text/javascript">

 function init() {

 var newsTicker = new NewsTicker();

 newsTicker.add("http://rss.news.yahoo.com/rss/topstories");

 }

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml
http://rss.news.yahoo.com/rss/topstories

 onload = init;

 </script>

</head>

<body>

</body>

</html>

Because this widget uses XParser to parse the news feeds, any RSS 2.0 and Atom feed can
be used with this widget. (The preceding example pulls the Yahoo! Top Stories feed). Cast
away those boring blog rolls; make them scroll!

Creating a Weather Widget
Weather information is popular to display both on the desktop and on the Web. Many
applications and widgets are solely devoted to retrieving and displaying this information.
Naturally, Ajax is well suited for this type of widget.

The Weather.com SDK

The first step in creating this widget is locating a source of weather information. Probably the
most popular is the Weather.com XML weather service. It is this information that you will use to
create this weather widget.

The use of the Weather.com XML service hinges upon following their guidelines. To use their
XML feeds you must first register for a license. To register, go to
http://registration.weather.com/registration/xmloap/step1/. After your
registration, Weather.com will send you an e-mail with a link to the XML feed SDK and provide
you with your license key and partner ID.

For web-based applications, like this widget, you must limit how often you retrieve information
from the service. As specified in the SDK documentation, the refresh rate for the Current
Conditions information is 30 minutes; therefore, the server application must cache the retrieved
weather information and only refresh the information every 30 minutes. There are two ways to
accomplish this:

1. Create a smart thread that runs independently of the web application and pulls the feed
every 30 minutes. The application then solely uses the cached feed and never worries
about the time span between information pulls.

2. With every page request, the application can keep track of the last time the feed was
retrieved, and allow refreshing of the data only after 30 minutes have passed.

Both architectures will serve this widget's purpose. In fact, the smart thread solution is ideal.
Communication between the server and the remote host are the same in both situations;
however, the smart thread requires only one file system operation every half hour (writing the
cached feed). Unfortunately, ASP.NET applications time out after 20 minutes of inactivity, which
can result in old cached data. It is possible to change this behavior; however, it requires access
to the machine.config file, and not everyone has access to that configuration file in their
environment. Therefore, this widget will use the second solution.

The Server-Side Component

You can use any .NET-enabled language to write the back-end code; however, the examples in
this chapter use the C# language. At the heart of the server application lie two classes created

http://registration.weather.com/registration/xmloap/step1/

within the Wrox.ProfessionalAjax.Weather namespace. You can compile these classes
into a class library (a .dll file) or use them natively within the application. The choice is ultimately
yours; however, this exercise incorporates the classes directly into the application, so no
reference to an external library is needed.

The WeatherSettings Class
The WeatherSettings class contains all the information required to pull weather information
from Weather.com. Only three pieces of information are required to retrieve this data: your
license key, your partner ID, and the location ID. These settings are located in an external XML
document called config.xml whose structure looks like this:
<weather>

 <ids>

 <license>[LICENSEKEY]</license>

 <partner>[PARTNERID]</partner>

 <location>[LOCATION CODE]</location>

 </ids>

</weather>

This is a simple XML document, as you can see. The <ids/> element contains the information
required to retrieve weather information. The <license/>, <partner/>, and <location/>
elements contain the license key, partner ID, and location ID, respectively.

Note Note that you need to replace the bracketed items with your own information.

The WeatherSettings class extracts this information and assigns it to private variables. The
class's constructor takes one argument: the path to the application.
public Settings(string path)

{

 XmlDocument xml = new XmlDocument();

 xml.Load(path + "/config.xml");

 _partnerId =
xml.SelectSingleNode("/weather/ids/partner").InnerText;

 _licenseKey =
xml.SelectSingleNode("/weather/ids/license").InnerText;

 _location =
xml.SelectSingleNode("/weather/ids/location").InnerText;

}

All data processing of the WeatherSettings class takes place here in the constructor. First,
the config.xml file is loaded into an XmlDocument object. This enables you to traverse the
DOM tree and extract the needed information. If you use the SelectSingleNode() method,
the individual elements contained in the <id/> element are retrieved and their value obtained
with the InnerText property. This information is assigned to the private string fields
_partnerId, _licenseKey, and _location.

To access these private fields, accessors (which you learned about in Chapter 5) are used to
retrieve the value of the corresponding private field:
public string PartnerId

{

 get

http://www.books24x7.com/viewer.asp?bkid=13421&destid=274#274

 {

 return _partnerId;

 }

}

public string LicenseKey

{

 get

 {

 return _licenseKey;

 }

}

public string LocationId

{

 get

 {

 return _location;

 }

}

The public fields ParnerId, LicenseKey, and LocationId return the values of
_partnerId, _licenseKey, and _location, respectively. These accessors provide read-
only access to the private fields.

The WeatherInfo Class
The WeatherInfo class provides methods to retrieve the information from the Weather.com
XML service. Like the WeatherSettings class, the WeatherInfo constructor accepts one
argument that contains the path to the application:
public WeatherInfo(string path)

{

 _path = path;

 _cachedFile = String.Format("{0}/weather_cache.xml",_path);

 _settings = new Settings(path);

}

This class has three private fields, two of which are the strings _path and _cachedFile. The
former is assigned the path argument, and the latter contains the path to the cached weather
feed. The third private field, _settings, is a WeatherSettings object.

Getting Weather Data from the Web

Aside from the aforementioned private members, the WeatherInfo class also contains several
private methods. One such method, called _getWebWeather(), gets the weather feed from
the remote host and returns a string containing the feed's contents:
private string _getWebWeather()

{

 string xmlStr = String.Empty;

 return xmlStr;

}

According to the SDK, the URL to retrieve the weather feed looks like the following:
http://xoap.weather.com/weather/local/[locID]?cc=*&prod=xoap&par=[part
ID]&key=[lic]

The information contained in brackets is the location ID, partner ID, and license key. Using the
String.Format() method, you can format the URL to contain your own settings information:
string baseUrl =

"http://xoap.weather.com/weather/local/{0}?cc=*&prod=xoap&par={1}&key=
{2}";

string url = String.Format(baseUrl, _settings.LocationId,
_settings.PartnerId,

 _settings.LicenseKey);

This is primarily where the _settings object is used. The resulting string returned from
String.Format() is complete with the required information that the Weather.com guidelines
dictate.

The next operation in _getWebWeather() makes a request to the remote host and retrieves
the weather feed:
using (WebClient client = new WebClient())

{

 //Read the results

 try

 {

 using (StreamReader reader = new
StreamReader(client.OpenRead(url)))

 {

 xmlStr = reader.ReadToEnd();

 }

 }

 catch (WebException exception)

 {

 xmlStr = _writeErrorDoc(exception);

 }

}

At the beginning of this code, a WebClient object is created. If you'll remember from Chapter
5, you used an HttpWebRequest object to retrieve data from the remote host. You could do
the same for this widget, but as you can see from the previous code, WebClient uses a much
simpler interface.

http://xoap.weather.com/weather/local/%5blocID%5d?cc=*&prod=xoap&par=%5bpartID%5d&key=%5blic%5d
http://xoap.weather.com/weather/local/%5blocID%5d?cc=*&prod=xoap&par=%5bpartID%5d&key=%5blic%5d
http://xoap.weather.com/weather/local/%7b0%7d?cc=*&prod=xoap&par=%7b1%7d&key=%7b2%7d
http://xoap.weather.com/weather/local/%7b0%7d?cc=*&prod=xoap&par=%7b1%7d&key=%7b2%7d
http://www.books24x7.com/viewer.asp?bkid=13421&destid=274#274
http://www.books24x7.com/viewer.asp?bkid=13421&destid=274#274

To read the remote server's response, use the OpenRead() method. This method returns a
Stream object that you can read with a StreamReader class. The StreamReader class's
ReadToEnd() method reads the stream and returns it as a string to xmlStr. If for some
reason this operation fails (most likely as a result of not finding the remote host), an error
document is created by the _writeErrorDoc()and used in place of the weather feed.

At this point in the method, you have some XML data to use: the weather feed or the error
document. The next few processes in the method perform an XSL transformation on the XML
data. Transforming the data at the server is advantageous for several reasons. For one, it
greatly simplifies the client-side code. The data sent to the client is already in HTML, so it is
easily added to the page. A server-side transformation also makes the client work less. The
data is complete when it reaches the client; no other data manipulation, other than placing in the
page, is required.

XSL transformations in .NET closely resemble the transformations provided by MSXML covered
in Chapter 4. The first step in a transformation is to create the objects involved:
XslTransform xslt = new XslTransform();

XmlDocument xml = new XmlDocument();

using (StringWriter stringWriter = new StringWriter()) {

Transformations in .NET include an XslTransform object, an XmlDocument object, and a
StringWriter object, which contains the resulting transformed data. The next step in the
transformation process is to load the XML data into the XmlDocument object and the XSL
document into the XslTransform object:
xml.LoadXml(xmlStr);

xslt.Load(_path + "/weather.xslt");

The LoadXml() method of the XmlDocument class resembles the loadXML() method in the
MSXML library. It accepts a string argument representing the XML data. The XSL document is
loaded into the XslTransform object via the Load() method. This method takes one
argument: a string containing the path to the XSL document.

The final step is to perform the transformation and retrieve the resulting data from the
StringWriter:
xslt.Transform(xml, null, stringWriter, null);

xmlStr = stringWriter.ToString();

The Transform() method has several overloads. Overloaded methods are methods of the
same name that perform the same function, but which accept different arguments. This
particular overload accepts the XML document in the first position, an argument list (or
parameter list) to pass to the XSLT processor in the second position, the StringWriter to
serve as output in the third position, and an XmlResolver to handle any XML namespaces in
the last position. Once the transformation is complete, you can use the ToString() method to
obtain the transformed data from the StringWriter.

The final step in _getWebWeather() is to cache the data. This is done with a StreamWriter,
which writes the data in UTF-8 encoding:
using (StreamWriter writer = new StreamWriter(_cachedFile))

{

 writer.Write(xmlStr);

}

The StreamWriter class constructor accepts a string argument containing the path to the file
to write to. The StreamWriter writes the contents of xmlStr to the file and is promptly closed
and disposed of when the using block exits.

http://www.books24x7.com/viewer.asp?bkid=13421&destid=192#192

Note In order for the application to update the contents of weather_cache.xml,

ASP.NET must have the proper modify permissions for the file.

The completed code of _getWebWeather() is as follows:
private string _getWebWeather()

{

 //Just to keep things clean, an unformatted URL:

 string baseUrl =

"http://xoap.weather.com/weather/local/{0}?cc=*&prod=xoap&par={1}&key=
{2}";

 //Now format the url with the needed information

 string url = String.Format(baseUrl, _settings.LocationId,
_settings.PartnerId,

 _settings.LicenseKey);

 //String that the weather feed will be written to

 string xmlStr = String.Empty;

 //Use a web client. It's less coding than an HttpWebRequest.

 using (WebClient client = new WebClient())

 {

 //Read the results

 try

 {

 using (StreamReader reader = new
StreamReader(client.OpenRead(url)))

 {

 xmlStr = reader.ReadToEnd();

 }

 }

 catch (WebException exception)

 {

 xmlStr = _writeErrorDoc(exception);

 }

 }

 XslTransform xslt = new XslTransform();

 XmlDocument xml = new XmlDocument();

 using (StringWriter sringWriter = new StringWriter())

 {

 xml.LoadXml(xmlStr);

 xslt.Load(_path + "/weather.xslt");

http://xoap.weather.com/weather/local/%7b0%7d?cc=*&prod=xoap&par=%7b1%7d&key=%7b2%7d
http://xoap.weather.com/weather/local/%7b0%7d?cc=*&prod=xoap&par=%7b1%7d&key=%7b2%7d

 xslt.Transform(xml,null,sringWriter,null);

 xmlStr = sringWriter.ToString();

 }

 //Write the cached file

 using (StreamWriter writer = new StreamWriter(_cachedFile))

 {

 writer.Write(xmlStr);

 }

 //Finally, return the feed data.

 return xmlStr;

}

Reading Cached Weather Data

Another private method of the WeatherInfo class is the _getCachedWeather() method. As
its name suggests, its function is to retrieve the data from the cached feed. Like the previously
discussed method, _getCachedWeather() also returns a string:
private string _getCachedWeather()

{

 string str = String.Empty;

 //Open and read the cached weather feed.

 using (StreamReader reader = new StreamReader(_cachedFile))

 {

 str = reader.ReadToEnd();

 }

 //Return the contents

 return str;

}

First, the variable str is created and initialized as an empty string; this variable will contain the
contents of the cached file when it is read. Next, a StreamReader object is created and opens
the cached weather feed, the contents of which are read via the ReadToEnd() method and
stored in str. Finally, _getCachedWeather() exits and returns the str value.

The _getWebWeather() and _getCachedWeather() methods are the primary workhorses
of the application. However, as you've probably already noted, they're private members. In other
words, there is no way to access them externally when you create an instance of this class. A
public method, GetWeather(), provides makeshift access to these private methods.

Deciding Which Version to Use

The GetWeather() method is a public method that returns a string retrieved from either
_getCachedWeather() or _getWebWeather(). This method determines whether to pull the

feed from the Web or from the cache. This decision is based on the time that the cached file
was last modified.

The .NET Framework provides a structure called DateTime, which is used extensively
throughout the Framework. When a date or time is needed, chances are a DateTime instance
is available. Such is the case with getting dates and times associated with a file. To retrieve the
"Date Modified" file system property of the cached file, write a public accessor called
LastModified as follows:
public DateTime LastModified

{

 get

 {

 if ((File.Exists(_cachedFile)))

 {

 return File.GetLastWriteTime(_cachedFile);

 }

 else

 {

 return new DateTime(1,1,1);

 }

 }

}

This code snippet gets the date and time of when the cached file was last written to. First, you
must check the existence of the cached file, or else an error is thrown when you try to retrieve
the DateTime information. If it exists, the GetLastWriteTime() method retrieves the date
and time of when it was last written to. If the file does not exist, a DateTime instance is created
using the earliest possible values by passing the value of 1 for the year, month, and day. This
ensures that the application will always pull a new feed if the cached file does not exist.

The GetWeather() method uses this information to decide whether to pull a newer feed:
DateTime timeLimit = LastModified.AddMinutes(30);

Using the AddMinutes() method, 30 minutes is added to the time LastModified returns.
This new DateTime instance, timeLimit, will be compared to the current time by using the
CompareTo() method:
if (DateTime.Now.CompareTo(timeLimit) > -1)

{

 return _getWebWeather();

}

else

{

 return _getCachedWeather();

}

The CompareTo() method returns an integer value. If the current time (specified by
DateTime.Now) is greater than timeLimit, the returned integer is greater than zero. If the
two times are equal, the method returns zero. If the current time is less than timeLimit, then -

1 is returned. In this code, the retrieval of a newer feed occurs only when at least 30 minutes
have passed; otherwise, the cached version is retrieved.

Writing the Error Document

One final method of the WeatherInfo class need mentioning: _writeErrorDoc(). As stated
before, this method writes a simple error document in XML to be used in the event the remote
host cannot be contacted. It accepts one argument, a WebException instance:
private string _writeErrorDoc(WebException exception)

{

 XmlDocument xml = new XmlDocument();

 xml.LoadXml("<errorDoc />");

 XmlElement alertElement = xml.CreateElement("alert");

 alertElement.InnerText = "An Error Occurred!";

 XmlElement messageElement = xml.CreateElement("message");

 messageElement.InnerText = exception.Message;

 xml.DocumentElement.AppendChild(alertElement);

 xml.DocumentElement.AppendChild(messageElement);

 return xml.OuterXml;

}

In the first two lines of code, an XmlDocument object is created and loaded with a simple XML
document (only the root element). The error document contains only two elements: <alert/>
and <message/>. The DOM methods in .NET resemble the DOM methods in Internet Explorer
and Firefox. The first element, <alert/>, is created with the CreateElement() method.
Using the InnerText property, it receives its text node. The same procedure is used to create
the <message/> element. This element will house the message from the WebException
object.

When all elements are created and populated with their needed data, they are appended to the
document via the AppendChild() method, and the serialized XML data, output by the
OuterXml property, is returned.

To finish off the class, two accessors grant access to the _settings and _cachedFile
private members:
public Settings Settings

{

 get

 {

 return _settings;

 }

}

public string CachedFile

{

 get

 {

 return _cachedFile;

 }

}

This will ensure that you can access this data outside of the class, as necessary.

Using the WeatherInfo Class
The majority of the work is completed with the server-side application. All that remains is to put
the WeatherInfo class to work. The ASP.NET file weather.aspx serves as the proxy
between the client and the Weather.com XML service. It is in this page that you will use the
WeatherInfo class.

The first step in implementing this class is to create an instance of it:
WeatherInfo weather = new WeatherInfo(Server.MapPath(String.Empty));

string weatherData = weather.GetWeather();

In this code, an instance of the WeatherInfo class is created by passing the path to the
application to the constructor with Server.MapPath(Sring.Empty). With this new instance,
you can use the GetWeather() method and retrieve the weather information, which is stored
in weatherData.

The next step is to set the needed headers:
Response.ContentType = "text/xml";

Response.CacheControl = "no-cache";

Response.AddHeader("Weather-Modified",

 weather.LastModified.ToFileTime().ToString());

The first two lines should look familiar. They set the MIME content type to text/xml and tell
the browser not to cache the feed. The third line, however, shows a custom HTTP header called
Weather-Modified. This header provides the client-side code a means to check if a new
version of weather data is available.

The value assigned to this header consists of a long integer (returned by the ToFileTime()
method) representing the time returned by the LastModified property. Because this value is
based on the Modified attribute of the file system (remember the LastModified property of
the WeatherInfo class returns that value), it will remain the same until the file is updated. This
makes it ideal for checking for new updates on the client-side.

Finally, output the weather data, as follows:
Response.Write(weatherData);

You now need a client to consume the information.

The Client-Side Component

The client code for this widget is surprisingly simple thanks to all the work the server application
performs. All that remains for the client is to retrieve the data. The AjaxWeatherWidget class
does just that:
function AjaxWeatherWidget(oElement) {

 this.element = (oElement)?oElement:document.body;

 this.lastModified = null;

 this.getWeather();

}

The AjaxWeatherWidget constructor accepts one argument: the HTMLElement to append
the data, which is assigned to the element property. In the event that no argument is supplied,
element becomes document.body. As in the News Ticker widget example, this class also
automatically checks for updates, which is why the lastModified property exists. The
constructor calls getWeather(), a method that retrieves the weather data from the server,
before it exits.

Getting Data from the Server

The getWeather() method contacts the server application and retrieves the weather
information with XMLHttp. It also polls the server every minute for updated information:
AjaxWeatherWidget.prototype.getWeather = function () {

 var oThis = this;

 var doTimeout = function () {

 oThis.getWeather();

 };

The method starts by creating a pointer to the object by assigning oThis. This pointer is then
used inside the nested function doTimeout(), which calls the getWeather() method. The
doTimeout() function is used to make continuous updates.

Next, an XMLHttp object makes a request to the server:
AjaxWeatherWidget.prototype.getWeather = function () {

 var oThis = this;

 var doTimeout = function () {

 oThis.getWeather();

 };

 var oReq = zXmlHttp.createRequest();

 oReq.onreadystatechange = function () {

 if (oReq.readyState == 4) {

 if (oReq.status == 200) {

 var lastModified = oReq.getResponseHeader("Weather-
Modified");

 if (lastModified != oThis.lastModified) {

 oThis.lastModified = lastModified;

 oThis.element.innerHTML = oReq.responseText;

 }

 }

 }

 };

 oReq.open("GET", "weather.aspx", true);

 oReq.send(null);

When the request is successful, the first item retrieved from the server's response is the
Weather- Modified header with the getResponseHeader() method. To see if the
requested data is newer than the preexisting data, compare the value of the Weather-
Modified header to that of the lastModifed property of the AjaxWeatherWidget object. If
they match, the data is the same; if not, then updated data exists and is appended to the
chosen HTMLElement via the innerHTML property.

Finally, set a timeout for the doTimeout() function, which executes every minute:
setTimeout(doTimeout, 60000);

Customizing the Weather Widget

Out of the box, this widget fits nicely into a sidebar, providing visitors with the weather
information you dictate. The look of the widget relies upon custom images as well as the
weather images provided in the SDK (see Figure 8-2).

Figure 8-2

Giving the widget the look and feel in the example files relies heavily upon CSS positioning;
nearly every element is absolutely positioned, so the HTML structure isn't extremely important.
All you need is valid (X)HTML:
<div id="weatherContainer">

 <div id="weatherIcon"></div>

 <div id="weatherTemp">70</div>

 <div id="weatherLocation">Dallas, TX (75226)</div>

 <div id="weatherWind">Wind:

 <div>13 MPH S</div>

 </div>

 <div id="weatherTime">Last Update:

 7:45 PM

 </div>

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig275%5F01%5F0%2Ejpg&image_id=42&previd=IMG_42&titlelabel=Figure+8%2D2%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=118402635#ch08fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch08fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

</div>

Note This XHTML is a result of an XSL transformation. When going over each

piece of information in this section, the XPath expression to the location of the
information in the XML feed is given.

To achieve this look, it is important to note that the containing <div/> element,
weatherContainer, does not have a default (inherit) position; otherwise, the contained,
absolutely positioned elements will position themselves based on the document and not
weatherContainer:
#weatherContainer {

 position: relative;

 background: url('../img/background.gif');

 width: 220px;

 height: 149px;

}

A relative position doesn't interfere with the page flow unless you provide top and left
coordinates. The background of this <div/> element is a custom-made GIF file the same size
as the <div/>: 220 pixels wide and 149 pixels high.

The SDK includes Weather.com's own images to provide a visual display of the current weather
conditions. These image files are PNG images and are named xx.png, where xx is a number.
This number, found in the XML feed, resides at weather/cc/icon (cc stands for current
conditions). To accomplish the look of the example, give this element an absolute position,
which enables you to place it anywhere in its container and removes it from the document flow.
#weatherIcon {

 position: absolute;

 top: -25px;

 left: -25px;

}

This code places the image 25 pixels to the left and top from the top-left corner of the container.
Because the images provided by Weather.com are PNGs, additional coding is required for
Internet Explorer because the browser ignores the transparency information.

Microsoft exposes a DirectX filter called AlphaImageLoader, which makes PNGs correctly
display transparency. However, the use of this filter is limiting, as it must be applied with CSS.
To solve this issue, you can download the PNG Behavior at WebFX
(http://webfx.eae.net/dhtml/pngbehavior/pngbehavior.html). It is an excellent
tool, and is perfect in this situation. To use it, simply add the following rule to your CSS:
#weatherIcon img {

 width: 128px;

 height: 128px;

 behavior: url("css/pngbehavior.htc");

}

In Internet Explorer, this rule applies the PNG Behavior to every element in the widget,
but it only applies the AlphaImageLoader filter for PNG files. All other tags with
.gif, .jpg, or any other extension are left alone. The filter property is Internet Explorer-
specific; therefore, all other browsers ignore the property and its value.

Important You must set the height and width properties when using

AlphaImageLoader.

http://webfx.eae.net/dhtml/pngbehavior/pngbehavior.html

The next item in the widget is the temperature, contained in a <div/> element with an id of
weatherTemp and located in the XML at weather/cc/temp. The styling of this information is
as follows:
#weatherTemp {

 position: absolute;

 color: white;

 font: bold 48px Tahoma;

 right:12px;

 top: 5px;

}

Positioning this element as absolute enables you to place it anywhere in the container you want.
In this situation, its location resides in the top-right corner. The text contained in this element is
colored white and is 48 pixels tall.

Below the temperature is the weather location information. From the XML feed, this information
is located in weather/loc/dnam. This text is colored white, and uses a smaller font:
#weatherLocation {

 font: 12px Tahoma;

 color: white;

 position: absolute;

 right: 12px;

 top: 60px;

}

Once again, this element is absolutely positioned. The right edge is 12 pixels from the right
edge of weatherContainer and is 60 pixels from its top. The font is 12 pixels tall and in the
Tahoma typeface.

The wind is another important piece of information to display. In the XML document, the
information is located in weather/cc/wind:
#weatherWind {

 position: absolute;

 font: bold 12px Tahoma;

 color: white;

 left: 85px;

 top: 85px;

}

#weatherWind div {

 font-weight: normal;

}

If you'll remember from the HTML structure discussed earlier in this section, weatherWind
contains another <div/> element. This inner <div/> contains the actual wind information,
whereas its parent merely serves as a label and positions the information. Unlike the previous
elements, weatherWind is positioned using the left property, instead of right, to position
the element horizontally, and the element is positioned 85 pixels from the top. The label text is
bolded, whereas the wind information is not. The final piece of information this widget displays
is the time it was last updated. This information also exists in the XML data. Its location:

weather/loc/tm. Like the wind information previously discussed, the HTML structure for the
time information consists of a parent element (weatherTime) and a child element ().
The outer element positions the information and serves as a label; the inner element contains
the actual time information:
#weatherTime {

 position: absolute;

 font: bold 12px Tahoma;

 color: white;

 left: 85px;

 bottom: 5px;

}

#weatherTime span {

 font-weight: normal;

}

The premise behind the time is the same as the wind, except with a the data is
displayed inline instead of on a new line.

Because this widget depends on the XSL stylesheet, total customization essentially rests in
your hands; you have the ability to completely change the markup, structure, and style of the
data. In this section, the path to the information was given for each element. These few
elements are by no means a full list of the available elements in the XML feed. The SDK does
not cover these elements; however, this information resides within the Weather.com DTD,
located at www.weather.com/documentation/xml/weather.dtd.

Implementing the Weather Widget

Because the back-end code consists mainly of a C# class, your options of implementation are
twofold:

1. You can add the class to an already existing ASP.NET-enabled web site. Doing so
would require a recompilation of your code. If you take this route, you will need to modify
the weather.aspx page to fit your namespace.

2. You can use the code contained in the downloadable examples as its own free-standing
mini application. You can follow the steps outlined at the end of Chapter 5 on how to do
this.

The choice is ultimately yours, but the remainder of the section assumes you chose the latter
option. To implement the AjaxWeatherWidget class, you should reference the proper CSS
and JavaScript files in your HTML:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

 <title>Ajax Weather</title>

 <link rel="stylesheet" type="text/css"
href="css/weatherwidget.css"/>

 <script type="text/javascript" src="js/zxml.js"></script>

 <script type="text/javascript" src="js/weatherwidget.js"></script>

http://www.weather.com/documentation/xml/weather.dtd
http://www.books24x7.com/viewer.asp?bkid=13421&destid=274#274
http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

</head>

<body>

</body>

</html>

The Weather widget's only outside dependency is the zXml library, which you also should
reference in your HTML.

All that remains is to create an AjaxWeatherWidget object and append it to an HTML
element:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

 <title>Ajax Weather</title>

 <link rel="stylesheet" type=" text/css"
href="css/weatherwidget.css"/>

 <script type="text/javascript" src="js/zxml.js"></script>

 <script type="text/javascript" src="js/weatherwidget.js"></script>

 <script type="text/javascript">

 function init() {

 var divMyWeather = document.getElementById("myWeather");

 var oWeather = new AjaxWeatherWidget(divMyWeather);

 }

 onload = init;

 </script>

</head>

<body>

 <div id="myWeather"></div>

</body>

</html>

This new code adds another <script/> element containing a function called init(). Inside
this function, retrieve a reference to the <div/> element with myWeather as its ID. This
<div/> element will serve as the weather widget container. Also, it is important to run init()
during the onload event, as the browser will not find the myWeather <div/> element and will
not append the widget to it.

Creating a Web Search Widget
The most widely used function of the Web is searching. It's not even an option; if you want to
find any information, the search engines of the Web are the places you have to go to.

With the ever-expanding technology of the Web, conventional search engines are opening the
doors to more unconventional means to get you to the content you desire. The first to jump onto
the scene was Yahoo! with their Y!Q service
(http://yq.search.yahoo.com/publisher/index.html). This new service enables
you to search from any web page, provided the page's author includes it in their web page. It is

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml
http://yq.search.yahoo.com/publisher/index.html

a service to provide related search results to the content at hand, giving readers more
information at their fingertips without leaving your page.

The Yahoo! Y!Q service is a great idea, but it hasn't surfaced without criticism. The main
argument? It requires the use of Yahoo!'s JavaScript and you have to add a <form/> element,
meeting the Yahoo! requirements, to perform the search. For many web site authors, it takes
too much effort to provide the service. And after all the work, the search results are presented in
the Yahoo! style, breaking the look and feel of your web site.

Thankfully, Yahoo! isn't the only search engine breaking into this "provide search results from
your web site" service. MSN Search (http://search.msn.com) provides a similar service,
except it enables the web developer to control the look, feel, and implementation. This ability
comes from MSN Search providing RSS versions of its search results, making it possible to
subscribe to a particular search or add the results to your page using Ajax methods.

Note Google has yet to throw its hat into this new spin on "search from your site"

technique, although, at the time of this writing, Google released Google
BlogSearch Beta (http://blogsearch.google.com), which provides results
returned in either RSS or Atom formats.

The Server-Side Component
Perform a search with MSN Search, and you'll see an orange XML image at the bottom of the
results page. Clicking this image takes you to a new page, giving you the URL to subscribe to
the search:
http://search.msn.com/results.aspx?q=[SEARCHTERM]&format=rss

With this knowledge, you can write the server-side code to retrieve the remote feed. For the
widget, you will use PHP to retrieve the search feed. The URL to request information from the
server application looks like this:
websearch.php?search=[SEARCHTERM]

There's only one variable in the query string: search. Therefore, the application should look for
this query item. The code for the server-side application closely resembles that of the
NewsTicker widget.
<?php

header("Content-Type: text/xml");

header("Cache-Control: no-cache");

if (isset($_GET["search"])) {

 $searchTerm = urlencode(stripslashes($_GET["search"]));

 $url =
"http://search.msn.com/results.aspx?q=$searchTerm&format=rss";

 $xml = file_get_contents($url);

 echo $xml;

}

?>

http://search.msn.com/
http://blogsearch.google.com/
http://search.msn.com/results.aspx?q=%5bSEARCHTERM%5d&format=rss
http://search.msn.com/results.aspx?q=$searchTerm&format=rss

As you know by now, the first two lines set the required headers so that the browser will handle
the data correctly. The next line of code uses the isset() function to determine whether the
search key is present in the query string.

The search term should go through a variety of functions in order to send a proper request to
the remote host. First, it is passed to the stripslashes() function. If magic quotes are
enabled in the PHP configuration (which is the default), any quote that reaches the PHP engine
is automatically escaped with a slash: \" search query\". The stripslashes() function
removes these escape sequence, leaving only "search query". After the slashes' removal, it
then goes to the urlencode() function, which properly encodes characters to be used in a
query string. Spaces, quotes, ampersands, and so on are all encoded.

important If the search term does not go through these processes, the MSN server

will return a code 400: Bad Request.

When the search term is ready for transmission, it is included into the URL and stored in the
$url variable. Finally, the file_get_contents() function opens the remote file, reads the
contents, and returns it as a string to the $xml variable, which is printed to the page using the
echo command.

The Client-Side Component

The client-side code departs from the classes created earlier in this chapter. Instead of creating
a class and using instances of that class, this widget consists of a static object called
msnWebSearch:
var msnWebSearch = {};

Here, you see the use of object literal notation creating the msnWebSearch object. You will use
this object in the onclick event of an HTMLElement in order to perform a search:
<a href="#" onclick='msnWebSearch.search(event,"Professional Ajax");
return

false;'>

 Professional Ajax

This object exposes several methods to get the search results and to draw and position the
HTML to contain the data. The first method to cover is drawResultBox(), which draws the
HTML. The HTML this method draws looks like this:
<div class=" ajaxWebSearchBox">

 <div class="ajaxWebSearchHeading">MSN Search Results

 X

 </div>

 <div class="ajaxWebSearchResults">

 </div>

</div>

The result box is divided into two parts: a heading and a results pane (see Figure 8-3). The
heading tells the user that this new box contains results from an MSN search. It also contains
an X, which will close the box. The results pane contains block-style links, which opens a new
window when clicked.

http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=627715508#ch08fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch08fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Figure 8-3

Drawing the Results User Interface

The code to generate this HTML is rather lengthy because the elements are generated using
DOM methods. The drawResultBox() method accepts one argument, an event object:
msnWebSearch.drawResultBox = function (e) {

 var divSearchBox= document.createElement("div");

 var divHeading = document.createElement("div");

 var divResultsPane = document.createElement("div");

 var aCloseLink = document.createElement("a");

These first lines create the HTML elements via the createElement() method. After the
elements have been created, you can begin to assign their properties. The first two elements to
finalize are aCloseLink and divHeading:
aCloseLink.href = "#";

aCloseLink.className = "ajaxWebSearchCloseLink";

aCloseLink.onclick = this.close;

aCloseLink.appendChild(document.createTextNode("X"));

divHeading.className = "ajaxWebSearchHeading";

divHeading.appendChild(document.createTextNode("MSN Search Results"));

divHeading.appendChild(aCloseLink);

The first four lines complete the link that closes the result box. A method, close(), becomes
the handler for the link's onclick event. The next group of lines populate the heading <div/>
with text and the closing link.

When this result box is drawn into the page, a response from the server application has not
been received yet. To show the user that something is happening (other than a box popping out
of nowhere), it would be nice for the user to see a message stating that data is loading (see
Figure 8-4). To do this, create another element and append it to the divResultsPane
element:
var divLoading = document.createElement("div");

divLoading.appendChild(document.createTextNode("Loading Search
Feed"));

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig282%5F01%5F0%2Ejpg&image_id=43&previd=IMG_43&titlelabel=Figure+8%2D3%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=627715508#ch08fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch08fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

divResultsPane.className = "ajaxWebSearchResults";

divResultsPane.appendChild(divLoading);

Figure 8-4

This code creates the loading message and appends it to divResultsPane, while also
assigning the class name to divResultsPane.

With these elements completed, all that remains is to add them to the divSearchBox element:
divSearchBox.className = "ajaxWebSearchBox";

divSearchBox.appendChild(divHeading);

divSearchBox.appendChild(divResultsPane);

document.body.appendChild(divSearchBox);

This code appends the divHeading and divResultsPane elements to the search box, and
appends the search box to the page.

The final step in drawResultBox() is to position the newly drawn box and return
divSearchBox to its caller:
msnWebSearch.drawResultBox = function (e) {

 var divSearchBox= document.createElement("div");

 var divHeading = document.createElement("div");

 var divResultsPane = document.createElement("div");

 var aCloseLink = document.createElement("a");

 aCloseLink.href = "#";

 aCloseLink.className = "ajaxWebSearchCloseLink";

 aCloseLink.onclick = this.close;

 aCloseLink.appendChild(document.createTextNode("X"));

 divHeading.className = "ajaxWebSearchHeading";

 divHeading.appendChild(document.createTextNode("MSN Search
Results"));

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig283%5F01%5F0%2Ejpg&image_id=44&previd=IMG_44&titlelabel=Figure+8%2D4%3A+

 divHeading.appendChild(aCloseLink);

 var divLoading = document.createElement("div");

 divLoading.appendChild(document.createTextNode("Loading Search
Feed"));

 divResultsPane.className = "ajaxWebSearchResults";

 divResultsPane.appendChild(divLoading);

 divSearchBox.className = "ajaxWebSearchBox";

 divSearchBox.appendChild(divHeading);

 divSearchBox.appendChild(divResultsPane);

 document.body.appendChild(divSearchBox);

 this.position(e, divSearchBox);

 return divSearchBox;

};

The way the msnWebSearch object is set up, divSearchBox must be returned to its caller for
other operations. The position() method, as you may have guessed, positions the search
box. It accepts two arguments: the event object passed to drawResultBox() and the
divSearchBox element:
msnWebSearch.position = function (e, divSearchBox) {

 var x = e.clientX + document.documentElement.scrollLeft;

 var y = e.clientY + document.documentElement.scrollTop;

 divSearchBox.style.left = x + "px";

 divSearchBox.style.top = y + "px";

};

The first two lines get the left and top positions to place the search results box. Two pieces of
information are required to perform this operation. First is the x and y coordinates of the mouse.
This information is stored in the clientX and clientY properties.

These coordinates, however, are insufficient to properly position the results box because the
clientX and clientY properties return the mouse position in relation to the client area in the
browser window, not the actual coordinates in the page. To account for this, use the
scrollLeft and scrollTop properties of the document element. With the final coordinates
calculated, you can finally position the box where the user clicked the mouse.

Displaying the Results
The populateResults() method populates the result pane with the search results. It accepts
two arguments: the element to contain the results and an XParser object:
msnWebSearch.populateResults = function (divResultsPane,oParser) {

 var oFragment = document.createDocumentFragment();

 divResultsPane.removeChild(divResultsPane.firstChild);

This method generates <a/> elements programmatically with DOM methods, so these
elements will be appended to a document fragment created in the first line. The next line
removes the loading <div/> element appended in drawResultBox().

The next step is to create the links:
for (var i = 0; i < oParser.items.length; i++) {

 var oItem = oParser.items[i];

 var aResultLink = document.createElement("a");

 aResultLink.href = oItem.link.value;

 aResultLink.className = "ajaxWebSearchLink";

 aResultLink.target = "_new";

aResultLink.appendChild(document.createTextNode(oItem.title.value));

 oFragment.appendChild(aResultLink);

}

This code cycles through the items of the feed and generates links from the data and appends
the <a/> element to the document fragment.

When the loop exits, the document fragment is appended to divResultsPane to display the
search results:
divResultsPane.appendChild(oFragment);

Closing the Results Box
To close the search results box, the msnWebSearch object provides the close() method. If
you'll remember from the drawResultsBox() method, the close() method handles the
onclick event of the link responsible for closing the box:
msnWebSearch.close = function () {

 var divSearchBox = this.parentNode.parentNode;

 document.body.removeChild(divSearchBox);

 return false;

};

The search box isn't really closed; in fact, it is removed from the document. To do this, retrieve
the divSearchBox element. The first line does this by retrieving the parent node of this
element's parent. Because close() handles the onclick event, this references the link.
The next line removes the divSearchBox element from the document. The last line, return
false, forces the browser not to follow the default behavior of a link (going to the location
noted in the href attribute).

Building the Search Interface
The last method of the msnWebSearch object is search(), which provides the interface to
perform a search. You can call search() with the onclick event of an element. It accepts
two methods, an event object and the search term:
msnWebSearch.search = function (e,sSearchTerm) {

 var divSearchBox = this.drawResultBox(e);

 var url = encodeURI("websearch.php?search=" + sSearchTerm);

 var oParser = new XParser(url);

 oParser.onload = function () {

msnWebSearch.populateResults(divSearchBox.childNodes[1],oParser);

 };

};

The first line calls the drawResultBox() method and passes the event, e, to it. The next line
encodes the URL for proper transmission. This URL is passed to the XParser constructor to
create a new parser. The parser's onload event handler calls the populateResult()
method when the search feed is finished loading to populate the search box with results.

Of course, one of the reasons for building this widget is to make it fit the look of your own site.

Customizing the Web Search Widget

Thanks to CSS, you can easily customize the widget for your existing site and any redesign you
may have later down the road.

The first CSS class discussed is ajaxWebSearchBox, the class for the search box. Because
the box is positioned, it must have a position of absolute:
.ajaxWebSearchBox

{

 position: absolute;

 background-color: #0d1e4a;

 width: 500px;

 padding: 1px;

}

The absolute position is the only requirement. All other properties are optional according to your
tastes. In this example, the box has a darkish-blue background, a width of 500 pixels, and 1
pixel of padding on all four sides. This padding will give the box a 1-pixel border around the
box's contents.

The next class is ajaxWebSearchHeading, which contains the box's heading text and the
closing link. To position the closing link in the top-right corner, it is absolutely positioned.
Because of this, it requires ajaxWebSearchHeading to have a position of relative:
.ajaxWebSearchHeading

{

 position: relative;

 background-color: #1162cc;

 font: bold 14px tahoma;

 height: 21px;

 color: white;

 padding: 3px 0px 0px 2px;

}

Once again, the only required property is the position property. The remaining properties
help to give the element a heading look. The background color is a lighter blue with white, bold
text 14 pixels high and in the Tahoma font. The element's height is 21 pixels and is padded on
the top and left edges.

As stated previously, the closing link's position is absolute:
a.ajaxWebSearchCloseLink

{

 position: absolute;

 right: 5px;

 top: 3px;

 text-decoration: none;

 color: white;

}

a:hover.ajaxWebSearchCloseLink

{

 color: red;

}

The element is positioned 5 pixels from the right and 3 pixels from the top, placing the element
in the top-right corner. This link does not have any text-decoration and is colored white. When
the user hovers over the link, the text color turns red.

Notice that no visited or active pseudo classes are used. This is because the window
always ignores the href attribute of this link (it has return false in its event handler).
Therefore, the link is never truly active or visited.

Next, the ajaxWebSearchResults class styles the results pane:
.ajaxWebSearchResults

{

 background-color: #d3e5fa;

 padding: 5px;

}

There are no required CSS properties for this element. The existing properties are merely to
define the results pane and make it relatively easy to read. The background color is a light blue,
and 5 pixels of padding surround the edges. You can also style the loading message:
.ajaxWebSearchResults div

{

 text-align: center;

 font: bold 14px tahoma;

 color: #0a246a;

}

This element does not have a class name, but you can still style it by using the parent child
notation shown in the preceding example. This example places the text in the center of the
<div/> element and gives it a bold, blue font 14 pixels high.

The last elements you need to style are the result links. These have a class name of
ajaxWebSearchLink:
a.ajaxWebSearchLink

{

 font: 12px tahoma;

 padding: 2px;

 display: block;

 color: #0a246a;

}

a:hover.ajaxWebSearchLink

{

 color: white;

 background-color: #316ac5;

}

a:visited.ajaxWebSearchLink

{

 color: purple;

}

The only required property is the display property, which is set to block. This gives every link
its own line. The padding, two pixels worth, gives a bit of separation between the links, making
them easier to read. The font-face is Tahoma and is 12 pixels high. Their color is a dark blue,
giving a nice contrast to the light blue background of ajaxWebSearchResults.

When the user hovers over these links, the background color is set to blue, whereas the text
color changes to white.

The visited pseudo class is set, in the last rule in the previous code. This is to provide users
with user interface cues they are already used to. By having the visited pseudo class set to
display a color of purple, users know they've already visited that link, which can save them time
by not visiting a page they may not want to.

As stated earlier in this section, this widget differs greatly from the past widgets you've created
in this chapter; so, let's take a look at how to implement it.

Implementing the Web Search Widget

Implementing this widget is simple. First, you must upload the websearch.php file to your web
server (of course, PHP must be installed, too). Next, you need an HTML document to reference
all the components. The msnWebSearch object relies on the XParser class, which in turn
depends on the zXml library. You must reference these files:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

<html xml:lang=" en" lang=" en" xmlns="http://www.w3.org/1999/xhtml">

<head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"
/>

 <title>Ajax WebSearch</title>

 <link rel="stylesheet" type="text/css" href="css/websearch.css" />

 <script type="text/javascript" src=" js/zxml.js"></script>

 <script type="text/javascript" src=" js/xparser.js"></script>

 <script type="text/javascript" src=" js/websearch.js"></script>

</head>

<body>

</body>

</html>

To perform a search, set the msnWebSearch.search() method as the element's onclick
handler:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xml:lang="en" lang="en" xmlns="http://www.w3.org/1999/xhtml">

<head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"
/>

 <title>Ajax WebSearch</title>

 <link rel="stylesheet" type="text/css" href="css/websearch.css" />

 <script type="text/javascript" src="js/zxml.js"></script>

 <script type="text/javascript" src="js/xparser.js"></script>

 <script type="text/javascript" src="js/websearch.js"></script>

</head>

<body>

 <a href="#" onclick='msnWebSearch.search(event,"\"Professional
Ajax\"");

 return false;'>Search for "Professional Ajax"

 <a href="#" onclick='msnWebSearch.search(event,"Professional
Ajax");

 return false;'>Search for Professional Ajax

http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

</body>

</html>

The first new link performs a search for the exact phrase Professional Ajax, whereas the second
searches for all the words. Also note the return false in the onclick event. Once again,
this forces the browser to ignore the href attribute and is required. Clicking these links will
draw the search box at the mouse's cursor, and you'll have the search results just pixels away.

Creating a Site Search Widget
Search functionality is an integral part of any web site; it enables your viewers to find the data
they desire quickly and easily. However, conventional search mechanisms suffer from the same
problems as the rest of the Web: they require a page refresh and possibly losing data when the
search is performed.

Within the past year, many Ajax solutions have cropped up with one standing out above the
rest: LiveSearch. LiveSearch (http://blog.bitflux.ch/wiki/LiveSearch), developed
by the people at BitFlux (www.bitflux.ch), is a search-as-you-type solution to emulate the
Apple Spotlight feature in OSX Tiger.

LiveSearch presents a new take on web site searches, but it also has its critics. For one, it
offers a different approach to achieving the desired results. The average user is used to
entering his or her search criteria and pressing a Search button. LiveSearch, on the other hand,
uses the onkeypress DOM event and returns the results as you type. This method may be
more efficient in terms of getting your results, but it is unexpected by the user, which can cause
confusion.

This next widget is an Ajax solution for searching a site that uses a SQL database as a data
store. It will feature a user interface that users are already accustomed to: a search box, a
submit button, and a <div/> element that displays the search results (see Figure 8-5).

Figure 8-5

The Server-Side Component
You will use the .NET Framework and C# language to interface with an MSSQL database to
perform the search query. The returned results will be in JSON, thanks to the JSON C# library
mentioned in Chapter 7 (www.crockford.com/JSON/cs/). The code in the following sections
will use a SQL query to search a database containing the posts on a web log (blog).

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig290%5F01%5F0%2Ejpg&image_id=45&previd=IMG_45&titlelabel=Figure+8%2D5%3A+
http://blog.bitflux.ch/wiki/LiveSearch
http://www.bitflux.ch/
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=680978676#ch08fig056F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch08fig056F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.books24x7.com/viewer.asp?bkid=13421&destid=409#409
http://www.crockford.com/JSON/cs/

The Database Information
The database table for this specific blog is relatively simple. It contains four columns: id, title,
date, and posting. The following SQL statement creates this table, called BlogPosts:
CREATE TABLE BlogPosts (

 id int IDENTITY (1, 1) NOT NULL,

 date datetime NOT NULL,

 title text NOT NULL,

 posting text NOT NULL

)

When this query runs, it creates the table, but it is empty. The code download for this example,
located at www.wrox.com, contains a SQL file that will add records to the table.

There are primarily two pieces of desired information needed for the search results: id (used in
the URL to the blog post) and title. With this knowledge, you can create the search query:
SELECT TOP 10

id, title

FROM BlogPosts

WHERE posting LIKE '%SEARCHSTRING%' OR

title LIKE '%SEARCHSTRING%'

ORDER BY date DESC

This query selects the id and title columns from the BlogPosts table where the contents of
posting and title contain an instance of the search string. The results returned are ordered by
descending date, and only ten records are returned.

Before delving into the code, however, the returned data structure needs discussing.

The Returned Data Structure
The only two pieces of information retrieved are the blog post ID and its title, and a result of a
search could contain more than one blog post. At this point, you need a result set of objects that
each contains title and id properties:
[

 {

 title : "Title 1",

 id : "1"

 },

 {

 title : "Title 2",

 id : "2"

 },

 {

 title : "Title 3",

 id : "3"

 }

]

http://www.wrox.com/

This code illustrates what the data returned from the server looks like. The structure is an array
containing several objects, each with title and id properties. With the result set mapped out,
you can now approach the SiteSearch class.

The SiteSearch Class
This widget uses a simple class called SiteSearch to connect to the database, perform the
search query, and return the results as a JSON string. This class has one private field
_conString, the connection string to the MSSQL database, and accepts a string argument
containing the connection string:
private string _conString;

public SiteSearch(string connectionString)

{

 _conString = connectionString;

}

As you can see, the constructor is extremely simple. The only operation performed is assigning
_conString the value of the connectionString argument. As you've probably already
guessed, the class's sole method, Search(), is the meat and potatoes of the class.

The Search() method accepts one argument: the search string. This search string is used in a
String.Format() method to format the search query:
public string Search (string searchString)

{

 string query = String.Format("SELECT TOP 10 id, title FROM
BlogPosts

 WHERE posting LIKE '{0}%' OR title LIKE '{0}%' ORDER BY date
DESC",

 searchString);

The variable query now holds the completed query string used later in the method.

The JSON C# library provides the ability to build JSON strings dynamically. Two classes are
used to create these strings: JSONArray and JSONObject. As you might have guessed,
JSONArray creates an array, whereas JSONObject creates an object. Referring back to the
returned data structure, remember the client code expects an array of objects. Therefore, the
next step is to instantiate a JSONArray object:
Nii.JSON.JSONArray jsa = new Nii.JSON.JSONArray();

For the moment, this is all the JSON code used, and you won't see it again until further in the
database operation.

Next, create a database connection and a SqlCommand:
using (SqlConnection conn = new SqlConnection(_conString))

{

 SqlCommand command = new SqlCommand(query, conn);

 conn.Open();

This code creates the database connection using the connection string stored in _conString.
A new SqlCommand is then created using the search query and database connection. This
essentially prepares the query to run against the database, which the next few lines illustrate:
using (SqlDataReader reader = command.ExecuteReader())

{

}

This code creates a SqlDataReader returned by the ExecuteReader() method. This data
reader provides the ability to read the result from the executed database query. Before any data
is retrieved from the data reader, you should first check if the result contains any rows. You can
do this using the HasRows property:
using (SqlDataReader dataReader = command.ExecuteReader())

{

 try {

 if (reader.HasRows)

 {

 int i = 0;

 while (reader.Read())

 {

 }

 }

 catch {}

}

This code uses the HasRows property to determine if the data reader contains any rows. If so,
the processing of the contained data can begin.

The while loop is used to read the result set through the Read() method of the
SqlDataReader class. The Read() method returns a Boolean value; when the end of the
result set is reached, Read() returns false and the loop exits. Inside the loop, you create a
JSONObject object and populate it with its properties and their values with the put() method.
The put() method of the JSONObject class accepts two arguments: a string containing the
property name and that property's value. To access the database column's value, pass the
column name as the index to dataReader:
using (SqlDataReader dataReader = command.ExecuteReader())

{

 try {

 if (reader.HasRows)

 {

 int i = 0;

 while (reader.Read())

 {

 JSONObject jso = new JSONObject();

 jso.put("title",reader["title"]);

 jso.put("id",reader["id"]);

 jsa.put(i++,jso);

 }

 }

 catch {}

}

When the JSONObject is populated, you add it to the JSONArray object created earlier. The
JSONArray class exposes a put() method as well, but the arguments are a bit different. The
first is the index of the existing element of the array, while the second is the JSONObject
object.

When the loop exits, the JSONArray is completed and ready for returning. But what if the query
returned no results? The client-side code handles this functionality. In the event that no rows
are found from the query, an empty array is returned. The client-side code will check the length
of the result set, and perform the necessary operation.

At this point, the JSON string construction is complete. To retrieve the string representation of
the JSONArray, use the ToString() method:
return jsa.ToString();

This last line of the Search() method returns the JSON string that can be written into the
page.

Building the Search Page
With the working class completed, all that remains on the server-side is the search page. This
page will accept an argument in the query string called search, which contains the search
term. An example query string could look like the following:
http://yoursite.com/search.aspx?search=ajax

To provide this functionality, check for the existence of this parameter by using the
Response.QueryString collection:
Response.CacheControl = "no-cache";

Response.ContentType = "text/plain; charset=UTF-8";

if (Request.QueryString["search"] != null)

{

}

The first two lines should be familiar to you by now. The first line sets the CacheControl
header to no-cache so that the browser will not cache the data, while the second sets the
MIME ContentType to text/plain with UTF-8 encoding.

Note As you learned in Chapter 7, plain text with Unicode encoding is the desired

content-type for JSON strings.

After the headers are set, the existence of the search parameter in the query string is checked.
Inside the if code block, a SiteSearch object is instantiated:
if (Request.QueryString["search"] != null)

{

 string searchTerm = Request.QueryString["search"];

 string conStr = "uid=sa;pwd=pass;data source=localhost;initial

http://www.books24x7.com/viewer.asp?bkid=13421&destid=409#409

 catalog=BlogPosts";

 SiteSearch siteSearch = new SiteSearch(con);

}

The first new line creates the searchTerm variable, a string storing the value of the search
parameter in the query string, followed by the database connection string.

Connecting to an MSSQL database in C# is quite different from connecting to a MySQL
database with PHP, demonstrated in Chapter 7. In PHP, the user name, password, and
database host name were passed to the mysql_connect() function. In C# (and other .NET
languages, for that matter), this information is contained in what is called a connection string. As
seen in the previous example, this connection string contains name/value pairs separated by
semicolons. The names in the preceding sample mean the following:

 uid: The user name for the particular database. In the previous example, sa is a built-in
user meaning Super-Admin.

 pwd: The password to connect to the database.

 data source: The host name or IP address of the database server.

 initial catalog: The database name your queries are run against.

Of course, the information in the connection string should reflect the login information of your
own MSSQL database; therefore, feel free to change the information wherever needed.
Changing this information requires you to recompile the web application; however, a widget
should be ready to use out of the box (or ZIP file), so a different approach is desirable.

The web.config file of an ASP.NET application contains configuration settings available for
accessing within the application. This file's purpose is twofold:

1. It provides a central location for all application settings.
2. It provides a secure means of storing settings that contain sensitive data (such as

database information), as the web server will not serve .config files.

Inside the web.config file, you'll notice that it is nothing more than an XML file with the
document root being <configuration/>. To add your own custom settings, add an element
called <appSettings/> as the first child of <configuration/>:
<configuration>

 <appSettings>

 </appSettings>

To add a setting, use the <add/> element, which has key and value attributes:
<appSettings>

 <add key="connectionStr" value="uid=sa;pwd=pass;data
source=localhost;

 initial catalog=BlogPosts"/>

</appSettings>

With the connection string now a part of the application settings, the if block can be changed
to the following:
if (Request.QueryString["search"] != null)

{

http://www.books24x7.com/viewer.asp?bkid=13421&destid=409#409

 string searchTerm = Request.QueryString["search"];

 string conStr =
ConfigurationSettings.AppSettings["connectionStr"];

 SiteSearch siteSearch = new SiteSearch(conStr);

}

This code is slightly different from the code earlier. Instead of hard coding the database
information, the information is pulled from the application settings with the
ConfigurationSettings.AppSettings collection. Pass the value from the key attribute in
the web.config file to the AppSettings collection, and the value is retrieved.

Important The ConfigurationSettings object is from the

System.Configuration namespace, so you need to add
System.Configuration to the using statements at the beginning of
the class file.

With the SiteSearch object instantiated, the final steps inside the if block is to perform the
search and output the results to the page:
if (Request.QueryString["search"] != null)

{

 string searchTerm = Request.QueryString["search"];

 string conStr =
ConfigurationSettings.AppSettings["connectionStr"];

 SiteSearch siteSearch = new SiteSearch(conStr);

 string json = siteSearch.Search(searchTerm);

 Response.Write(json);

}

The new lines in this code call the Search() method to perform the search. The resulting
JSON string is returned and stored in the json variable, which is then written to the page via
the Response.Write() method.

Note You could add an else block to handle the case when the search parameter

in the query string does not exist; however, the client-side code will handle
form validation making it unnecessary to do so.

With the .aspx file complete, the final code looks like this:
Response.CacheControl = "no-cache";

Response.ContentType = "text/plain; charset=UTF-8";

if (Request.QueryString["search"] != null)

{

 string searchTerm = Request.QueryString["search"];

 string conStr =
ConfigurationSettings.AppSettings["connectionStr"];

 SiteSearch siteSearch = new SiteSearch(conStr);

 string json = siteSearch.Search(searchTerm);

 Response.Write(json);

}

The Client-Side Component

Client functionality is overly important, especially for a widget such as this. Before using the
search capabilities of your site, the user already made the assumption of how it works.
Therefore, it is important to follow a couple of guidelines:

 The user will enter text to search and press either Enter or the Submit button. The
search-as-you-type feature of LiveSearch is revolutionary, but it goes against what the user
is already accustomed to. Near instantaneous results without a page refresh is enough new
functionality.

 The user expects to be told when no results are found. If you'll remember from the
SiteSearch class, an empty JSON array is returned when no results are found; therefore,
this responsibility is passed to the client code.

These guidelines may seem like a no-brainer, but it is important to consider the user's
experience. What's hip and cool isn't necessarily always the right thing to do.

The User Interface
The first step in any client-side component is to build the user interface with HTML. For this
widget, you will use four elements contained within a <div/> element:
<div class=" ajaxSiteSearchContainer">

 <form class=" ajaxSiteSearchForm">

 <input class=" ajaxSiteSearchTextBox" />

 <input type=" submit" value=" Go" class="
ajaxSiteSearchButton" />

 </form>

 <div class=" ajaxSiteSearchResultPane">

 <a class=" ajaxSiteSearchLink" href="
http://yoursite.com">Result Text

 </div>

</div>

Every element contains a class attribute. This ensures that the widget is easily customizable
with CSS, and you can tailor it to fit in almost every web site.

Of course, you will not add this HTML directly into the HTML code of your web site; JavaScript
dynamically creates the HTML and appends it to the desired HTML element.

The AjaxSiteSearch Class
The AjaxSiteSearch class encapsulates everything needed to display the user interface,
make requests to the server, and display the server's response, aside from the CSS information
and other dependencies. The class's constructor accepts one argument, an HTML element to
append the search user interface:
function AjaxSiteSearch(oElement) {

http://yoursite.com/

}

The first step is to write the HTML elements that make up the user interface. This is done,
naturally, with DOM methods:
var oThis = this;

this.result = null;

this.widgetContainer = document.createElement("div");

this.form = document.createElement("form");

this.textBox = document.createElement("input");

this.submitButton = document.createElement("input");

this.resultPane = document.createElement("div");

this.widgetContainer.className = "ajaxSiteSearchContainer";

this.form.className = "ajaxSiteSearchForm";

this.textBox.className = "ajaxSiteSearchTextBox";

this.submitButton.className = "ajaxSiteSearchButton";

this.resultPane.className = "ajaxSiteSearchResultPane";

this.submitButton.type = "submit";

this.submitButton.value = "Go";

The first line of this code creates the oThis variable, a pointer to the object. This comes in
handy later in the constructor. The following lines create the needed HTML elements and assign
their class names, and the Submit button's type and value attributes are set to submit and
Go, respectively.

When the user clicks the Submit button or presses the Enter key when the form has focus, the
form's onsubmit event fires. The following event handler will start the search process:
this.form.onsubmit = function () {

 oThis.clearResults();

 return false;

};

This is where the object pointer's use is required. Inside the onsubmit event handler, the
scope changes; so, this references the <form/> element instead of the AjaxSiteSearch
object. Because the event handler makes calls to the AjaxSiteSearch object, an external
variable referencing the object is required, and that is what oThis does.

The first line of the onsubmit event handler calls the object's clearResults() method. This
method, covered later, removes any links in the results list from a prior search. This ensures
that only the results from the current search request are displayed. In the last line, the value of
false is returned. This overrides the form's default behavior, which is to submit the form.

Also during the onsubmit event, the form is validated. If the text box does not contain any text,
the user is notified that no text is entered:
this.form.onsubmit = function () {

 oThis.clearResults();

 if (oThis.textBox.value != "") {

 oThis.search();

 } else {

 alert("Please enter a search term");

 }

 return false;

};

If text is entered, however, the object's search() method is called. This method, also covered
shortly, is responsible for retrieving the search term and making the XMLHttp request to the
server.

With the elements created and the onsubmit event handler written, all that remains in the
constructor is appending the elements to the document:
this.form.appendChild(this.textBox);

this.form.appendChild(this.submitButton);

this.widgetContainer.appendChild(this.form);

this.widgetContainer.appendChild(this.resultPane);

var oToAppend = (oElement)?oElement:document.body;

oToAppend.appendChild(this.widgetContainer);

Because this widget appends itself to the given HTML element, it is a good idea to create an
AjaxSiteSearch object during the page's onload event. Otherwise, the desired destination
element could not exist, thus throwing an error.

Clearing the Results

The clearResults() method is a simple method to remove all child nodes in the results
<div/> element:
AjaxSiteSearch.prototype.clearResults = function () {

 while (this.resultPane.hasChildNodes()) {

 this.resultPane.removeChild(this.resultPane.firstChild);

 }

};

This method utilizes the hasChildNodes() method, a method exposed by a node in the DOM.
As long as the results <div/> contains children, the first child is removed. It is a simple
method, but it gets the job done.

Making the XMLHttp Request

As stated before, the search() method makes the request to the server to perform the search:
AjaxSiteSearch.prototype.search = function () {

 var oThis = this;

 var sUrl = encodeURI("search.aspx?search=" + this.textBox.value);

 var oReq = zXmlHttp.createRequest();

 oReq.onreadystatechange = function () {

 if (oReq.readyState == 4) {

 if (oReq.status == 200) {

 oThis.handleResponse(oReq.responseText);

 }

 }

 };

 oReq.open("GET", sUrl, true);

 oReq.send();

};

The familiar first line creates a pointer to the object used inside of the XMLHttp object's
onreadystate-change event handler. The second line encodes the search URL and search
term with the encodeURI() function. Doing this replaces certain characters with their
appropriate escape sequence (for example: white space is turned into %20).

The remainder of the code performs the XMLHttp request. On a successful request, the
responseText is passed to the handleResponse() method.

Processing the Information

The handleResponse() method takes the server's response (the JSON string), decodes it,
and displays the results as links in the results <div/> element. This method accepts one
argument, a JSON string:
AjaxSiteSearch.prototype.handleResponse = function (sJson) {

 this.result = JSON.parse(sJson);

};

This code takes the sJson argument and passes it to the JSON.parse() method to convert
the string into JavaScript.

Now that the information can be used programmatically, the code begins to go through a
decision-making process. Remember, the result from the server is an array of objects; therefore,
you can use the length property to determine if the search returned any results:
AjaxSiteSearch.prototype.handleResponse = function (sJson) {

 this.result = JSON.parse(sJson);

 if (this.result.length > 0) {

 //Results go here

 } else {

 alert("Your search returned no results.");

 }

};

Naturally, if any results are present, you want to display that information. If not, the user is
notified through an alert box that no results were found from their search.

Displaying the results is as simple as creating <a/> elements:
AjaxSiteSearch.prototype.handleResponse = function (sJson) {

 this.result = JSON.parse(sJson);

 if (this.result.length > 0) {

 var oFragment = document.createDocumentFragment();

 for (var i = 0; i < this.result.length; i++) {

 var linkResult = document.createElement("a");

 linkResult.href = "http://yoursite.com/?postid=" +
this.result[i].id;

 linkResult.innerHTML = this.result[i].title;

 linkResult.className = "ajaxSiteSearchLink";

 oFragment.appendChild(linkResult);

 }

 this.resultPane.appendChild(oFragment);

 } else {

 alert("Your search returned no results.");

 }

};

The first new line of code creates a document fragment to append the <a/> elements to. The
next block of code, a for loop, generates the links. Notice the assignment of the href property
of the link. In order for this to work on your site, you must change the href value to reflect your
own web site.

When the link creation is complete, it is added to the document fragment, which is appended to
the results <div/> element. These links remain visible until a new search is performed, which
will clear the results pane and populate it with new results.

Customizing the Site Search Widget

To make the Site Search widget conform to your page's look and feel, it was designed to be
fully customizable. Every element in the widget has a corresponding CSS classification, making
customization a snap.

The outermost <div/> element, the widget's container, has the CSS class
ajaxSiteSearchContainer. You can give your search widget its overall look with this
element; you can also set a global style, since all elements will inherit many of its style
properties:
div.ajaxSiteSearchContainer

{

 background-color: #fdfed4;

 border: 1px solid #7F9DB9;

 font: 12px arial;

 padding: 5px;

 width: 225px;

}

http://yoursite.com/?postid=

The first two lines set the background color of the element and its border, respectively. These
two properties give the visual idea that everything within the border and background color
belongs to the widget. This can be helpful to the user, especially when text seems to appear
from the nether. The next line sets the font-size and -family for the widget. This setting is
inherited by the results <div/> element and the links it contains. The 5-pixel padding is mainly
for visual purposes; otherwise, everything could look scrunched together. Last, the width is
applied to the widget. This confines the widget into a specified space, and text will wrap
accordingly.

The <form/> element also possesses the ability for styling. The given class name for this
element is ajaxSiteSearchForm:
form.ajaxSiteSearchForm {}

This example does not apply any style to the element, but the ability exists to do so. By applying
padding or a border (or any other style for that matter), you can give the visual impression of
separating the form from the results.

The <form/> contains two child elements, the text box and the Submit button, both of which
are <input/> elements:
input.ajaxSiteSearchTextBox

{

 border: 1px solid #7F9DB9;

 padding: 2px;

}

input.ajaxSiteSearchButton

{

 background-color: #7F9DB9;

 border: 0px;

 color: white;

 font-weight: bold;

 margin-left: 3px;

 padding: 1px;

}

The text box's CSS (class ajaxSiteSearchTextBox) gives the box a solid, colored border 1
pixel in width and pads the contents by 2 pixels. The button, whose class name is
ajaxSiteSearchButton, has a background color and no border but is padded on all sides by
one pixel. The text inside the button is white and bold. It is scooted 3 pixels to the right by
setting its left margin to 3 pixels.

The results <div/> in this example does not have any styling. Instead, it inherits the font-size
and -family from its parent:
div.ajaxSiteSearchResultPane {}

The final elements in this widget are the links:
a.ajaxSiteSearchLink

{

 color: #316ac5;

 display: block;

 padding: 2px;

}

a:hover.ajaxSiteSearchLink

{

 color: #9b1a1a;

}

In the example CSS, only two states are styled: a normal link and a link when the mouse hovers
over it. In the former (default) state, the links are treated as block-level elements, meaning that
each link starts on its own line. They have a bluish color and contain two pixels of padding.
When the user mouses over a link, the hover state is activated. The only style change made is
the color, which turns the text color from bluish to reddish.

These style properties are for example only; the real fun with widgets is making them your own
and fitting them into your own page. Feel free to bend these elements to your will.

Implementing the Site Search Widget

Much like the weather widget, your options of implementation are twofold:
1. You can add the class to an already existing ASP.NET-enabled web site. Doing so

would require a recompilation of your code. Doing so, however, would require you to
recompile your code and modify the search.aspx page to fit your namespace.

2. You can use the code contained in the downloadable examples as its own free-standing
mini application. You can follow the steps outlined at the end of Chapter 5 on how to do
this.

Just like the weather widget, the choice of implementation is yours; however, the remainder of
the code assumes you chose the latter option. On the client page, you need to reference all files
needed to use this widget. The AjaxSiteSearch class depends on the zXml and JSON
libraries to function properly:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns=" http://www.w3.org/1999/xhtml" >

<head>

 <title>Ajax SiteSearch</title>

 <link rel=" stylesheet" type=" text/css" href="
css/ajaxsitesearch.css" />

 <script type=" text/javascript" src=" js/json.js"></script>

 <script type=" text/javascript" src=" js/zxml.js"></script>

 <script type=" text/javascript" src="
js/ajaxsitesearch.js"></script>

</head>

<body>

</body>

</html>

To instantiate an AjaxSiteSearch object, use the new keyword:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

http://www.books24x7.com/viewer.asp?bkid=13421&destid=274#274
http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns=" http://www.w3.org/1999/xhtml" >

<head>

 <title>Ajax SiteSearch</title>

 <link rel=" stylesheet" type=" text/css" href="
css/ajaxsitesearch.css" />

 <script type=" text/javascript" src=" js/json.js"></script>

 <script type=" text/javascript" src=" js/zxml.js"></script>

 <script type=" text/javascript" src="
js/ajaxsitesearch.js"></script>

 <script type=" text/javascript">

 function init() {

 var oSiteSearch = new AjaxSiteSearch();

 }

 onload = init;

 </script>

</head>

<body>

</body>

</html>

When creating the AjaxSiteSearch object, pass the desired element you want the widget to
be appended to. If no HTMLElement is passed to the constructor, it is appended to the
document.body. Creating an object automatically generates the required HTML elements, so
there is nothing left to do to implement the widget.

Summary
In this chapter, you took the skills you have learned thus far and applied them to building your
own web-based widgets. This chapter showed you many practical widgets that Ajax makes
possible.

First, you learned how to build a news ticker widget with PHP, DHTML, and Ajax to display
news feeds in a scrolling format and auto-update itself. You also learned how to build a widget
to consume the Weather.com XML service, transform the XML, and display the data to the user.

The chapter went on to describe how to create two widgets revolving around searches. The first
widget displayed results from the MSN search service, which can output search results in RSS.
Through PHP, this widget retrieved the search result feed and a static JavaScript object
displayed the results to the user. The second search widget searched a blog's database using
MSSQL. Using the C# JSON library, you learned how to build JSON strings and output them to
the client.

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

Chapter 9: AjaxMail
Overview
One of the most popular Ajax applications is Gmail, a web-based e-mail system that
incorporates a lot of Ajax techniques to create a seamless user experience. Gmail loads a
single page and then makes changes to reflect user actions, eliminating almost entirely the
"click-and-wait" experience of most web applications. There is a lot of back-and-forth with the
server to retrieve information that the user never knows is occurring because of the system's
design. Because Gmail is an excellent example of how to build an Ajax-based web application,
this chapter focuses on developing a similar application called AjaxMail.

In this chapter, you will use techniques learned throughout the book to bring AjaxMail to life.
Both hidden frames and the XMLHttp object will be used for communicating with the server, and
you will be reminded when and how to use each technique. Remember, the whole point of using
Ajax is to improve the user's experience; this chapter gives you the opportunity to see firsthand
how to create an application with the user in mind.

Requirements
Before building a web application, it's always good to define the requirements and build to them.
You may never have considered the requirements for an e-mail application before. You
probably use an e-mail application like Outlook, Thunderbird, or Eudora on a daily basis and
have never really stopped to think about all the things it must do to provide a good user
experience. For simplicity, AjaxMail will support a subset of what these applications do
(although it is easy enough to extend the functionality on your own).

The requirements for AjaxMail are:
 Support for POP3 to receive mail and SMTP to send mail
 Ability to read a list of e-mail messages from the server
 Visual indication if a message contains an attachment
 Ability to read an individual e-mail with support for plain text messages only
 Notification when new mail messages arrive
 Ability to send, forward, and reply to messages

To implement these requirements, a variety of Ajax patterns and communication techniques will
be used. There is extensive use of XMLHttp, requiring the use of the zXml library, as well as
some hidden iframes. In building this application, you will learn how to incorporate and integrate
the various techniques you have learned in this book.

Architecture
AjaxMail is built using PHP for the server-side language and MySQL for the database. A
database is necessary to keep track of information relating to specific messages, such as what
folder they are in and whether they have been read. Both of these can be accomplished by
setting specific flags for a message in the database.

There are two folders in AjaxMail: Inbox and Trash. When a message is deleted from the Inbox,
it is moved to the Trash. The message is permanently deleted when the Trash is emptied;
otherwise, the message remains in the Trash. (It is also possible to restore a message from the
Trash and place it back in the Inbox.) Even though this chapter uses only these two folders, you
may use as many folders as you wish.

Each time a request is made to the server, AjaxMail checks to see if there are any new
messages in the specified POP3 e-mail account. If there are, the messages are downloaded
and saved into the MySQL database. The messages are then read out of the database and sent
back to the client.

Resources Used

AjaxMail uses several open source software libraries to achieve its functionality:

 zXml Library: The cross-browser XML JavaScript library used throughout this book.
Available at www.nczonline.net/downloads/.

 Douglas Crockford's JSON JavaScript Library: The JavaScript JSON parser.
Available at www.json.org.

 PHPMailer: A PHP SMTP e-mail sending solution. Available at
http://phpmailer.sourceforge.net/.

 JSON-PHP: The PHP JSON library. Available at
http://mike.teczno.com/json.html.

 POP3Lib: A PHP POP3 mail interface written by one of your authors, Jeremy McPeak.
Available at www.wdonline.com/php/pop3lib.zip.

Note that all these resources are included in the book's example code downloads, available at
www.wrox.com.

The Database Tables

Because AjaxMail will need e-mails to be stored in the database, several tables must be
created. If you have sufficient rights to create a new database on the MySQL server, you should
create a database named AjaxMail. (You may also use any other database that is already set
up.) There are three tables to add: AjaxMailFolders,AjaxMailMessages, and
AjaxMailAttachments.

The first table, AjaxMailFolders, defines the various folders available in AjaxMail:
CREATE TABLE AjaxMailFolders (

 FolderId int(11) NOT NULL auto_increment,

 Name text NOT NULL,

 PRIMARY KEY (FolderId)

);

INSERT INTO AjaxMailFolders VALUES (1, 'Inbox');

INSERT INTO AjaxMailFolders VALUES (2, 'Trash');

Each folder in AjaxMail is assigned a FolderId (an autoincrementing primary key) and a
name. For the purposes of this chapter, there are only two folders: Inbox and Trash. You can
feel free to add more to suit your own needs.

The AjaxMailMessages table holds each e-mail's information. It consists of 11 columns: a
unique identification number (autoincremented so you don't need to worry about it), the different
fields of an e-mail (To, From, Subject, and so on), what folder it exists in (Inbox, Trash, and so
on), and whether the user has read the e-mail. You can create the table using the following SQL
statement:
CREATE TABLE AjaxMailMessages (

 MessageId int(11) NOT NULL auto_increment,

 'To' text NOT NULL,

 CC text NOT NULL,

 BCC text NOT NULL,

http://www.nczonline.net/downloads/
http://www.json.org/
http://phpmailer.sourceforge.net/
http://mike.teczno.com/json.html.
http://www.wdonline.com/php/pop3lib.zip
http://www.wrox.com/

 'From' text NOT NULL,

 Subject text NOT NULL,

 Date bigint(20) default NULL,

 Message text NOT NULL,

 HasAttachments tinyint(1) NOT NULL default '0',

 Unread tinyint(1) NOT NULL default '1',

 FolderId int(11) NOT NULL default '0',

 PRIMARY KEY (MessageId)

);

The MessageId field is an autoincrementing field and provides the e-mail with a unique ID
number in the database; it is also the table's primary key. The To, CC, BCC, From,
Subject, Date, and Message fields are parts of an e-mail message. (To and From must be
enclosed in backtick symbols because they are keywords in SQL.) The HasAttachments and
Unread fields are tinyint, which means they can have values of 0 or 1 (false or true). Finally,
the FolderId field contains the ID number of the folder in which the message is stored. This
enables you to select messages that exist only in the Inbox or Trash folders.

If an e-mail contains any attachments, they are stored in the AjaxMailAttachments table:
CREATE TABLE AjaxMailAttachments (

 AttachmentId int(11) NOT NULL auto_increment,

 MessageId int(11) NOT NULL default '0',

 Filename text NOT NULL,

 ContentType text NOT NULL,

 Size int(11) NOT NULL default '0',

 Data longtext NOT NULL,

 PRIMARY KEY (AttachmentId)

)

Like the AjaxMailMessages table, the AjaxMailAttachments table contains an
autoincrementing field. This filed is called AttachmentId and provides each attachment with a
unique ID number. The next field, MessageId, houses the message ID of the e-mail to which it
was attached (this number matches the MessageId field in AjaxMailMessages). Next, the
Filename and ContentType columns store the attachment's reported file name and content-
type (both are necessary to enable the user to download the attachment later). Last, the Size
and Data fields store the attachment's size (in bytes) and the binary/text data of the file,
respectively.

The Configuration File

Much like any application, AjaxMail relies on a configuration file, called config.inc.php, to
provide information required to function properly. As this information is required in many
different areas of the application, it's best to store it as constants. In PHP, constants give you
the advantage of being available in every scope of the application, meaning that you don't need
to define them using the global keyword as you do with other global variables.

To create a constant in PHP, use the define() method, passing in the name of the constant
(as a string) and its value. For example:
define("MY_CONSTANT", "my value");

The first group of constants relates directly to your MySQL database:

define("DB_USER", "root");

define("DB_PASSWORD", "password");

define("DB_SERVER", "localhost");

define("DB_NAME", "AjaxMail");

These constants are used when connecting to the database and must be replaced to reflect
your database settings. Next, some constants are needed to provide information about your
POP3 server:
define("POP3_USER", "test@domain.com");

define("POP3_PASSWORD", "password");

define("POP3_SERVER", "mail.domain.com");

Once again, these constants must be replaced with the information specific to your POP3
server. As you may have guessed, you also must supply some information about the SMTP
server:
define("SMTP_DO_AUTHORIZATION", true);

define("SMTP_USER", "test@domain.com");

define("SMTP_PASSWORD", "password");

define("SMTP_SERVER", "mail.domain.com");

define("EMAIL_FROM_ADDRESS", "test@domain.com");

define("EMAIL_FROM_NAME", "Joe Somebody");

The first four lines set constant variables relating to user authentication for your SMTP server.
The first variable sets whether or not your SMTP server requires user authentication to send e-
mail. If set to true, the SMTP_USER and SMTP_PASSWORD must be set. (false means no
authentication is required to send mail through the SMTP server.)

The second group of SMTP settings defines the user settings. You should set
EMAIL_FROM_ADDRESS to contain your e-mail address, and set EMAIL_FROM_NAME to contain
your name. When you send an e-mail, your recipient will see these values as the sender.

The final setting is the MESSAGES_PER_PAGE constant, which defines how many e-mail
messages should be displayed per page:
define("MESSAGES_PER_PAGE", 10);

These constants are used throughout the application: when retrieving e-mail, connecting to the
database, sending mail, and even when displaying the information.

The AjaxMailbox Class

The code contained in the file called AjaxMail.inc.php serves as the workhorse of the
server-side application. This file houses the AjaxMailbox class, which is the primary
interface by which all the mail is handled. A few helper classes, mainly used for JSON
encoding, also exist in this file.

The AjaxMailbox class, which you will build in this section, begins with an empty class
declaration:
class AjaxMailbox {

 //more code here

}

Database Operations
It's the responsibility of AjaxMailbox to handle all the interaction with the database. To
facilitate this communication, several methods relate just to the database.

The first method is connect(), which, as you may expect, initiates a connection to the
database:
class AjaxMailbox {

 function connect() {

 $conn = mysql_connect(DB_SERVER, DB_USER, DB_PASSWORD)

 or die("Could not connect : ". mysql_error());

 mysql_select_db(DB_NAME);

 return $conn;

 }

 //more code here

}

Using the database constants defined in config.inc.php, this method creates a database
connection and stores it in the variable $conn. Then, the specific database is selected and
$conn is returned. Of course, you also need to be able to disconnect from the database:
class AjaxMailbox {

 function connect() {

 $conn = mysql_connect(DB_SERVER, DB_USER, DB_PASSWORD)

 or die("Could not connect : ". mysql_error());

 mysql_select_db(DB_NAME);

 return $conn;

 }

 function disconnect($conn) {

 mysql_close($conn);

 }

 //more code here

}

The disconnect() method accepts a connection object (the same one returned from
connect()) and uses mysql_close() to close that connection.

During development of a database application, you may sometimes end up with bad data in
your database tables. At such times, it's best just to clear all the data from the tables and start
fresh. As a means of database maintenance, AjaxMailbox has a method, clearAll(), that
does just this:
class AjaxMailbox {

 //connect and disconnect methods

 function clearAll() {

 $conn = $this->connect();

 $query = "truncate table AjaxMailMessages";

 mysql_query($query,$conn);

 $query = "truncate table AjaxMailAttachments";

 mysql_query($query,$conn);

 $this->disconnect($conn);

 }

 //more code here

}

This method begins by calling connect() to create a database connection. Then, two SQL
statements are executed, using the TRUNCATE command to clear out both
AjaxMailMessages and AjaxMailAttachments. The TRUNCATE command is used for two
reasons. First, it is generally faster than deleting every row in a table, and second, it clears the
AUTO_INCREMENT handler, so any fields that automatically increment will start back at 1. The
last step is to disconnect from the database by calling disconnect().

Retrieving E-mail
Retrieving e-mail from a POP3 server is not an easy task, and it is beyond the scope of this
book to walk you through the lengthy process. Instead, AjaxMail uses POP3Lib to interface with
the POP3 server. This library contains numerous classes that aid in this type of communication.
These classes are used in the checkMail() method, which is responsible for downloading
messages from the POP3 server and inserting them into the database.

The method begins by creating a new instance of the Pop3 class, which is the POP3Lib main
class for communicating with a POP3 server. Its constructor accepts four arguments, three of
which are required. The first argument is the POP3 server name, the second is the user name,
the third is the password for that user name, and the fourth (optional) argument is the port at
which to connect to the POP3 server (default is 110). To create a connection to the POP3
server, use the login() method. This method returns a Boolean value indicating the success
(true) or failure (false) of the login attempt:
class AjaxMailbox {

 //database methods

 function checkMail() {

 $pop = new Pop3(POP3_SERVER, POP3_USER, POP3_PASSWORD);

 if ($pop->login()) {

 //Email downloading/database manipulation code here.

 }

 }

 //more code here

}

The checkMail() method begins by creating a Pop3 object using the constant information
defined in config.inc.php. Then, the login() method is called to try connecting to the
server.

With a successful login, the Pop3 object retrieves the number of messages found on the server
and assigns this value to the mailCount property. Additionally, the messages array is
initialized and populated with the header information of all e-mails residing on the server (the
header information includes to, from, subject, date, and attachment information). Each item in
the messages array at this point is a Pop3Header object.

To retrieve the entire e-mail, which includes the headers, message, and attachments, you must
call the getEmails() method. This method completely repopulates the messages array with
Pop3Message objects that contain all the e-mail information. A Pop3Message object has the
following properties and methods:

Open table as spreadsheet
Property/Method

Description

from The sender's e-mail address.

to The recipient's e-mail address. This property also
contains all recipients if the e-mail was sent with multiple
addresses in the To field.

subject The subject of the e-mail.

cc The recipient information held in the CC field.

bcc If you receive an e-mail as a blind carbon copy, your e-
mail address is in this property.

date The date of the e-mail in RFC 2822 format.

unixTimeStamp The date in a Unix timestamp (number of seconds since
midnight on January 1, 1970).

hasAttachments A Boolean value indicating whether the e-mail contains
one or more attachments.

attachments An array of attachments sent with the e-mail.

getTextMessage() Retrieves the plain text body of an e-mail.

getHTMLMessage() Retrieves the HTML body of an e-mail (if any).

These properties and methods are used to extract information about an e-mail and insert it into
the database.

After a successful login, the first thing to do is to check for any e-mails on the server. You can
do so by using the mailCount property. If mailCount is greater than zero, getEmails() is
called to retrieve all the e-mail information and a database connection is made, anticipating the
insertion of new e-mails:

http://www.books24x7.com/book/id_13421/outputobject.asp?bookid=13421&chunkid=185526757&objectid=nr-N862&objecttype=spreadsheet
http://www.books24x7.com/book/id_13421/outputobject.asp?bookid=13421&chunkid=185526757&objectid=nr-N862&objecttype=spreadsheet

class AjaxMailbox {

 //database methods

 function checkMail() {

 $pop = new Pop3(POP3_SERVER, POP3_USER, POP3_PASSWORD);

 if ($pop->login()) {

 if ($pop->mailCount > 0) {

 $conn = $this->connect();

 $pop->getEmails();

 //more code here

 $this->disconnect($conn);

 }

 $pop->logoff();

 }

 }

 //more code here

}

In this code snippet, the disconnect() and logoff() methods are called in their appropriate
locations. The logoff() method, as you may have guessed, closes the connection to the
POP3 server.

With all the e-mail information now retrieved, you can begin inserting data into the database by
iterating over the e-mails in the messages array:
class AjaxMailbox {

 //database methods

 function checkMail() {

 $pop = new Pop3(POP3_SERVER, POP3_USER, POP3_PASSWORD);

 if ($pop->login()) {

 if ($pop->mailCount > 0) {

 $conn = $this->connect();

 $pop->getEmails();

 foreach ($pop->messages as $message) {

 $query = "insert into
AjaxMailMessages('To',CC,BCC,'From',";

 $query .=

"Subject,'Date',Message,HasAttachments,FolderId,Unread)";

 $query .=
"values('%s','%s','%s','%s','%s',%s,'%s',"

 .$message->hasAttachments.",1,1)";

 $query = sprintf($query,

 (addslashes($message->to)),

 (addslashes($message->cc)),

 (addslashes($message->bcc)),

 (addslashes($message->from)),

 (addslashes($message->subject)),

 $message->unixTimeStamp,

 (addslashes($message-
>getTextMessage()))

);

 $result = mysql_query($query, $conn);

 //more code here

 }

 $this->disconnect($conn);

 }

 $pop->logoff();

 }

 }

 //more code here

}

A foreach loop is used to iterate over the messages array. For each message, a SQL INSERT
statement is created and then executed. Since the SQL statement is so long, sprintf() is
used to insert the information into the right location. Note that each value, (aside from
unixTimeStamp) must be encoded using addslashes() so that the string will be proper SQL
syntax. The statement is executing using mysql_query(). The only remaining part is to deal
with attachments.

You can determine if a message has attachments by using the hasAttachments property of a
message. If there are attachments, you first must retrieve the ID of the most recently added e-
mail message. (Remember, attachments are tied to the e-mail from which they were attached.)
After the ID is determined, SQL INSERT statements are created for each attachment:
class AjaxMailbox {

 //database methods

 function checkMail() {

 $pop = new Pop3(POP3_SERVER, POP3_USER, POP3_PASSWORD);

 if ($pop->login()) {

 if ($pop->mailCount > 0) {

 $conn = $this->connect();

 $pop->getEmails();

 foreach ($pop->messages as $message) {

 $query = "insert into
AjaxMailMessages('To',CC,BCC,'From',";

 $query .=

"Subject,'Date',Message,HasAttachments,FolderId,Unread)";

 $query .=
"values('%s','%s','%s','%s','%s',%s,'%s',"

 .$message->hasAttachments.",1,1)";

 $query = sprintf($query,

 (addslashes($message->to)),

 (addslashes($message->cc)),

 (addslashes($message->bcc)),

 (addslashes($message->from)),

 (addslashes($message->subject)),

 $message->unixTimeStamp,

 (addslashes($message-
>getTextMessage()))

);

 $result = mysql_query($query, $conn);

 if ($message->hasAttachments) {

 $messageId = mysql_insert_id($conn);

 foreach ($message->attachments as $attachment)
{

 $query = "insert into
AjaxMailAttachments(MessageId,";

 $query .= "Filename, ContentType, Size,
Data)";

 $query .= "values($messageId, '%s', '%s',
'%s', '%s')";

 $query = sprintf($query,

 addslashes($attachment-
>fileName),

 $attachment->contentType,

 strlen($attachment-
>data),

 addslashes($attachment-
>data));

 mysql_query($query, $conn);

 }

 }

 }

 $this->disconnect($conn);

 }

 $pop->logoff();

 }

 }

 //more code here

}

The most recently inserted ID can be retrieved using mysql_insert_id(). Then, the
attachments are iterated over using a foreach loop. Each item in the attachments array is a
Pop3Attachment object. This class represents attachment data for a particular e-mail and
contains three properties: contentType, which contains the attachment's MIME content-type,
fileName, which represents the file name of the attachment, and data, which contains the
actual attachment file data. Depending on the content-type of the attachment, data can be
either binary or plain text information.

Once again, the sprintf() function is used to format the query string. Notice the use of
strlen() on the attachment data; this retrieves the size of the data in bytes for easy retrieval
later on. After the string has been formatted, the query is run against the database to insert the
data into AjaxMailAttachments. This concludes the checkMail() method.

This method is never called directly; instead, it is called whenever a request to the server is
made. In essence, checkMail() is piggy-backed onto other requests so that the user is
always viewing the most recent data.

Getting the E-mail List
Probably the most common operation of the application is to retrieve a list of e-mails to display
to the user. The method responsible for this operation, getFolderPage(), accepts two
arguments: the ID number of the folder and the page number to retrieve:
class AjaxMailbox {

 //database methods

 //check mail method

 function getFolderPage($folder, $page) {

 $this->checkMail();

 //more code here

 }

}

When called, getFolderPage() first calls checkMail() to ensure that the most recent data
is available in the database. If there are any new messages, they will be inserted into the
database so that any queries run thereafter will be up-to-date.

The next step is to build a JSON string to send back to the client. To aid in this, a generic class
called JSONObject is defined:
class JSONObject {

}

A JSONObject instance is used merely to hold data until it is time to be serialized into the
JSON format. For getFolderPage(), this object contains information about the folder. The
JSON data contains many useful bits of information: the total number of messages
(messageCount), the current page (page), the total number of pages (pageCount), the folder
number (folder), the first message returned (firstMessage), the total number of unread
messages (unreadCount), and finally an array of messages in the page (messages). The
data structure looks like this:
{

 "messageCount":0,

 "page":1,

 "pageCount":1,

 "folder":1,

 "firstMessage":0,

 "unreadCount": 0,

 "messages":[]

}

The JSONObject is created and initialized with several properties relating to information in the
database:
class AjaxMailbox {

 //database methods

 //check mail method

 function getFolderPage($folder, $page) {

 $this->checkMail();

 $conn = $this->connect();

 $query = "select count(MessageId) as count from
AjaxMailMessages";

 $query .= "where FolderId=$folder";

 $result = mysql_query($query, $conn);

 $row = mysql_fetch_assoc($result);

 $info = new JSONObject();

 $info->messageCount = (int) $row["count"];

 $info->page = $page;

 $info->pageCount = (int) ceil($info-
>messageCount/MESSAGES_PER_PAGE);

 $info->folder = $folder;

 $firstMessageNum = ($page-1) * MESSAGES_PER_PAGE;

 $info->firstMessage = $firstMessageNum+1;

 $info->messages = array();

 $info->unreadCount = $this->getUnreadCount($conn);

 //more code here

 }

}

Using the SQL count() function, you can easily retrieve the total number of messages in a
given folder. A JSONObject is created and stored in $info, and its messageCount property
is set to the value retrieved from the database. Next, the page number is assigned to the page
property (this is the same value that was passed into the method). The pageCount property
determines how many total pages exist for the current folder. This is done by dividing the
messageCount by the MESSAGES_PER_PAGE constant and applying the mathematical ceiling
function (essentially, round up to the nearest whole number). Then, the folder ID is assigned to
the folder property.

Next, the index of the first message to display on the page is calculated and stored in
$firstMessageNum. This number is important because it keeps the database from retrieving
too much information. The $info object is assigned a property of firstMessage that is equal

to $firstMessageNum plus one. This is done because this value will be displayed to the user,
and you never want to show message number zero; the first message should always be
message number one. A property called messages is created and initialized to an empty array;
this will contain message objects later.

The last step in this section of code is to create a property named unreadCount and assign it
the number of unread messages in the database. To do so, use the getUnreadCount()
method, defined as follows:
class AjaxMailbox {

 //other methods

 function getUnreadCount($conn) {

 $query = "select count(MessageId) as UnreadCount from
AjaxMailMessages";

 $query .= "where FolderId=1 and Unread=1";

 $result = mysql_query($query, $conn);

 $row = mysql_fetch_assoc($result); return
intval($row["UnreadCount"]);

 }

 //other methods

}

After getting this information, it's time to retrieve specific e-mail messages. To do so, execute a
query on all messages in a given folder, ordered by the date. This is where the first message
number comes into play; by adding a LIMIT statement to the end of the query, you can ensure
the exact messages are contained in the result set. By specifying the first message number and
then the total number of messages, the LIMIT statement retrieves just those messages:
class AjaxMailbox {

 //database methods

 //check mail method

 function getFolderPage($folder, $page) {

 $this->checkMail();

 $conn = $this->connect();

 $query = "select count(MessageId) as count from
AjaxMailMessages";

 $query .= "where FolderId=$folder";

 $result = mysql_query($query, $conn);

 $row = mysql_fetch_assoc($result);

 $info = new JSONObject();

 $info->messageCount = (int) $row["count"];

 $info->page = $page;

 $info->pageCount = (int) ceil($info-
>messageCount/MESSAGES_PER_PAGE);

 $info->folder = $folder;

 $firstMessageNum = ($page-1) * MESSAGES_PER_PAGE;

 $info->firstMessage = $firstMessageNum+1;

 $info->messages = array();

 $info->unreadCount = $this->getUnreadCount($conn);

 $query = "select * from AjaxMailMessages where
FolderId=$folder";

 $query .= "order by date desc limit $firstMessageNum, ";

 $query .= MESSAGES_PER_PAGE;

 $result = mysql_query($query, $conn);

 //more code here

 }

}

The complete SQL statement selects all messages where the value in FolderId matches
$folder and orders the returned rows by date in descending order. It also starts the selection
from the value in $firstMessageNum, and retrieves only the amount specified by
MESSAGES_PER_PAGE.

At this point, there are two possible scenarios: either the database returned results or it didn't. In
the application, it is important to know when either situation takes place. Thankfully, it is easy to
discern when a query is not successful. The mysql_query() function returns false on an
unsuccessful query; therefore, you can check to see if a query failed by checking the $result
variable. If there is an error, it can be returned in a property of the $info object. Otherwise,
you'll need to iterate through the rows that were returned, creating a new JSONObject for each
message and adding it to the messages array:
class AjaxMailbox {

 //database methods

 //check mail method

 function getFolderPage($folder, $page) {

 $this->checkMail();

 $conn = $this->connect();

 $query = "select count(MessageId) as count from
AjaxMailMessages";

 $query .= "where FolderId=$folder";

 $result = mysql_query($query, $conn);

 $row = mysql_fetch_assoc($result);

 $info = new JSONObject();

 $info->messageCount = (int) $row["count"];

 $info->page = $page;

 $info->pageCount = (int) ceil($info-
>messageCount/MESSAGES_PER_PAGE);

 $info->folder = $folder;

 $firstMessageNum = ($page-1) * MESSAGES_PER_PAGE;

 $info->firstMessage = $firstMessageNum+1;

 $info->messages = array();

 $info->unreadCount = $this->getUnreadCount($conn);

 $query = "select * from AjaxMailMessages where
FolderId=$folder";

 $query .= "order by date desc limit $firstMessageNum, ";

 $query .= MESSAGES_PER_PAGE;

 $result = mysql_query($query, $conn);

 if (!$result) {

 $info->error = mysql_error($conn);

 } else {

 while ($row = mysql_fetch_assoc($result)) {

 $message = new JSONObject();

 $message->id = $row['MessageId'];

 $message->from = $row['From'];

 $message->subject = $row['Subject'];

 $message->date = date("M j Y", intval($row["Date"]));

 $message->hasAttachments = ($row['HasAttachments'] ==
1);

 $message->unread = ($row['Unread'] == 1);

 $info->messages[] = $message;

 }

 }

 $this->disconnect($conn);

 return $info;

 }

}

In this code, the $result variable is checked. If the query failed, an error property is added
to the $info object and assigned the error message retrieved from mysql_error(). Client-
side code can then check this property to determine if an error occurred. If the query executed
successfully, a new instance of JSONObject is created to contain the message information;
this is stored in $message. This object is populated with all the information from the $row
object, paying particular attention to format the message date so that it displays the month, day,
and year only. (This eliminates the need for JavaScript to format the date.) Also, since the
HasAttachments and Unread fields are bits, they are compared to the number 1 so that the
corresponding properties on $message are filled with Boolean values instead of integers. The
last line inside of the while loop adds the $message object to the end of the messages array.

After that is completed, you can safely disconnect from the database (using disconnect())
and return the $info object. It is up to the process using getFolderPage() to JSON-encode
the object to be sent to the client.

Getting a Specific Message
Retrieving a specific message involves two helper classes, AjaxMailMessage and
AjaxMailAttachmentHeader, and a method of the AjaxMailbox class called
getMessage(). The two helper classes are used purely to store information that will later be
JSON-encoded and sent to the client.

The first helper class, AjaxMailMessage, represents a single e-mail message:
class AjaxMailMessage {

 var $to;

 var $from;

 var $cc;

 var $bcc;

 var $subject;

 var $message;

 var $date;

 var $attachments;

 var $unread;

 var $hasAttachments;

 var $id;

 function AjaxMailMessage() {

 $this->attachments = array();

 }

}

The properties of this class resemble those of the field names in the database; the sole
exception is the attachments property, which is an array of attachments associated with this
e-mail. The JSON structure of the AjaxMailMessage class looks like this:
{

 to : "to",

 from : "from",

 cc : "cc",

 bcc : "bcc",

 subject : "subject",

 message : "message",

 date : "date",

 attachments : [],

 unread : false,

 hasAttachments : true,

 id : 1

}

The attachments array actually contains instances of AjaxMailAttachmentHeader, which
provide general information about an attachment without containing the actual binary or text
data:
class AjaxMailAttachmentHeader {

 var $id;

 var $filename;

 var $size;

 function AjaxMailAttachmentHeader($id, $filename, $size) {

 $this->id = $id;

 $this->filename = $filename;

 $this->size = "" . (round($size/1024*100)/100)." KB";

 }

}

The constructor for this class accepts three arguments: the attachment ID (the value of the
AttachmentId column of the AjaxMailAttachments table), the file name, and the size of
the attachment in bytes. The size is converted into a string (indicated by the number of kilobytes
in the file) by dividing the size by 1024 and then rounding to the nearest hundredth of a kilobyte
(so you can get a string such as "0.55 KB"). When JSON-encoded, the
AjaxMailAttachmentHeader object is added to the previous JSON structure, as follows:
{

 "to" : "to",

 "from" : "from",

 "cc" : "cc",

 "bcc" : "bcc",

 "subject" : "subject",

 "message" : "message",

 "date" : "date",

 "attachments" :

 [

 {

 "id" : 1,

 "filename" : "filename",

 "size" : "1KB"

 }

],

 "unread" : false,

 "hasAttachments" : true,

 "id" : 1

}

The getMessage() method utilizes these two classes when assembling the data for
transmission to the client. This method takes one argument, the message ID number that
corresponds to the MessageId column in the AjaxMailMessages table:
class AjaxMailbox {

 //other methods

 function getMessage($messageId) {

 $conn = $this->connect();

 //get the information

 $query = "select MessageId, 'To', 'From', CC, BCC, Subject,
Date, ";

 $query .= "Message, HasAttachments, Unread from
AjaxMailMessages where";

 $query .= "MessageId=$messageId";

 $result = mysql_query($query, $conn);

 $row = mysql_fetch_assoc($result);

 //more code here

 }

 //other methods

}

This method begins by making a connection to the database using the connect() method.
Then, a query to retrieve the various parts of the e-mail is created (stored in $query) and
executed, with the results ending up in the $row object.

The next step is to create an AjaxMailMessage object and populate it with all the data from
the database:
class AjaxMailbox {

 //other methods

 function getMessage($messageId) {

 $conn = $this->connect();

 //get the information

 $query = "select MessageId, 'To', 'From', CC, BCC, Subject,
Date, ";

 $query .= "Message, HasAttachments, Unread from
AjaxMailMessages where";

 $query .= "MessageId=$messageId";

 $result = mysql_query($query, $conn);

 $row = mysql_fetch_assoc($result);

 $message = new AjaxMailMessage();

 $message->id = $row["MessageId"];

 $message->to = $row["To"];

 $message->cc = $row["CC"];

 $message->bcc = $row["BCC"];

 $message->unread = ($row["Unread"]==1);

 $message->from = $row["From"];

 $message->subject = $row["Subject"];

 $message->date = date("M j, Y h:i A", intval($row["Date"]));

 $message->hasAttachments = ($row["HasAttachments"]==1);

 $message->unreadCount = $this->getUnreadCount($conn);

 $message->message = $row["Message"];

 //more code here

 }

 //other methods

}

As with getFolderPage(), the database fields represented as bits are compared to 1 to get a
Boolean value. The date is also formatted into a longer string, one that contains both the date
and time (formatted as in "Oct 28, 2005 05:17 AM"). You'll also notice that the unreadCount
property is added to the message. Although this doesn't pertain to the message itself, it helps to
keep the user interface updated with the most recent number of unread mails in the database.

The last part of this method is to return information about the attachments (if any).
class AjaxMailbox {

 //other methods

 function getMessage($messageId) {

 $conn = $this->connect();

 //get the information

 $query = "select MessageId, 'To', 'From', CC, BCC, Subject,
Date, ";

 $query .= "Message, HasAttachments, Unread from
AjaxMailMessages where";

 $query .= "MessageId=$messageId";

 $result = mysql_query($query, $conn);

 $row = mysql_fetch_assoc($result);

 $message = new AjaxMailMessage();

 $message->id = $row["MessageId"];

 $message->to = $row["To"];

 $message->cc = $row["CC"];

 $message->bcc = $row["BCC"];

 $message->unread = ($row["Unread"]==1);

 $message->from = $row["From"];

 $message->subject = $row["Subject"];

 $message->date = date("M j, Y h:i A", intval($row["Date"]));

 $message->hasAttachments = ($row["HasAttachments"]==1);

 $message->unreadCount = $this->getUnreadCount($conn);

 $message->message = $row["Message"];

 if ($message->hasAttachments) {

 $query = "select AttachmentId,Filename,Size from
AjaxMailAttachments";

 $query .= "where MessageId=$messageId";

 $result = mysql_query($query, $conn);

 while ($row = mysql_fetch_assoc($result)) {

 $message->attachments[] = new
AjaxMailAttachmentHeader(

$row["AttachmentId"],

$row["Filename"],

 (int)
$row["Size"]);

 }

 }

 $this->disconnect($conn);

 return $message;

 }

 //other methods

}

In this section of code, you begin by verifying whether there are any attachments on the e-mail.
If an attachment exists, a query is run to return all the attachments in the database. Note that
the actual contents of the attachment aren't returned, just the attachment ID, file name, and
size. Using a while loop to iterate over the results, a new AjaxMailAttachmentHeader is
created for each attachment and added to the $message object's attachments array. After
that, you need only disconnect from the database and return the $message object. Once again,
it is up to the process using this method to JSONencode the returned object.

Sending an E-mail
AjaxMail relies on the PHPMailer library (http://phpmailer.sourceforge.net) to send e-
mails. This full-featured library enables you to send mail either through an SMTP server or the
sendmail application (www.sendmail.org). As discussed earlier, AjaxMail uses SMTP
exclusively.

The method used to send mail is called sendMail(). This method accepts four arguments,
with only the first three being required. These arguments are $to (the string containing the e-
mail addresses to send to), $subject (the subject of the e-mail), $message (the body of the e-
mail), and $cc (which can optionally specify who to send a carbon copy to).

The first step in this method is to create an instance of the PHPMailer class and assign the To
and CC fields. You can add these by using the AddAddress() and AddCC() methods of the
PHPMailer object, respectively. Each of these accepts two arguments: the e-mail address and
the real name of the person. This presents a problem in that the $to and $cc arguments can
contain multiple e-mail addresses separated by semicolons or commas, and may consist of
name <e-mail> pairs. For example, an e-mail sent to two recipients without carbon copying
could look like this:
Joe Somebody <joe@somebody.com>; Jim Somebody <jim@somebody.com>

You must take this into account when sending mail using PHPMailer:
class AjaxMailbox {

 //other methods here

 function sendMail($to, $subject, $message, $cc="") {

 $mailer = new PHPMailer();

 $tos = preg_split ("/;|,/", $to);

 foreach ($tos as $to) {

 preg_match("/(.*?)<?(.*?)>?/i", $to, $matches);

 $mailer-
>AddAddress($matches[2],str_replace('"','',$matches[1]));

 }

 if ($cc != "") {

http://phpmailer.sourceforge.net/
http://www.sendmail.org/

 $ccs = preg_split ("/;|,/", $cc);

 foreach ($ccs as $cc) {

 preg_match("/(.*?)<?(.*?)>?/i", $cc, $matches);

 $mailer-
>AddCC($matches[2],str_replace('"','',$matches[1]));

 }

 }

 //more code here

 }

 //other methods here

}

The first line in the method creates an instance of PHPMailer. In the next line, the $to string is
split by both semicolons and commas with the preg_split() function, which returns an array
of e-mail addresses. Then, iterating through the $tos array, the code checks for a match to real
name <email> with the preg_match() function. The regular expression used in the
preg_match() function returns an array with three matches. The first is the entire string, the
second is the real name if it exists, and the third is the e-mail address. You can then add the
addresses by using AddAddress() and passing in the second and third matches. Since the
real name may be enclosed in quotes, str_replace() is used to strip out any quotes that
may be in the real name part of the string. This same process is repeated for the $cc string,
where the AddCC() method is used.

Note You will always have three elements in the $matches array, even if no name

is in the string.

Next, you need to assign the pertinent SMTP information to the $mailer object, along with the
subject and message body. Then, you can send the e-mail:
class AjaxMailbox {

 //other methods here

 function sendMail($to, $subject, $message, $cc="") {

 $mailer = new PHPMailer();

 $tos = preg_split ("/;|,/", $to);

 foreach ($tos as $to) {

 preg_match("/(.*?)<?(.*?)>?/i", $to, $matches);

 $mailer-
>AddAddress($matches[2],str_replace('"','',$matches[1]));

 }

 if ($cc != "") {

 $ccs = preg_split ("/;|,/", $cc);

 foreach ($ccs as $cc) {

 preg_match("/(.*?)<?(.*?)>?/i", $cc, $matches);

 $mailer-
>AddCC($matches[2],str_replace('"','',$matches[1]));

 }

 }

 $mailer->Subject = $subject;

 $mailer->Body = $message;

 $mailer->From = EMAIL_FROM_ADDRESS;

 $mailer->FromName = EMAIL_FROM_NAME;

 $mailer->SMTPAuth = SMTP_DO_AUTHORIZATION;

 $mailer->Username = SMTP_USER;

 $mailer->Password = SMTP_PASSWORD;

 $mailer->Host = SMTP_SERVER;

 $mailer->Mailer = "smtp";

 $mailer->Send();

 $mailer->SmtpClose();

 //more code here

 }

 //other methods here

}

For the first two properties, Subject and Body, simply use the values that were passed into
the method. You set their values equal to those passed to the method. Next, the From and
FromName properties are set to the constant values from config.inc.php; the first
represents the sender's e-mail address, and the second contains the sender's real name (which
many e-mail clients simply display as the sender).

The properties following those are the SMTP authorization settings. Some SMTP servers
require authentication to send e-mail messages and some don't. If SMTPAuth is false,
PHPMailer attempts to send e-mails without sending the Username and Password. If true,
the class sends those values to the server in an attempt to authorize the sending of the e-mail.

The final two properties before sending an e-mail are the SMTP server and the method of which
to send. The Host property is assigned to SMTP_SERVER and the Mailer property is set to
"smtp", indicating the type of mailer being used (as opposed to "sendmail").

After setting those properties, you can invoke the Send() method to actually send the e-mail
and then call SmtpClose() to close the SMTP connection. But the method isn't quite done yet.
The client still needs to know if the e-mail message was sent successfully. To do that, you'll
need to create a response object containing information about the transmission:

class AjaxMailbox {

 //other methods here

 function sendMail($to, $subject, $message, $cc="") {

 $mailer = new PHPMailer();

 $tos = preg_split ("/;|,/", $to);

 foreach ($tos as $to) {

 preg_match("/(.*?)<?(.*?)>?/i", $to, $matches);

 $mailer-
>AddAddress($matches[2],str_replace('"','',$matches[1]));

 }

 if ($cc != "") {

 $ccs = preg_split ("/;|,/", $cc);

 foreach ($ccs as $cc) {

 preg_match("/(.*?)<?(.*?)>?/i", $cc, $matches);

 $mailer-
>AddCC($matches[2],str_replace('"','',$matches[1]));

 }

 }

 $mailer->Subject = $subject;

 $mailer->Body = $message;

 $mailer->From = EMAIL_FROM_ADDRESS;

 $mailer->FromName = EMAIL_FROM_NAME;

 $mailer->SMTPAuth = SMTP_DO_AUTHORIZATION;

 $mailer->Username = SMTP_USER;

 $mailer->Password = SMTP_PASSWORD;

 $mailer->Host = SMTP_SERVER;

 $mailer->Mailer = "smtp";

 $mailer->Send();

 $mailer->SmtpClose();

 $response = new JSONObject();

 if ($mailer->IsError()) {

 $response->error = true;

 $response->message = $mailer->ErrorInfo;

 } else {

 $response->error = false;

 $response->message = "Your message has been sent.";

 }

 return $response;

 }

 //other methods here

}

A JSONObject is instantiated to carry the information back to the client. PHPMailer provides a
method called IsError(), which returns a Boolean value indicating the success or failure of
the sending process. If it returns true, that means the e-mail was not sent successfully, so the
$response object has its error property set to true and the error message is extracted from
the ErrorInfo property of $mailer. Otherwise, the error property is set to false and a
simple confirmation message is sent. The last step is to return the $response object.

Getting Attachment Data
When attachments are stored in the database, you need a way to get them back out. The
getAttachment() method provides all the information necessary to enable a user to
download an attachment. This method takes one argument, the attachment ID, and returns an
AjaxMailAttachment object. The AjaxMailAttachment class is another helper that
encapsulates all the information about an attachment:
class AjaxMailAttachment {

 var $contentType;

 var $filename;

 var $size;

 var $data;

 function AjaxMailAttachment($contentType, $filename, $size, $data)
{

 $this->contentType = $contentType;

 $this->filename = $filename;

 $this->size = $size;

 $this->data = $data;

 }

}

The getAttachment() method itself is fairly straightforward:
class AjaxMailbox {

 //other methods here

 function getAttachment($attachmentId) {

 $conn = $this->connect();

 $query = "select * from AjaxMailAttachments where ";

 $query .= "AttachmentId=$attachmentId";

 $result = mysql_query($query, $conn);

 $row = mysql_fetch_assoc($result);

 $this->disconnect($conn);

 return new AjaxMailAttachment(

 $row["ContentType"],

 $row["Filename"],

 $row["Size"],

 $row["Data"]

);

 }

 //other methods here

}

This code connects to the database with the connect() method and performs the database
query. This particular query selects all fields from AjaxMailAttachments where
AttachmentId is equal to the method's argument. After running the query, the database
connection is closed and an AjaxMailAttachment object is returned containing all the
information about the attachment.

Handling the Trash
Four methods in the AjaxMailbox class deal with moving messages to and from the Trash.
The first method, deleteMessage(), doesn't actually delete the e-mail message; instead, it
updates the FolderId column in the database to have a value of 2, meaning that the message
now resides in the Trash. This method accepts one argument, the identification number of the
message:
class AjaxMailbox {

 //other methods here

 function deleteMessage($messageId) {

 $conn = $this->connect();

 $query = "update AjaxMailMessages set FolderId=2 where ";

 $query .= "MessageId=$messageId";

 mysql_query($query,$conn);

 $this->disconnect($conn);

 }

 //other methods here

}

This method simply connects to the database, runs the SQL statement to change the
FolderId, and then disconnects from the database. Of course, you can also restore a
message from the Trash once it has been moved there. To do so, simply set the FolderId
back to 1; this is the job of the restoreMessage() method.

The restoreMessage() method also accepts one argument, the message ID, and follows the
same basic algorithm:
class AjaxMailbox {

 //other methods here

 function restoreMessage($messageId) {

 $conn = $this->connect();

 $query = "update AjaxMailMessages set FolderId=1 where ";

 $query .= "MessageId=$messageId";

 mysql_query($query,$conn);

 $this->disconnect($conn);

 }

 //other methods here

}

This method mirrors deleteMethod(), with the only difference being the value of FolderId
to be set.

From time to time, there will be a lot of e-mail messages in the Trash. There may come a time
when the user decides that he or she no longer needs them and the Trash should be emptied.
The emptyTrash() method deletes every message with a FolderId value of 2 as well as
any attachments those messages may have had.

The emptyTrash() method relies on two queries to delete the message and attachment
information in the database. The first query deletes the attachments of messages in the Trash,
and the second query deletes the messages themselves:
class AjaxMailbox {

 //other methods here

 function emptyTrash() {

 $conn = $this->connect();

 $query = "delete from AjaxMailAttachments where MessageId in
";

 $query .= "(select MessageId from AjaxMailMessages where
FolderId=2)";

 mysql_query($query, $conn);

 $query = "delete from AjaxMailMessages where FolderId=2";

 mysql_query($query,$conn);

 $this->disconnect($conn);

 }

 //other methods here

}

The first query uses a feature called sub-querying to select MessageIds of messages that are
in the Trash. Sub-queries are a feature in MySQL 4 and above (if you use MySQL 3.x, you need
to upgrade before using this code). The second query is very straightforward, simply deleting all
messages with a FolderId of 2. The last step, of course, is to disconnect from the database.

Marking Messages as Read
Nearly every e-mail client marks messages as unread when they first arrive. This feature
enables users to keep track of the messages they previously read and easily tell which
messages are new. The methods responsible for this feature in AjaxMail resemble those of
deleting and restoring messages because they simply accept a message ID as an argument
and then update a single column in the database.

The first method, markMessageAsRead(), marks the message as read after the user opens it:
class AjaxMailbox {

 //other methods here

 function markMessageAsRead($messageId) {

 $conn = $this->connect();

 $query = "update AjaxMailMessages set Unread=0 where
MessageId=$messageId";

 mysql_query($query,$conn);

 $this->disconnect($conn);

 }

 //other methods here

}

This code runs an UPDATE statement that sets the message's Unread column to 0, specifying
the message as read.

Similarly, the method to mark a message as unread performs almost the exact same query:
class AjaxMailbox {

 //other methods here

 function markMessageAsUnread($messageId) {

 $conn = $this->connect();

 $query = "update AjaxMailMessages set Unread=1 where
MessageId=$messageId";

 mysql_query($query,$conn);

 $this->disconnect($conn);

 }

 //other methods here

}

The only difference between the markMessageAsUnread() method and the
markMessageAsRead() method is the value the Unread column is assigned when you run
the query.

Performing Actions

AjaxMail, like many other PHP applications, relies on an action-based architecture to perform
certain operations. In other words, the application queries a separate PHP file that handles
certain actions and executes code according to the action. There are several files that perform
action requests from the client in different ways.

AjaxMailAction.php
The AjaxMailAction.php. file is one of the files used by the client to perform various
actions. Your first step in writing this file is to include all the required files. Because this file uses
the AjaxMailbox class, you need to include quite a few files, including the config.inc.php
file, the four files in POP3Lib, AjaxMail.inc.php, and JSON.php for JSON encoding:
require_once("inc/config.inc.php");

require_once("inc/pop3lib/pop3.class.php");

require_once("inc/pop3lib/pop3message.class.php");

require_once("inc/pop3lib/pop3header.class.php");

require_once("inc/pop3lib/pop3attachment.class.php");

require_once("inc/AjaxMail.inc.php");

require_once("inc/JSON.php");

You also need to set several headers:
header("Content-Type: text/plain");

header("Cache-Control: No-Cache");

header("Pragma: No-Cache");

The first header sets the Content-Type to text/plain, a requirement because this page
returns a JSON-encoded string as opposed to HTML or XML. Because this file will be used
repeatedly, you must include the No-Cache headers described in Chapter 3 to avoid incorrect
data.

When using AjaxMailAction.php, at least three pieces of information are sent: the action to
perform, the current folder ID, and the page number. An optional fourth piece of information, a
message ID, can be sent as well. So, the query string for this file may look something like this:
AjaxMailAction.php?action=myAction&page=1&folder=1&id=123

Because the message ID is used only in certain circumstances, you don't have to retrieve it until
needed. In the meantime, you can retrieve the three other arguments as follows:
$folder = $_GET["folder"];

$page = (int) $_GET["page"];

$action = $_GET["action"];

This code retrieves the values of the variables in the query string. The page number is cast to
an integer value for compatibility with methods in AjaxMailbox. Next, create an instance of
AjaxMailbox and JSON, as well as a variable named $output, which will be filled with a
JSON string:
$mailbox = new AjaxMailbox();

$oJSON = new JSON();

$output = "";

The next step is to perform the desired action. Using a switch statement on the $action
enables you to easily determine what should be done. There are two actions that need the
message ID argument, delete and restore:
switch($action) {

 case "delete":

 $mailbox->deleteMessage($_GET["id"]);

 break;

 case "restore":

 $mailbox->restoreMessage($_GET["id"]);

 break;

 case "empty":

 $mailbox->emptyTrash();

 break;

 case "getfolder":

 //no extra processing needed

 break;

}

This code performs a specific operation based on the $action string. In the case of delete,
the deleteMessage() method is called and the message ID parameter is passed in. For
restore, the restoreMessage() method is called with the message ID. If empty is the
action, the emptyTrash() method is called. Otherwise, if the action is getfolder, no
additional operation is required. This is because AjaxMailAction.php always returns JSON-
encoded folder information regardless of the action that is performed:

http://www.books24x7.com/viewer.asp?bkid=13421&destid=137#137

$info = $mailbox->getFolderPage($folder, $page);

$output = $oJSON->encode($info);

echo $output;

Here, the getFolderPage() method is used to retrieve a list of e-mails to return to the client.
Remember, getFolderPage() checks for new messages before returning a list, so you will
have the most recent information. The result of getFolderPage() is encoded using $oJSON-
>encode() and then output to the client using the echo operator.

AjaxMailNavigate.php
AjaxMail uses both XMLHttp and a hidden iframe to make requests back to the server. The
AjaxMailNavigate.php file is used inside the hidden iframe and, as such, must contain valid
HTML and JavaScript code. This file expects the same query string as AjaxMailAction.php
because it uses the same information.

The first part of this file is the PHP code that performs the requested action:
<?php

 require_once("inc/config.inc.php");

 require_once("inc/pop3lib/pop3.class.php");

 require_once("inc/pop3lib/pop3message.class.php");

 require_once("inc/pop3lib/pop3header.class.php");

 require_once("inc/pop3lib/pop3attachment.class.php");

 require_once("inc/AjaxMail.inc.php");
require_once("inc/JSON.php");

 header("Cache-control: No-Cache");

 header("Pragma: No-Cache");

 $folder = $_GET["folder"];

 $page = (int) $_GET["page"];

 $id = "";

 if (isset($_GET["id"])) {

 $id = (int) $_GET["id"];

 }

 $action = $_GET["action"];

 $mailbox = new AjaxMailbox();

 $oJSON = new JSON();

 $output = "";

 switch($action) {

 case "getfolder":

 $info = $mailbox->getFolderPage($folder, $page);

 $output = $oJSON->encode($info);

 break;

 case "getmessage":

 $message = $mailbox->getMessage($id);

 if ($message->unread) {

 $mailbox->markMessageAsRead($id);

 }

 $output = $oJSON->encode($message);

 break;

 default:

 $output = "null";

 }

?>

This file requires the same include files as AjaxMailAction.php, although it needs only the
no cache headers because the content being returned is HTML (not plain/text). Next, the
information is pulled out of the query string and stored in variables. New instances of
AjaxMailbox and JSON are created in anticipation of performing an action.

As with AjaxMailAction.php, the $action variable is placed into a switch statement to
determine what to do. The getfolder action calls getFolderPage() to retrieve the
information for the given page in the given folder. The result is JSON-encoded and stored in the
$output variable.

If the action is getmessage, the getMessage() method is called. If the message hasn't been
read, it is marked as read. The message is then JSON-encoded and assigned to the $output
variable. If the $action is something else, $output is assigned a value of null.

The next part of the page is the HTML content:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns=" http://www.w3.org/1999/xhtml" xml:lang=" en" lang=" en">

 <head>

 <title>Ajax Mail Navigate</title>

 </head>

 <body>

 <script language=" JavaScript" type=" text/javascript">

 //<![CDATA[

 window.onload = function () {

 var oInfo = <?php echo $output ?>;

<?php

 switch($action) {

 case "getfolder":

 echo "parent.oMailbox.displayFolder(oInfo);";

 break;

 case "getmessage":

 echo "parent.oMailbox.displayMessage(oInfo);";

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

 break;

 case "compose":

 echo "parent.oMailbox.displayCompose();";

 break;

 case "reply":

 echo "parent.oMailbox.displayReply();";

 break;

 case "replyall":

 echo "parent.oMailbox.displayReplyAll();";

 break;

 case "forward":

 echo "parent.oMailbox.displayForward();";

 break;

 }

?>

 };

 //]]>

 </script>

 </body>

</html>

In this part of the page, the $output variable is output to the page into the JavaScript variable
oInfo. Because $output is either null or a JSON-encoded string, it is valid JavaScript. The
variable is assigned in the window.onload event handler. Then, based on the $action, a
different JavaScript method is output to the page and called.

AjaxMailSend.php
To handle the sending of e-mail from the client, the AjaxMailSend.php file is used. Its sole
purpose is to gather the information from the server and then send the e-mail. It needs to
include config.inc.php, JSON.php, and AjaxMail.inc.php, as with the other files.
However, it doesn't need to include the POP3Lib files because there will be no interaction with
the POP3 server. Instead, the PHPMailer files class.phpmailer.php and
class.smtp.php must be included:
<?php

 require_once("inc/config.inc.php");

 require_once("inc/phpmailer/class.phpmailer.php");

 require_once("inc/phpmailer/class.smtp.php");

 require_once("inc/JSON.php");

 require_once("inc/AjaxMail.inc.php");

 header("Content-Type: text/plain");

 header("Cache-control: No-Cache");

 header("Pragma: No-Cache");

 $to = $_POST["txtTo"];

 $cc = $_POST["txtCC"];

 $subject = $_POST["txtSubject"];

 $message = $_POST["txtMessage"];

 $mailbox = new AjaxMailbox();

 $oJSON = new JSON();

 $response = $mailbox->sendMail($to, $subject, $message, $cc);

 $output = $oJSON->encode($response);

 echo $output;

?>

You'll note that the same headers are set for this page as they are for AjaxMailAction.php
because it will also return a JSON-encoded string. The next section gathers the information
from the submitted form. Then, new instances of AjaxMailbox and JSON are created. The
information from the form is passed into the sendMail() method, and the response is JSON-
encoded and then output using echo.

AjaxMailAttachment.php
The last file, AjaxMailAttachment.php, facilitates the downloading of a specific attachment.
This file accepts a single query string parameter: the ID of the attachment to download. To do
this, you need to once again include all the POP3Lib files, config.inc.php, and
AjaxMail.inc.php:
<?php

 require_once("inc/config.inc.php");

 require_once("inc/pop3lib/pop3.class.php");

 require_once("inc/pop3lib/pop3message.class.php");

 require_once("inc/pop3lib/pop3header.class.php");

 require_once("inc/pop3lib/pop3attachment.class.php");

 require_once("inc/AjaxMail.inc.php");

 $id = $_GET["id"];

 $mailbox = new AjaxMailbox();

 $attachment = $mailbox->getAttachment($id);

 header("Content-Type: $attachment->contentType");

 header("Content-Disposition: attachment; filename=$attachment-
>filename");

 echo $attachment->data;

?>

After including the required files, the attachment ID is retrieved and stored in $id. A new
AjaxMailbox object is created and getAttachment() is called to retrieve the specific
attachment information. Next, the content-type header is set to the content-type of the

http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=185526757#ch09lev3sec126F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch09lev3sec126F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

attachment (retrieved from $attachment->contentType) and the content-disposition header
is set to attachment, passing in the file name of the attachment. This second header does two
things. First, it forces the browser to show a dialog box asking if you want to open the file or
save it; second, it suggests the file name to use when downloading the file. The last part of the
file outputs the attachment data to the page, effectively mimicking a direct file download.

The User Interface
The key to any successful (and useful) web application is the design of the user interface.
Because AjaxMail is meant to demonstrate the use of Ajax techniques, the user interface is
quite simple and bare-bones. There are three different views of the user interface:

 Folder view: Displays a folder of messages (either Inbox or Trash).

 Read view: Displays a received message.

 Compose view: Displays a form so that you can send e-mails.

All the views are designed to be very simple, and all are loaded when the main page,
index.php, is initially loaded.

The basic layout of index.php is as follows:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns=" http://www.w3.org/1999/xhtml" xml:lang=" en" lang=" en">

 <head>

 <title>Ajax Mail</title>

 <link rel=" stylesheet" type=" text/css" href="
styles/AjaxMail.css" />

 <script type=" text/javascript" src="
scripts/zxml.js"></script>

 <script type=" text/javascript" src="
scripts/json.js"></script>

 <script type=" text/javascript" src="
scripts/AjaxMail.js"></script>

 </head>

 <body>

 <ul id=" ulMainMenu">

 <li id=" liCompose">

 Compose
Mail

 Inbox

 Trash

 (Empty)

 <div id=" divNotice"></div>

 <div id=" divFolder">

 <!-- folder view -->

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

 </div>

 <div id=" divReadMail" style=" display: none">

 <!-- read mail view -->

 </div>

 <div id=" divComposeMail" style=" display: none">

 <!-- compose mail view -->

 </div>

 <iframe id=" iLoader" src=" about:blank"></iframe>

 </body>

</html>

The page requires a style sheet, AjaxMail.css, along with three JavaScript files, the zXml
library file (zxml.js), the JSON library (json.js), and the JavaScript file containing all the
AjaxMail functionality (AjaxMail.js). Within the body is an unordered list containing three
links, one each for Compose Mail, the Inbox, and the Trash. The Trash link also has a link for
Empty next to it, which can be used to purge any messages in the Trash. Because each of
these links is to call a JavaScript function, there is no need to use a regular <a/> tag. Instead,
each link is implemented as a with a CSS class of link, which formats the text to
look like a regular link. The first link, Compose Mail, is made bold to call it out from the others.
The complete CSS for the main menu (contained in AjaxMail.css) is as follows:
span.link {

 text-decoration: underline;

 color: blue;

 cursor: pointer;

 cursor: hand;

}

#ulMainMenu {

 position: absolute;

 left: 0px;

 top: 0px;

 margin: 0px;

 padding: 10px;

}

#ulMainMenu li {

 display: block;

 padding: 2px 0px 2px 0px;

 margin: 0px;

 font-size: 80%;

}

#ulMainMenu #liCompose {

 font-weight: bold;

 padding: 2px 0px 8px 0px;

}

Next in the index.php page is a <div/> element called divNotice. This element is used to
display notifications to the user, which is critical in an Ajax application. Because the page itself
doesn't reload or change to another page, there is no indication if a particular operation was
successful. This area is used to relay such information.

AjaxMail needs two different types of notifications: one for general information and one for error
information. General information includes such things as notifying the user when an e-mail is
sent or deleted; error information is important when one of these actions is supposed to occur
but doesn't. A general information notification appears as a yellow box with a small "i" icon to
the left, whereas an error notification appears as a red box with an exclamation point icon to the
left (see Figure 9-1).

Figure 9-1

The divNotice element is dynamically assigned text as well as an appropriate CSS class,
info or error, to create the desired appearance. The styles are defined as follows:
#divNotice {

 -moz-box-sizing: border-box;

 box-sizing: border-box;

 padding: 4px;

 background-repeat: no-repeat;

 background-position: 4px 4px;

 padding-left: 24px;

 font-size: 60%;

 font-family: Arial,Helvetica,Sans-Serif;

 visibility: hidden;

 height: 16px;

 position: absolute;

 top: 5px;

 left: 150px;

 width: 600px;

}

div.info {

 background-color: #F7FFCD;

 background-image: url(../images/icon_info.gif);

 border: 1px solid #A5A54A;

}

div.error {

 background-color: #FFE6E6;

 background-image: url(../images/icon_alert.gif);

 border: 1px solid red;

}

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig339%5F01%5F0%2Ejpg&image_id=46&previd=IMG_46&titlelabel=Figure+9%2D1%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=580543158#ch09fig016F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch09fig016F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

By using the background-image property to assign the appropriate icon, you are able to
completely control the appearance of the notification area by using styles instead of worrying
about changing an element when the style is changed. The background-position
property states where the image should appear and setting the background-repeat property
to no-repeat ensures that only one copy of the image will be visible.

After the notification element comes a <div/> for each of the three AjaxMail views. The
<div/> element for the folder view, divFolder, is first in the page and is always visible by
default. The other two <div/> elements, divReadMail and divComposeMail, each have
their display property set to none so that they are not visible when the page is first loaded. The
contents of each <div/> element will be discussed later.

The last part of the page is an <iframe/> called iLoader. This hidden frame is used to
navigate back and forth throughout the three views of AjaxMail. Anytime a user interface switch
is made, the request goes through the hidden frame to allow the use of the Back and Forward
browser buttons.

The Folder View

The folder view is the first thing the user sees after the application is loaded. It consists of the
title of the folder (either Inbox or Trash), a pagination control that displays which messages are
being displayed and the total number of messages, and a list of e-mail messages (see Figure 9-
2). Taking a cue from Gmail, AjaxMail doesn't use table headers for the list of messages
because people are accustomed to seeing e-mail listed by the person who sent it, subject, and
date.

Figure 9-2

You may notice that the traditional check box next to each e-mail is missing. That's because
there is only one thing you can do with an e-mail in AjaxMail: delete it. Instead of a check box,
there is a red X next to each e-mail that can be clicked to delete it (move it to the Trash). When
you switch to the Trash folder, the icons change to a green arrow that, when clicked, moves the
e-mail back into the Inbox (see Figure 9-3).

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig340%5F01%5F0%2Ejpg&image_id=47&previd=IMG_47&titlelabel=Figure+9%2D2%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=580543158#ch09fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch09fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=580543158#ch09fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch09fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=580543158#ch09fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch09fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Figure 9-3

Aside from this difference, the folder view is the same regardless of which folder is displayed.
Additionally, each e-mail has an optional attachment indicator that appears next to the subject if
the e-mail contains an attachment. This icon is displayed only when an attachment is detected
on the e-mail; otherwise, it is hidden.

There's also a small "loading" message next to the name of the folder. This is used to indicate
when there is an open request to the server and disappears when the request is complete.
While a request is processing, no other actions can be taken to prevent overriding of requests.

The HTML for the folder view is fairly simple because a large amount of the display is created
by JavaScript depending on data received from the server:
<div id=" divFolder">

 <div id=" divFolderHeader" class=" header">

 <h1 id=" hFolderTitle">Inbox</h1>

 <div id=" divFolderStatus" class=" status">Loading...</div>

 <div id=" divItemCount">

 <img src=" images/btn_prev.gif" alt=" Previous Page"

 title=" Previous Page" id=" imgPrev" />

 <img src=" images/btn_next.gif" alt=" Next Page"

 title=" Next Page" id=" imgNext" />

 </div>

 </div>

 <table border="0" cellpadding="0" cellspacing="0" id=" tblMain">

 <thead>

 <tr id=" trTemplate">

 <td></td>

 <td class=" from"></td>

 <td class=" attachment">

 <img src=" images/icon_attachment.gif" title="
Attachment"

/></td>

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig341%5F01%5F0%2Ejpg&image_id=48&previd=IMG_48&titlelabel=Figure+9%2D3%3A+

 <td class=" subject"></td>

 <td class=" date" nowrap=" nowrap"></td>

 </tr>

 <tr id=" trNoMessages">

 <td colspan="5">There are no messages in this
folder.</td>

 </tr>

 </thead>

 <tbody>

 <tr style=" visibility: hidden">

 <td colspan="5"></td>

 </tr>

 </tbody>

 </table>

</div>

The first thing to notice about this code is that nearly every element has an id attribute
assigned. Any element that must be accessed via JavaScript needs to have an id attribute so
that it can be accessed using the document.getElementById() method directly. For
example, hFolderTitle contains the name of the folder, which is assigned by JavaScript after
the folder data is retrieved. Because this will happen frequently, the JavaScript needs a
reference to this element. Likewise, the divFolderStatus element that contains the loading
message needs an id attribute so that it can be shown and hidden when appropriate. The
spnItems element will be filled in with information about which messages are being displayed.
The trickiest part of the HTML is the table to display the messages.

Within the table is a <thead/> element that contains two rows: one called trTemplate and
one called trNoMessages. These rows are used as templates by JavaScript to create rows on-
the-fly. Since rows with these formats will be needed frequently, it is faster and more effective to
create the HTML and hide it from the user then to duplicate it and fill in the necessary
information. You'll see how this is done later in the chapter. For now, just know that neither of
these rows is directly visible by the user.

The <tbody/> element contains a single hidden row. This is done to set the initial browser
measurements for the table. Without this, each table row would be displayed incorrectly initially
because the browser had no standards from which to base its measurements. Providing this
hidden row gives the browser enough information to make sure that any further rows are
displayed properly.

Read View

The read view is quite simply designed to display an e-mail message so that the user can read
it (see Figure 9-4). It consists of a subject line followed by spaces for the sender's e-mail
address, the recipient's e-mail address, and the message date. There are also additional
spaces for displaying both CC and BCC information if necessary.

http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=580543158#ch09fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch09fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Figure 9-4

Under the message header information are links for Reply, Reply All, Forward, and View
Attachments. The last link appears only if there are attachments on the message. Each of the
first three links switches you to the compose view with some pre-filled information allowing you
to easily send an e-mail.

Below the links is the message body. Because AjaxMail supports only plain-text messages, it's
easy to format the text using CSS. If there are any attachments, they are listed below the main
message text. You can click the name of an attachment to download it.

The read view HTML is also very simple for the same reason, because most of the information
is added later on by JavaScript.
<div id=" divReadMail" style=" display: none">

 <div class=" header">

 <h1 id=" hSubject"></h1>

 </div>

 <div class=" message-headers">

 <div id=" divMessageFrom"></div>

 <div id=" divMessageDate"></div>

 </div>

 <div id=" divMessageTo"></div>

 <div id=" divMessageCC"></div>

 <div id=" divMessageBCC"></div>

 <ul class=" message-actions">

 Reply

 Reply
All

 Forward

 <li id=" liAttachments">View
Attachments

 <div id=" divMessageBody"></div>

 Attachments

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig343%5F01%5F0%2Ejpg&image_id=49&previd=IMG_49&titlelabel=Figure+9%2D4%3A+

 <div id=" divMessageAttachments">

 <ul id=" ulAttachments">

 </div>

</div>

As with the folder view, nearly every element for the read view has an id attribute. The
hSubject element is used to display the subject of the message, whereas the
divMessageBody element is used to display the message text. The divMessageFrom,
divMessageDate, divMessageTo, divMessageCC, and divMessageBCC elements are
used to display each type of header information for the message. Immediately following those
elements are the message actions, Reply, Reply All, Forward, and View Attachments. Note that
only the View Attachments link uses an <a/> element. This is to take advantage of HTML
anchors to move the screen's view down the page to the attachments list. All the other links are
implemented using elements with the link CSS class. The attachments are listed in
the ulAttachments element. If there are no attachments, the entire
divMessageAttachments element is hidden.

Compose View

The compose view does a lot of work in the user interface for AjaxMail. It is used not only to
create new e-mail messages, but also for replying to and forwarding e-mails. To keep things
simple for this book, the compose view supports only the To and CC fields (no BCC) and does
not enable you to send attachments.

This view consists of a text box for the To, CC, and subject fields, and the message of the e-
mail (see Figure 9-5). There are also two links, Send and Cancel. Send begins the process of
sending the e-mail, and Cancel places the user back into the previous view (either folder view or
read view).

Figure 9-5

The HTML for this view consists mostly of a form with text fields:
<div id=" divComposeMail" style=" display: none">

 <div class=" header">

 <h1 id=" hComposeHeader">Compose Mail</h1>

 </div>

 <div id=" divComposeMailForm">

 <ul id=" ulComposeActions" class=" message-actions">

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig345%5F01%5F0%2Ejpg&image_id=50&previd=IMG_50&titlelabel=Figure+9%2D5%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=580543158#ch09fig056F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch09fig056F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

 Send

 <span class=" link" id="
spnCancel">Cancel

 <div id=" divComposeBody">

 <form method=" post" name=" frmSendMail">

 <table border="0" cellpadding="0" cellspacing="0">

 <tr>

 <td class=" field-label-container">

 <label for=" txtTo" class=" field-
label">To:</label></td>

 <td class=" field-container">

 <textarea rows="2" cols="30" id=" txtTo"
name=" txtTo"

 class=" form-
field"></textarea></td>

 </tr>

 <tr>

 <td class=" field-label-container">

 <label for=" txtCC" class=" field-
label">CC:</label></td>

 <td class=" field-container">

 <textarea rows="2" cols="30" id=" txtCC"
name=" txtCC"

 class="form-
field"></textarea></td>

 </tr>

 <tr>

 <td class="field-label-container">

 <label for="txtSubject"

 class="field-
label">Subject:</label></td>

 <td class="field-container">

 <input type="text" id=" txtSubject" name="
txtSubject"

 class="form-field" /></td>

 </tr>

 <tr>

 <td class="message-container" colspan="2">

 <textarea id="txtMessage" name="txtMessage"
rows="15"

 cols="30" class="form-
field"></textarea></td>

 </tr>

 </table>

 </form>

 </div>

 </div>

 <div id="divComposeMailStatus" style=" display: none">

 <h2>Sending...</h2>

 </div>

</div>

There are two main parts of this view: divComposeBody, which contains the form, and
divComposeMailStatus, which displays a notification that a message is being sent. When
Send is clicked, divComposeMailStatus is shown with the Sending … message as well as
an animated image to indicate that the message is in the process of being sent. If an error
occurs during the process, an alert will be displayed to the user and the form will once again be
made visible. If, on the other hand, the message goes through without any problems, the user is
returned to the previous view (as if he or she clicked Cancel) and a notification is displayed
stating that the message was sent successfully.

Layout

To ensure the user interface has a consistent feel, each view must be laid out so that one can
easily slide into the place of the others when necessary. To accomplish this, each view is
positioned absolutely in the same location:
#divFolder,

#divReadMail,

#divComposeMail {

 position: absolute;

 top: 35px;

 left: 150px;

 width: 600px;

 -moz-box-sizing: border-box;

 box-sizing: border-box;

}

The last two CSS properties, -moz-box-sizing and box-sizing, are used to ensure that
the measurements are the same across all browsers. By default, Internet Explorer renders
everything using the border box calculations, whereas others don't. These two lines (the first for
Mozilla, the second for others) ensure that the size remains consistent regardless of the
browser. The rest of the style information places each view in the same location on the screen
and makes each view have the same width (although the height is allowed to grow and shrink,
as necessary).

Next, the iframe must be hidden so that it doesn't disrupt the page flow. Because the iframe's
id attribute is set, you can refer to it directly:
#iLoader {

 display: none;

}

Also remember that the <thead/> element needs to be hidden so that it won't display the
template rows in the folder view:

thead {

 display: none;

}

Tying it All Together
Now that you know all about the architecture, database, user interface, and server-side
components, it's time to glue it all together using JavaScript. To begin, you need to define some
constants. The first constants are simply locations of various resources that need to be used by
AjaxMail:
var sAjaxMailURL = "AjaxMailAction.php";

var sAjaxMailNavigateURL = "AjaxMailNavigate.php";

var sAjaxMailAttachmentURL = "AjaxMailAttachment.php";

var sAjaxMailSendURL = "AjaxMailSend.php";

var sImagesDir = "images/";

var sRestoreIcon = sImagesDir + "icon_restore.gif";

var sDeleteIcon = sImagesDir + "icon_delete.gif";

var sInfoIcon = sImagesDir + "icon_info.gif";

var sErrorIcon = sImagesDir + "icon_alert.gif";

var aPreloadImages = [sRestoreIcon, sDeleteIcon, sInfoIcon,
sErrorIcon];

The first parts of this code simply define the URLs used to make requests back to the server.
These will be used later to integrate the Ajax interface. The second part of this code identifies
images that are necessary for the user interface and then places them into an array called
aPreloadImages. These images are preloaded so that the user interface responds quickly:
for (var i=0; i < aPreloadImages.length; i++) {

 var oImg = new Image();

 oImg.src = aPreloadImages[i];

}

This code uses an Image object, which is essentially an invisible element. Because not
all of these images are necessary when the application is first loaded, most won't be loaded
until used for the first time. This could result in a delay that may be confusing to users.
Preloading the images prevents this issue from occurring.

Next, there are some messages and strings that need to be displayed to the user. It helps to
define these early in the code so that it's easy to change the messages in the future, if
necessary:
var sEmptyTrashConfirm =

 "You are about to permanently delete everything in the
Trash. Continue?";

var sEmptyTrashNotice = "The Trash has been emptied.";

var sDeleteMailNotice = "The message has been moved to the Trash.";

var sRestoreMailNotice = "The message has been moved to your Inbox.";

var sRestore = "Restore";

var sDelete = "Move to the Trash";

var sTo = "To ";

var sCC = "CC ";

var sBCC = "BCC ";

var sFrom = "From ";

When one of the notices is displayed, you really want to show it only for a short amount of time
so that it doesn't become distracting to the user or blend in with the rest of the screen. The
variable iShowNoticeTime indicates the duration (in number of milliseconds) for a notice to
appear on the screen. By default, this is 5 seconds (5000 milliseconds):
var iShowNoticeTime = 5000;

The last bit of code to be defined ahead of time is a couple of constants and an array:
var INBOX = 1;

var TRASH = 2;

var aFolders = [""," Inbox", "Trash"];

In this code, the first two variables are constants defining the numeric identifiers for the Inbox
and Trash folders. These coincide with the values they have in the database. The array of
strings contains the names for each of the folders so these don't have to be returned from the
database all the time. The first string in the array is empty since it will never be used. (There is
no folder with a numeric ID of zero.)

Important In an actual implementation, you may choose to have these variables

generated by some server-side process that reads the values out of the
database and outputs appropriate JavaScript code. For simplicity in this
example, these values are defined right in the JavaScript file.

Helper Functions
Before diving into the main part of the code, there are some helper functions that are necessary.
Helper functions are functions that aren't necessarily specific to a particular application but
perform some process that is necessary. AjaxMail has a handful of helper functions.

The first helper function is one that you have seen before. The getRequestBody() function
was introduced in Chapter 2 to serialize the data in an HTML form so that it can be passed into
an XMLHttp request. This function is necessary once again for AjaxMail. To refresh your
memory, here's what the function looks like:
function getRequestBody(oForm) {

 var aParams = new Array();

 for (var i=0 ; i < oForm.elements.length; i++) {

 var sParam = encodeURIComponent(oForm.elements[i].name);

 sParam += "=";

 sParam += encodeURIComponent(oForm.elements[i].value);

 aParams.push(sParam);

 }

 return aParams.join("&");

}

This code is exactly the same as it was in Chapter 2 and will be used to send e-mail messages.

One problem with e-mail addresses is that they can be specified in any number of formats. For
example:

 myname@somewhere.com

http://www.books24x7.com/viewer.asp?bkid=13421&destid=79#79
http://www.books24x7.com/viewer.asp?bkid=13421&destid=79#79

 My Real Name <myname@somewhere.com>
 "My Real Name" <myname@somewhere.com>

If you use e-mail frequently, you'll probably recognize these formats as they are used in most
major e-mail applications. When displaying an e-mail's sender in the folder view, AjaxMail
displays the real name only. If no real name is present, the e-mail address is shown. To handle
this, a helper function called cleanupEmail() is used:
var reNameAndEmail = /(.*?)<(.*?)>/i;

function cleanupEmail(sText) {

 if (reNameAndEmail.test(sText)) {

 return RegExp.$1.replace(/"/g, "");

 } else {

 return sText;

 }

}

The most important part of the function is actually the regular expression reNameAndEmail,
which matches a string containing both a real name and an e-mail address regardless of the
use of quotation marks. Inside the function, the text is tested against this regular expression. If
test() returns true, that means the e-mail address contains both pieces of information and
you should extract the real name (which is stored in RegExp.$1). However, this name may
have quotation marks in it, so the next step is to replace all the quotation marks with an empty
string using the replace() method. If, on the other hand, the regular expression doesn't match
the text that was passed in, this means that it contains just an e-mail address, so it is returned
without any changes.

The last helper function is called htmlEncode(), and it simply replaces greater-than (>), less-
than (<), ampersand (&), and quote ("") characters with their appropriate HTML entities. This
ensures that no dangerous HTML will be created when reading text from an e-mail:
function htmlEncode(sText) {

 if (sText) {

 return sText.replace(/&/g, "&").replace(/</g,
"<").replace(/>/g,

">").replace(/"/g, """)

 } else {

 return "";

 }

}

This function also checks to make sure text is passed in. If sText is null, the function returns
an empty string; otherwise, the replacements are done using the replace() method.

The Mailbox

The main part of the AjaxMail application is the mailbox. This is a single JavaScript object
containing all the properties and methods necessary to run the user interface. Because there
should be only one instance of this object, it is defined using object literal notation:
var oMailbox = {

 info: new Object(),

 processing: false,

 message: new Object(),

 nextNotice: null,

 //more code here

}

The mailbox object is stored in a variable named oMailbox and has four properties. The first
property, info, is an object that will contain the folder information for the folder view. This
object will be returned from the server but is initialized here to a generic object to avoid possible
errors. Next is the processing property, which is simply a Boolean flag indicating whether the
application is processing a request. When set to true, no other processes can be initiated. The
third property is message, which will contain an object describing the message being read in
the read view. Once again, this property is initialized to an empty object in order to avoid
possible errors. The last property, nextNotice, is used by several callback functions to
determine which notice should be displayed once a particular process has completed.

Before you can begin interacting with the user interface, it helps to store references to the
elements you'll be using the most. You can do this by using document.getElementById()
repeatedly, but that would require a lot of lines of code for all the elements used in AjaxMail.
Instead, it's faster and more efficient to iterate over all the elements in a page and add a
reference to each one that has an id attribute. This is part of the job of the init() method:
init: function () {

 var colAllElements = document.getElementsByTagName("*");

 if (colAllElements.length == 0) {

 colAllElements = document.all;

 }

 for (var i=0; i < colAllElements.length; i++) {

 if (colAllElements[i].id.length > 0) {

 this[colAllElements[i].id] = colAllElements[i];

 }

 }

 //more code here

},

This method first calls document.getElementsByTagName() and passes in an asterisk. In
DOM-compliant browsers, this should return a collection of all the elements in the document.
However, the Internet Explorer implementation doesn't support this usage, so you'll also need to
be prepared for this. If the returned collection has no elements (length is not greater than
zero), this means that Internet Explorer is in use. To work around this limitation, you can use the
document.all collection (supported in Internet Explorer only) in place of the collection
returned from getElementsByTagName(). Once colAllElements contains a usable
collection, you can then iterate over the collection using a for loop. If the element has an id
property (the length of the id property is greater than zero), a reference is saved on the
mailbox object. So divFolderStatus is saved to the mailbox object as a property named
divFolderStatus and can be accessed using this.divFolderStatus inside of a method
or oMailbox.divFolderStatus outside of a method.

Data Loading Methods
The mailbox object uses two types of data: folder information and message information. Folder
information is returned as a JSON string from the server and then parsed into an object
containing information about the given folder. A typical folder information object looks like this:
{

 "messageCount":2,

 "page":1,

 "pageCount":1,

 "folder":1,

 "firstMessage":1,

 "unreadCount": 1,

 "messages":[

 {

 "id":"64",

 "from":" Joe Smith <joe@smith.com>",

 "subject":" Re: How about this weekend?",

 "date":" Oct 29 2005",

 "hasAttachments":false,

 "unread":true

 },

 {

 "id":"63",

 "from":" Joe Smith <joe@smith.com>",

 "subject":" How about this weekend?",

 "date":" Oct 29 2005",

 "hasAttachments":false,

 "unread":false

 }

]

}

This object is stored in the info property of the mailbox so that it can be used by all methods.
To assign the data, the loadInfo() method is used. Because you may have an object or a
JSON string to assign, this method needs to check the type of the argument that is passed in:
loadInfo: function (vInfo) {

 if (typeof vInfo == "string") {

 this.info = JSON.parse(vInfo);

 } else {

 this.info = vInfo;

 }

},

mailto:joe@smith.com
mailto:joe@smith.com

If vInfo is a string, it is parsed into an object using JSON.parse(); otherwise, it's an object,
so it can be directly assigned to the info property. This object is used whenever a folder page
is rendered, but there is also some data needed to display an individual e-mail.

The JSON object representing a single e-mail message is in the following format:
{

 "id":"63",

 "to":" you@somewhere.com",

 "from":" Joe Smith <joe@smith.com>",

 "cc":"",

 "subject":" How about this weekend?",

 "bcc":"",

 "date":" Oct 29, 2005 05:15 AM",

 "hasAttachments":false,

 "unread":true,

 "message":" I was thinking this weekend would be good? How about
you?
Joe",

 "attachments":[],

 "unreadCount":8

}

When a message is viewed in AjaxMail, this information is assigned to the message property so
that it is accessible from all methods. The loadMessage() method accepts either an object or
a JSON string containing this message information and assigns it to the message property:
loadMessage: function (vMessage) {

 if (typeof vMessage == "string") {

 this.message = JSON.parse(vMessage);

 } else {

 this.message = vMessage;

 }

},

As you can see, this is essentially the same as loadInfo(); it just deals with different data.
These two methods are critical because they are the primary means of passing data from the
server to the client.

User Notification Methods
You will remember the processing property from the mailbox object description earlier. To set
the value of this property, a special method called setProcessing() is used. The sole
argument for this method is a Boolean value, set to true when the mailbox is processing or
false when it is not. This method also shows the divFolderStatus element whenever the
mailbox is processing:
setProcessing: function (bProcessing) {

 this.processing = bProcessing;

 this.divFolderStatus.style.display = bProcessing ? "block" :
"none";

},

mailto:joe@smith.com

If the bProcessing argument is true, the divFolderStatus element has its display
property set to block, ensuring that it is visible; otherwise, the property is set to none, hiding it
from view. This method is used throughout the mailbox object to prevent multiple simultaneous
requests from occurring.

Another method used throughout is showNotice(), which displays a notice to the user
regarding the state of a request:
showNotice: function (sType, sMessage) {

 var divNotice = this.divNotice;

 divNotice.className = sType;

 divNotice.innerHTML = sMessage;

 divNotice.style.visibility = "visible";

 setTimeout(function () {

 divNotice.style.visibility = "hidden";

 }, iShowNoticeTime);

},

This method accepts two arguments: the type of message (either info or error) and the
message to be displayed. The type of message also is the CSS class that will be assigned to
divNotice, giving it the appropriate format. The message is assigned to the element via the
innerHTML property, which means you can include HTML code in the message if necessary.
After that, the element is made visible to the user by setting the visibility property to
visible. Since the message should be displayed only for a specific amount of time, the
setTimeout() function is used to determine when the visibility property should be set
back to hidden. The interval is the global variable iShowNoticeTime that was defined earlier.
Any notice displayed using this method will be shown immediately and then disappear after the
designated amount of time.

Communication Methods
There are two different ways that AjaxMail communicates with the server: through XMLHttp and
through a hidden iframe. To provide for this, several methods are used to encapsulate most of
the communication functionality so that other functions can use them directly.

All XMLHttp GET requests are made through the request() method. This method takes three
arguments: the action to perform, a callback function to notify when the request is complete,
and an optional e-mail message ID. Every request going through this method goes to
AjaxMailAction.php, passing in the action (the first argument) on the query string. Here's
the complete method:
request: function (sAction, fnCallback, sId) {

 if (this.processing) return;

 try {

 this.setProcessing(true);

 var oXmlHttp = zXmlHttp.createRequest();

 var sURL = sAjaxMailURL + "?folder=" +this.info.folder +
"&page="

 + this.info.page + "&action=" + sAction;

 if (sId) {

 sURL += "&id=" + sId;

 }

 oXmlHttp.open("get", sURL, true);

 oXmlHttp.onreadystatechange = function (){

 try {

 if (oXmlHttp.readyState == 4) {

 if (oXmlHttp.status == 200) {

 fnCallback(oXmlHttp.responseText);

 } else {

 throw new Error("An error occurred while
attempting to

contact the server. The action ("+ sAction + ") did not complete.");

 }

 }

 } catch (oException) {

 oMailbox.showNotice("error", oException.message);

 }

 };

 oXmlHttp.send(null);

 } catch (oException) {

 this.showNotice("error", oException.message);

 }

},

Note that the very first line checks to see if the mailbox is processing another request. If it is, the
function returns without executing the next request. Otherwise, the standard try...catch
arrangement involving an XMLHttp object is executed. Before anything is done,
setProcessing() is called to indicate that a request has begun. The URL is constructed by
adding the current folder ID and page to the query string, followed by the action to perform. If a
message ID is specified (sID), that is also added to the query string so that the action can be
completed. Next, the XMLHttp object is initialized and the onreadystatechange event
handler is assigned. Inside the event handler, the callback function (fnCallback) is called
when the request succeeds, passing in the response text. If an error occurs during this process,
a custom error is thrown. When the catch statement intervenes, the showNotice() method is
used to display details about the message.

The method to send an e-mail is very similar, but uses a POST request instead:
sendMail: function () {

 if (this.processing) return;

 this.divComposeMailForm.style.display = "none";

 this.divComposeMailStatus.style.display = "block";

 try {

 this.setProcessing(true);

 var oXmlHttp = zXmlHttp.createRequest();

 var sData = getRequestBody(document.forms["frmSendMail"]);

 oXmlHttp.open("post", sAjaxMailSendURL, true);

 oXmlHttp.setRequestHeader("Content-Type",

 "application/x-www-form-
urlencoded");

 oXmlHttp.onreadystatechange = function (){

 try {

 if (oXmlHttp.readyState == 4) {

 if (oXmlHttp.status == 200) {

 sendConfirmation(oXmlHttp.responseText);

 } else {

 throw new Error("An error occurred while
attempting to

contact the server. The mail was not sent.");

 }

 }

 } catch (oException) {

 oMailbox.showNotice("error", oException.message);

 }

 };

 oXmlHttp.send(sData);

 } catch (oException) {

 this.showNotice("error", oException.message);

 }

},

As with the request() method, the sendMail() method begins by checking to see if the
mailbox is processing a request. If there are no other requests active, some user interface
changes are made. First, the compose mail form is hidden from view by setting its display
property to none. Then, the status area is shown by setting its display property to block.
This effectively shows that the mail is being sent as an animated GIF plays.

Next, the setProcessing() method is called to indicate a request has begun and a data
string is created by calling getRequestBody() on the mail form. After initializing the
oXmlHttp object, the appropriate request header is set. The onreadystatechange event
handler is the standard setup, and the response text is passed into the sendConfirmation()
function (described in the upcoming Callback Functions section).

The last communication method is navigate(), which is used whenever the user interface
change should be recorded in the browser history (allowing the user to click Back and Forward
to navigate through the user interface changes). This method uses the hidden iframe to make
requests to the server and receive responses back:
navigate: function (sAction, sId) {

 if (this.processing) return;

 try {

 this.setProcessing(true);

 var sURL = sAjaxMailNavigateURL + "?folder=" +this.info.folder

 + "&page=" + this.info.page +
"&action=" + sAction;

 if (sId) {

 sURL += "&id=" + sId;

 }

 this.iLoader.src = sURL;

 } catch (oException) {

 this.showNotice("error", oException.message);

 }

},

This method accepts only two arguments: an action to perform and an optional message ID
(similar to request()). As with the other communication methods, this one begins by checking
to see if the mailbox is processing another request and exits the method if that is the case.
Otherwise, a standard try…catch block surrounds the rest of the code to catch any errors
that may occur. Then, the processing flag is set to true to indicate a new request has
begun. The URL is constructed in the same manner as in request(), adding the message ID
only if it has been supplied. Last, the URL is assigned to the iframe via the src property. Now it
is up to the page returned in the iframe to notify the mailbox that processing has been
completed.

Rendering Methods
The most complex methods of the mailbox object are those relating to the rendering of data
onto the screen. There are two methods: renderFolder(), which displays a mailbox folder,
and renderMessage(), which displays a single e-mail message. Both of these use a small
method called updateUnreadCount() that is responsible for updating the number of unread
messages next to the Inbox link:
updateUnreadCount: function (iCount) {

 this.spnUnreadMail.innerHTML = iCount > 0 ? "("+ iCount + ")" :
"";

}

This method expects the number of unread messages to be passed in as an argument. If that
number is greater than 0, the spnUnreadMail element is updated to display that number;
otherwise, the element is assigned an empty string. With this method defined, it's time to take a
look at the two more complicated methods.

The renderFolder() method uses the info property to display the appropriate e-mail
messages in the folder view. To begin, this method clears the folder view of all message
information so that it can easily build up and insert new information:
renderFolder: function () {;

 var tblMain = this.tblMain;

 while (tblMain.tBodies[0].hasChildNodes()) {

 tblMain.tBodies[0].removeChild(tblMain.tBodies[0].firstChild);

 }

 //more code here

},

This first part of the method stores a reference to tblMain in a local variable and then
proceeds to remove all the child nodes from the <tbody/> element (referenced as
tblMain.tBodies[0]). With all of the rows removed, it's now okay to start adding rows.

The next part of the method creates the DOM representation for the messages. Note that for
simplicity, only the additions to the method are shown:
renderFolder: function () {;

 //remove all existing rows

 var oFragment = document.createDocumentFragment();

 if (this.info.messages.length) {

 for (var i=0; i < this.info.messages.length; i++) {

 var oMessage = this.info.messages[i];

 var oNewTR = this.trTemplate.cloneNode(true);

 oNewTR.id = "tr" + oMessage.id;

 oNewTR.onclick = readMail;

 if (oMessage.unread) {

 oNewTR.className = "new";

 }

 var colCells = oNewTR.getElementsByTagName("td");

 var imgAction = colCells[0].childNodes[0];

 imgAction.id = oMessage.id;

 if (this.info.folder == TRASH) {

 imgAction.onclick = restoreMail;

 imgAction.src = sRestoreIcon;

 imgAction.title = sRestore;

 } else {

 imgAction.onclick = deleteMail;

 imgAction.src = sDeleteIcon;

 imgAction.title = sDelete;

 }

 colCells[1].appendChild(

document.createTextNode(cleanupEmail(oMessage.from)));

 colCells[2].firstChild.style.visibility =
oMessage.hasAttachments ?

 "visible" : "hidden";

 colCells[3].appendChild(

document.createTextNode(htmlEncode(oMessage.subject)));

colCells[4].appendChild(document.createTextNode(oMessage.date));

 oFragment.appendChild(oNewTR);

 }

 } else {

 var oNewTR = this.trNoMessages.cloneNode(true);

 oFragment.appendChild(oNewTR);

 }

 tblMain.tBodies[0].appendChild(oFragment);

 //more code here

},

In this section of the code, the first step is to create a document fragment upon which the DOM
will be built. Next, the number of messages is checked. If there is at least one message, the
view must be built accordingly; otherwise, a clone of trNoMessages is created and added to
the fragment in place of any other rows. When there are messages, however, the process is a
bit more involved.

For each message, the process begins by storing the message in a local variable, oMessage.
This is retrieved from the info property in the messages array. Next, a clone of the template
row trTemplate is created and stored in oNewTR (passing in true to cloneNode() ensures
that all nodes are cloned, not just the <tr/> element itself). Next, the ID of the row is assigned
by prepending tr to the message's ID. Then, the onclick event handler is assigned to be
readMail(), which is defined later in the "Event Handlers" section. If the message hasn't been
read yet, oMessage.unread will be true, so the row will be assigned a CSS class of new. The
next step is to assign data into each of the table cells.

To make references to the cells easier, the getElementsByTagName() method is used to
extract a collection of just the table cells (colCells). The action icon, either to delete or restore
the message, is in the first cell. The actual element is stored in imgAction for easy
reference. Then, the image is assigned an ID equal to the message ID. To determine what the
image should do when clicked, the current folder is checked by using info.folder. If the
current folder is the Trash, then the image is set up to restore the e-mail by setting the
onclick, src, and title properties to restore-specific values; otherwise, the icon is set up to
delete e-mail by setting the same properties to delete-specific values. Both restoreMail()
and deleteMail() are global functions used as event handlers. These are discussed in the
"Event Handlers" section.

The second cell in each row should display who the e-mail is from, so oMessage.from is
passed to the helper function cleanupEmail(), which was defined earlier in the chapter. The
result of this function call is passed into document.createTextNode() to create the text for
the cell, which is added using appendChild().

For the third cell in the row, you need to decide if the attachments icon should be displayed or
not. If oMessage.hasAttachments is true, then the visibility of the icon is set to
visible; otherwise. it's set to hidden. This is done using a compound assignment statement
instead of an if statement for simplicity.

The fourth table cell contains the e-mail subject, which is passed into htmlEncode() to ensure
that all characters are displayed correctly. This text is then used to create a text node that is
added to the cell in the same way as the first cell. The fifth cell simply displays the message
date after it is added to it as a text node. Then, the entire row is added to the document
fragment before the loop begins again.

http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=988660704#ch09lev2sec136F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch09lev2sec136F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=988660704#ch09lev2sec136F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch09lev2sec136F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

Regardless of the number of messages, the fragment is passed into the appendChild()
method of the table body to add the rows to the folder view. However, the user interface isn't
complete yet; there is still other information that must be updated.

Specifically, the folder title must be displayed, the unread message count must be updated, and
the pagination control must be initialized:
renderFolder:function () {

 //delete all existing rows

 //create rows for messages

 if (this.hFolderTitle.innerHTML != aFolders[this.info.folder]) {

 this.hFolderTitle.innerHTML = aFolders[this.info.folder];

 }

 this.updateUnreadCount(this.info.unreadCount);

 this.spnItems.style.visibility = this.info.messages.length ?

 "visible" : "hidden";

 this.spnItems.innerHTML = this.info.firstMessage + "-"

 + (this.info.firstMessage + this.info.messages.length - 1) +
"of "

 + this.info.messageCount;

 if (this.info.pageCount > 1) {

 this.imgNext.style.visibility = this.info.page <
this.info.pageCount ?

 "visible" : "hidden";

 this.imgPrev.style.visibility = this.info.page > 1 ? "visible"
: "hidden";

 } else {

 this.imgNext.style.visibility = "hidden";

 this.imgPrev.style.visibility = "hidden";

 }

 this.divFolder.style.display = "block";

 this.divReadMail.style.display = "none";

 this.divComposeMail.style.display = "none";

},

The first step in this section of code is to set the contents of the hFolderTitle element to the
name of the folder, but only if it's different from the one currently being displayed. To do so, use
the innerHTML element to both get and set the value (if necessary). Next, the number of
unread messages is passed into updateUnreadCount() to update the number of unread
messages next to the Inbox link.

If there is at least one message, spnItems must be displayed. This is the element that displays
the currently viewed message count, such as "1-10 of 21." If there is at least one message, its
visibility property is set to visible; otherwise, it is set to hidden. Then, the contents of
the element are created by using various properties of the info object. The firstMessage
property returns the number of the first message returned in this page. You can then calculate
the number of the last message returned by adding the number of messages to firstMessage
and then subtracting one. The total number of messages is returned in the messageCount
property.

When there is more than one page of messages to be displayed, the imgNext and imgPrev
images should be shown, but not always at the same time. If you are on the first page, for
instance, imgPrev should not be shown; likewise for imgNext on the last page. By using the
page property to get the current page, you can determine whether the image should be visible
and display the appropriate value for the visibility property. Of course, if there is only one
page, neither image needs to be displayed.

The very last step is to show the divFolder element and hide both divReadMail and
divComposeMail from sight. This initializes the application to the folder view. When the user
clicks a message in the list, it brings up the read view, which is rendered by the
renderMessage() method.

Just as the renderFolder() method used the info property to determine what to render, the
renderMessage() method uses the message property for the same reason. All the
information necessary to display a single e-mail is contained within the message property. To
begin, you assign the contents of each element in the read view using values from message:
renderMessage: function () {

 this.hSubject.innerHTML = htmlEncode(this.message.subject);

 this.divMessageFrom.innerHTML = sFrom + ""+
htmlEncode(this.message.from);

 this.divMessageTo.innerHTML = sTo + ""+
htmlEncode(this.message.to);

 this.divMessageCC.innerHTML = this.message.cc.length ?

 sCC + ""+ htmlEncode(this.message.cc) : "";

 this.divMessageBCC.innerHTML = this.message.bcc.length ?

 sBCC + ""+ htmlEncode(this.message.bcc) : "";

 this.divMessageDate.innerHTML = this.message.date;

 this.divMessageBody.innerHTML = this.message.message;

 //more code here

 this.updateUnreadCount(this.message.unreadCount);

 this.divFolder.style.display = "none";

 this.divReadMail.style.display = "block";

 this.divComposeMail.style.display = "none";

},

Each of the elements responsible for displaying the various parts of the e-mail are assigned
data from the message object. Of course, most of these values use htmlEncode() to ensure
that the data is displayed correctly. For the CC and BCC fields, their values are assigned only if
they contain data to begin with. If not, the divMessageCC and divMessageBCC fields are
assigned empty strings, which effectively hides them from view.

Then the unread message count is updated. This is being updated here as well because there's
no reason to waste a round trip to the server and not get such a small piece of information. The
last step in the process is to hide divFolder and divComposeMail while showing
divReadMail. However, there is some code missing from this method. The previous code
doesn't take into account attachments.

Dealing with attachments essentially means outputting a list of all the attachments for a
message and linking them so that each can be downloaded with a simple click. The
ulAttachments element, which is part of the code in index.php, should be shown only
when there is at least one attachment. Here's how to build this section of the view:
renderMessage: function () {

 this.hSubject.innerHTML = htmlEncode(this.message.subject);

 this.divMessageFrom.innerHTML = sFrom + ""+
htmlEncode(this.message.from);

 this.divMessageTo.innerHTML = sTo + ""+
htmlEncode(this.message.to);

 this.divMessageCC.innerHTML = this.message.cc.length ?

 sCC + ""+ htmlEncode(this.message.cc) : "";

 this.divMessageBCC.innerHTML = this.message.bcc.length ?

 sBCC + ""+ htmlEncode(this.message.bcc) : "";

 this.divMessageDate.innerHTML = this.message.date;

 this.divMessageBody.innerHTML = htmlEncode(this.message.message);

 if (this.message.hasAttachments) {

 this.ulAttachments.style.display = "";

 var oFragment = document.createDocumentFragment();

 for (var i=0; i < this.message.attachments.length; i++) {

 var oLI = document.createElement("li");

 oLI.className = "attachment";

 oLI.innerHTML = "<a href=\"" + sAjaxMailAttachmentURL +
"?id="

 + this.message.attachments[i].id + "\"
target=\"_blank\">"

 + this.message.attachments[i].filename + " ("

 + this.message.attachments[i].size + ")";

 oFragment.appendChild(oLI);

 }

 this.ulAttachments.appendChild(oFragment);

 this.liAttachments.style.display = "";

 } else {

 this.ulAttachments.style.display = "none";

 this.liAttachments.style.display = "none";

 this.ulAttachments.innerHTML = "";

 }

 this.updateUnreadCount(this.message.unreadCount);

 this.divFolder.style.display = "none";

 this.divReadMail.style.display = "block";

 this.divComposeMail.style.display = "none";

},

Naturally, the first step in rendering attachment information is to check if there are any
attachments using the hasAttachments property. If there are attachments, the
ulAttachments element is displayed and the attachments are iterated over, creating a new
 element for each one and assigning additional information using the innerHTML
property. Each of these new elements is added to a document fragment for efficiency. When all
attachments have had their DOM representation created, the fragment is appended to
ulAttachments. Then, the liAttachments element is displayed by setting its display
property to an empty string. This element contains the View Attachments link in the message
header.

If there are no attachments to the message, ulAttachments and liAttachments are hidden
from view by setting their display properties to none. Additionally, © is cleared of all its data
by setting innerHTML to an empty string. This prevents attachments from showing up on e-
mails that they weren't attached to.

Action Methods
With all the Ajax request methods and callback functions in place, you now have all the tools
necessary to create the functionality of an e-mail application. For each action, it's important to
have a clear idea of how the user interface should respond and what the user would expect.

To begin, consider the task of deleting an e-mail message. When the user clicks on the red X
next to a message, the message should be deleted (moved to the Trash). The Back and
Forward button are of no use here, because you'd never want to take the user back to a point
where the e-mail is still in the list. That means the request() method should be used. Next,
should this action cause a user interface change? Yes, the message should disappear from the
list. Therefore, you need to use the request() method with the loadAndRender() callback
function:
deleteMessage: function (sId) {

 this.nextNotice = sDeleteMailNotice;

 this.request("delete", loadAndRender, sId);

},

Because you want to delete a specific message, the message ID must be passed into the
method. To prepare for the action, the nextNotice property is set to the delete mail notice
string. Then, request() is called, passing in the delete string, the loadAndRender()
callback function, and the message ID. When the request is completed, the notice is displayed
and the user can continue interacting with the application knowing that the message has been
moved to the Trash. To restore the message from the Trash, you can use the same
methodology.

When the user is viewing the messages in the Trash, a click on the green arrow restores the
message (moves it to the Inbox). This is essentially the same as the delete operation; it simply
changes where the message is stored. Not surprisingly, the method is very similar:
restoreMessage: function (sId) {

 this.nextNotice = sRestoreMailNotice;

 this.request("restore", loadAndRender, sId);

},

Once again, this function assigns a notice to be displayed when the request completes and
uses request() to restore the message represented by the message ID (sID).

The Trash also has a special action: empty. When the Trash is emptied, all the messages in it
are permanently deleted and cannot be recovered. This action is interesting in that it behaves
differently depending on what the user is looking at. If the Inbox is being viewed, it's still
possible to click the Empty link. In this case, you don't want to change the user interface, aside
from letting the user know that the Trash has been emptied. If, on the other hand, the user is
viewing the message in the Trash, the user interface should refresh to show that the Trash is
empty. Therefore, the emptyTrash() method is a little more involved:
emptyTrash: function () {

 if (confirm(sEmptyTrashConfirm)) {

 this.nextNotice = sEmptyTrashNotice;

 if (this.info.folder == TRASH) {

 this.request("empty", loadAndRender);

 } else

 this.request("empty", execute);

 }

 }

},

In this method, the first step is to confirm that the user actually wants to empty the Trash. Using
the JavaScript confirm() function with sEmptyTrashConfirm presents a dialog box to the
user with two options: OK or Cancel. If the user clicks OK, confirm() returns true and the
Trash should be emptied. So, the nextNotice property is assigned as with the previous
methods. Next, the currently displayed folder is checked. If it's the Trash, request() is called
with the loadAndRender() callback function to update the display; if it's not Trash,
request() is called with execute() so that the user interface isn't updated.

Thus far, the methods in this section have dealt with performing an action on e-mail messages.
The getMessages() method actually is responsible for retrieving the folder information from
the server. It accepts the folder ID and the page number to retrieve as arguments and then uses
the navigate() method to retrieve the desired information:
getMessages: function (iFolder, iPage) {

 this.info.folder = iFolder;

 this.info.page = iPage;

 this.navigate("getfolder");

},

To retrieve the correct message, the folder and page properties of the info object must be set
to the appropriate values. Then, when navigate() is called, the URL will contain the correct
folder and page information. This method is then used in both nextPage() and prevPage()
to move through the different pages of messages in a given folder:
nextPage: function () {

 this.getMessages(this.info.folder, this.info.page+1);

},

prevPage: function () {

 this.getMessages(this.info.folder, this.info.page-1);

},

Both methods pass in the current folder to getMessages(), but the page argument is different.
For nextPage(), the current page number is incremented by one, whereas prevPage()
decrements it by one.

There may be times when a user just wants to refresh the information about a folder instead of
switching folders. For instance, to check for new mail the user can click the Inbox link while the
Inbox is already being displayed. In this case, you don't want to add anything to the browser
history because you certainly will never want to go back to an older view of the folder, so you
should use request() instead of navigate():
refreshFolder: function (iFolder) {

 this.info.folder = iFolder;

 this.info.page = 1;

 this.request("getfolder", loadAndRender);

},

This method is very similar to getMessages() in that the folder ID needs to be passed in and
assigned to the info.folder property. The page is set to 1 because any refresh needs to
begin with the first page. And because the action requires the user interface to change, the
loadAndRender() callback function is passed in when calling request().

Navigation Methods
Keeping the navigation straight in an Ajax application can be tricky, but thanks to the
navigate() method defined earlier, things are much more straight forward. Whenever you
need to move from one view of AjaxMail to another, you can simply pass a string to the
navigate() method and wait for the action to be completed. To that end, there are four
methods that either directly or indirectly make use of the navigate() method to perform their
function:
cancelReply: function () {

 history.go(-1);

},

compose: function () {

 this.navigate("compose");

},

forward: function () {

 this.navigate("forward");

},

readMessage: function (sId) {

 this.navigate("getmessage", sId);

},

reply: function (blnAll) {

 this.navigate("reply" + (blnAll ? "all" : ""));

},

The first method, cancelReply(), uses the browser's internal history to do its job. When users
click Compose Mail, Forward, Reply, or Reply All, the navigate() method is called to put
them into compose view. To undo this and move back to the previous view, the history object
can be used because the move was recorded in the hidden iframe. Using the go() method with
a –1 value moves the browser back to the previous view.

All the other methods in this section simply pass a string value to navigate(), indicating the
action that should be taken next. The readMessage() method also accepts the ID of the
message to retrieve, and the reply() method accepts a single Boolean argument that
indicates whether the action should be reply or replyall; when set to true, it is the latter.

You'll remember from earlier that AjaxMailNavigate.php calls different JavaScript mailbox
methods depending on what action has taken place. Each of these methods begins with the
word "display," and each has a specific view to initialize.

The displayFolder() method does exactly what it says: it displays a folder of e-mail
messages. It accepts a folder info object as its only argument and then renders the folder before
setting the processing flag back to false:
displayFolder: function (oInfo) {

 this.loadInfo(oInfo);

 this.renderFolder();

 this.setProcessing(false);

},

A similar method is displayMessage(), which accepts a message information object, loads it,
renders the message, and then sets the processing flag to false:
displayMessage: function (oMessage) {

 this.loadMessage(oMessage);

 this.renderMessage();

 this.setProcessing(false);

},

These two methods take care of the Folder view and Read view, respectively. The Compose
view is a little bit different because there are so many ways it can be used. It can be used to
create a new e-mail, in which case all fields are blank, or it could be used to send a reply, reply
all, or forward, in which case different information needs to be pre-filled in the form. To facilitate
the different requirements of these user actions, a single method is used:
displayComposeMailForm: function (sTo, sCC, sSubject, sMessage) {

 this.txtTo.value = sTo;

 this.txtCC.value = sCC;

 this.txtSubject.value = sSubject;

 this.txtMessage.value = sMessage;

 this.divReadMail.style.display = "none";

 this.divComposeMail.style.display = "block";

 this.divFolder.style.display = "none";

 this.setProcessing(false);

},

The displayComposeMailForm() method accepts all the various information that could be
assigned to the compose view and places it into the correct fields. Then, divReadMail and
divFolder are hidden while divComposeMail is shown. Last, the processing flag is set to
true. The displayComposeMailForm() method is not called by AjaxMailNavigate.php,
but is instead called by several more specific methods, each catering to a specific action:
displayCompose: function () {

 this.displayComposeMailForm("", "", "", "");

},

displayForward: function () {

 this.displayComposeMailForm("", "",

 "Fwd: " + this.message.subject,

 "---------- Forwarded message ----------\n"

 + this.message.message);

},

displayReply: function () {

 var sTo = this.message.from;

 var sCC = "";

 this.displayComposeMailForm(sTo, sCC, "Re: "+
this.message.subject,

 "\n\n\n\n\n" + this.message.from + "said: \n" +
this.message.message);

},

displayReplyAll: function () {

 var sTo = this.message.from + "," + this.message.to;

 var sCC = this.message.cc;

 this.displayComposeMailForm(sTo, sCC, "Re: "+
this.message.subject,

 "\n\n\n\n\n" + this.message.from + "said: \n" +
this.message.message);

},

The displayCompose() method, which simply displays a blank compose view, passes in an
empty string to displayComposeMailForm(). The displayForward() method prepends
"Fwd:" to the front of the message subject and "-----Forwarded Message------" to the front of the
message from the e-mail that's currently being viewed. Both displayReply() and
displayReplyAll() prepend "Re:" in front of the message subject and then include a short
string before the current e-mail's body text. The only difference between these two methods is
what the pre-filled values of the To and CC fields are. For displayReply(), the To field is
simply filled with whoever sent the message initially; for displayReplyAll(), the To field

also includes everyone else the e-mail was sent to and the CC field contains the same CC
recipients as the original message.

Initialization Methods
The last section of methods in the mailbox object initializes the properties and data. Earlier you
saw the beginnings of the init() method; the next part involves assigning event handlers to
various user interface elements:
init: function () {

 var colAllElements = document.getElementsByTagName("*");

 if (!colAllElements.length) {

 colAllElements = document.all;

 }

 for (var i=0; i < colAllElements.length; i++) {

 if (colAllElements[i].id.length > 0) {

 this[colAllElements[i].id] = colAllElements[i];

 }

 }

 this.imgPrev.onclick = function () {

 oMailbox.prevPage();

 };

 this.imgNext.onclick = function () {

 oMailbox.nextPage();

 };

 this.spnCompose.onclick = function () {

 oMailbox.compose();

 };

 this.spnEmpty.onclick = function () {

 oMailbox.emptyTrash();

 };

 this.spnReply.onclick = function () {

 oMailbox.reply(false);

 };

 this.spnReplyAll.onclick = function () {

 oMailbox.reply(true);

 };

 this.spnForward.onclick = function () {

 oMailbox.forward();

 };

 this.spnCancel.onclick = function () {

 oMailbox.cancelReply();

 };

 this.spnSend.onclick = function () {

 oMailbox.sendMail();

 };

 //more code here

},

All the event handlers assigned here simply call a mailbox method that was defined earlier in
this chapter. You also need to assign the event handlers for the Inbox and Trash links:
this.spnInbox.onclick = function () {

 if (oMailbox.info.folder == INBOX) {

 oMailbox.refreshFolder(INBOX);

 } else {

 oMailbox.switchFolder(INBOX);

 }

};

this.spnTrash.onclick = function () {

 if (oMailbox.info.folder == TRASH) {

 oMailbox.refreshFolder(TRASH);

 } else {

 oMailbox.switchFolder(TRASH);

 }

};

These lines occur where the "more code here" comment is in the previous listing, but are pulled
out here for easier explanation. Each of these two links can perform one of two operations:
either switching to the folder view or refreshing it. To determine which of these actions to take,
each event handler first checks to see what the currently displayed folder is. For the Inbox link,
if the current folder is already Inbox, then it calls refreshFolder(); otherwise it calls
switchFolder(). The same holds true for the Trash link, except that it checks to see if Trash
is the folder already being displayed.

The init() method is actually called by another method called load(), defined as:
load: function () {

 this.init();

 this.getMessages(INBOX, 1);

},

This method first initializes the user interface by calling init(), and then makes the initial
request for the first page of the Inbox folder using getMessages(). When index.php is
loaded, this method must be called (as described later).

Callback Functions

To make use of the request() and sendMail() methods of the mailbox object, several
callback functions are necessary. These are functions that take over processing once data has
been returned from the server. Each of these functions is standalone; that is, they are not
methods of the mailbox object.

When the e-mail messages are first downloaded from the server, the data must be loaded into
the info property and then rendered:
function loadAndRender(sInfo) {

 oMailbox.loadInfo(sInfo);

 oMailbox.renderFolder();

 if (oMailbox.nextNotice) {

 oMailbox.showNotice("info", oMailbox.nextNotice);

 oMailbox.nextNotice = null;

 }

 oMailbox.setProcessing(false);

}

The loadAndRender() function expects a JSON string to be passed in as an argument. That
data is loaded using the loadInfo() method. Once that happens, the renderFolder()
method is called to begin displaying the new information. After that, the function checks to see if
there is a notice that needs to be displayed (stored in nextNotice). If so, that notice is
displayed and nextNotice is set back to null. The very last step is to set the processing
flag to false, indicating that the mailbox is free to make other requests.

The simpler case is when a command has to be executed on the server without returning any
information. When the request has completed, you simply want to display any notification that
may be waiting and then reset the processing flag back to false. To do so, use the
execute() callback function:
function execute(sInfo) {

 if (oMailbox.nextNotice) {

 oMailbox.showNotice("info", oMailbox.nextNotice);

 oMailbox.nextNotice = null;

 }

 oMailbox.setProcessing(false);

}

Using this callback function instead of loadAndRender() prevents the user interface from
updating when the request completes. The action taken is done purely behind the scenes and is
indicated only by the notice (if any) that is displayed. As with loadAndRender(), the last step
is to set processing back to false.

The last callback function, sendConfirmation(), is used only when sending mail. It expects
a simple JSON object to be returned with two properties: error and message. If error is
true, an error has occurred and the message property contains an error message to display to
the user; otherwise, the mail was sent successfully and message contains a confirmation
message to be displayed using showNotice():
function sendConfirmation(sData) {

 var oResponse = JSON.parse(sData);

 if (oResponse.error) {

 alert("An error occurred:\n" + oResponse.message);

 } else {

 oMailbox.showNotice("info", oResponse.message);

 oMailbox.divComposeMail.style.display = "none";

 oMailbox.divReadMail.style.display = "none";

 oMailbox.divFolder.style.display = "block";

 }

 oMailbox.divComposeMailForm.style.display = "block";

 oMailbox.divComposeMailStatus.style.display = "none";

 oMailbox.setProcessing(false);

}

This function also resets some of the user interface. If the message was sent successfully, it
sends the user back to folder view by hiding divComposeMail and divReadMail and then
showing divFolder. Regardless of the success, divComposeMailForm has its display
property set back to block, whereas divComposeMailStatus has its display property set
to none, effectively resetting the compose view.

Event Handlers

The "Action Methods" section described methods of the mailbox object that are used to perform
specific actions. To facilitate the assigning of event handlers that use these methods, a handful
of small functions are used:
function deleteMail() {

 oMailbox.deleteMessage(this.id);

}

function restoreMail() {

 oMailbox.restoreMessage(this.id);

}

function readMail() {

 oMailbox.readMessage(this.id.substring(2));

}

Each of these functions simply calls a method of oMailbox and passes in some identifier.
Because these functions are used as event handlers, the this object points to the element
upon which the event handler has been assigned. (You could also use event.srcElement in
Internet Explorer or event.target in DOM-compliant browsers.) For deleteMail() and
restoreMail(), the ID of the element is equivalent to a message ID, so it can be passed
directly into the deleteMessage() and restoreMessage() methods, respectively. The
readMail() function is applied to a table row whose ID is in the format "trID", so the first two
character must be stripped off using the substring() method before being passed into
readMessage().

Important By defining these functions globally, you avoid using closures to assign

event handlers. Closures are a manner in which it's possible to define a
function that makes use of variables defined outside of it. They also
happen to be the main cause of memory leaks in many web browsers.
Whenever possible, it is preferable to create standalone functions to use
as event handlers.

http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=988660704#ch09lev3sec176F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch09lev3sec176F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

The Last Step

The last step in making AjaxMail functional is to call oMailbox.load() when the page has
been loaded. To accomplish this, use the window's onload event handler:
window.onload = function () {

 oMailbox.load();

};

Now, when the page has finished loading, the Ajax initialization begins and the application is
ready to use.

To test AjaxMail, navigate to www.yourdomainname.com/AjaxMail/. This loads the initial
view and you are ready to go.

Summary
In this chapter, you learned how to create a full-fledged Ajax application called AjaxMail. You
began by designing the server-side architecture. Using PHP and MySQL, you designed a back-
end system designed to download messages from a POP3 server and store them in a
database. You created several database tables to handle the various data associated with an e-
mail application. POP3Lib was used for POP3 communication and PHPMailer was used for
SMTP communication.

You then designed a dynamic user interface that doesn't require any page reloads.
Communication is accomplished by using a combination of XMLHttp and a hidden iframe. The
XMHttp requests performed actions such as deleting specific e-mail message, whereas the
hidden iframe was used to allow the Back and Forward buttons to function as usual.

Chapter 10: Ajax Frameworks
Overview
In this chapter, you will see three frameworks that all have a common goal: to make the task of
developing Ajax-enabled web sites easier and quicker. They all try to abstract the details
concerning the underlying communications between the server and the client, leaving the
developer free to concentrate on the more interesting aspects, such as implementing the
classes that actually take care of the business logic peculiar to an application.

The frameworks chosen each use a different server-side processing technique: PHP, Java, and
ASP.NET, respectively. They all fall into the category of frameworks known as Remote
Invocation. This means that the framework is responsible only for providing client-side
JavaScript that handles the creating of the XmlHttpRequest, converting parameters to a
suitable format, and returning values to the page, usually through a callback function. This is in
contrast to HTML/JS Generation frameworks, which only require the user to handcraft any
customization code but allow less control over the request and response handling.

This chapter focuses on the following three frameworks, among the many available:

 JPSpan: JPSpan integrates with PHP, a robust and open source server-side language.

 DWR: DWR allows calls to Java classes on the server.

 Ajax.NET: Ajax.NET enables communication with server-side classes built with any
.NET language.

The examples for each framework follow a common pattern: each demonstrates how to create a
business object and call its methods asynchronously from an HTML client.

Note The term business object is given to a class that reflects a real-world entity

and has the methods and properties necessary to support working with it from
within an application. An example would be a Video class used in a video
store's booking system. The Video class might have properties such as
title and dailyRentalCost, and methods such as isOverdue().

The business object in our examples will represent a customer, a common class in many
applications. In a real-life scenario, the Customer class could contain many properties, such as
the customer's name, address, and how long he or she had been a client, as well as methods
such as getOutstandingOrders().

To make the examples more manageable and allow them to focus on the use of the
frameworks, the Customer class used in the examples is much simpler. It has only one
method, getAddressFromEmail(), which returns the customer's address given his or her e-
mail address as a parameter.

Note In a well-built application, the business classes, representing real-world

entities, are separate from the data classes, which deal with persisting the
details to a permanent storage facility, such as a relational database. To keep
the examples straightforward, the Customer class itself will handle retrieving
information from the database.

JPSpan
JPSpan is an Ajax framework built with the intention of integrating client-side JavaScript with
serverside code written in PHP. PHP has been around since the mid nineties and has grown
from simple beginnings to a full-fledged object-oriented language that can run on both Windows
and UNIX/Linux platforms. The main advantages of using PHP over other platforms, such as
Java or .NET, are that it is smaller, much simpler to install, and more lightweight, needing only a
fraction of the memory of the Java runtime or the .NET CLR.

How It Works

JPSpan works by analyzing a PHP class using reflection. It then emits a number of JavaScript
methods that accept the same arguments as the methods of the class on the server. When one
of these methods is called, it uses a cross-browser library to instantiate the appropriate
XmlHttpRequest for the platform it is running on and posts the data to the server. The
response is then read and passed to a function on the client for further use within the page.

Note Reflection in this case means examining a class to find out its properties and

methods. It is a commonly available technique in object-oriented languages
and is often used as a way of writing generic code that can work with a large
number of classes.

Installing JPSpan
The first thing you need is a web server that supports PHP, version 5. This can be the
ubiquitous Apache web server for UNIX/Linux machines or IIS for Windows (although others
also support PHP, these are the most common). When installing with IIS there is a choice of
running the PHP processor as an out of process server using CGI or in process using ISAPI.
The first method is recommended for reliability, the second for performance. For the purposes of
this chapter, the ISAPI installation was chosen.

Note You can find the PHP installation, along with a list of compatible web servers,

at http://uk.php.net. There is a comprehensive set of instructions with a
list of Frequently Asked Questions detailing how to resolve some common
difficulties and problems.

The actual JPSpan installation can be found at
http://sourceforge.net/projects/jpspan. Aside from the documentation and some
examples, it consists of a number of PHP pages alongside several JavaScript files. The entry
point, JPSpan.php, sits in a folder named JPSpan, which is best placed directly under the root
of your web server (for IIS this is typically C:\InetPub\wwwroot and for Apache it is
/usr/local/apache/htdocs). There is a subfolder, also called JPSpan, that contains
additional PHP and JavaScript files.

Creating the Server-Side Page

There are two stages involved in developing the server-side page: implementing the business
classes that will do the actual processing and hooking them into the framework so that they
become accessible from the client.

The first stage is to create a standard server-side skeleton page that can be used as a starting
point for most JPSpan projects. This consists of the basic plumbing needed to inform JPSpan of
the business class as well as other options such as what to do in the event of an error.

The second stage is the coding of the business class or classes to be used, which requires a
knowledge of PHP and the syntax used to declare classes. The syntax is very similar to C++
and Java, so any knowledge of those two languages will help.

After the business class has been tested outside of the JPSpan framework, it can be
incorporated into the skeleton page ready for use by the client.

The Standard Page Code
The basic structure of a server-side processing page looks something like the following
example:
<?php

//Business class to be included here

http://uk.php.net/
http://sourceforge.net/projects/jpspan

class Customer

{

 //Customer class implementation to be included here

}

// Including this sets up the JPSPAN constant

require_once '../JPSpan/JPSpan.php';

// Load the PostOffice server

require_once JPSPAN . 'Server/PostOffice.php';

// Create the PostOffice server

$PostOffice = & new JPSpan_Server_PostOffice();

// Register the Customer class with it...

$PostOffice->addHandler(new Customer());

// This allows the JavaScript to be seen by

// just adding ?client to the end of the

// server's URL

if (isset($_SERVER['QUERY_STRING']) &&
strcasecmp($_SERVER['QUERY_STRING'],

'client') == 0)

{

 // Compress the output Javascript feature (e.g. strip whitespace)

 // turn this off it has performance problems

 define('JPSPAN_INCLUDE_COMPRESS', false);

 // Display the Javascript client

 $PostOffice->displayClient();

}

else

{

 // This is where the real serving happens...

 // Include error handler

 // PHP errors, warnings and notices serialized to JS

 require_once JPSPAN . 'ErrorHandler.php';

 // Start serving requests...

 $PostOffice->serve();

}

?>

Following the opening PHP tag is the place where the code for the actual class will be included.
This can be actually in the page or can be held in a separate file and accessed through one of
the PHP include mechanisms.
<?php

//Business class to be included here

class Customer

{

 //Customer class implementation to be included here

}

Note For minor applications and simple examples, you will often see the code

written directly into the page. For a more maintainable approach, as well as to
enable you to re-use classes directly and through inheritance, it is better to
have them in separate files.

Next comes a critical line:
require_once '../JPSpan/JPSpan.php';

The require_once directive instructs the PHP processor to make the code within the
specified file available to the rest of the page. If the code has already been included, the
instruction is ignored. The path shown above assumes that this page resides in a directory at
the same level as the JPSpan install. If this is not the case, it will need to be modified. The code
in JPSpan.php actually does very little; it simply makes sure that a variable named JPSPAN is
initialized and points to the subfolder, also named JPSpan, which contains the main PHP
classes and necessary JavaScript files.

The next stage uses the JPSPAN variable along with another require_once directive to make
the classes in PostOffice.php available:
require_once '../JPSpan/JPSpan.php';

// Load the PostOffice server

require_once JPSPAN . 'Server/PostOffice.php';

A new instance of JPSpan_Server_PostOffice is then created:
$PostOffice = & new JPSpan_Server_PostOffice();

PostOffice.php contains the class JPSpan_Server_PostOffice, which is used by all
JPSpan applications, is responsible for creating the client-side JavaScript methods whose
signatures mimic those of Customer. Instead of these methods running locally, however, the
arguments are passed to the server using an XmlHttpRequest and any results obtained are
returned through the HTTP response.

Next, the Customer class is passed to the JPSpan_Server_PostOffice via the
addHandler method:
$PostOffice->addHandler(new Customer());

The JPSpan_Server_PostOffice uses reflection to examine our business class and create
the necessary JavaScript stubs.

The final lines of the page enable the code to serve two purposes: it can provide the client with
the necessary JavaScript needed to instigate calls on our server-side class, and the page can
also handle the calls themselves. This is done by examining the actual URL used to request the
page.
if (isset($_SERVER['QUERY_STRING']) &&

 strcasecmp($_SERVER['QUERY_STRING'], 'client') == 0)

{

The isset() function is used to check whether a variable refers to anything and returns true
or false. Strcasecmp() performs a case-insensitive comparison of two strings, returning 0
if the two match.

If the querystring, the part following the question mark in a URL exists and it has a key named
client, the displayClient method is called, which returns the JavaScript to the browser.
(An optional ability to compress the resulting JavaScript is disabled at this stage, as it needs
some additional work to be used effectively.)
$PostOffice->displayClient();

You will be able to see the JavaScript created by this call once the business class is written. If
the querystring does not contain the string client, first the page that handles any errors is
included:
require_once JPSPAN . 'ErrorHandler.php';

(How errors are handled is discussed later in the chapter.)

Then, a call to the serve method is made:
$PostOffice->serve();

This processes the request and relays any arguments posted to the page to the appropriate
class methods.

Creating the Business Class
So far you have seen the PHP code that will form a standard part of nearly all JPSpan projects.
Next, you have to write the business class that will perform the core processing that the
application needs.

For this example, the class is going to represent a customer. It has only one method,
getAddressFromEmail(), which accepts an e-mail address and returns an array containing
the customer's address details.

The idea behind the class is that when a customer is making an online purchase and needs to
specify a delivery address, the details will be retrieved from a database and the form's elements
will be prepopulated. As a call to a database can often take some time, this is an ideal scenario
for an asynchronous operation. While the customer is specifying other parts of the order, the
details are retrieved by a secondary request to the server.

The syntax for classes in PHP is very similar to that of C++, Java, and C#; they start with the
class keyword and the name of the class:
class Customer

{

 public function getAddressFromEmail($email)

 {

 //Method implementation goes here

 }

}

The getAddressFromEmail() method will open a connection to a database and execute a
simple SQL statement to retrieve the details.

Note In a production application, the code to access the database should be

abstracted into separate classes and the database details should be retrieved
from a configuration file. To demonstrate the principle, however, this class will
be self contained.

In Chapter 2 you learned how to use library methods to connect to an instance of MySQL. In
this example you'll see how to use ADO to connect to a database.

Note The database in question will be SQL Server, and the script to create it with

the necessary tables is available in the chapter's code download along with
the other necessary files. There is also an alternative version using a
Microsoft Access database, which requires no server-side software to be
running; simply copy Sales.mdb into the same folder as the web pages.

The Sales database has only one table: tblCustomer. The design is as shown in Figure 10-1.

Figure 10-1

The table has an integer identity field to provide a primary key, two string fields for the
customer's forenames and surnames, and a string field for the customer's e-mail address. The
other seven string fields contain the customer's address lines.

The code to retrieve the address begins by declaring an array, $address, to hold the result:
public function getAddressFromEmail($email)

{

 $address = array("success" => FALSE);

The array is given one member, success, which is used to indicate whether the details were
found for the appropriate e-mail supplied. A built-in class named COM is then used to instantiate
an Adodb.Connection:
public function getAddressFromEmail($email)

{

 $address = array("success" => FALSE);

 $conn = new COM("Adodb.Connection");

Note Because the database access involves using COM, it will work only on

servers running Windows. For non-Windows devices, MySQL would be a
suitable alternative.

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig377%5F01%5F0%2Ejpg&image_id=51&previd=IMG_51&titlelabel=Figure+10%2D1%3A+
http://www.books24x7.com/viewer.asp?bkid=13421&destid=79#79
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=168454376#ch10fig016F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch10fig016F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

To open the connection, you must know the location and type of the database. This is provided
in the form of a connection string. The format of the connection string varies depending on the
make of database being accessed. The string for SQL Server specifies the server on which the
database resides; in this example, localhost is specificied because SQL Server is located on the
web server itself. The other information needed is the name of the database or catalog as it is
called and the user name and password. The user in this case need only have read access.
$dbConnString = "Provider=SQLOLEDB; Data Source='localhost'; "

 . "Initial Catalog='sales'; User Id='Test';
Password='test';";

$conn->connectionString = $dbConnString;

Note As an alternative to having the user name and password in the connection

string, the account running the web server, usually IUSR_<machine name> in
IIS, could be given access to the database and the following could be used:

"Provider=SQLOLEDB; Data Source='localhost'; Initial Catalog='sales';
Integrated

Security=SSPI;"

The next step is to open the connection and execute the simple SQL statement. First, the
str_replace() function is used to make sure there are no single quote marks in the e-mail,
which would produce an invalid SQL string. Each single quote is replaced by two single quotes
and the modified string is stored in the variable safeEmail. Then, safeEmail is incorporated
into the SQL string and the execute method is called on the connection object:
$conn->connectionString = $dbConnString;

$conn->open();

$safeEmail = str_replace('\'', '\'\'', $email);

$rs = $conn->execute("SELECT * FROM tblCustomer WHERE Email =
'$safeEmail'");

Note Again, for the purposes of simplicity, a SQL string is built up at runtime. In a

production standard application, a stored procedure would accept the e-mail
address as a parameter and return the data.

The execute method returns an Adodb.Recordset, which is stored in $rs:
$rs = $conn->execute("SELECT * FROM tblCustomer WHERE Email =
'$safeEmail'");

if (!$rs->EOF)

{

 $address['success'] = TRUE;

 $address['forenames'] = $rs->fields(1)->value;

 $address['surname'] = $rs->fields(2)->value;

 $address['address1'] = $rs->fields(4)->value;

 $address['address2'] = $rs->fields(5)->value;

 $address['address3'] = $rs->fields(6)->value;

 $address['addressTown'] = $rs->fields(7)->value;

 $address['addressStateCounty'] = $rs->fields(8)->value;

 $address['addressZipPC'] = $rs->fields(9)->value;

 $address['addressCountry'] = $rs->fields(10)->value;

}

Note An Adodb.Recordset is a class that holds the result of a SQL select query.

It has methods that enable users to scroll through the rows returned as well
as properties that allow the names, types, and values of the different fields
returned to be retrieved.

The Recordset exposes a Boolean property, EOF, which stands for End of File. If this is not
true, at least one row was returned; therefore, the success field of the address array is set to
TRUE.

The various fields of the recordset are then added as named members of the address
array.

Note You can add named array members in PHP at will; you do not need to specify

any other information. You also can add members indexed by integers, and
you can specify the index or leave it blank in order to add the new value to the
end of the array.

Both the Recordset and Connection are then closed to free up system resources, and
$address is returned:
 $rs->close();

 $conn->close();

 return $address;

}

Once the server-side page is ready, it is saved as CustomerServer-JPSpan.php and placed
in a folder named JPSpanCustomer underneath the web server's root folder.

Creating the Client-Side Page

Now that the Customer class is incorporated into the server-side page, you can construct the
client-side page. As mentioned earlier, the idea is to simulate the stage when a logged-in user
chooses an item and specifies a delivery address. Figure 10-2 shows the test page.

Figure 10-2

The HTML for the page is fairly standard: a number of <input> elements of type text with the
appropriate labels embedded in a <table> element.

There are two <script> blocks in the page. The first retrieves the script via the customer-
server.php page created earlier so its src is pointing to this, It also contains a query string
value of client to instruct the page to return JavaScript:
<script type='text/javascript' src='customer-
server.php?client'></script>

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig379%5F01%5F0%2Ejpg&image_id=52&previd=IMG_52&titlelabel=Figure+10%2D2%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=168454376#ch10fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch10fig026F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

You will need this server generated JavaScript whenever you use JPSpan.

The second block contains inline code specific to this application, such as the
fetchAddress() and showAddress() methods.

When the page has finished loading, the init() function is called by the <body> element's
onload event firing:
<body onLoad="init();">

Inside init() a variable named remoteCustomer is initialized; there is no var preceding the
statement, so this will be a global variable accessible to all code within the page:
function init()

{

 remoteCustomer = new customer(customerCallback);

}

The statement has two points of interest: first, the word customer appears in lowercase. This
is because of a quirk in the PHP implementation of reflection. All class names and method
names need to be in lowercase when used from JavaScript. Second, an argument, called the
callback object, is passed to customer. It has its own methods that are called when the server-
side processing finishes and a response is received on the client.
var customerCallback = {

 getaddressfromemail: function(address)

 {

 showAddress(address);

 }

 };

customerCallback is declared using the JavaScript object literal syntax. A property is
declared with the name getaddressfromemail; as above, this is the lowercase version of the
method in our Customer class.

Note For more information about using the JavaScript object literal syntax, refer to

Chapter 7.

An anonymous function is assigned to this property. It has one parameter, address, which
contains the details returned from the server. This function then passes the address argument
to showAddress(), which displays the details on the page (see Figure 10-3).

Figure 10-3

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig381%5F01%5F0%2Ejpg&image_id=53&previd=IMG_53&titlelabel=Figure+10%2D3%3A+
http://www.books24x7.com/viewer.asp?bkid=13421&destid=409#409
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=168454376#ch10fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch10fig036F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

When the user leaves the e-mail text box by using the Tab key or by clicking the <select>
element, the onblur event is fired, which calls the fetchAddress() function, which will use
Ajax to fetch the corresponding address from the server-side database:
function fetchAddress(Email)

{

First, the value of Email is tested to make sure it is not empty:
function fetchAddress(Email)

{

 if (!Email)

 {

 alert("Please enter your email address before choosing an item.");

 document.getElementById("txtEmail").focus();

 return;

 }

If the e-mail address has not been filled in, alert is called and the focus returned to the
requisite element; otherwise, remoteCustomer is used to call getaddressfromemail(),
with the user's e-mail address as its argument:
remoteCustomer.getaddressfromemail(Email);

When the server-side processing is complete, the function named getaddressfromemail()
defined on customerCallback is called, which in turn calls showAddress():
function showAddress(Address)

{

 document.getElementById("txtForenames").value =

 replaceIfNull(Address["forenames"], "");

 document.getElementById("txtSurname").value =

 replaceIfNull(Address["surname"], "");

 //Other textboxes filled in...

The text fields on the page are populated with the values from the database. A small helper
function, replaceIfNull(), is used to ensure the output is more user friendly if any of the
fields are null; otherwise, the word "null" would appear in some of the boxes.
function replaceIfNull(Value, ReplaceWith)

{

 if (Value == null)

 {

 return ReplaceWith;

 }

 return Value;

}

replaceIfNull() checks the value of the first argument and, if it is null, returns the second
arument, ReplaceWith. If it is not null, the value is returned unchanged.

If no values were present, because the e-mail address was not found in tblCustomer, this has
the effect of clearing all the fields.

Then, the value of success is tested. If it equates to false, a message appears informing the
user that he or she must fill in the address themselves. The focus is then set to the Forenames
text field.
 if (!Address["success"])

 {

 alert("Address not registered, please fill in details.");

 document.getElementById("txtForenames").focus();

 }

}

The client page is saved as CustomerClient-JPSpan.htm in the same folder as
CustomerServer.php. A successful search for the user's details should resemble Figure 10-
4.

Figure 10-4

Error Handling
Errors can occur with any application, especially when communication between separate
machines is involved. JPSpan has a means of trapping non-fatal errors that occur when
processing the request server-side and having them appear as standard client-side exceptions.

The server-side page contains the following line:
require_once JPSPAN . 'ErrorHandler.php';

ErrorHandler.php is a generic handler that can propagate non-fatal errors to the client; it
can handle general PHP errors as well as those caused specifically by JPSpan.

It allows for two basic configuration settings. The first defines how much information to give to
the client when an error occurs directly as the result of PHP, not because of a JPSpan method
causing an exception:
if (!defined('JPSPAN_ERROR_MESSAGES'))

{

 define ('JPSPAN_ERROR_MESSAGES', TRUE);

}

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig383%5F01%5F0%2Ejpg&image_id=54&previd=IMG_54&titlelabel=Figure+10%2D4%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=168454376#ch10fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch10fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=168454376#ch10fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch10fig046F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

When defined as TRUE, as in the line above, a PHP error will simply show as "Server unable to
respond." JPSpan errors will contain detailed information in the error object's message, code,
and name properties. If defined as FALSE, extra information is available for all errors.

The second configuration option allows even more information to be sent to the client:
if (!defined('JPSPAN_ERROR_DEBUG'))

{

 define ('JPSPAN_ERROR_DEBUG', FALSE);

}

When JPSPAN_ERROR_DEBUG is defined as TRUE, two additional properties are added to the
error: file and line. These properties carry the name of the PHP file from which the error
was thrown and line number where it occurred, respectively. This information could be used in
an attack against the web site, so the default value of FALSE causes these two pieces of
information to be withheld. It is extremely useful, however, to have it set to TRUE in a
development environment.

Type Translation

Any Ajax framework has to cope with the problem of representing types from the server-side
language in JavaScript, and vice versa. Three main PHP pages, found in the JPSpan subfolder,
deal specifically with converting types between the two languages: Serializer.php,
Types.php, and Unserializer.php.

Serializer.php contains code that defines a global array named
_JPSPAN_SERIALIZER_MAP. This contains an element for each PHP type that can be
represented in JavaScript. As you can see, there are entries for all the standard types as well as
ways of representing null and jpspan_error:
$GLOBALS['_JPSPAN_SERIALIZER_MAP'] = array(

 'string'=>array(

 'class'=>'JPSpan_SerializedString',

 'file'=>NULL

),

 'integer'=>array(

 'class'=>'JPSpan_SerializedInteger',

 'file'=>NULL

),

 'boolean'=>array(

 'class'=>'JPSpan_SerializedBoolean',

 'file'=>NULL

),

 'double'=>array(

 'class'=>'JPSpan_SerializedFloat',

 'file'=>NULL

),

 'null'=>array(

 'class'=>'JPSpan_SerializedNull',

 'file'=>NULL

),

 'array'=>array(

 'class'=>'JPSpan_SerializedArray',

 'file'=>NULL

),

 'object'=>array(

 'class'=>'JPSpan_SerializedObject',

 'file'=>NULL

),

 'jpspan_error'=>array(

 'class'=>'JPSpan_SerializedError',

 'file'=>NULL

),

);

Each type uses a specific class to translate it into a function that returns the given data. The
code for each class can reside in the page itself or can exist in a separate file. With the default
JPSpan set up all the classes are defined in the page so the $file property is set to null.

Each serializer class has a method named generate that produces the JavaScript
representation. For example, if a Boolean value of true was serialized to the client, the
representation would be similar to the following:
var data_serialized = 'new Function("var t1 = true; return t1;");';

var data_func = eval(data_serialized);

var data = data_func();

Unserializer.php and Types.php are used for conversion between JavaScript and PHP.

Types.php just contains definitions for two base types: JPSpan_Object and JPSpan_Error.
(All JavaScript objects are converted into instances of one of these Although JPSpan_Error
has the properties code, name, and message discussed in the section on errors,
JPSpan_Object is simply an empty class that serves as a base for more specific
implementations.

Unserializer.php uses one of two other classes for deserialization, both of which are found
in the unserializer folder: JPSpan_Unserializer_XML in XML.php or
JPSpan_Unserializer_PHP in PHP.php. Unless the PHP version is requested specifically,
the XML version is used.

In the JPSpan representation, each argument to a method is represented by an element in an
XML document; for example, the Boolean value is a element with an attribute named v
holding the value:
<b v="1"/>

A value of false would be shown as v=0.

The complete document representing the call to getAddressFromEmail(), which accepts a
string representing an e-mail address and returns the customer's full address details, is as
follows:
<r><a><e k="0"><s>hmqueen412@yahoo.com</s></e></r>

The <r> element is the root of the document, and <a> represents an array of the method's
parameters. The first argument, contained by <e k="0">, represents a string, so the element
consists of the actual data in an <s> element.

Summary of JPSpan

JPSpan is easy to use and integrates well with PHP. It can cope with classes that use the built-
in types and more complex ones if they themselves are built from these. If JPSpan has one
main failing, it is that the online documentation is somewhat sparse. Although PHP is covered
extensively by numerous sites, if you need to customize JPSpan itself, you will need to dig into
the source files and examples included in the basic installation.

DWR
Direct Web Remoting (DWR) is designed to be used with Java, one of the most widely used
object-oriented languages. Java is not limited to any particular platform, but its main use has
been server-side rather than desktop applications.

Note Remember that the similarity in names between Java and JavaScript owes

more to marketing methods than inherent relationships between the two
languages. Although the syntax of both is identical in a lot of places, there are
many differences, especially when it comes to data typing.

How It Works
DWR also uses reflection to examine any of the classes specified in its configuration files. It
then dispatches JavaScript to the client in which each function resembles those on the class but
has an extra parameter specifying a function to call when the data is returned. As with JPSpan,
DWR uses a cross-browser library and the relevant version of XmlHttpRequest, the ActiveX
version if running Internet Explorer or the native JavaScript version for the Mozilla-based
browsers and others such as Safari and Konqueror.

Installing DWR

Although the actual installation of DWR is straightforward, there are a number of prerequisites
that need to be taken care of first.

Installing the Java SDK
First, download the Java software development kit from http://java.sun.com. The
following examples are based on the version 1.5 kit, so if you have an earlier version you will
need to upgrade.

Note You have a number of options available at Sun's site that can be confusing at

times. For development work, you basically have two choices: either the plain
development kit (which will also install the runtime files necessary for all Java
applications) or the one that includes the NetBeans IDE (Integrated
Development Environment). All the examples in this chapter can be
developed and run without the IDE. This can then be downloaded separately
if you are moving on to more serious Java development.

You can then install the kit and the runtime and create or update any environment variables as
detailed in the accompanying readme file.

Installing the Web Server
Next, you will need a web server that supports Java servlets and JSP. The most common one is
Tomcat, part of the Apache Jakarta project. There are versions available for Windows and

http://java.sun.com/

UNIX/Linux, and details of how to install and configure them can be found at
www.coreservlets.com/Apache-Tomcat-Tutorial/.

Note At the URL just given you will see that there is a ready-to-run version that has

been pre-configured with a number of standard settings. That is the version
that was used for this chapter's examples; other than modifying the server's
port so that it didn't clash with IIS, it worked out of the box.

After the Java SDK and the Tomcat server are installed, you should be able to start up Tomcat
as shown in the tutorial and navigate to the home page. This will give you access to the
management pages as well as a number of test pages and samples that you can use to make
sure everything is set up correctly.

Finally, obtain the DWR files from http://getahead.ltd.uk/dwr/. This is only a small
download of about 150KB. The main file, dwr.jar, needs to be placed in a specific folder of
your web application. Put these files aside until the basic folder structure has been created.

Setting Up a Test Site
To set up a test site for DWR, create the folder structure, headed by DwrTest, as shown in
Figure 10-5.

Figure 10-5

The next step is to create two XML configuration files: web.xml and dwr.xml. First, the basic
structure of web.xml:
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

 version="2.4">

 <servlet>

 <servlet-name>dwr-invoker</servlet-name>

 <display-name>DWR Servlet</display-name>

 <servlet-class>uk.ltd.getahead.dwr.DWRServlet</servlet-class>

 <init-param>

 <param-name>debug</param-name>

 <param-value>true</param-value>

 </init-param>

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig387%5F01%5F0%2Ejpg&image_id=55&previd=IMG_55&titlelabel=Figure+10%2D5%3A+
http://www.coreservlets.com/Apache-Tomcat-Tutorial/
http://getahead.ltd.uk/dwr/
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=532053460#ch10fig05#ch10fig05
http://java.sun.com/xml/ns/j2ee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd

 </servlet>

 <servlet-mapping>

 <servlet-name>dwr-invoker</servlet-name>

 <url-pattern>/dwr/*</url-pattern>

 </servlet-mapping>

</web-app>

Note The preceding code shows a bare-bones web.xml file. In addition to the XML

prologue, there may also be sections showing the display name and
description that appear in the Tomcat manager.

The web.xml configuration file has a document element, <web-app>, which is in the default
namespace of http://java.sun.com/xml/ns/j2ee (as are all the other elements). There
are two main sections. The first block, <servlet>, specifies the name of the servlet along with
other information, such as whether the built-in test page is enabled.

The second section, <servlet-mapping>, relates a URL to an entry in the <servlet>
section. In this instance, specifying a URL ending with dwr will cause the dwr-invoker servlet
to handle the client request.

Note dwr-invoker is the workhorse of DWR. It is a Java servlet responsible for

providing all the basic functionality as well as the built-in test harness and
other features.

This file is not unique to DWR and will be present in all servlet applications. If you need to use
DWR in an application that already has a web.xml file, simply add the necessary <servlet>
and <servlet-mapping> elements to the appropriate part of the file. Save the file into the
folder named WEB-INF directly under the DwrTest directory.

The second file, dwr.xml, also resides in WEB-INF. A minimal example is shown below.
<dwr>

 <allow>

 <create creator="new" javascript="JDate">

 <param name="class" value="java.util.Date" />

 </create>

 </allow>

</dwr>

This example dictates that an instance of the java.util.Date class will be made available to
the client and will need to be referred to as JDate. The creator attribute is specified as new,
meaning that the Java code to instantiate the object will use the new operator, as follows:
Date dt = new java.util.Date();

There are different ways of creating objects that you will see later and other <create>
elements can also be added to expose more built-in Java classes or classes that you create
yourself.

Finally, copy the dwr.jar file you downloaded earlier into the WEB_INF\lib directory.

You can now try out DWR by navigating to http://localhost/DwrTest/dwr. You should
be presented with a link to JDate. On following this link, the full test page will be displayed, as
shown in Figure 10-6.

http://java.sun.com/xml/ns/j2ee
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=532053460#ch10fig06#ch10fig06

Figure 10-6

Note Should you instead be greeted by an error message that seems to originate

from one of the Java XML classes, you have two copies of the XML API on
your system that are at loggerheads. You need to go to the installation folder
of Tomcat, which is normally named jakarta-tomcat-5.x.x, and open
the folder common\endorsed. Rename the file xml-apis.jar to xml-
apis.jar.bak. You may also have to restart Tomcat.

The test page lists all the methods exposed directly by the Java Date class and provides a way
for you to run most them. There are also some tips about what not to do when creating your
own classes that will be used via DWR. One of the main things to avoid is overloaded methods,
a common feature of Java but which has no native support in JavaScript.

Note Methods are said to be overloaded when they have the same name but a

different signature. This means that they can be differentiated by the type and
number of arguments passed to the method. As JavaScript is a weakly typed
language, it would not be able to differentiate between a method that
accepted a string and one with the same name that accepted an integer, for
example.

Creating the Client-Side Page
The following is a simple client-side page that shows how to use the DWR:
<html>

<head>

 <title>DWR Test</title>

 <script type=" text/javascript"
src="/DwrTest/dwr/interface/JDate.js"></script>

 <script type=" text/javascript"
src="/DwrTest/dwr/engine.js"></script>

 <script type=" text/javascript" src="/DwrTest/dwr/util.js"></script>

 <script type=" text/javascript">

 function showDate()

 {

 JDate.toGMTString(callback);

 }

 var callback = function(Data)

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig389%5F01%5F0%2Ejpg&image_id=56&previd=IMG_56&titlelabel=Figure+10%2D6%3A+

 {

 alert(Data);

 };

 </script>

</head>

<body>

 <input type=" button" value=" Show Date" onclick=" showDate();">

</body>

</html>

The page has three included scripts, all of which are generated automatically by DWR. The first
script, which is fetched from /DwrTest/dwr/interface/JDate.js, takes the name of the
object you will use (this is the name defined in the <create> element in dwr.xml). This script
has one JavaScript function for each of the methods implemented by java.util.Date. The
second script, engine.js, contains the functions that use XMLHTTP to post to and receive
from the server. The last script, util.js, contains a number of helper functions that, among
other things, help format data returned from the server. In the example page above, the
toGMTString() method returns a simple string, so none of these utility functions are needed.
Many Java methods, however, return more complex types that need care when displaying or
being passed on for further processing.

The page has one button that, when clicked, calls showDate(). This function in turn uses the
JDate stub object and calls one of its methods, toGMTString(). Here you see a difference
between the use of the JavaScript object and its Java counterpart.
function showDate()

{

 JDate.toGMTString(callback);

}

In Java, the toGMTString() method takes no arguments; in DWR's JavaScript, all methods
have as their final parameter a function pointer that is called when the asynchronous return from
the server is received.
var callback = function(Data)

 {

 alert(Data);

 };

The callback function in this case is very simple. It has one argument representing the return
value of toGMTString(), which in this case is displayed directly to the user.

You can try out this page by naming it DwrTest.htm and placing it in the DwrTest folder.

Using a Custom Class

Now that you've seen how to use one of the built-in Java classes, the next step is to create a
custom class and access it via DWR.

The class in this example will be called Customer and will perform the same job as the one
used to illustrate JPSpan. It will be a very simple representation of a customer and contain only
one method, getAddressFromEmail(), which returns the address of the customer whose e-
mail is passed as an argument.

In this class, you will use ODBC to connect to an Access database, so you will need to create a
DSN that points to Sales.mdb. To create a DSN on Windows XP, go to Start Administrative
Tools Data Sources (ODBC). Choose the tab specifying System DSN, and then click the Add
button. After choosing the appropriate driver, SQL Server or Microsoft Access Driver (.mdb),
you need to choose a name for the DSN and specify the location to Sales.mdb. In the example
that follows, if you are using SQL Server, choose SQL Authentication, as opposed to Windows
Authentication. You can now test the connection and if everything is working, just press OK
continually to get out of the dialog boxes.

Important

You can read more about the Java database methods at
http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/index.
html.

Next, create a text file named Customer.java and save it into the WEB_INF\src\wrox folder
you created earlier.

The Java code starts by declaring the name of the package and then specifies two packages to
be imported: java.util and java.sql. The classes in these packages can then be
referenced by their short names rather than by the fully qualified names.
package wrox;

import java.util.*;

import java.sql.*;

Then follows the class header and the declaration of its solitary method:
public class Customer

{

 public HashMap getAddressFromEmail(String Email)

 {

 //Implementation goes here

 }

}

As before, the method accepts a string representation of an e-mail address and returns the
details of the person's address. Whereas with PHP there was no need to specify the variable
type, Java is a strongly typed language and so the return value of the function needs to be
declared. A hashmap is similar to an array, but the values are retrieved by specifying a key,
meaning that the client-side code written for the JPSpan client can be re-used with DWR.

The getAddressFromEmail() method begins with declaring the address hashmap and
then sets the value of true to a key named success. A try...catch block then attempts to
load the Java database driver that will be used to connect to the Sales database:
public HashMap getAddressFromEmail(String Email)

{

 HashMap address = new HashMap();

 address.put("success", false);

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 //code continues here

 }

http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/index.html.
http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/index.html.

 catch (Exception e)

 {

 address.put("error", "Failed to load JDBC/ODBC driver.");

 }

Should the Class.forName fail, an error message will be added to the address details, which
can help with debugging while the class is in the development stage.
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

try

{

 Connection con = DriverManager.getConnection("jdbc:odbc:sales","
Test"," test");

 //code continues here

}

catch (Exception e)

{

 address.put("error", "Failed to connect.");

}

A new Connection called con is declared, and the DriverManager from the
JdbcOdbcDriver class attempts to connect to sales (the name of the DSN created earlier). If
an error occurs here, a message is again added to the address hashmap.
Connection con = DriverManager.getConnection("jdbc:odbc:sales","
Test"," test");

try

{

 StringBuffer SQL = new StringBuffer("SELECT * FROM tblCustomer WHERE
Email = '");

 String safeEmail = Email.replaceAll("'", "''");

 SQL.append(safeEmail);

 SQL.append("'");

 Statement stmt = con.createStatement();

The SQL statement is built up, again single quotes are duplicated, and then a
java.sql.Statement is returned by using a factory method of the con object:
Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(SQL.toString());

boolean found = rs.next();

if (found)

{

 address.put("success", true);

 address.put("forenames", rs.getString(2));

 address.put("surname", rs.getString(3));

 address.put("address1", rs.getString(5));

 address.put("address2", rs.getString(6));

 address.put("address3", rs.getString(7));

 address.put("addressTown", rs.getString(8));

 address.put("addressStateCounty", rs.getString(9));

 address.put("addressZipPC", rs.getString(10));

 address.put("addressCountry", rs.getString(11));

}

A ResultSet is created by using the executeQuery() method against the SQL string.

Note The ResultSet class encapsulates the data returned by a SQL Select

query. It has methods that allowthe the user to move through the rows and to
access the value of any particular field.

When an attempt is made to move to the next available row, a Boolean value, found, is
returned, indicating success or failure. If successful, the values are added to the address
hashmap; if not, the address details are left empty and the value of success is set to false.

Next, the ResultSet and Connection are closed to free resources:
rs.close();

con.close();

Finally, the details are returned:
return address;

After saving the Customer.java file, you need to compile it. Assuming you have set up your
folders as illustrated in Figure 10-5, open a command prompt, navigate to the folder where
Customer.java is saved, and run the following:
javac -d ..\..\classes Customer.java

Note You may get a warning about an unchecked method, which you can ignore.

To make the class accessible via DWR, you need to modify the dwr.xml file created earlier.
Add the following <create> element to the <allow> section:
<create creator="new" javascript="Customer">

 <param name="class" value="wrox.Customer" />

</create>

You may need to use the management application, available from the Tomcat home page, to
restart the DwrTest application. You can now navigate to http://localhost/DwrTest/dwr
and verify that the Customer class appears with its getAddressFromEmail() method.

Once you have verified that the Customer class is available, you can re-use most of the
CustomerClient-JPSpan page as your client. All the HTML can remain, but you need to
change the script sections to include the DWR files, as shown previously, and you need to
remove the onload attribute from the <body> element. One further change is to make use of
some utility functions that DWR provides. These include procedures to set and retrieve element
values, add options to select boxes, and display wait messages when operations that might
take some time are executing.
<script type="text/javascript"
src="/DwrTest/dwr/interface/Customer.js"></script>

<script type="text/javascript" src="/DwrTest/dwr/engine.js"></script>

<script type="text/javascript" src="/DwrTest/dwr/util.js"></script>

<script type="text/javascript">

function fetchAddress(Email)

http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=532053460#ch10fig056F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch10fig056F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

{

 if (!Email)

 {

 alert("Please enter your email address before choosing an item.");

 $("txtEmail").focus();

 return;

 }

 Customer.getAddressFromEmail(Email, callback);

}

var callback = function (Address)

 {

 showAddress(Address);

 };

The biggest change is that whereas with JPSpan you passed a callback object to the
remoteCustomer constructor, here you pass a callback function to the getAddressFrom
Email() method.

The calls to document.getElementById() have been replaced with one of the util.js
functions, $. This is more flexible in that it takes one or more element IDs and returns either a
specific element or, if there is more than one argument, an array of elements.

From the end user's point of view, the functionality of the page is identical to before. This page
is available as CustomerClient-DWR.htm in the code download.

Error Handling

Any errors raised on the server are, by default, passed back to the client-side code as standard
JavaScript errors. These can be handled with try...catch blocks if you don't want the default
action, a message box showing the details, to appear. The error-handling procedures are
customizable but the way of doing this is version-specific and is due to be changed in the next
release.

More about dwr.xml

The dwr.xml file used so far has always used <create> elements, within the <allow>
section, with the following structure:
<create creator="new" javascript="Customer">

 <param name="class" value="wrox.Customer" />

</create>

These have all specified new for the creator attribute and a class in the <param> element
that equates to a new instance of the class being created. The new creator can also be used
with static methods (those which can be called directly from a class rather than from an
instance). DWR will examine a class to check whether a method is static before creating an
instance.

The following sections discuss some of the other options available with <create>.

Excluding Methods
If you want to provide access to a class but limit which methods can be called, use the
<exclude> element. For example, the following excludes the toGMTString() method from
being called on the Date class:
<create creator="new" javascript="JDate">

 <param name="class" value="java.util.Date"/>

 <exclude method="toGMTString"/>

</create>

The Script Creator
Some objects cannot be set up by a simple call to a default constructor; they may be accessible
only via the methods on another class or from a call to a static getInstance() method. An
example of this is the EmailValidator class from the org.apache.commons.validator
package. This does not have a public constructor, but an instance can be obtained by using the
static method getInstance() on the class itself.

To create an instance of EmailValidator, use the following version of the <create>
element:
<create creator="script" javascript="EmailValidator">

 <param name="language" value="beanshell"/>

 <param name="script">

 import org.apache.commons.validator.EmailValidator;

 return EmailValidator.getInstance();

 </param>

</create>

The scripting language used here isbeanShell, one of thebean Scripted Framework (BSF)
languages.

Important You can read more onbeanShell at www.beanshell.org/ and see

other languages supported by BSF at
http://jakarta.apache.org/bsf/index.html

The Spring Creator

The Spring framework (www.springframework.org) is designed to bring together a number
of different Java technologies as well as enable practical code re-use and sophisticated
management of JavaBeans. It is a lightweight replacement for parts of the Java 2 Enterprise
Edition (J2EE), which is used to create highly scalable applications where high numbers of
users are expected to be using the system simultaneously. In these situations, resources such
as memory need to be carefully managed.

You can make use of these enterprisebeans by using the spring creator:
<create creator="spring" javascript="MyBean">

 <param name="beanName" value="MyBean"/>

 <param name="location" value="beans.xml"/>

</create>

The Spring framework and associated techniques are a huge topic. In addition to visiting the
preceding URL, you can read more about integration of DWR and Spring at
http://getahead.ltd.uk/dwr/server/spring.

http://www.beanshell.org/
http://jakarta.apache.org/bsf/index.html
http://www.springframework.org/
http://getahead.ltd.uk/dwr/server/spring

The scope Parameter
The <create> element can also take an attribute named scope, which can be page,
session, request, or application. This enables you to specify the lifetime of abean; if no
scope is specified, it defaults to request.

If you wanted to use the Customer class across a session, for example (which is not that
helpful since it doesn't have any properties), the syntax would be as follows:
<create creator="new" javascript="Customer">

 <param name="class" value="wrox.Customer" scope=" session"/>

</create>

Converters

Because Java has more data types than JavaScript, you may be wondering what would happen
if DWR encountered a value that can't be translated directly. When no default translation is
available, DWR uses converters to bridge the gap. Converters simply translate types between
Java and JavaScript. There are a number of predefined converters that ship with DWR, such as
the DateConverter, which marshalls between the java.util.Date and the JavaScript
Date object. Other converters include the ArrayConverter, the StringConverter, and the
Beanconverter.

In theory, it is possible to build your own converter; in practice, however, this is extremely
unlikely and would be necessary only if your method required or returned a particularly unusual
type.

There is, however, one aspect of converters that you should consider: security. It may be
possible in certain circumstances to run malignant code through a converter; this is not possible
with primitive types, but it could happen with a JavaBean. To safeguard against this, thebean
converter is disabled by default. You can allow it, however, by adding an entry to the <allow>
section of dwr.xml.

To allow everything in thebean, add the following line:
<dwr>

 <allow>

 <convert converter="bean" match="your.full.package.BeanName"/>

 <!-- other allowed converters and creators -->

 </allow>

</dwr>

The match specifies whichbean to allow. You can expand it to your entire package by using an
asterisk as a wild card:
<convert converter="bean" match="your.full.package.*"/>

You can exclude certain properties from being converted if you add a child element to the
<convert>:
<convert converter="bean" match=" your.full.package.BeanName">

 <param name="exclude" value="property1, property2"/>

</convert>

Alternatively, and more safely, you can specify which properties can be converted (all others are
ignored):
<convert converter="bean" match="your.full.package.BeanName">

 <param name="include" value="property1, property2"/>

</convert>

Important For more information on which converters are available and which need

allowing specifically before they can be used by your code, see
http://getahead.ltd.uk/dwr/server/dwrxml/converters.

Summary of DWR
DWR is an excellent way to harness the power of Java for use in client-side web pages. The
hundreds of Java packages already available make it almost a certainty that, whatever your
need, there will be something that fits the bill. There is also the advantage that there is no
shortage of information, tutorials, and experts willing to share their knowledge about the Java
platform.

Ajax.NET
Ajax.NET is designed to allow remote calling of classes written in a .NET language, specifically
those accessed through ASP.NET. The .NET Framework has been around since 1999, and one
of its aims is to enable code written in different languages to integrate with each other
seamlessly. The main .NET languages are Visual Basic .NET and C#, but there are also many
others, ranging from J#, a .NET port of Java, to COBOL .NET.

How It Works

As with the other frameworks discussed in this chapter, Ajax.NET uses a cross-browser, client-
side library to post function calls to the server via the platform-specific version of
XmlHttpRequest. It also uses reflection to analyze the server-side code in the ASP.NET
page. Unlike the other frameworks, however, Ajax.NET takes advantage of a .NET feature
called attributes, which is used to mark the methods that will be available from the client.

Installing Ajax.NET

To use Ajax.NET, you need to be running IIS version 5 or greater and have the .NET
Framework installed. Although creating web sites that use ASP.NET can be done easily via
Visual Studio .NET, this is not essential and can be done using a standard editor.

Note Chapter 6 discusses how to set up a new virtual folder for IIS and create an

ASP.NET web project.

Download the Ajax DLL from http://ajax.schwarz-interactive.de/. At the time of this
writing, two releases are available: any one with a version number of 5.7.25.1 or greater is for
use with version 2 of .NET; if you are not running this, download one of the earlier DLLs, such
as 5.7.22.2.

Next, you need to add a reference to this DLL to each project in which you use Ajax.NET.

Adding the Ajax.dll Reference
You need to create your project before setting up Ajax.NET, so start Visual Studio .NET and
add a new ASP.NET web application named AjaxTest.

Note The project can be in C#, Visual Basic .NET, or any other option available on

your machine.

Right-click the project name, AjaxTest, and then choose Add New Folder. Name the new
folder ref. Add the Ajax.dll downloaded earlier to this folder, and then add a reference to it by
right-clicking the References folder, browsing to ref, and double-clicking Ajax.dll. Finally,

http://getahead.ltd.uk/dwr/server/dwrxml/converters
http://www.books24x7.com/viewer.asp?bkid=13421&destid=341#341
http://ajax.schwarz-interactive.de/

rename the WebForm1.aspx page as Index.aspx. The layout of the project in the Solution
Explorer on the right-hand side of Visual Studio will now look similar to Figure 10-7.

Figure 10-7

Adding a New HttpHandlers Element
You also need to modify the project's web configuration file. Open Web.config and add a new
<httpHandlers> element underneath <system.web>.
<configuration>

 <system.web>

 <httpHandlers>

 <add verb="POST,GET" path="ajax/*.ashx"

 type="Ajax.PageHandlerFactory, Ajax" />

 </httpHandlers>

This tells IIS that any POST or GET request that is directed to ajax/*.ashx, where * means
any, should be serviced by the Ajax.PageHandlerFactory instead of the built-in one that
handles all other requests.

An HttpHandler handles a client request, either a GET request as a simple URL or a more
complicated POST request containing additional data from an HTML form. It is responsible for
any action taken, such as specialized business logic that must be followed. The built-in handler
deals with .aspx, .asmx, and other similar ASP.NET files. Ajax.PageHandlerFactory
processes requests with Ajax in the path and uses the information in the URL to generate the
necessary client-side JavaScript based on the business object specified.

The initial setup is now complete and it's time to build the web page that will take advantage of
Ajax.NET.

Creating the Web Page

To make sure that Ajax.NET has been installed and registered correctly, a simple test of the
system is made using the Index.aspx file.

Creating a Test Page
From the Solution Explorer in Visual Studio .NET, right-click Index.aspx and choose View
Code. Add the following line to the Page_Load procedure:
public class Index : System.Web.UI.Page

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig399%5F01%5F0%2Ejpg&image_id=57&previd=IMG_57&titlelabel=Figure+10%2D7%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=813060247#ch10fig076F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch10fig076F560FCA-AF04-4DB9-A3C3-4AFD8CF31977

{

 private void Page_Load(object sender, System.EventArgs e)

 {

 Ajax.Utility.RegisterTypeForAjax(typeof(Index));

 }

The purpose of this line is to inject into the resulting HTML the necessary JavaScript files.

You are now in a position to test the set up. Start the project by pressing F5 and you should be
greeted with a blank page. On viewing the source, you will notice the following two <script>
elements:
<script type="text/javascript"
src="/AjaxTest/ajax/common.ashx"></script>

<script type="text/javascript"

 src="/AjaxTest/ajax/AjaxTest.Index,AjaxTest.ashx"></script>

The first script provides the XmlHttpRequest functionality; the second is specific to the page
and contains a few helper functions along with any server-side methods that have been made
available.

Adding a Simple Method
To make a method available from the client, first add it to Index.aspx within the definition of
the Index class:
public class Index : System.Web.UI.Page

{

 public int Add(int firstNumber, int secondNumber)

 {

 return firstNumber + secondNumber;

 }

To inform the Ajax.NET handler that this method needs a client-side JavaScript implementation,
it is decorated with a .NET attribute:
[Ajax.AjaxMethod()]

public int Add(int firstNumber, int secondNumber)

{

 return firstNumber + secondNumber;

}

Access is then available client-side using the syntax PageClass.Method(Arg1, Arg2, . .
.). So, in this case the code would be:
var response = Index.Add(6, 8);

alert(response.value);

The response returned by Index.Add has three properties: value (as seen above), error,
and request. To make your code more robust, you should check the error property to see if
it is true before proceeding:
var response = Index.Add(6, 8);

if (response.error)

{

 alert(response.error);

}

else

{

 alert(response.value);

}

The request property provides access to the underlying XmlHttpRequest object and in more
complicated scenarios can be helpful while debugging as the raw XML can be accessed.

The preceding example shows a synchronous call where, after the call to Index.Add(), the
script waited while the method was being processed on the server. To start an asynchronous
call, whereby the script continues after the method call, pass a function pointer as the last
argument of the method:
var callback = function (response)

 {

 if (response.error)

 {

 alert(response.error);

 }

 else

 {

 alert(response.value);

 }

 }

Index.Add(6, 8, callback);

When using the asynchronous call, you can also pass in a context parameter immediately after
the callback function. This is returned in the response.context property and enables you to
use the same callback procedure for multiple calls while differentiating on return which each
applied to:
var callback = function (response)

 {

 if (response.error)

 {

 alert(response.error);

 }

 else

 {

 alert(response.context + response.value);

 }

 }

Index.Add(6, 8, callback, "6 + 8 = ");

Index.Add(9, 2, callback, "9 + 2 = ");

The preceding code would display the original sum as well as the result in two separate alert
boxes.

Creating Customer-AjaxNET.aspx
Unlike the other two projects demonstrating JPSpan and DWR, there is only one page used with
Ajax.NET: Customer-AjaxNET.aspx.

From the Solution Explorer in Visual Studio .NET, add a new web form to the project called
Customer-AjaxNET.aspx. Before you make any further modifications to this page, the
business class needs to be created; otherwise, Visual Studio .NET will complain that you are
referencing an object that doesn't exist.

Implementing the Customer Class
In addition to accessing methods directly embedded in an .aspx page, you can make
accessible the methods of any external class, provided that the types returned can be converted
to a JavaScript format. Instead of using the current page class in the
Ajax.Utility.RegisterTypeForAjax method, you need to pass the custom class.

Add a new class to the AjaxTest project and save it as Customer.cs. This implements the
same functionality as in the other examples in this chapter—namely a single method,
GetAddressFromEmail().

Note As before, the following class is intended to aid the demonstration of using

Ajax; it is certainly not a model of how to write a business class.

The class begins with a number of using statements to provide easier access to the needed
types:
using System;

using System.Collections;

using System.Data.OleDb;

using System.Text;

The System namespace contains all the basic functionality and primitive data types, and
System.Collections uses the Hashtable class that is used to store the address details.
This is very similar to the hashmap from the DWR example. System.Data.OleDb contains
classes to connect to and retrieve data from an OleDb datasource (SQL Server or Microsoft
Access, for example). The System.Text class contains methods to manipulate strings and is
needed for adding the extra quotation marks to the user-supplied e-mail address when
necessary and also to provide access to the StringBuilder class used to construct the SQL
statement.

Next comes the namespace and class declaration itself:
namespace AjaxTest

{

 public class Customer

 {

The GetAddressFromEmail() method is then implemented:
public Hashtable GetAddressFromEmail(string Email)

{

 Hashtable address = new Hashtable();

 address["success"] = false;

The return value is a hashtable, which stores data items that can be accessed through a unique
key in a similar way to the hashmap used in the DWR example. A key named success is
assigned a value of false, which will be modified to true if the call to the database is
successful.

The next step is to create a connection to the Sales database. As mentioned earlier, the
connection details for the database would be stored in a configuration file:
string sConnString = "Provider=SQLOLEDB; Data Source='localhost'; "

 + "Initial Catalog='sales'; User Id='Test';
Password='test';";

OleDbConnection conn = new OleDbConnection(sConnString);

 conn.Open();

Note If you want to improve performance using SQL Server but are prepared to

forgo the advantage of changing databases by altering your connection string,
you can use the SQL Server-specific SqlConnection instead of
OleDbConnection.

The SQL statement is then built up, using a StringBuilder, taking care to replace any single
quotes that might be in the Email string:

Note In the .NET Framework, a String object is immutable; once created it

cannot be changed and any alterations, such as appending characters, are
affected by creating a completely new string. The older version still remains in
memory but is inaccessible. This is obviously wasteful from a memory point of
view. To overcome this problem, a separate class named StringBuilder is
used. This can be changed without replication, and when all changes are
complete it can be converted to a fully fledged String object by calling its
ToString() method.

StringBuilder SQL = new StringBuilder("SELECT * FROM tblCustomer WHERE
Email = '");

string safeEmail = Email.Replace("'", "''");

SQL.Append(safeEmail + "'");

An OleDbCommand object is used to execute the SQL and the results are returned in the form
of an OleDbDataReader.

Note OleDbDataReader is an ADO.NET class that is used to provide connected

read-only access to the results of a Select query. It can traverse through the
results only in a forward direction and provides methods to retrieve the values
from any field either by using the field's name or its position.

OleDbCommand cmd = new OleDbCommand(SQL.ToString(), conn);

OleDbDataReader dr = cmd.ExecuteReader();

As you can see, the code is extremely similar to its Java equivalent.

The rows are accessed one-by-one by calling the read() method, the return value of
dr.Read() will be true only if the row exists. In this case, the hashtable is populated, and the
success key set to true; otherwise it will be set to false and the address details will be left
empty.
Boolean found = dr.Read();

if (found)

{

 address["success"] = true;

 address["forenames"] = (dr.IsDBNull(1) ? "" : dr.GetString(1));

 address["surname"] =(dr.IsDBNull(2) ? "" : dr.GetString(2));

 address["address1"] =(dr.IsDBNull(4) ? "" : dr.GetString(4));

 address["address2"] =(dr.IsDBNull(5) ? "" : dr.GetString(5));

 address["address3"] =(dr.IsDBNull(6) ? "" : dr.GetString(6));

 address["addressTown"] =(dr.IsDBNull(7) ? "" : dr.GetString(7));

 address["addressStateCounty"] =(dr.IsDBNull(8) ? "" :
dr.GetString(8));

 address["addressZipPC"] =(dr.IsDBNull(9) ? "" : dr.GetString(9));

 address["addressCountry"] =(dr.IsDBNull(10) ? "" :
dr.GetString(10));

}

The built-in method of the data reader, IsDBNull(), is used to avoid any problems with null
values.

Finally, the data reader and the connection are closed and the hashtable is returned.
dr.Close();

conn.Close();

return address;

The one thing that remains is to add the custom attribute:
[Ajax.AjaxMethod()]

public Hashtable GetAddressFromEmail(string Email)

This completes the creation of the Customer class. It exists as a standalone class, so it can be
used by other applications, not just the web page. The next stage is to register it for use via
Customer-AjaxNET.aspx so that it is available client-side.

Adding the Customer Class as a Remote Object
To register the Customer class, return to the code view of the Customer-AjaxNET.aspx
page and add the following to the Page_Load() event handler.
private void Page_Load(object sender, System.EventArgs e)

{

 Ajax.Utility.RegisterTypeForAjax(typeof(Customer));

}

As before in Index.aspx, this adds into the HTML the two JavaScript includes, which provide
the client-side functionality necessary to relay the method calls to the server-side object.

Creating the Client-Side Code
There is little difference between this code and the other examples in the chapter. The
fetchAddress() function is the same as the one using DWR, except for the slight
capitalization difference in the method name:
function fetchAddress(Email)

{

 if (!Email)

 {

 alert("Please enter your email address before choosing an item.");

 document.getElementById("txtEmail").focus();

 return;

 }

 Customer.GetAddressFromEmail(Email, callback);

}

fetchAddress() accepts a string representing the customer's e-mail address. It first tests
whether a value has been supplied, and if not, the user is prompted to supply one and the focus
is returned to the appropriate text box.
If a value was supplied the GetAddressFromEmail() method is called on
the

Customer object. The second parameter to the method is the name of the
function

that will handle the response.

The callback function passes on the server response:
var callback = function (Response)

 {

 showAddress(Response);

 };

There is a slight change to showAddress() to utilize the Response.error property that
Ajax.NET provides. If the value is empty, no error has occurred; otherwise, the error message is
displayed.
function showAddress(Response)

{

 if (Response.error)

 {

 alert("Unable to retrieve address.\n("+ Response.error + ")");

 return;

 }

Then comes the only significant change. Because of how Ajax.NET serializes the hashtable, it
appears to JavaScript as an array, with each member holding an object with a key and a value.
To enable re-using the code from before, the hashtable is converted by being passed to a
helper function named getAddressFromResponse():
var Address = getAddressFromResponse(Response);

getAddressFromResponse() iterates through the array and creates a simplified hashtable of
the data that is easier to deal with:
function getAddressFromResponse(Response)

{

 var address = new Object();

 var data = Response.value;

 for (var i = 0; i < data.length; i++)

 {

 address[data[i].Key] = data[i].Value;

 }

 return address;

}

This completes the creation of the web page. To try it out, navigate to
http://localhost/AjaxTest/Customer-AjaxNet.aspx, enter an e-mail address, and
exit the text box. The result should be similar to Figure 10-8.

Figure 10-8

Simple and Complex Types
The Ajax.NET framework uses JavaScript Object Notation (JSON), which you have seen in
Chapter 7, to pass objects to the client. It can cope with all the primitive types, such as integers,
strings, and Boolean values, and also has built-in support for some of the common .NET
complex types, such as an ADO.NET dataset or datatable.

As an example of manipulating a dataset on the client, imagine you have called a function on
your server-side class that returns a dataset:
MyClass.GetDataSet(callback);

Your callback function could then read values from the dataset in much the same manner as
using it from within .NET:
function callback(Response)

{

 if (Response.error)

 {

 alert(Response.error);

 return;

 }

 var tblNames = Response.value.Tables[0];

 var sTable = "<table><th>Forenames</td><td>Surname</td></tr>";

 for (var i = 0 ; i < tblNames.Rows.length; i++)

 {

 var oRow = tblNames.Rows[i];

 sTable += "<tr><td>" + oRow.Forenames + "</td>";

 sTable += "<td>" + oRow.Surname + "</td></tr>";

 }

http://www.books24x7.com/viewer.asp?bkid=13421&image_src=http://images.books24x7.com/bookimages/id_13421/fig406%5F01%5F0%2Ejpg&image_id=58&previd=IMG_58&titlelabel=Figure+10%2D8%3A+
http://www.books24x7.com/book/id_13421/viewer_r.asp?bookid=13421&chunkid=813060247#ch10fig086F560FCA-AF04-4DB9-A3C3-4AFD8CF31977#ch10fig086F560FCA-AF04-4DB9-A3C3-4AFD8CF31977
http://www.books24x7.com/viewer.asp?bkid=13421&destid=409#409

 sTable += "</table>";

 document.getElementById("divNames").innerHTML = sTable;

}

If you want to return a custom class of your own from a method and have it serialized correctly
by Ajax.NET, you need to mark it with the Serializable attribute. For example, consider a
class that represents a web site user:
[Serializable()]

public class User

{

 private string _userName = "";

 private string _userEmail = "";

 public string UserName

 {

 get

 {

 return _userName;

 }

 }

 public string UserEmail

 {

 get

 {

 return _userEmail;

 }

 }

 public User(string Name, string Email)

 {

 _userName = Name;

 _userEmail = Email;

 }

}

Assuming a User object was returned by a method named GetUserFromId(), the properties
would be available in JavaScript.
MyClass.GetUserFromId(6, callback);

function callback(Response)

{

 var oUser = Response.value;

 alert(oUser.UserName + "\n" + oUser.UserEmail);

}

Session State

Ajax.NET can also handle cases where you need access to session variables. When declaring
the AjaxMethod attribute, you can pass a parameter specifying whether you need read, write,
or read and write access.
[Ajax.AjaxMethod(HttpSessionStateRequirement.Read)]

public string MyMethod()

{

The other two options are HttpSessionStateRequirement.Write and
HttpSessionStateRequirement.ReadWrite.

Suppose, for example, that the user has initiated a number of transactions on a site and wants
to know which have been completed. In traditional web applications, he or she would need to
revisit a specific page to see the status, but with an Ajax approach this is not necessary.

The ID of each transaction waiting to be completed is held in a session variable named
WaitingTransactions.
[Ajax.AjaxMethod(HttpSessionStateRequirement.Read)]

public ArrayList FetchCompletedTransactions()

{

 if (HttpContext.Current.Session["WaitingTransactions"] == null)

 {

 return null;

 }

 ArrayList completedTransactions = new ArrayList();

 int[]transactions =
(int[])HttpContext.Current.Session["WaitingTransactions"];

 for (int i = 0; i < transactions.Length; i++)

 {

 Transaction tx = Transaction.GetFromId(transactions[i]);

 if (tx != null && tx.Status == TransactionStatus.Ready)

 {

 completedTransactions.Add(tx);

 }

 }

 return completedTransactions;

}

The session variable is checked; if found not to be null, it is cast to an array of integers. Each
integer is fed to a method that retrieves details of the transaction and if it is ready then adds it to
the ArrayList to be returned to the caller.

Now you can use the window.setTimeout method to poll the state of the transactions:
<script type="text/javascript">

 function transactionsCompleteCallback(response)

 {

 if (response.error != null)

 {

 alert(response.error);

 return;

 }

 var data = response.value;

 if (!data || !data.length) return;

 var sResult = "";

 for (var i = 0; i < data.length; i++)

 {

 sResult += "Transaction Id: " + data[i].TransactionId;

 sResult += " (" + data[i].TransactionName + ") Status: ";

 sResult += data[i].Status + "
";

 }

 document.getElementById("divTransactionStatus").innerHTML =
sResult;

setTimeout("MyPage.FetchCompletedTransactions(transactionsCompleteCall
back)"

 , 10000);

 }

</script>

<body onload=

"setTimeout('MyPage.FetchCompletedTransactions(transactionsCompleteCal
lback)',

5000">

After a delay of 5 seconds, FetchCompletedTransactions is called and the results returned
to the transactionsCompleteCallback function. If there is no error and some data
available, HTML is built up detailing the transaction's ID, name, and status, and displayed to the
user. The function then uses setTimeout again, ensuring that the results are repopulated
every 10 seconds.

Summary of Ajax.NET

Provided that you are using IIS already, Ajax.NET is extremely simple to set up. It can handle
most data types that you will need. And if you don't like some aspect of it, it is an open source
framework, so you are free to examine how it works and suggest or even write you own
improvements.

Summary
All three of the frameworks examined in this chapter have their strengths; the main factor in
deciding which to use is almost certainly governed by what your web server is running at the
moment. All three languages—PHP, Java, and .NET—have myriad web-based resources and
books devoted to them (although Java probably comes slightly ahead of the others on this
point). Ajax.NET probably scores highest for ease of use when it comes to making methods
available; adding one line to an existing procedure and one line in the page load handler is
certainly very simple, although with DWR there is no internal modification of the class at all,
enabling you to re-use classes from elsewhere more easily. JPSpan's strength lies in the fact
that, because both it and JavaScript are weakly typed, there is less effort involved in coercing
types between the two languages.

Having completed this chapter, which covered a lot of ground on three different Ajax
frameworks, you have accomplished a number of different tasks.

For JPSpan, you have installed PHP, created a class, and connected to a database.

With DWR, you set up a new web server that could handle Java servlets and JSP pages, and
then created a Java class using a basic text editor before compiling it using command-line tools.
You also learned how to modify the XML config files to allow the class to be used from the
client.

For Ajax.NET, you learned how to modify the web.config file to override the built-in page
handler and how to install Ajax.dll and add a reference to it. You then created a class that
could retrieve information from a database and utilized this class using JavaScript on the client.

	Professional Ajax
	Whom This Book is For
	 What This Book Covers
	How This Book is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata

	 Chapter 1: What Is Ajax?
	Overview
	Ajax is Born
	The Evolution of the Web
	JavaScript
	Frames
	The Hidden Frame Technique
	Dynamic HTML and the DOM
	Iframes
	XMLHttp

	The Real Ajax
	Ajax Principles
	Technologies Behind Ajax
	Who Is Using Ajax?
	Google Suggest
	Gmail
	Google Maps
	A9
	Yahoo! News
	Bitflux Blog

	Confusion and Controversy
	Summary

	 Chapter 2: Ajax Basics
	HTTP Primer
	HTTP Requests
	HTTP Responses

	Ajax Communication Techniques
	The Hidden Frame Technique
	The Pattern
	Hidden Frame GET Requests
	Hidden Frame POST Requests
	Hidden iFrames
	Hidden IFrame POST Requests
	Advantages and Disadvantages of Hidden Frames

	XMLHttp Requests
	Creating an XMLHttp Object
	Using XMLHttp
	XMLHttp GET Requests
	XMLHttp POST Requests
	Advantages and Disadvantages of XMLHttp

	Further Considerations
	The Same Origin Policy
	Cache Control

	Summary

	 Chapter 3: Ajax Patterns
	Overview
	Communication Control Patterns
	Predictive Fetch
	Page Preloading Example
	Submission Throttling
	Incremental Form Validation Example
	Incremental Field Validation Example
	Periodic Refresh
	New Comment Notifier Example
	Multi-Stage Download
	Additional Information Links Example

	Fallback Patterns
	Cancel Pending Requests
	Try Again

	Summary

	 Chapter 4: XML, XPath, and XSLT
	Overview
	XML Support in Browsers
	XML DOM in IE
	Loading XML Data in IE
	Traversing the XML DOM in IE
	Retrieving XML Data in IE
	Manipulating the DOM in IE
	Creating Nodes
	Removing, Replacing, and Inserting Nodes

	Error Handling in IE

	XML DOM in Firefox
	Loading XML Data in Firefox
	Retrieving XML Data in Firefox
	Error Handling in Firefox

	Cross-Browser XML
	A Basic XML Example
	Loading XML Data
	Parsing the Book List
	Tying it Together

	XPath Support in Browsers
	Introduction to XPath
	XPath in IE
	Working with Namespaces
	XPath in Firefox
	Working with Namespace Resolver
	Cross-Browser XPath

	XSL Transformation Support in Browsers
	Introduction to XSLT
	XSLT in IE
	XSLT in Firefox
	Cross-Browser XSLT
	Best Picks Revisited

	Summary

	 Chapter 5: Syndication with RSS/Atom
	RSS
	RSS 0.91
	RSS 1.0
	RSS 2.0

	Atom
	FooReader.NET
	Client-Side Components
	XParser
	The User Experience
	Usability

	Server-Side Components
	Possible Paradigms
	Implementation
	Setting the Headers
	Getting the Remote Data
	Caching the Feed
	Error Handling
	Parsing the Feeds File

	Tying the Client to the Server
	Parsing the Feeds File — Client Style
	Drawing the User Interface Elements
	init()
	loadFeed()
	itemClick()

	Setup
	Testing
	Summary

	 Chapter 6: Web Services
	Overview
	Related Technologies
	SOAP
	RPC-Style SOAP
	Document-Style SOAP

	WSDL
	REST

	The .NET Connection
	Design Decisions
	Creating a Windows Web Service
	System Requirements
	Configuring IIS
	Coding the Web Service
	Creating the Assembly

	Web Services and Ajax
	Creating the Test Harness
	The Internet Explorer Approach
	The Mozilla Approach
	The Universal Approach

	Cross-Domain Web Services
	The Google Web APIs Service
	Setting Up the Proxy

	Summary

	 Chapter 7: JSON
	Overview
	What Is JSON?
	Array Literals
	Object Literals
	Mixing Literals
	JSON Syntax
	JSON Encoding/Decoding

	JSON versus XML
	Server-Side JSON Tools
	JSON-PHP
	Other Tools

	Creating an Autosuggest Text Box
	Functionality Overview
	The HTML
	The Database Table
	The Architecture
	The Classes
	The AutoSuggest Control
	Implementing Typeahead
	The typeAhead() Method
	The autosuggest() Method
	Handling Key Events

	Showing Multiple Suggestions
	Positioning the Drop-Down List
	Adding and Displaying Suggestions
	Updating the Functionality
	Adding Keyboard Support
	Updating init()

	Fast-Type Support

	The Suggestion Provider
	The Server-Side Component
	The Client-Side Component

	Summary

	Chapter 8: Web Site Widgets
	Overview
	Creating a News Ticker Widget
	The Server-Side Component
	The Client-Side Component
	The NewsTicker Class
	Doing the Animation
	Adding Feeds

	The NewsTickerFeed Class
	Polling for New Information
	Adding Content

	Styling the News
	Implementing the News Ticker Widget

	Creating a Weather Widget
	The Weather.com SDK
	The Server-Side Component
	The WeatherSettings Class
	The WeatherInfo Class
	Getting Weather Data from the Web
	Reading Cached Weather Data
	Deciding Which Version to Use
	Writing the Error Document

	Using the WeatherInfo Class

	The Client-Side Component
	Getting Data from the Server
	Customizing the Weather Widget
	Implementing the Weather Widget

	Creating a Web Search Widget
	The Server-Side Component
	The Client-Side Component
	Drawing the Results User Interface
	Displaying the Results
	Closing the Results Box
	Building the Search Interface

	Customizing the Web Search Widget
	Implementing the Web Search Widget

	Creating a Site Search Widget
	The Server-Side Component
	The Database Information
	The Returned Data Structure
	The SiteSearch Class
	Building the Search Page

	The Client-Side Component
	The User Interface
	The AjaxSiteSearch Class
	Clearing the Results
	Making the XMLHttp Request
	Processing the Information

	Customizing the Site Search Widget
	Implementing the Site Search Widget

	Summary

	 Chapter 9: AjaxMail
	Overview
	Requirements
	Architecture
	Resources Used
	The Database Tables
	The Configuration File
	The AjaxMailbox Class
	Database Operations
	Retrieving E-mail
	Getting the E-mail List
	Getting a Specific Message
	Sending an E-mail
	Getting Attachment Data
	Handling the Trash
	Marking Messages as Read

	Performing Actions
	AjaxMailAction.php
	AjaxMailNavigate.php
	AjaxMailSend.php
	AjaxMailAttachment.php

	The User Interface
	The Folder View
	Read View
	Compose View
	Layout

	Tying it All Together
	Helper Functions
	The Mailbox
	Data Loading Methods
	User Notification Methods
	Communication Methods
	Rendering Methods
	Action Methods
	Navigation Methods
	Initialization Methods

	Callback Functions
	Event Handlers

	The Last Step
	Summary

	 Chapter 10: Ajax Frameworks
	Overview
	JPSpan
	How It Works
	Installing JPSpan
	Creating the Server-Side Page
	The Standard Page Code
	Creating the Business Class

	Creating the Client-Side Page
	Error Handling
	Type Translation
	Summary of JPSpan

	DWR
	How It Works
	Installing DWR
	Installing the Java SDK
	Installing the Web Server
	Setting Up a Test Site

	Creating the Client-Side Page
	Using a Custom Class
	Error Handling
	More about dwr.xml
	Excluding Methods
	The Script Creator
	The Spring Creator
	The scope Parameter

	Converters
	Summary of DWR

	Ajax.NET
	How It Works
	Installing Ajax.NET
	Adding the Ajax.dll Reference
	Adding a New HttpHandlers Element

	Creating the Web Page
	Creating a Test Page
	Adding a Simple Method
	Creating Customer-AjaxNET.aspx
	Implementing the Customer Class
	Adding the Customer Class as a Remote Object
	Creating the Client-Side Code

	Simple and Complex Types
	Session State
	Summary of Ajax.NET

	Summary

