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With the growing complexity of software and the associated climb in bug 
rates, it's becoming increasingly necessary for programmers to produce 
bug-free code much earlier in the development cycle, before the code is 
first sent to Testing. The key to writing bug-free code is to become more 
aware of how bugs come about. Programmers can cultivate this aware- 
ness by asking themselves two simple questions about every bug they en- 
counter: "How could I have prevented this bug?" and "How could I have 
automatically detected this bug?" The guidelines in this book are the re- 
sults of regularly asking these two questions over a number of years. 

If your compiler could detect every bug in your program-no matter the 
type-and issue an error message, ridding your code of bugs would be 
simple. Such omniscient compilers don't exist, but by enabling optional 
compiler warnings, using syntax and portability checkers, and using auto- 
mated unit tests, you can increase the number of bugs that are detected for 
you automatically. 

A good development strategy is to maintain two versions of your program: 
one that you ship and one that you use to debug the code. By using debug- 
ging assertion statements, you can detect bugs caused by bad function argu- 
ments, accidental use of undefined behavior, mistaken assumptions made 
by other programmers, and impossible conditions that nevertheless some- 
how show up. Debug-only backup algorithms help verify function results 
and the algorithms used in functions. 
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Assertions wait quietly until bugs show up. Even more powerful are sub- 
system integrity checks that actively validate subsystems and alert you to 
bugs before the bugs affect the program. The integrity checks for the stan- 
dard C memory manager can detect dangling pointers, lost memory blocks, 
and illegal use of memory that has not been initialized or that has already 
been released. Integrity checks can also be used to eliminate rare behavior, 
which is responsible for untested scenarios, and to force subsystem bugs to 
be reproducible so that they can be tracked down and fixed. 

The best way to find bugs is to step through all new code in a debugger. By 
stepping through each instruction with your focus on the data flow, you can 
quickly detect problems in your expressions and algorithms. Keeping the 
focus on the data, not the instructions, gives you a second, very different, 
view of the code. Stepping through code takes time, but not nearly as much 
as most programmers would expect it to. 

It's not enough that your functions be bug-free; functions must be easy to 
use without introducing unexpected bugs. If bug rates are to be reduced, 
each function needs to have one well-defined purpose, to have explicit 
single-purpose inputs and outputs, to be readable at the point where it is 
called, and ideally to never return an error condition. Functions with these 
attributes are easy to validate using assertions and debug code, and they 
minimize the amount of error handling code that must be written. 

Given the numerous implementation possibilities for a given function, it 
should come as no surprise that some implementations will be more error- 
prone than others. The key to writing robust functions is to exchange risky 
algorithms and language idioms for alternatives that have proven to be 
comparably efficient yet much safer. At one extreme this can mean using 
unambiguous data types; at the other it can mean tossing out an entire de- 
sign simply because it would be difficult, or impossible, to test. 
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I first met Steve Maguire in 1986, when we hired him to work on Macintosh 
Excel. He impressed me then as a particularly conscientious and dedicated 
programmer. At that time, I was the development manager for Microsoft 
Multiplan, Word, and Chart. The company was growing rapidly, and so 
were problems with both our products and our development process. Steve 
was instrumental in solving some of those problems and with this book be- 
comes the recorder of many good practices we developed in response to 
those problems. But I'm getting ahead of myself. 

I was hired by Bill Gates and Charles Simonyi in 1981 to work in 
Microsoft's business applications group. Back then, that meant 7 program- 
mers working on one business application-Microsoft Multiplan. Another 
30 programmers were working on our language and operating systems 
products. The rest of the 100 people in the company were in technical writ- 
ing, sales, marketing, and administration. At that time, all 7 Multiplan pro- 
grammers were crammed into one large room in an office building in 
downtown Bellevue, Washington. We weren't even in the same building 
with the rest of the developers, who were working on MS-DOS and Basic. 
They were two blocks away. But that wasn't a big problem. We were a small 
company with a vision of what we wanted to accomplish: a computer on 
every desk running Microsoft software. 

The system we used to develop Multiplan was pretty sophisticated for 
PC development in those days. We wrote the core product in C-most pro- 
grams then were written in assembly or Pascal. We did our editing and 
compilation on a PDP-11 running Unix. The C code was compiled into 
p-code and downloaded to the target machines. We had to build p-code 
interpreters for each microprocessor in use at that time. 

By the end of 1983, we had interpreters working for the 8080/280, the 
6502, the 28000, the 68000, the TI 99/a, and the 8086. And by that time, we 
had application specialists working on each of our primary business appli- 
cations-a spreadsheet, a word processor, a simple database record man- 
ager, and a business graphics package. We had assembly language and 



xii WRITING SOLID CODE 

environment specialists working on the interpreters. We also had a group 
working on the compiler and development tools. Except for a small depen- 
dence on the minuscule operating system services, the 30-member applica- 
tion development team was self-contained, building its own development 
tools, compilers, interpreters, and product code. 

In 1981, our primary focus had been on shipping original equipment 
manufacturer products. We would work with an OEM, customizing our 
products to fit the OEM's machine and sales channels. Then we would ship 
the OEM a disk and photo-ready copies of the manual. The OEM would do 
all of the manufacturing of the product, the sales, and the support. 

By 1982, we had started to switch to a retail emphasis. The OEM focus 
had allowed us to travel light. We'd needed only a few marketing folks to 
sell the products to the OEMs, a few developers to build the products, and a 
few technical writers to write the manuals. Testing, project management, 
product manufacturing, product shipping, product support, and sales had 
been provided by the OEM. With the switch to a retail focus, we had to 
develop all of these specialized product development and support func- 
tions at Microsoft. 

Early on, we developed products for IBM and Apple PCs. Our first 
retail products were Multiplan for IBM-DOS and Multiplan for the Apple 11. 
But we still developed many OEM products. We worked on spreadsheet, 
word processing, business graphics, and database products for Unix, Xenix, 
the TI 99/a, the Tandy M100, the MSX (an 8-bit home computer in Japan), 
non-IBM-compatible MS-DOS machines, the Commodore 64, the Atari, the 
Apple 111, the Apple Lisa, the Apple Macintosh, OS/2, Windows, and many 
other specialized hardware environments. Some of these environments had 
several variants themselves. Before the IBM-compatible became the domi- 
nant machine, we'd had to tailor our applications for every MS-DOS ma- 
chine that was built. We'd had a different product for the Tandy, the Wang, 
the Paradyne, the Consumer Devices, the Eagle, the Victor, the Olivetti, the 
DEC Rainbow, and many other MS-DOS machines. While dealing with this 
system specialization, we were developing numerous specialized foreign 
language versions of our business applications. 

Our early products were only English language versions. Today we 
build over 30 language products that we adapt, or more often tailor, to the 
target language/culture, including Arabic, Australian, Bahas, Chinese, 
Czechoslovakian, Danish, Dutch, English (UK), Finnish, French, French 
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Canadian, German, Greek, Hebrew, Honguel (Korean), Italian, Japanese, 
Norwegian, Portuguese, Russian, Spanish, Swedish, Turkish, US English, 
and more. 

By 1985, some of the complexity of product development had been 
eliminated by the success of the IBM PC. The variety. of video standards 
we'd had to support had been reduced to the primary IBM-compatible 
modes (CGA and monochrome). But video support started to get out of 
hand again around 1988. IBM had developed the EGA video extensions, 
then they developed the VGA, and it was soon followed by the SVGA and 
all of its variants. 

Support for the other hardware peripherals also grew more complex. 
We had to support over 200 variations of laser and dot matrix printers. For- 
tunately, input devices didn't get too varied. There was the IBM standard 
keyboard and the extended keyboard. And most pointing devices followed 
the Microsoft mouse standard. 

Today a lot of the complexity and variations in the hardware have 
simply gone away or have been incorporated into one complex but com- 
plete interface. We have to build products for only two primary systems- 
Windows and the Mac. But new levels and magnitudes of complexity have 
emerged to replace the complexities of hardware support. Now developers 
need to be conversant with message-based GUI programming and with 
object-oriented design and programming. They need to support product 
extensibility through Object Linking and Embedding (OLE) in Windows 
and through Publish and Subscribe on the Mac. And they need to support 
consistent access to features across product families and consistent methods 
of programmability across product families. 

In 1984, the increase in the complexity of our products and the high 
standards involved in building retail products led us to start up a quality 
assurance group. We called this group Testing in 1984, and we call this 
group Testing today, although our testing group has grown from 5 testers 
in 1984 to over 500 testers. Our testing group today is really an advanced 
quality assurance group that looks out for our customer's interests. 

Before we'd had a testing group, the business applications developers 
had relied on the OEM customer to test the product to find bugs. This ar- 
rangement worked out well until we started to ship the retail product di- 
rectly to end users, before we'd shipped it to any OEM customers. For an 
interval, before the testing group was going strong, the developers had to 
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test the retail products themselves. The developers who lived through that 
experience learned that they had to be very careful not to introduce bugs as 
they wrote and debugged the code. They found out the hard way how 
costly it was to release a product that had bugs in it. 

But as the testing group got bigger, the development groups got more 
and more dependent on the testing group to find bugs. The development 
groups soon adopted the attitude that the testing group was responsible for 
finding all bugs. This led to such serious problems-slipped schedules, 
buggy features, incomplete features, even canceled products-that some- 
thing had to be done. Many developers felt no shame if bugs were found in 
their code after the product had shipped. They'd ask indignantly, "Why 
didn't Testing find that bug before we shipped?" Testing should have re- 
sponded, "Why did you put that bug in the product in the first place?" 

Eventually, the developers began to realize that Testing can never find 
all of the bugs in a piece of software. The bugs might be in the design, or in 
the specifications, or in the analysis of the customer's needs. And testers 
can't do complete code coverage or path coverage in their tests. Bugs might 
be hidden in obscure and rarely tested code. Bugs can be temporarily 
masked by the operations of other parts of the program-or by the testing 
environment. These are the kinds of bugs that testers have a hard time find- 
ing. Because of these factors, a testing group will usually find only 60 per- 
cent of the bugs in a product. 

The developers can bring more knowledge and tools to reviewing and 
testing the code. When the developers set their minds and their tools to it, 
they can find over 90 percent of the bugs in the code. If the developers give 
the responsibility for finding the bugs to the testers, the users of the product 
will find 40 percent of the bugs. If Development and Testing both work to 
find the bugs, the users will end up finding less than 4 percent of the bugs. 
And that 4 percent could be found by the users during the beta test of the 
product. 

In early 1989, many of the development managers and leads met to 
discuss the problem. Out of that meeting came a realization and an attitude 
change: Finding and fixing bugs was Development's responsibility. Devel- 
opment had been letting bugs slip past them. NOW it became their responsi- 
bility again to prevent bugs from being released to Testing and then on to 
the customers. The development teams set off on the goal of having a 
"nearly shippable product every day." This means that when a feature is 
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marked complete, any bugs found in it will have to be fixed before any new 
work is attempted. Work in progress will be brought to a standstill if seri- 
ous bugs are found in features marked complete. 

We labeled this new attitude "zero defects." The code would be built, 
reviewed, and tested by Development and delivered to Testing with zero 
defects. Fortunately, a few of the development groups had already been ex- 
perimenting with many of the techniques for developing zero defect code. 
We started to actively share those techniques among all the development 
groups. Steve Maguire did a lot of troubleshooting from group to group in 
those days, and he has set down many of our techniques for writing solid, 
bug-free code in this book. 

Microsoft improved and is always improving its product develop- 
ment process along with its development tools. In 1981, there were the de- 
velopers, the writers of the manuals, and small sales, marketing, and 
administrative groups. Now we have product marketing, channel market- 
ing, sales, support, testing, user education (technical writing and publish- 
ing), program management, and many other specialists. With today's 
complex structure of special groups at Microsoft, we want to ensure that the 
techniques for developing solid code aren't lost, misunderstood, or forgot- 
ten. Steve Maguire's book should help both us and you keep those tech- 
niques alive. 

Today I'm the director of development and testing for Microsoft. Part 
of my job is to inventory and disseminate best practices. I'm very grateful to 
Steve for taking the time to write a book so enjoyable to read that will help 
managers and programmers develop world-class code. Steve has captured 
and described many of the techniques that are used at Microsoft to develop 
solid, shippable code. It will become recommended reading for all 
Microsoft programmers. 

David M. Moore 
Director of Developmen t, Microsoft 
Redmond, Washington 
Ianua y 1993 





In 1986, after 10 years of consulting and working for small companies, I 
went to work for Microsoft specifically to get experience in writing Macin- 
tosh applications: I joined Microsoft's Excel team, the group responsible for 
the company's graphical spreadsheet application. 

I'm not sure what I was expecting the code to look like-glamorous or 
elegant, I suppose. What I found was plain, everyday code, nothing much 
different from what I'd seen before. To be sure, the spreadsheet had a won- 
derful user interfaceit was much easier and more intuitive to use than any 
of the character-based spreadsheets of the time. But what impressed me 
even more was the implementation of an extensive debugging system built 
into the product. 

The system automatically alerted programmers and testers to bugs, 
much the way warning lights in the cockpit of a Boeing 747 alert pilots to 
failures-the debugging system was not so much testing the code as it wgs 
monitoring it. None of the concepts in the debugging system were new, but I 
was struck by the sheer extent to which they were employed, and by how 
effective the system was in detecting bugs. It was an eye-opener. It didn't 
take me long to discover that most of Microsoft's projects had extensive in- 
ternal debugging systems-and that there was a heightened awareness 
among the programmers of bugs and their causes. 

I worked on Macintosh Excel for two years before I left to help another 
Microsoft group, whose code was turning up with a higher than usual num- 
ber of bugs. I found that during the two years in which I had been focused 
on Excel, Microsoft had tripled in size and many of the programming con- 
cepts that were well-known among the older groups had not spread to the 
newer groups during the rapid growth. Instead of having a heightened 
awareness of error-prone coding practices, the newer programmers had a 
normal awareness-about what I'd seen among programmers in the years 
before I joined Microsoft. 

xvii 
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About six months after I'd moved to the new group, I was talking to a 
fellow programmer and mentioned that somebody should document the 
concepts behind writing bug-free code so that the principles could spread to 
the newer groups. The other programmer looked at me and said, "You 
don't seem to mind writing documents; why don't you write down the de- 
tails? In fact, why don't you write a book and see if Microsoft Press will 
publish it? After all, none of this information is proprietary; it simply makes 
programmers more aware of bugs." 

I didn't give that suggestion much thought then, mainly because I 
didn't have the time and I'd never written a book before-the closest I'd 
come to authorship was cowriting a programming column for Hi-Res Maga- 
zine in the early 1980s. Not quite the same thing. 

But as you can see, the book did get written, and for a simple reason: 
In 1989 Microsoft canceled an unannounced product because of a runaway 
bug list. Now, runaway bug lists weren't new-several of Microsoft's com- 
petitors had already canceled projects because of them. But this was the first 
time that Microsoft had ever canceled a project for that reason. It was also 
the latest in a string of buggy products, and management had finally said, 
"Enough is enough" and taken a series of steps to get bug counts back down 
to their previous levels. Still, nobody was given responsibility for putting 
the details down on paper. 

By this time the company was nine times larger than when I'd started, 
and I didn't see how the company's coding could return to its previous low 
bug levels without explicit, recorded guidelines, particularly when I consid- 
ered the growing complexity of Windows and Macintosh applications. 
That's when I decided, finally, to write this book. 

Microsoft Press agreed to publish it. 
And here it is. 
I hope you enjoy reading the book. I've tried to keep it informal and 

entertaining. 

I'd like to thank everybody at Microsoft Press who helped make this book a 
reality, and in particular the two people who held my hand throughout the 
writing process. First I would like to thank Mike Halvorson, my acquisi- 
tions editor, for letting me take the project at my own speed and for pa- 
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tiently answering this first-time book author's many questions. I would es- 
pecially like to thank Erin O'Connor, my manuscript editor, who gave me 
early feedback on the chapters, and without whose help this book simply 
would not exist. Erin also encouraged me to relax into my own style, and it 
certainly didn't hurt that she laughed at the text's little jokes. Jeff Carey 
gave the ideas and the code a good going over, and Kathleen Atkins made 
many good suggestions. 

I'd also like to thank my father, Joseph Maguire, who in the mid-1970s 
introduced me to those first microcomputers: the Altair, the IMSAI, and the 
Sol-20. He is responsible for getting me hooked on this business. Evan 
Rosen, with whom I worked at Valpar International from 1981 to 1983, was 
a great influence on me, and his knowledge and insight show up in this 
book. Paul Davis, with whom I've had the pleasure to work during the past 
10 years on various projects all over the country, has also shaped my think- 
ing in sigruficant ways. 

I'd like to thank all the people who took the time to read through draft 
copies of this book to give me technical feedback: Mark Gerber, Melissa 
Glerum, Chris Mason, Dave Moore, John Rae-Grant, and Alex Tilles. I'd 
especially like to thank Eric Schlegel and Paul Davis for not only reviewing 
draft copies of the book but also giving me early help in hammering out 
the details. 

Seattle, Washington 
October 22,1992 





Several years ago I picked up a copy of TEX: The Program, by Donald Knuth, 
and what I read in the preface astounded me: 

I believe that the final bug in TEX was discovered and removed on 
November 27,1985. But if, somehow, an error still lurks in the code, I 
shall gladly pay a finder's fee of $20.48 to the first person who discov- 
ers it. (This is twice the previous amount, and I plan to double it again 
in a year; you see, I really am confident!) 

I have no idea whether Knuth paid anybody $20.48 or even $40.96; 
that's not important. What is important is the confidence Knuth had in the 
quality of his code. How many programmers do you know who would seri- 
ously claim that their programs are totally bug-free? How many would 
publish such a claim and back it up with a finder's fee? 

Programmers could make such claims if they truly believed that their 
testing groups had found all their bugs. But that's the problem. How many 
times have you heard programmers say, "I hope Testing has found all the 
bugs" right before the code is boxed, shrink-wrapped, and shipped to deal- 
ers? They cross their fingers and hope for the best. 

Programmers today aren't sure their code is bug-free because they've 
relinquished responsibility for thoroughly testing it. It's not that manage- 
ment ever came out and said, "Don't worry about testing your code-the 
testers will do that for you." It's more subtle than that. Management expects 
programmers to test their code, but they expect testers to be more thorough; 
after all, that's Testing's full-time job. 

The purpose of this book is to show how programmers can take back 
the responsibility for writing bug-free code. That doesn't necessarily mean 
writing perfect code the first time-it means creating a product that's bug- 
free before it first goes into testing. Some programmers may laugh incredu- 
lously at such an idea, but this book demonstrates techniques and provides 
guidelines that programmers can use to work toward that goal. 

xxi 
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The most critical requirement for writing bug-free code is to become at- 
tuned to what causes bugs. All of the techniques and guidelines presented 
in this book are the result of programmers asking themselves two questions 
over and over again, year after year, for every bug found in their code: 

How could I have automatically detected this bug? 

How could I have prevented this bug? 

The easy answer to both questions would be "better testing," but 
that's not automatic, nor is it really preventive. Answers like %etter test- 
ing" are so general they have no muscle-they're effectively worthless. 
Good answers to these questions result in specific techniques that eliminate 
the kind of bug you've just found. 

This book is devoted to techniques and guidelines that have been 
found to reduce or completely eliminate entire classes of bugs. Some of its 
points smack right up against common coding practices, but before dis- 
missing them with "everybody breaks that guideline," or "nobody does 
that," stop and think itsthrough for yourself. If "nobody does that," why 
not? Make sure the reasons are still valid. Practices that made sense when 
FORTRAN was the hot new language may not make sense now. 

That's not to say that you should blindly follow the guidelines in this 
book. They aren't rules. Too many programmers have taken the guideline 
"Don't use goto statements" as a commandment from God that should 
never be broken. When asked why they're so strongly against gotos, they 
say that using goto statements results in unmaintainable spaghetti code. Ex- 
perienced programmers often add that goto statements can upset the 
compiler's code optimizer. Both points are valid. Yet there are times when 
the judicious use of a goto can greatly improve the clarity and efficiency of 
the code. In such cases, clinging to the guideline "Don't use goto statements" 
would result in worse code, not better. 

The guidelines in this book are no different: They're meant to be fol- 
lowed most of the time, and they're meant to be broken when you can get 
better results by breaking them. 

In addition to the guidelines and techniques, most of the chapters in 
this book contain a section at the end called "Things to Think About.'' Ques- 
tions in this section of a chapter explore new areas that haven't been cov- 
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ered in the earlier parts of the chapter. The questions aren't exercises-they 
don't test your comprehension of the chapter. I've tried to introduce at least 
one new concept in every question, and I've provided a complete set of an- 
swers in order to pass on as much information as possible. If you usually 
skip over exercises, consider reading the answers in Appendix C so that 
you won't miss any of the guidelines or techniques I've introduced there. 

- - -  

Building atop Existing Foundations 
Programmers who have been using C for a while know that they should use 
parentheses around arguments in macro definitions; they know that strings 
have unseen nu1 characters; they know that C arrays start with element 0, 
not 1; and they know that you must use break statements to prevent switch 
cases from falling into each other. These and other misunderstandings 
about the C language are common sources of bugs, but you won't find these 
bugs under discussion in this book unless such discussion is part of another 
point I'm making. I have tried to focus on the little-known, or rarely pub- 
lished, techniques for writing bug-free code, techniques that you won't usu- 
ally find in programming textbooks or hear about in programming courses. 

Nor have I tried to rehash guidelines already covered so well in 
The Elements of Programming Style, the programming classic written by Brian 
Kernighan and P. J. Plauger. Although Kemighan and Plauger use FORTRAN 
and PL/I in their examples, their guidelines-with a few exceptions-are 
applicable to any programming language, including C. Writing Solid Code 
builds on the groundwork laid by The Elements of Programming Style and 
follows a similar format. 

Finally, although this book is written for professional programmers 
working on real projects with real deadlines, it's also suitable for students in 
advanced C programming courses. Few students will ever work on a com- 
piler once they finish their compiler course, but all will have to focus on 
writing bug-free code. It's my hope that this book will help give students 
the skills they'll need to write solid, production quality code once they 
graduate. 
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Sometimes it almost seems that a book won't be taken seriously unless it 
mentions the PDP-11, the IBM 360, or some other old piece of hardware. So 
there, I've mentioned them, and I won't mention them again in this book. 
The systems you will hear a lot about in this book are MS-DOS, Microsoft 
Windows, and especially the Apple Macintosh-because those are the sys- 
tems I've written code for most recently. 

You'll also hear a lot about the history of the Microsoft Excel and 
Microsoft Word applications in this book. Excel is Microsoft's graphical 
spreadsheet, originally written for the Macintosh and later significantly re- 
written, cleaned up, and enhanced for Windows. 

Throughout the book, I talk about my experiences as a Macintosh 
Excel programmer, but I must confess that I spent most of my time either 
porting Windows code to the Macintosh sources or implementing look- 
alike features that Windows Excel already had. I had little to do with the 
phenomenal success of the product. 

My only strategic contribution to Macintosh Excel was to convince 
Microsoft to kill it, and to instead build the Macintosh version directly from 
the much-improved Windows version's sources. Macintosh Excel 2.2 was 
the first version based on Windows Excel, sharing 80% of the code with its 
sibling. This was great for Macintosh Excel users because with the 2.2 re- 
lease they saw a big jump in features and quality. 

Word is Microsoft's word processing application. Actually, there are 
three versions of Word: Word for MS-DOS, which is character-based; Word 
for the Macintosh; and Word for Windows. As I write, the three products 
are still built from separate sources, but the versions are similar enough that 
most users can move among them without much difficulty. Eventually, all 
versions of Word will be built from common sources. The work is in 
progress. 

WHAT ABOUT THE CODE? 
You don't need to be an MS-DOS, Microsoft Windows, or Apple Macintosh 
expert to follow the book's code-the code is written in straightforward C 
that should compile and run with any ANSI C development system. 

However, if you're a mainframe or minicomputer programmer with- 
out much experience on microcomputers, be aware that protected memory 
support is still rare in microcomputer operating systems. You can read and 
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write through NULL pointers, trash your stack frame, and spew garbage 
throughout memory-even memory belonging to another application- 
and the hardware will stand by quietly while you do it. If you find yourself 
thinking, "The hardware will catch that bug," consider yourself lucky to 
have such a helpful system. Not all programmers are so fortunate. 

In several places I've shown ANSI C library functions that don't quite 
match the standard's requirements. For example, the ANSI version of the 
memchr function declares the character c as an int: 

v o i d  *memchr(const  v o i d  * s .  i n t  c ,  s i z e - t  n); 

Internally, memchr treats the character as an unsigned char, but the 
character is declared as an int for backward compatibility with pre-ANSI, 
unprototyped source code. Since I use ANSI C throughout the book, I have 
dropped that backward compatibility detail and instead have used the 
more accurate types for clarity and stronger prototype checking. In Chapter 
1,1111 explain in more detail why this is desirable, but for now, just remem- 
ber that not all of the "standard" functions follow the standard precisely. 
You'll see that the interface for memchr is often written with the character 
declared as a char, not an int: 

v o i d  *memchr(const  v o i d  * p v ,  u n s i g n e d  c h a r  ch ,  s i z e - t  s i z e ) ;  

By now you've probably flipped through the pages of this book and noticed 
the many strange-looking variable and function names used in the code. 
Names like pch, ppb, and pvResizeBlock are common. 

Although names like pch look funny and are hard to pronounce, they 
are filled with inforrnation-once you understand the "Hungarian" naming 
convention developed by Charles Simonyi in the early 1970s. The premise 
behind the Hungarian naming convention is that conveying information is 
far more important in naming your variables than being able to stand up 
and read your code aloud during a program review. 

The details of the simplified Hungarian naming convention I use in 
this book are pretty easy. For variables of each data type in your program, 
you use an abbreviation for the type as part of the variable name. There's 
nothing earth-shattering about that-programmers have long called their 
characters c or ch, their bytes b, their integers i, and so on. The Hungarian 
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convention merely enforces this practice for all data types in a program. For 
example, 

char  ch;  I* a  p l a i n  o l d  c h a r a c t e r  *I 
b y t e  b ;  I* a  b y t e ,  wh ich  i s  an uns igned  char  *I 
f l a g  f ;  I* f l a g s  t h a t  a r e  a lways TRUE o r  FALSE * I  
symbol sym; I* some s o r t  o f  symbol s t r u c t u r e  *I 

The convention doesn't specify what the data type abbreviations 
should be-only that they be used consistently throughout the program. 

Pointer variables pose an interesting problem in that they must point 
to something. The Hungarian naming convention handles this problem by 
requiring that all pointer variable names start with the letter p followed by 
the abbreviation for the data type that the pointer references. If you were to 
declare pointers to the data types above, you would have the following names: 

char  *pch; I* c h a r a c t e r  p o i n t e r  *I 
b y t e  *pb; I* b y t e  p o i n t e r  *I 
f l a g  * p f ;  I* e t c .  *I 
symbol *psym; 

Pointers to other pointers aren't any different from pointers to regular 
data types-you still attach a p to the front of the data type that's being 
pointed to. The name for a pointer to a character pointer would be a p 
tacked to the front of a pch: 

c h a r  **ppch; I* p o i n t e r  t o  a  c h a r a c t e r  p o i n t e r  *I 

This piling up of data types makes Hungarian difficult to read, but the 
naming convention allows programmers to append a descriptive word or 
two-each starting with a capital letter-to the abbreviation for the variable 
type. Not only does this improve readability, but it also makes it possible to 
distinguish similarly typed variables from each other. The strcpy function, 
for example, takes two character pointers as arguments, so one possible 
prototype for the function would be 

char  * s t r c p y ( c h a r  *pchTo, c h a r  *pchFrom);  I* p r o t o t y p e  *I 

This brings up another point. Because the purpose of the Hungarian 
naming convention is to increase comprehension, the convention puts more 
emphasis on what the data types represent than on how they are actually 
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declared. The two arguments to strcpy are character pointers, but more im- 
portant, they are pointers to zero-terminated strings. Naming strcpy's argu- 
ments as pchs would be correct, but using strs would be more meaningful: 

char  * s t r c p y ( c h a r  * s t r T o ,  char  *s t rFrorn) ;  I* p r o t o t y p e  * /  

strs are still character pointers, but when you see the names, you know 
they're special character pointers-they point to strings. 

Function and array names follow the same convention-they start 
with the type returned and are followed by a descriptive tag. In formal 
Hungarian, function names always start with a capital letter, but in this 
book I have regularized the convention for consistency; there's no differ- 
ence in capitalization conventions among function names, array names, and 
variable names. If the standard malloc and realloc functions were written 
using Hungarian-style names, they might be prototyped as 

v o i d  *pvNewBl ock (s i ze - t  s i z e )  ; I* p r o t o t y p e  * /  

and 

v o i d  *pvRes izeB lock(vo id  *pv, s i ze - t  sizeNew); I* p r o t o t y p e  *I 

One benefit of using Hungarian names is that they make it easy to de- 
cipher pointer expressions. For example, you'll see many pointers to point- 
ers in this book, particularly ppb's 

Although this code may look unreadable at first, once you realize that you 
can cancel *s and ps in such expressions, you can easily understand what is 
going on. If you cancel the * with one p in the expression above, you get 

Since the.types match-they're both pbs-you know that the expression is 
correct. &s and ->s also cancel with ps. Consider these statements: 
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If you cancel the p and the & in the first statement, you get a byte 
assigned to a byte, and you know the expression is valid. In the second state- 
ment, if you cancel the p with the ->, you also get a byte assigned to a byte: 
b = sym.bLength. This "type calculus," as it is called, makes it easier to tear 
apart complex pointer expressions. 

Although I've left a lot unsaid about the Hungarian naming conven- 
tion, the basic outline here should be enough for you to follow the code in 
this book. 

Hunga y for More? 
The simplified form of Hungarian used in this book doesn't do justice to the 
full-blown version developed by Charles Simonyi. Is pchfl an array of pchs, 
or is it a pointer to an array of characters? With the simplified Hungarian 
I've used you'd have to refer to the declaration to be sure, but the complete 
Hungarian convention clears up this ambiguity and many others. I chose to 
use a simplified version of Hungarian because of, well, its simplicity, and 
because the ambiguous cases never come up in this book. I apologize to 
Charles Simonyi for presenting only a suggestion of his well-thought-out 
naming convention. 

Hungarian is not for everybody. Some people think it's the best thing 
since structured programming; others hate Hungarian with a passion. Both 
camps have their reasons. If Hungarian looks interesting to you and you'd 
like to find out more about it, you can find a thorough discussion of the 
convention in Charles Simonyi's doctoral thesis: "Meta-Programming: A 
Software Production Method" (Stanford University, 1977; Xerox Palo Alto 
Research Center, 1977). 

Before we move on to Chapter 1's hypothetical bug-catching compiler, I 
should explain a little bit about the kind of "bug" this book is preoccupied 
with. I know you know what a bug is-I don't need to define "bug" for 
anybody reading this book. But in this book I make a distinction between 
two classes of bugs: those you introduce while working on a feature and 
those that remain in your code after you believe the code is finished. 
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Many software houses use source code control systems to simplify 
program development. A programmer checks out a file he or she needs to 
modify, much the way you would check out a book at the library. The only 
difference is that the programmer checks out a copy of the file, not the file 
itself. This allows the programmer to implement new features without actu- 
ally touching the master source files. Once the programmer has finished 
implementing a feature and is sure that the code is free of bugs, the file is 
checked back in, and the source code control system updates the master 
files accordingly. 

With this arrangement, it really doesn't matter how many bugs the 
programmer introduces into the code while implementing new features, 
provided, of course, that all bugs are fixed before the new code is checked 
into the master sources. 

When I say "bug" in this book, I mean bugs that make it into the mas- 
ter sources, where they hurt the product and affect the customer. I don't 
expect programmers to write flawless code every time they sit at the key- 
board, but I do believe that it's possible to keep bugs out of the master 
sources. 

The guidelines and techniques in the following chapters describe how 
to write such bug-free code. 





Think about this for a moment: How buggy would your programs be if the 
compiler could pinpoint every problem in your code? I'm not just talking 
about syntax errors, but about every problem, no matter how obscure. 

Suppose you had an off-by-one bug and the compiler could somehow 
detect it and give you an error like this one: 

- > l i n e  23:  w h i l e  (i <= j) 
A A 

O f f - b y - o n e  e r r o r :  T h i s  s h o u l d  be ' < '  

Or what if it could find mistakes in your algorithms: 

- > l i n e  42: i n t  i t o a ( i n t  i, char  * s t r )  
A A A A  

A l g o r i t h m  e r r o r :  i t o a  f a i l s  when i i s  -32768 
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Or suppose it could tell you when you're passing bad arguments: 

- > l i n e  318: strCopy = memcpy(malloc(length), str, length); 
A A A A A A  

Invalid argument: memcpy f a i l s  when m a l l o c  returns N U L L  

OK, so maybe this is a bit farfetched, but if the compiler could do this, how 
easy do you think it would be to write bug-free programs? Wouldn't it be 
trivial-at least compared to what programmers normally go through? 

If you were to aim a spy satellite camera at a typical software house, 
you'd find programmers hunched over their keyboards tracking down re- 
ported bugs. Elsewhere, you might find testers attacking the latest internal 
release, bombarding it with inputs to catch new bugs. You might even find 
testers checking to be sure that none of the old bugs have sneaked back into 
the code. If you think searching for bugs this way takes a lot of effort com- 
pared to using the hypothetical compiler to catch errors, you're right; it also 
requires a lot of luck. 

Luck? 
Yes, luck. When a tester finds a bug, isn't it because he or she hap- 

pened to notice that some number was wrong, or that a feature didn't be- 
have as expected, or that the program crashed? Take another look at the 
hypothetical compiler errors. Would a tester see the off-by-one bug if the 
program appeared to work despite the problem? What about the other two 
errors? 

It may sound scary, but testers hurl inputs at programs and hope that 
lurking bugs will somehow show themselves. "Yeah, but our testers are 
more sophisticated than that. They use code coverage tools, automated test 
suites, random monkey programs, display snapshots, and a bunch of other 
stuff." That may be true, but look at what those tools do. Coverage analysis 
tells testers what parts of your program aren't being tested; the testers use 
that information to devise new inputs to your program. And the other tools 
are automated forms of the "pound and observe" strategy. 

Don't misunderstand me, I'm not saying that what testers do is 
wrong. I'm saying that it's hard to test a program as a black box because all 
a tester can do is stuff things into the program and watch what pops out. It's 
like trying to determine whether somebody is insane. You ask questions; 
you listen to answers; and you make a judgment call. In the end, you're 
never really sure because you don't know what's going on inside the other 
person's head. You always wonder, "Did I ask enough questions? Did I ask 
the right questions?" 
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Don't rely on black-box testing. Try to mimic that hypothetical compiler. 
Eliminate luck and take every opportunity to catch bugs automatically. 

When was the last time you read an advertisement for a leading word pro- 
cessor? If the folks on Madison Avenue wrote it, it probably sounded some- 
thing like this: "Whether you're writing a note to Johnny's teacher or 
working on the next Great American Novel, WordSmasher can handle it. 
Effortlessly. And to catch typing mistakes that creep into your masterpiece, 
there's a mind-boggling 233,000-word spelling dictionary-51,000 more 
words than in the nearest competitor's. So run down to your dealer and 
pick up a copy. WordSmasher. The most revolutionary writing tool since 
the ballpoint pen." 

As users, we've been trained by constant marketing propaganda to 
believe that the bigger the spelling dictionary, the better. But that isn't true. 
You can find the words em, abel, and si in any paperback dictionary, but do 
you really want your spelling checker to allow those words when me, able, 
and is are so common? If you see suing in something I write, the odds are 
astronomical that I meant using. It doesn't matter that suing is a real word; in 
my writing, it's an error. 

Fortunately, high-quality spelling checkers will let you delete trouble- 
some words like em from their dictionaries so that you can flag an otherwise 
legal word as an error. Good compilers are no different-they will let you 
flag otherwise legal C idioms as errors because the idioms are so often used 
in a mistaken way. Such a compiler could detect the misplaced semicolon in 
the while loop below: 

/ *  memcpy - -  copy a n o n o v e r l a p p i n g  memory b l o c k .  * /  

v o i d  *memcpy(void *pvTo, v o i d  *pvFrom. s i z e - t  s i z e )  
{ 

b y t e  *pbTo = ( b y t e  * ) p v T o ;  
b y t e  *pbFrom = ( b y t e  * )pvFrom;  

w h i l e  ( s i z e - -  > 8 ) ;  
*pbTo++ = *pbFrom++; 

r e t u r n  ( p v T o ) ;  
1 
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You can tell from the indentation that the semicolon is a mistake, but 
what the compiler sees is a while statement with a null body, and that's per- 
fectly legal. Now there are times that you want null statements and times 
that you don't. To catch the unwanted null statements, compilers often pro- 
vide an optional warning that, if you use it, will automatically alert you to 
bugs like this one. And for those times when you really mean to use a null 
statement, you can silence the compiler warning by using the compiler 
manual's suggested workaround-using a constant expression that will be 
optimized away (such as NULL;), or using an empty block I ) ,  or using some 
other compiler workaround. I've used I )  here. 

char * s t r c p y ( c h a r  *pchTo, char *pchFrom) 
{ 

char *pchS ta r t  = pchTo; 

w h i l e  (*pchTo++ = *pchFrom++) 
E 1 

r e t u r n  ( p c h s t a r t ) ;  

The result: You get the flexibility that null statements provide, but the 
compiler flags unintentional null statements as errors, automatically. Disal- 
lowing one kind of null statement is not that different from deleting the 
word zeros from your spelling dictionary because you want to be consistent 
about using the alternative spelling zeroes. ' 

Another common problem is the unintentional assignment. C is flexi- 
ble and lets you use assignments anywhere you can write an expression, 
but if you aren't careful, this extra flexibility can trip you up. Take a look at 
this common bug: 

i f  ( ch  = ' \ t ' )  
ExpandTabO; 

Although it's clear that the code is supposed to compare the tab character to 
ch, it's actually assigning the character to ch. And of course the compiler 
won't generate an error because the code is legal C. 

Some compilers help you catch this bug by letting you disable simple 
assignments in && and / expressions and also in the control expressions 
of the if, for, and while constructs. The idea behind this feature is that if a 
programmer is going to accidentally type = instead of ==, the odds are good 
that it's going to be in one of these five spots. 



The option doesn't stop you from making assignments, but to circum- 
vent the warning you must explicitly compare the result against another 
value, usually 0 or the nu1 character. So, going back to the strcpy example 
above, instead of writing the loop as 

w h i l e  (*pchTo++ = *pchFrom++) 
{ 1 

which would generate a warning, you would write: 

w h i l e  ((*pchTo++ = *pchFrom++) != ' \ O w )  
{ 1 

Best of all, modem commercial-grade compilers won't generate extra 
code for the comparison because it is redundant and can be optimized 
away. You can count on the optimization for compilers that have this op- 
tional warning. Again, the idea is to disallow risky, though legal, usage 
when there is a safer alternative. 

Another class of bugs falls into the category of "argument bugs." 
Years ago, when I was still learning C, I used to callfputc this way: 

f p r i n t f ( s t d e r r ,  "Unable t o  open f i l e  %s . \nW,  f i l ename) ;  

That might look OK, but the arguments tofiutc are in the wrong order. For 
some reason, I had "learned" that the stream pointer (stderr) was always the 
first argument to any of the stream functions. That isn't true, so I often 
passed garbage to those routines. Fortunately, ANSI C provides an auto- 
matic compile-time method to catch these bugs: function prototypes. 

Because the ANSI standard requires that all library functions have 
prototypes, you can find the prototype forfiutc in the stdi0.h header file. It 
should look something like this: 

i n t  f p u t c ( i n t  c .  F I L E  *s t ream) ;  

If you include stdi0.h in a file and then callfiutc, the compiler will compare 
each argument you pass with what is expected, and if the types differ, it will 
generate an error. In my case, since I was passing a FlLE * argument in 
place of an int, the prototype would have automatically caught my early 
fputc bugs. 
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ANSI C may require prototypes for standard functions, but it does not 
require them for functions that you or I might write; they're strictly op- 
tional. If you want to detect calling bugs in your own code, you must create 
your own prototypes and keep them up to date. 

Now I've heard programmers complain about having to maintain 
prototypes, particularly when they're moving a project from traditional C 
to ANSI C. The complaint is somewhat justified, but look at it this way: If 
you don't use prototypes, you have to rely on conventional testing methods 
and hope you catch any calling bugs in your code. You have to ask yourself 
which is more important, saving yourself some maintenance effort, or being 
able to catch bugs the moment you compile your code. If you're not sure, 
consider that using prototypes can result in better code generation. The rea- 
son: The ANSI standard permits compilers to make optimizations based on 
prototype information. 

Strengthen Your Prototypes 
Unfortunately, prototypes won't alert you to calling bugs where you have 
swapped two arguments of the same type. For instance, if the memchr func- 
tion had this prototype, 

v o i d  *rnernchr(const v o i d  *pv .  i n t  ch,  i n t  s i z e ) :  

you could swap the character and size arguments and the compiler 
wouldn't issue a warning. But by using more accurate types in your inter- 
faces and prototypes, you can strengthen the error checking that prototypes 
provide. For example, the prototype below would alert you to a bug if you 
had reversed the character and size arguments: 

v o i d  *rnemchr(const v o i d  *pv ,  uns igned  c h a r  ch,  s i z e - t  s i z e ) ;  

The drawback to using more accurate types is that you must often cast 
your arguments to the correct type-even if they are in the correct order- 
to silence noncritical type-mismatch warnings. 
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In traditional C, the compiler doesn't have much information about 
functions outside the file it is currently compiling, yet it must generate calls 
to those functions, and the calls obviously must work. Compiler writers 
have solved this problem by using a normalized calling convention, which 
works, but it often means that the compiler must generate extra code to ad- 
here to the convention. But if you use the "require prototypes for all func- 
tions" compiler warning option, the compiler can use whatever calling 
convention it deems most efficient since it knows the argument lists for ev- 
ery function in the program. 

The null statement alert, erroneous assignment warning, and proto- 
type checks are just a few of the options found in many C compilers; often 
there are more. The key point of optional compiler warnings is that they 
alert you to possible bugs, in much the way the spelling checker alerts you 
to possible misspellings. 

Peter Lynch, arguably the best mutual fund manager of the 1980s, 
once said that the difference between investors and gamblers is that inves- 
tors take every opportunity, no matter how small, to tilt the advantage their 
way; gamblers, in his view, rely on luck. Apply that concept to your pro- 
gramming and enable every optional compiler warning; view the warnings 
as a risk-free, high-return investment in your program. Don't ask, "Should I 
enable this warning?" Instead ask, "Why shouldn't I enable it?" Turn on 
every warning unless you have an excellent reason not to. - 

Enable all optional compiler warnings. - 
A more thorough method of detecting bugs with almost no effort is to use 
lint. Originally, lint was a tool that scanned C source files and reported 
warnings for any code that didn't look portable. But today, most lint utili- 
ties are much more thorough and will flag not only portability problems but 
also any C idioms that, while portable and perfectly legal, are likely to be 
wrong. The unintentional null statement, erroneous assignment, and call- 
ing bugs of the previous section fall into this category. 
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Unfortunately, many programmers still view lint as a portability 
checker that spews out numerous warnings they care nothing about. The 
tool has a reputation for not being worth the trouble. If you're one of the 
programmers who feel that way about lint, maybe you should reevaluate 
your opinion. After all, which tool more thoroughly approximates the hypo- 
thetical compiler I talked about earlier: the compiler you use or lint? 

Actually, once you have put your sources into lint-free shape, keeping 
them lint-free is simple-you simply run lint over your changes before you 
merge them into the master sources. In a week or two, you'll be writing lint- 
free code without giving it much thought. When you reach that point, you 
gain all the advantages that lint provides, without all the headaches. 

Use lint to catch bugs that your 
compiler may miss. 

I was having lunch with one of the technical reviewers for this book, and he 
asked me if I was going to include a section on unit tests. I told him no be- 
cause while unit tests are related to writing bug-free code, they really fall 
into a different category: how to write tests for your code. 

He said, "No, you misunderstand. I mean are you going to point out 
that programmers should actually run their unit tests before merging their 
changes into the master sources? One of the programmers on my team just 
let a bug slip into our master sources because he didn't run the unit test after 
making his changes." 

That was surprising because most project leads at Microsoft expect 
programmers to run their unit tests before merging in their changes. 

"Did you ask him why he didn't run the test?" I said. 
My friend looked up from his lunch. "He said that he didn't write any 

new code-he just moved existing code around. He said he didn't think he 
needed to run the test." 

The story reminded me of a programmer who once didn't even bother 
to compile one of his changes before merging the code into the master 
sources. I found out about it, of course, because I couldn't compile the 
project without getting an error. When I asked the programmer how he 
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could miss a compiler error, he said, "The change was so trivial, I didn't 
think I could make a mistake." 

Neither of these bugs should have made it into the master sources be- 
cause both could have been caught automatically, with almost no effort. 
Why do programmers make such mistakes? Mainly it's because they get 
overconfident of their ability to write correct code. 

Sometimes it may seem that you can skip steps designed to keep bugs 
out of your code, but any time you take a shortcut, you're asking for 
trouble. I doubt that there are many programmers who would "finish" a 
feature without even compiling the code-I know of just that one inci- 
dent-but the temptation to bypass unit tests is stronger, especially for 
simple changes. 

If you find yourself about to bypass a step that could easily detect 
bugs for you, stop yourself and instead make use of every tool you have at 
your disposal. Unit tests are meant to catch bugs, but they can't do their job 
if you don't run them. - 

If you have unit tests, use them. - 
How many programmers do you know who prefer to spend their time 
tracking down and fixing bugs instead of writing new code? I'm sure there 
are such programmers, but I've never met one. The programmers I know 
would give up takeout Chinese food for life if you promised them that 
they'd never have to track down another bug. 

As you write code, keep that hypothetical compiler in mind and take 
advantage of every opportunity to catch bugs automatically or with little 
effort. Think about compiler errors, lint errors, and unit test failures. How 
much skill does it take to find such errors? Almost none. How many bugs 
would make it into your product if none of the bugs required much skill or 
effort to detect? 

If you want to find bugs quickly and easily, use those features of your 
tools that tell you where the bugs are. The sooner you know where the bugs 
are, the sooner you can fix them and move on to more interesting work. 
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QUICK REVIEW 

The best way to eliminate bugs in your code is to find them as 
early and as easily as possible. Look for ways to catch bugs auto- 
matically, with minimal effort. 

Strive to reduce the amount of programmer skill necessary to 
catch bugs. Optional compiler or lint warnings don't require any 
programmer skills to catch bugs. 

THINGS TO THINK ABOUT 

Suppose you're using the compiler option to disable assign- 
ments in while conditions. Why would that catch the precedence 
bug in the code below? 

w h i l e  ( c h = g e t c h a r O  != E O F )  

You saw how you could use the compiler to catch unintentional 
null and assignment statements. Suggest ways that the compiler 
could optionally warn of the common problems below. How 
would you bypass the warnings? 

a. ifwight == 063) where you think you're testing for Flight 63 
when in fact, because the leading 0 forces 063 to be a n  octal 
number, you're testing for Flight 51. 

b. i f  (pb != NULL & *pb != OxFF) where you accidentally 
typed & instead of &&, causing *pb != OxFF to be executed 
even if pb is NULL. 

c. quot = numer/*pdenom; where in spite of your intentions the 
/* is interpreted as the start of a comment. 

d. word = bHigh<<8 + bLow; which, because of precedence 
rules, is interpreted as word = bHigh<<(8 + bLow); despite 
your intentions. 

How could the compiler automatically alert you to possible 
"dangling-else" bugs? How would you silence the warning? 



4. Take another look at this coding error: 

i f  ( c h  = ' \ t ' )  
ExpandTabO;  

Instead of disabling simple assignments in if statements, you 
could use another popular way of catching this bug. You could 
reverse the operands of the assignment operator: 

i f  ('\tg = ch)  
ExpandTabO;  

That way, if you type = instead of ==, the compiler will squawk 
because you can't assign something to a constant. How thorough 
is this solution? Why is this approach not as automatic as the 
compiler switch? 

5. The C preprocessor can also cause unexpected results. For ex- 
ample, the UINT-MAX macro is defined in limits.h, but if you 
forget to include the header file, the #if directive below will 
quietly fail - the preprocessor will replace the undefined 
UINT-MAX with 0, and the test will incorrectly fail: 

How could the preprocessor alert you to this bug? 

PROJECT: To ease the task of maintaining prototypes, some compil- 
ers will automatically generate prototypes for you as they com- 
pile your program. If your compiler doesn't have such an option, 
write a utility to do this for you. How would having a standard 
coding convention make it easier to write such a utility? 

PROJECT: If your compiler doesn't already support the warnings dis- 
cussed in this chapter (including the exercises), encourage your 
compiler vendor to support them. Also urge your compiler ven- 
dor to provide a method of selectively enabling or disabling spe- 
cific warnings in addition to letting you enable or disable classes 
of errors. Why would this be desirable? 





Using the compiler to catch bugs automatically is great, but 1/11 bet that if 
you reviewed the outstanding bugs in your project, you'd find that the com- 
piler would catch just a small percentage of them. What's more, I'll bet that 
if you isolated each bug, you'd find that the code would work correctly 
most of the time. 

Remember this code from Chapter I? 

strCopy = memcpy(rnalloc(length), str, length); 

This code will work in every case except the one in which malloc fails. When 
that happens, malloc will pass a NULL pointer to memcpy, and memcpy can't 
handle that. If you're lucky, you'll crash and see the bug long before you 
ship; if you're not, one of your customers surely will. 
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The compiler can't catch this bug or any like it. Nor can the compiler 
catch bugs in your algorithms, verify your assumptions, or in general check 
the validity of data being passed around. 

Finding these kmds of bugs is hard. It takes a skilled programmer or 
tester to consistently root them out. But finding these kinds of bugs auto- 
matically is easy, if you know how. 

Let's jump right in and see how you could catch the memcpy bug above. The 
easiest solution is to have memcpy check for NULL pointers and abort with 
an error message if it finds one. Here's how: 

I*  memcpy - -  copy a  n o n o v e r l a p p i n g  memory b l o c k .  * /  

v o i d  *memcpy(void *pvTo, v o i d  *pvFrom, s i z e - t  s i z e )  
I 

b y t e  *pbTo = ( b y t e  * )pvTo ;  
b y t e  *pbFrom = ( b y t e  * )pvFrom;  

i f  (pvTo == NULL I I  pvFrom == NULL) 
E 

f p r i n t f ( s t d e r r .  "Bad a r g s  i n  memcpy\n"); 
a b o r t (  1; 

1 

w h i l e  ( s i z e - -  > 0 )  
*pbTo++ = *pbFrom++; 

r e t u r n  ( p v T o ) ;  
1 

Nobody is going to slip a NULL pointer past this function. The only 
problem is that the tests double the size of the code and slow it down. If 
you're thinking this is a case in which the cure is worse than the disease, I 
think you're right; the tests aren't practical. That's where the C preprocessor 
comes in handy. 

What if you kept two versions of your program? One fast and sleek 
that you ship, and the other slow and fat because it contains the extra 
checks. You would maintain both versions in the same sources and use the 
C preprocessor to conditionally include or exclude the checks. 
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For example, you might compile the NULL pointer tests only when 
DEBUG is defined: 

v o i d  *merncpy(void *pvTo, v o i d  *pvFrorn, s i z e - t  s i z e )  
{ 

b y t e  *pbTo = ( b y t e  * )pvTo ;  
b y t e  *pbFrorn = ( b y t e  *)pvFrom; 

#i f d e f  DEBUG 
i f  (pvTo == NULL ! I  pvFrorn == NULL) 
{ 

f p r i n t f ( s t d e r r ,  "Bad a r g s  i n  rnerncpy\nW); 
a b o r t (  ; 

1 
#end i  f 

w h i l e  ( s i z e - -  > 0 )  
*pbTo++ = *pbFrom++; 

r e t u r n  ( p v T 0 ) ;  
1 

The idea is to maintain both debug and nondebug (that is, ship) versions of 
your program. While writing code, you compile the debug version and use 
it to catch bugs automatically as you add features. Later, when you've fin- 
ished, you compile a ship version, shrink-wrap it, and send it to dealers. 

Of course, you wouldn't really want to wait until the last minute to 
run the code you intend to ship-that would be silly. But throughout devel- 
opment, you should exercise the debug version, mainly because, as we'll 
see in this chapter and the next, running the debug version can drastically 
reduce the time required to develop the program. Imagine how robust your 
application would be if every function did some minimal error checking, 
testing for conditions that should never happen. 

The trick, of course, is to ensure that the debug code is strictly extra 
code that isn't necessary in the final product. There are some gotchas, but 
I'll cover them as they arise. - 

Maintain both ship and debug 
versions of your program. 
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INTRODUCING ASSERT 
Let's be honest here. The debug code I put in memcpy looks awful and over- 
whelms the function. I don't know many programmers who would stand 
still for that, even if it were for a good cause. That's why some clever pro- 
grammer decided to hide all that debug code in a macro named assert, 
which is defined in the ANSI assert.h header file. 

assert is nothing more than a repackaged form of the #ifdef code we 
saw before, but when you use the macro, it takes one line instead of seven: 

v o i d  *memcpy(void *pvTo, v o i d  *pvFrom, s i z e - t  s i z e )  
{ 

b y t e  *pbTo = ( b y t e  * )pvTo ;  
b y t e  *pbFrom = ( b y t e  *)pvFrom; 

a s s e r t ( p v T 0  != NULL && pvFrom != NULL); 

w h i l e  ( s i z e - -  > 0 )  
*pbTo++ = *pbFrom++; 

r e t u r n  ( p v T o ) ;  
1 

assert is a debug-only macro that aborts execution if its argument is 
false. You can see in the code above that if either pointer is null, the assert 
will fire. 

assert is not a macro you just throw together; you must define it care- 
fully so that it won't cause important differences between the ship and de- 
bug versions of your program. assert should not disturb memory, initialize 
data that would otherwise be uninitialized, or cause any other side effects. 
You want your debug program to behave exactly like the ship version. 
That's why assert is a macro and not a function; if it were a function, calling 
it could cause unexpected memory or code swapping. Remember, the pro- 
grammers who use assert view it as a harmless test that they can safely use 
no matter what state the system is in. 

You should also be aware that once programmers learn to use asser- 
tions, they often redefine the assert macro. For instance, instead of having 
assert abort execution when an error occurs, programmers sometimes rede- 
fine assert so that the macro hops into a debugger at the point of the error. 
Some versions of assert even give you the choice of continuing the pro- 
gram's execution as though the failure never happened. 
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If you decide to define your own version of the assertion macro, con- 
sider using a name other than assert so that you leave the standard macro 
untouched. In this book, 1/11 be using a nonstandard assertion macro, so I've 
given it the name ASSERT to make it stand out in code. The major difference 
between the assert and ASSERT macros is that assert is an expression that 
you can use freely in your code, but ASSERT is a statement, which restricts 
its use. With assert you can write 

if ( a s s e r t ( p  != NULL). p - > f o o  != b a r )  

but if you try that with ASSERT, you'll get a syntax error. That's intentional. 
Unless you plan to use assertions in expression contexts, you should define 
ASSERT as a statement so that the compiler will generate an error if you 
mistakenly use it in an expression. Remember, every bit helps in the war 
against bugs. Why allow flexibility that you don't use? 

Here is one way you could define the ASSERT macro: 

#i f d e f  DEBUG 

v o i d  - A s s e r t ( c h a r  * ,  u n s i g n e d ) ;  I *  p r o t o t y p e  * /  

You can see that if DEBUG is defined, ASSERT will expand to an if state- 
ment. The empty block in the if may seem strange, but you need both the if 
and the else statements to prevent unexpected dangling-if problems. And 
you might think that you need a final semicolon after the closing ) in the call 
to -Assert, but you don't because you provide the final semicolon when you 
use ASSERT: 

ASSERT(pvT0 != NULL && pvFrom != NULL); 
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When A S S E R T  fails, it calls -Assert with the file name and line number 
provided by the preprocessor through the -FILE- and -LINE- macros. 

- Assert prints an error message to stderr and then aborts: 

v o i d  - A s s e r t ( c h a r  * s t r F i l e ,  uns igned  u L i n e )  
{ 

f f l u s h ( N U L L 1 :  
f p r i n t f ( s t d e r r .  " \ n A s s e r t i o n  f a i l e d :  % s o  l i n e  % u \ n W .  

s t r f i l e ,  u l i n e ) ;  
f f l  u s h ( s t d e r r )  ; 
a b o r t (  1: 

1 

You need the calls to f l u s h  to write out any buffered output before 
you execute abort. The call toflush (NULL) is particularly important because 
it ensures that the error message will be displayed only after all other buff- 
ers have been written out. 

Now, if you called memcpy with a N U L L  pointer, A S S E R T  would catch 
the bug and display something like 

A s s e r t i o n  f a i l e d :   string.^, l i n e  153 

This shows another difference between assert and A S S E R T .  The stan- 
dard macro would display a message like the one above, but it would also 
display the test that failed. For example, the assert that comes with one com- 
piler I normally use would display this message: 

A s s e r t i o n  f a i l e d :  pvTo != NULL & &  pvFrom != NULL 
F i l e   string.^. l i n e  153 

The only problem with including the expression is that every time you 
use assert it generates a textual representation of the condition for -Asserf to 
print. And the question is, where does the compiler store the string? Macin- 
tosh, MS-DOS, and Windows compilers normally store strings in the global 
data area, but on a Macintosh, that typically limits you to a total of 32K for 
data. In MS-DOS and Windows, you have 64K. In large programs such as 
Microsoft Word and Microsoft Excel, assertion strings can gobble up that 
memory in no time. 

There are work-arounds, but the easiest one is to omit the expression 
string in the error message. After all, you'll know what the problem is once 
you look at line 153 of  string.^, and you'll see it in context. 
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If you want see how to define a standard assert, look at the assert.h file 
included with your system. The Rationale section of the ANSI standard also 
talks about assert and shows one possible implementation. P. J. Plauger also 
discusses the subtleties of implementing the standard assert in his book The 
Standard C Libra y (Prentice Hall, 1992). 

Regardless of how you ultimately define your assertion macro, use it 
to validate the arguments passed to your functions. If you check data at 
every entry point, bugs won't live long before getting noticed. The best part 
is that you will catch these bugs automatically, as they occur. - 

Use assertions to validate function 
arguments. - 

If you were to stop and read the ANSI C definition for the memcpy routine, 
you would see that the very last line reads, "If copying takes place between 
objects that overlap, the behavior is undefined." Other books describe this 
uncertainty somewhat differently. For example, in Standard C (Microsoft 
Press, 1989), P. J. Plauger and Jim Brodie say, "The elements of the arrays 
can be accessed and stored in any order." 

In short, these books say that if you rely on memcpy to behave in a 
particular way when you call it with overlapping blocks, you're making an 
assumption about behavior that can vary from one compiler to the next or 
even between releases of the same compiler. 

I'm sure there are programmers who deliberately exploit undefined 
behavior, but I think most programmers intelligently avoid doing this. 
Those who don't should learn to. Most programmers view undefined 
behavior as illegal behavior, and that's where assertions come in handy. If 
you called memcpy when you meant to call memmove, wouldn't you want 
to know about it? 

You can beef up memcpy by adding an assertion to verify that the two 
blocks never overlap: 

I *  memcpy - -  copy a n o n o v e r l a p p i n g  memory b l o c k .  * I  

v o i d  *memcpy(void *pvTo. v o i d  *pvFrom, s i z e - t  s i z e )  
C 

(continued) 
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b y t e  *pbTo = ( b y t e  * ) p v T o ;  
b y t e  *pbFrom = ( b y t e  * )pvFrom;  

ASSERT(pvT0 != NULL && pvFrom != NULL); 
ASSERT(pbTo >= pbFrom+size I I  pbFrom >= p b T o + s i z e ) ;  

w h i l e  ( s i z e - -  > 0 )  
*pbTo++ = *pbFrom++; 

r e t u r n  ( p v T o ) ;  
1 

How that one-line overlap check works may not be obvious, but it's 
easy to figure out if you think of the two blocks of memory as cars in line at 
a stop light. There you know that the cars don't overlap if the back bumper 
of one car is in front of the front bumper of the other car. The check imple- 
ments that idea: pbTo and pbFrom are the back bumpers of the two blocks, 
and pbTo+size and pbFrom+size are the spots just in front of the front 
bumpers of the blocks. That's all there is to it. 

Don't Let This Happen to  You 
In late 1988, the release date for one of Microsoft's cash-cows, Word for MS- 
DOS, slipped three months and noticeably affected the bottom line of the 
company. (That's the problem with temperamental cows.) The frustrating 
aspect of the slip was that for three months the Word team had thought they 
were going to ship "any day now." 

The Word group was relying on a key component from an application 
tools group. The tools group kept telling the Word group that the code was 
almost done, and the people in the tools group truly believed what they 
were saying. They didn't realize that their code was filled with bugs. 

One notable difference between the Word code and the code from the 
tools group was that the Word code was (and is) loaded with assertions and 
debug code. The tools group used almost no assertions in their code, so the 
tools programmers had no good way to determine how buggy their code 
actually was. Bugs just kept trickling in, bugs that could have been detected 
months earlier if assertions had been used. 
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And by the way, if you don't see why all this overlapping stuff is im- 
portant, just think about the case in which pbTo is equal to pbFrom+l and 
you move at least 2 bytes-rnemcpy won't work correctly. 

So in the future, stop and review your code for undefined behavior. If 
you find undefined behavior, either remove it from the design or include 
assertions to n o w  programmers when they use undefined behavior. 

Dealing with undefined behavior is particularly important if you pro- 
vide code libraries (or operating systems) to other programmers. If you 
have ever developed such libraries, you know that other programmers will 
make use of all sorts of undefined behavior as they "try things" to get the 
result they want. The consequences really show up when you release a new 

j 

and improved library. Invariably, you find that while your library is 100 
percent compatible with the last version, half the applications crash when 
they try to use it. The reason: The new library is not 100 percent compatible 
with the old "undefined behavior." 

Strip undefined behaviorfrom your 
code, or use assertions to catch illegal 

uses of undefined behavior. - 
While we're on the subject, I'd like to talk some more about that memcpy 
overlap assertion for a moment. Here it is again: 

Suppose you called memcpy and the assertion above failed. When you 
looked it up, would you know what was wrong if you'd never seen an over- 
lap check before? I know I probably wouldn't. But that's not to say that the 
code is tricky or unclear-it is, after all, a straightforward overlap check. 
But being straightforward and being obvious are not the same thing. 

Take my word for it, there are few things more frustrating than to 
track an assertion to somebody else's code and then have no idea why the 
assertion landed there. Instead of fixing the problem, you waste time just 
trying to figure out what the problem is. That's not all. Programmers do, on 



22 WRITING SOLID CODE 

occasion, write buggy assertions, but it's hard to tell whether you should fix 
the program or fix the assertion if you can't figure out what the assertion is 
checking for. 

Fortunately, it's easy to solve this problem-just add comments to as- 
sertions that don't make their purposes evident. I know this sounds obvi- 
ous, but it's amazing how rarely programmers do this. They go to all the 
trouble to protect you from danger, but then they don't tell you what the 
danger is. It's as if you were walking through the woods and saw a big red 
DANGER sign nailed to a tree. But what danger? Falling trees? Abandoned 
mine shafts? Bigfoot? Unless you tell people what the danger is (or unless 
it's obvious), you're not helping them. People in the woods will ignore the 

Not for Errors 
When programmers start using assertions, they sometimes use them incor- 
rectly to detect real errors, not illegal conditions. For example, look at the 
assertions in this strdup functiol 

I* s t r d u p  - -  a l l o c a t e  a  dup 

c h a r  * s t r d u p ( c h a r  * s t r )  
{ 

c h a r  *s t rNew;  

ASSERT(str != NULL); 

l i c a t e  o f  a  s t r i n g .  * I  

st rNew = ( c h a r  *)malloc(strlen(str)+1); 
ASSERT(strNew != NULL): 
s t r c p y ( s t r N e w ,  s t r ) ;  

r e t u r n  ( s t r N e w ) ;  
I 

In this code, the first assertion is a correct use because it tests for an 
illegal condition that should never occur if the program is working cor- 
rectly. The second assertion is quite different-it is testing for an error con- 
dition that definitely will show up in the final product and that must be 
handled. This assertion is incorrect and should be replaced with code to 
handle the error condition. 
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sign. Similarly, programmers will ignore any assertions they don't under- 
stand-they'll assume that the assertions are wrong and rip them out. So 
add comments to unclear assertions. 

Even better, if the bug has a probable solution, note that. When a pro- 
grammer calls memcpy with overlapping blocks, there's a good chance that 
this is exactly what he or she wants to do, unaware of the overlap restric- 
tion. A comment can point out that memmove should be used for overlap- 
ping blocks: 

I* B l o c k s  o v e r l a p ?  Use memmove. *I 
ASSERT(pbT0 >= pbFrom+size I I pbFrom >= pbTo+s ize ) ;  

You don't need to write tomes. One approach is to use a short, well- 
thought-out question. That can be far more informative than an entire para- 
graph that methodically explains every detail. But be careful-don't 
suggest a solution unless you're sure it will help other programmers. You 
don't want your comments to mislead people. - 

Don't waste people's time. Document 
unclear assertions. 

Sometimes when you write code, you need to make assumptions about the 
target environment, but not always. For example, the memset routine below 
makes no assumptions about the target environment and should work with 
any ANSI C compiler: 

I *  memset - -  f i l l  memory w i t h  a " b y t e "  v a l u e .  * I  

v o i d  *memset (vo id  *pv ,  b y t e  b.  s i z e - t  s i z e )  
{ 

b y t e  *pb = ( b y t e  * ) p v :  

w h i l e  ( s i z e - -  > 0 )  
*pb++ = b;  

r e t u r n  ( p v ) :  
1 
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But for many environments, you can write a faster memset routine by 
packing a larger data type with the fill value and then using the packed 
value to fill memory using fewer stores. For example, on the 68000, the 
memset routine below could fill up to four times faster than the portable ver- 
sion on the previous page: 

I* l o n g f i l l  - -  f i l l  memory w i t h  a  " l o n g "  v a l u e .  R e t u r n s  a  
* p o i n t e r  t o  t h e  f i r s t  l o n g  v a l u e  a f t e r  t h e  l a s t  l o n g  
* t h a t  i s  f i l l e d .  
* I 

l o n g  * l o n g f i l l  ( l o n g  * p l ,  l o n g  1 ,  s i z e - t  s i z e ) ;  I* p r o t o t y p e  *I 

v o i d  *memset (vo id  *pv ,  b y t e  b. s i z e - t  s i z e )  
{ 

b y t e  *pb = ( b y t e  * ) p v ;  

i f  ( s i z e  >= s i z e T h r e s h o l d )  
{ 

uns igned  1  ong 1  ; 

1  = ( b  << 8 )  1 b ;  I* Pack a  l o n g  w i t h  4 b y t e s .  *I 
1  = ( 1  << 1 6 1 ' 1  1 :  

pb = ( b y t e  * ) l o n g f i l l ( ( l o n g  * ) p b ,  1 ,  s i z e  1 4 ) ;  
s i z e  = s i z e  % 4; 

1 

w h i l e  ( s i z e - -  > 0 )  
*pb+ = b :  

r e t u r n  ( p v ) ;  
1 

The routine above is fairly straightforward, except possibly for the test 
against sizeThreshold. If it's not obvious why this test is desirable, consider 
that it takes time to pack a long with four copies of a byte. There is also some 
overhead in calling the longfill function. The test against sizeThreshold en- 
sures that memset won't fill using longs unless doing so would be faster than 
not doing so, even accounting for the extra overhead. 

The only problem with this new version of memset is that it makes a 
number of assumptions about the compiler and the operating system. The 
code explicitly assumes that longs use 4 bytes of memory and that bytes are 
8 bits wide. These assumptions are true for many computers, and they're 
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almost universally true (right now) for microcomputers. Still, that doesn't 
mean you should blithely let the code operate on its assumptions, because 
if there's one thing you can count on, it's that what is true today will prob- 
ably not be true a few years from now. 

Some programmers would "improve" the routine by writing it so that 
it's more portable: 

v o i d  *memset (vo id  *pv ,  b y t e  b .  s i z e - t  s i z e )  
{ 

b y t e  *pb = ( b y t e  * ) p v ;  

i f  ( s i z e  >= s i z e T h r e s h o l d )  
{ 

u n s i g n e d  1  ong 1  ; 
s i z e - t  s i z e l o n g :  

1  = 0; 
f o r  ( s i z e L o n g  = s i z e o f ( 1 o n g ) ;  s i z e l o n g - -  > 0; ) 

1 = ( 1  << C H A R B I T )  I b; 

pb = ( b y t e  * ) l o n g f i l l ( ( l o n g  *)pb,  1 ,  s i z e  1 s i z e o f ( 1 o n g ) ) ;  
s i z e  = s i z e  % s i z e o f ( 1 o n g ) ;  

1 

w h i l e  ( s i z e - -  > 0 )  
*pb++ = b; 

r e t u r n  ( p v ) ;  
1 

This code may look more portable since it makes heavy use of the 
sizeof operator, but looks don't mean anything; you would still have to re- 
view the code if you moved it to a new environment. If you tried the code 
on a Macintosh Plus, or on any other 68000-based computer, the program 
would crash if pv initially pointed to an odd address. That's because byte * 
and long * are not convertible types on the 68000-you can't store a Iong at 
an odd address without getting a hardware crash. 

So what should you do? 
In this case, you simply shouldn't try to write memset as a portable 

function, but should instead accept that it is nonportable and protect your- 
self against change. For the 68000, you can avoid the odd-aligned problem 
by byte-filling until you're even-aligned, and only then switch to the Iong- 
fill. And although being even-aligned is sufficient, you will get even better 
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performance on the newer 68020-, 68030-, and 68040-based Macintoshes if 
the long-fills are aligned on 4-byte boundaries. As for the other assurnp- 
tions, you can verify them using assertions and conditional compilation: 

v o i d  *memset(void *pv ,  b y t e  b ,  s i z e - t  s i z e )  
E 

b y t e  *pb = ( b y t e  * ) p v ;  

#i f d e f  MC680x0 
i f  ( s i z e  >= s i z e T h r e s h o l d )  
{ 

uns igned  1  ong 1  ; 

ASSERT(sizeof(1ong) == 4 && CHARBIT == 8 ) ;  
ASSERT(sizeThresho1d >= 3 ) ;  

I* b y t e - f i l l  u n t i l  l o n g  a l i g n e d .  * /  
w h i l e  ( ( ( u n s i g n e d  l o n g l p b  & 3 )  != 0 )  
{ 

*pb++ = b; 
s i z e - -  ; 

1 

/ *  Now pack a  l o n g  and l o n g - f i l l  t h e  r e s t .  * /  
1  = ( b  << 8 )  1 b ;  
1  = ( 1  << 16) 1 1 ;  

pb = ( b y t e  * ) l o n g f i l l ( ( l o n g  *)pb. 1,  s i z e  / s i z e o f ( 1 o n g ) ) ;  
s i z e  = s i z e  % s i z e o f ( 1 o n g ) ;  

1 
# e n d i f  I* MC680x0 * /  

w h i l e  ( s i z e - -  > 0 )  
*pb++ = b:  

r e t u r n  ( p v ) ;  
3 

As you can see, I've bracketed the machine-specific code with the 
MC680x0 preprocessor definition. Not only will this preprocessor definition 
keep the nonportable code from being accidentally used on a different tar- 
get, but by searching for every occurrence of MC680x0, you can isolate all 
target-specific code. 
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I've also added a straightforward assertion to verify that longs use 4 
bytes of memory, and that bytes are 8 bits wide. These assumptions aren't 
likely to change, but you never know. 

Finally, I've added a loop to align pb before the call to longfill, and 
since the loop can execute up to three times regardless of the value of size, 
I've also added an assertion to check that sizeThreshold is at least 3. (It should 
be higher, but it must be at least 3, or the code won't work.) 

With these changes, the routine is explicitly marked nonportable, and 
all the assumptions have been eliminated or verified with an assertion. 
These measures make the function much less likely to be used incorrectly. - 

Either remove implicit assumptions, or 
assert that they are valid. - 

Owning the Compiler Is Not Enough 
Some applications groups at Microsoft are now finding that they have to 
review and clean up their code because so much of it is littered with things 
like +2 instead of +sizeof(int), the comparison of unsigned values to OxFFFF 
instead of to something like UINT-MAX, and the use of int in data struc- 
tures when they really meant to use a 16-bit data type. 

It may seem to you that the original programmers were being sloppy, 
but they thought they had good reason for thinking they could safely use +2 
instead of +sizeoflint). Microsoft writes its own compilers, and that gave 
programmers a false sense of security. As one programmer put it a couple 
of years ago, "The compiler group would never change something that 
would break all of our code." 

That programmer was wrong. 
The compiler group changed the size of ints (and a number of other 

things) to generate faster and smaller code for Intel's 80386 and newer pro- 
cessors. The compiler group didn't want to break internal code, but it was 
far more important for them to remain competitive in the marketplace. Af- 
ter all, it wasn't their fault that some Microsoft programmers made errone- 
ous assumptions. 
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CAN THE IMPOSSIBLE HAPPEN? 
The inputs to a function don't always come in as formal parameters. Some- 
times you get only a pointer to the inputs. Take a look at this simple decom- 
pression routine: 

b y t e  *pbExpand(by te  *pbFrom, b y t e  *pbTo, s i z e - t  s i z e f r o m )  
II 

b y t e  b ,  *pbEnd ; 
s i z e - t  s i z e ;  

pbEnd = pbFrom+sizeFrom; I* P o i n t  j u s t  beyond end o f  b u f f e r .  *I 
w h i l e ,  (pbFrom < pbEnd) 
{ 

b = *pbFrom++; 

i f  ( b  == bRepeatCode) 
{ 

I* S t o r e  " s i z e "  c o p i e s  o f  "b" a t  pbTo. *I 
b = *pbFrom++; 
s i z e  = (s ize- t ) *pbFrom++;  

w h i l e  ( s i z e - -  > 0 )  
*pbTo++ = b ;  

1 
e l  se  

*pbTo++ = b;  
1 

r e t u r n  (pbTo) ;  
1 

This code copies one data buffer to another, but in the process it looks 
for packets of compressed characters. If it finds the special byte bRqeatCode 
in the data, it knows that the next 2 bytes are a character to repeat and the 
number of times to repeat it. Although it's simplistic, you could use the rou- 
tine in something like a programmer's editor, in which text often has many 
consecutive tab or space characters for indentation. 

To make pbExpand more robust, you could assert that pbfrom, pbTo, 
and sizeFrom are valid on entry, but you can do more than that. You can 
validate the buffer data as well. 

It always takes 3 bytes to encode a run, so the compression routine 
never packs just two consecutive characters; and while it could pack three, 
there's no real benefit in that. It strictly packs runs of four or more characters. 
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There is one exception. If the original data contains bRepeatCode, it has 
to be specially handled so that when pbExpand comes along later, it won't go 
crazy thinking it's got a compressed packet. When the compression routine 
finds bRepeatCode in the original data, it bundles it into a packet in which 
bRepeatCode itself is repeated one time. 

In short, for every packet, size must be at least 4, or else the byte must 
be bRepeatCode and size must be I. You c& use assertions to verify this: 

E 
I* S t o r e  " s i z e "  cop ies  o f  "b" a t  pbTo. * /  

s i z e  = (size-t)*pbFrom++; 

ASSERT(size >= 4 1 1  ( s i z e  == 1 && b == bRepeatCode) ) ;  

If this assertion fails, either pbFrom points to garbage or the compression 
routine has a bug in it. In either case, it's a bug that might not otherwise be 
obvious. - 

Use assertions to detect impossible 
conditions. 

Suppose you were hired to write the software for a nuclear reactor and you 
had to handle the case in which the core overheats. 

Some programmers might attack this case by automatically dumping 
water into the core, inserting cooling rods, or doing whatever it is you do 
when you're trying to cool a reactor. And as long as the program had every- 
thing under control, it wouldn't alert the staff to the problem. 

Another programmer might choose to always alert the reactor staff 
whenever the core overheats. The computer could still automatically take 
care of things, but the operators would always know about it. 

Which way would you implement the code? 
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I doubt there would be much disagreement on this one; you would 
alert the operators. That the computer can restore the reactor to normal op- 
eration is irrelevant. Cores don't overheat spontaneously-something un- 
usual has to happen for things to go awry, and when they do, somebody 
had better figure out what that unusual something is so that it doesn't hap- 
pen again. 

Surprisingly, programmers, and particularly experienced program- 
mers, write code every day that quietly fixes problems whenever something 
unexpected happens. They even code that way intentionally. And you 
probably do it yourself. 

Of course, what I'm driving at is defensive programming. 
In the last section, I showed you code for pbExpand. That function uses 

defensive programming. This revised version doesn't-look at the loop 
conditions: 

b y t e  *pbExpand(by te  *pbFrom, b y t e  *pbTo, s i z e - t  s i z e F r o m )  
{ 

b y t e  b.  *pbEnd 
s i z e - t  s i z e :  

pbEnd = pbFrom+s 
w h i l e  (pbFrom != 
{ 

i z e f r o m ;  I* P o i n t  j u s t  beyond end o f  b u f f e r .  *I 
pbEnd 1 

i f  ( b  == bRepeatCode) 
E 

I* S t o r e  " s i z e "  c o p i e s  o f  "b" a t  pbTo. * I  
b = *pbFrom++; 
s i z e  = (s ize- t )*pbFrom++: 

d 0 

*pbTo++ = b ;  
w h i l e  ( - - s i z e  != 8 ) ;  

1 
e l  se  

*pbTo++ = b ;  
1 

r e t u r n  ( p b T o ) :  
I 
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Even though this code more accurately reflects the algorithm, few ex- 
perienced programmers would actually code the algorithm this way. You'd 
have a better chance of getting them into a two-person Cessna that had no 
seat belts and no doors. The code feels too risky. 

They'd think, "I know pbFrom should never be greater than pbEnd in 
that outer loop, but what happens if that ever does happen? Hmm. I'd better 
make sure the loop shuts down if this impossible case ever comes up." 

They'd use the same logic for the inner loop. Even though size should 
always be greater than or equal to 1, using a while loop instead of a do loop 
keeps the code from crashing if size is ever 0 on entry. 

It seems reasonable, even smart, to protect yourself from these impos- 
sible scenarios. But what if pbFrom somehow bounces past pbEnd? Are you 
more likely to spot this bug in the risky version on the previous page or in 
the defensive version we saw earlier? 

The risky version will probably crash since pbExpand tromps about 
decompressing everything in memory. You're definitely going to notice 
that. The defensive version, on the other hand, exits before pbExpand can do 
much, if any, damage. You still might notice the bug, but I wouldn't bet my 
money on it. 

Defensive programming is often touted as a better coding style, but it 
hides bugs. Remember, the errors we're talking about should never happen, 
and by safely handling them, you make it harder to write bug-free code. 
This is especially true when you have a bouncing pointer such as pbFrom, 
one that gets bumped by different amounts each time through the loop. 

Does that mean you should stop programming defensively? 
The answer of course is no. Programming defensively hides bugs, but 

it does serve a valuable purpose. The worst thing a program can do is crash 
and lose data that a user might have spent hours creating. And in a less- 
than-ideal world in which programs do crash, anything you can do to pre- 
vent data loss is worthwhile. Defensive programming works toward achieving 
this goal. Without it, your code would be a house of cards ready to crumble 
with the slightest change in your hardware or operating system. At the 
same time, you don't want to hide bugs by programming defensively. 

Suppose pbExpand gets called with invalid arguments. Specifically, 
suppose that sizeFrom is a bit too small and the last byte of the data buffer 
happens to be bRepeatCode. Since this will look like a compressed packet, 
pbExpand will read 2 bytes too many from the data buffer and bump pbFrom 
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beyond pbEnd. The result? The risky version of pbExpand will probably 
crash, and the defensive one will probably save the user from losing data, 
although it can still wipe out as much as 255 bytes of unknown data. You 
want both behaviors, but in different versions of your program. You want 
the debug version to alert you to the bug, and you want the ship version to 
recover safely, with no loss of data. The solution is to write your code using 
defensive programming the way you always have but use an assertion to 
alert you if things go haywire: 

b y t e  *pbExpand(byte *pbFrom, b y t e  *pbTo, s i z e - t  s izeFrom) 
{ 

b y t e  b ,  *pbEnd ; 
s i z e - t  s i z e ;  

pbEnd = pbFrom+sizeFrom; I* Point j u s t  beyond end o f  b u f f e r .  *I 
w h i l e  (pbFrom < pbEnd) 
{ 

b = *pbFrom++; 

1 
ASSERT(pbFrom == pbEnd); 

r e t u r n  (pbTo) : 
1 

This assertion simply verifies that the code terminated correctly. In 
the ship version, the defensive code helps protect the user if anything goes 
wrong, but in the debug version, the bug is still reported. If that's not hav- 
ing your espresso and drinking it too, I don't know what is. 

Still, you don't need to be obsessive about this. If pbFrom were always 
bumped by 1 each time through the loop, it would take a stray cosmic ray to 
knock it beyond pbEnd and cause problems. In such cases, assertions don't 
buy you anything, so leave them out. Look at your code and use your com- 
mon sense. 

One last point. Loops are only one area in which programmers rou- 
tinely program defensively. No matter where you employ the defensive 
style, ask yourself, "Am I hiding bugs in this code by using defensive pro- 
gramming?" If you might be, add assertions to alert you to those bugs. 
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Don't hide bugs when you 

program defensively. - 
Two ALGORITHMS ARE BETTER THAN ONE 
Checking for bad inputs and flawed assumptions is only part of what you 
can do to trap bugs in your programs. Just as another function can pass 
garbage to your function, yours can return garbage to its callers. You never 
want to do that. 

Since both memcpy and memset simply return one of their parameters, 
there's little chance that you'd accidentally return garbage in those routines. 
But in a more complex routine, you might not be so sure of your results. 

For example, I recently wrote a 68000 disassembler as part of a devel- 
opment tool for Macintosh programmers. Speed wasn't critical for the 
disassembler, but it was vital that it work correctly, so I chose to implement 
the code using a simple table-driven algorithm that I could easily test. I also 
used assertions to automatically catch any bugs that I missed while testing 
the code. 

If you've ever looked at an assembly language reference book, chances 
are good that it described every instruction in painstaking detail. And as a 
part of that thoroughness, it showed a bit-pattern for each instruction. For 
instance, if you looked up the ADD instruction in a 68000 reference manual, 
you would see that it has this bit-pattern: 

You can ignore the register and mode fields of this instruction-we're 
interested in only the bits that are explicitly 0 or 1-in this case, the upper 4 
bits of the instruction. You figure out whether you have an ADD instruction 
by stripping away the nonexplicit bits and checking to see whether the 
upper 4 bits are 11 01, or hex OxD: 

i f  ( ( i n s t  & 0xF000) == 0xD000) 
it 's an ADD instruction. . . 
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The DlVS instruction (used for signed division) has 7 explicit bits in its 
pattern: 

Again, if you just strip out the nonexplicit register and mode fields, 
you can tell whether you have a DlVS instruction by using 

if ( ( i n s t  & 0xFlC0) == 0x81C0) 
i t ' s  a D I P S  i n s t r u c t i o n . .  . 

You can use this mask-then-test technique to isolate every assembly 
language instruction, and once you know you've got an ADD or a DIVS, 
you can call a decode function to make sense of those register and mode 
fields that we've been ignoring. 

That's how the disassembler works in the tool I developed. 
Of course, I don't have 142 different if statements to check for every 

possible instruction. Instead I have a table containing a mask, pattern, and 
decode function for each instruction. The lookup algorithm loops over this 
table, and if it matches an instruction, it calls the corresponding routine to 
decode the register and mode fields. 

Here's a part of that table, and the code that uses it: 

i d I n s t  i s  a t a b l e  o f  masks and p a t t e r n s  t h a t  
i d e n t i f y  a b i t - p a t t e r n  as a s p e c i f i c  t ype  o f  
i n s t r u c t i o n .  

s t a t i c  i d e n t i t y  i d I n s t [ l  = 
{ 

{ 0xFF00. 0x0600, pcDecodeADD1 
{ 0xFl30. 0xD100, pcDecodeADDX 
{ 0xF000. 0xD000, pcDecodeADD 
{ 0xF000. 0x6000, pcDecodeBcc 
{ 0xFlC0, 0x4180, pcDecodeCHK 
{ 0xF138. 0xB108, pcDecodeCMPM 
{ 0xFF00. 0x0C00, pcDecodeCMP1 
{ 0xFlC0. 0x81C0. pcDecodeDIVS 
{ 0xF100, 0xB100, pcDecodeEOR 

1 ,  / *  mask, p a t ,  f u n c t i o n  * /  
1 .  
1 .  
1 .  I* s h o r t  branches * /  
I .  
I .  
1 .  
1 .  
I .  
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/ *  pcDisasm 
* 
* Disassemble one i n s t r u c t i o n  and f i l l  i n  t h e  opc opcode 
* s t r u c t u r e .  pcDisasm r e t u r n s  an updated program coun te r .  
* 
* T y p i c a l  use: pcNext = pcDisasm(pc. &opc) ; 
* / 

i n s t r u c t i o n  * p c D i s a s m ( i n s t r u c t i o n  *PC,  opcode *popcRet) 
{ 

i d e n t i t y  * p i  d; 
i n s t r u c t i o n  i n s t  = *PC; 

f o r  ( p i d  = & i d I n s t [ 0 ] ;  p id->mask != 0; p i d t t )  
{ 

if ( ( i n s t  & p id->mask)  == p i d - > p a t )  
break;  

1 

r e t u r n  (p id ->pcDecode( ins t .  pc+l .  popcRet) ) ;  
1 

As you can see, pcDisasm is not a large function. It uses a simple algo- 
rithm that reads the current instruction, picks it out of the table, and then 
calls a decode routine to fill in the opcode structure that popcRet points to. As 
a final task, pcDisasm returns an updated program counter. This is neces- 
sary because not all 68000 instructions are the same size. The decode rou- 
tines will, if necessary, read the extra parts of an instruction and then return 
the new program counter to pcDisasm, which passes it on. 

Now back to the original point that you can't always be sure your rou- 
tine won't return garbage. 

With a function such as pcDisasm, it's hard to tell whether you're re- 
turning valid data. Even though pcDisasm itself might be properly identify- 
ing an instruction, the decode routines could be spewing garbage and you'd 
have a tough time spotting that. One way to trap such bugs is to put asser- 
tions into every decode routine. I'm not saying you shouldn't do that, but 
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an even more powerful approach would be to put the assertions into 
pcDisasm since it is the bottleneck routine for all of the decode functions. 

The question is, How? How would you automatically check that the 
decode routines are correctly filling in the opcode structure? You'd have to 
write code to validate that structure. And how would you do that? Well, 
basically, you'd have to write a routine that compares a 68000 instruction to 
the contents of an opcode structure. In other words, you'd have to write a 
second disassembler. 

I know that may sound crazy, but is it really? 
Look at what Microsoft Excel does in its recalculation engine. Since 

speed is critical to the success of a spreadsheet, Excel uses a complex algo- 
rithm to make sure that it never recomputes a formula in a cell in which it 
doesn't need to. The only problem is that because the algorithm is so com- 
plex, it's hard to modify without introducing bugs. The Excel programmers 
didn't like this difficulty, so they wrote a second recalc engine that runs 
only in the debug version of the program. After the smart engine stops cal- 
culating, the debug engine kicks in and slowly but thoroughly recomputes 
every cell that has a formula in it. An assertion fires if there are any differ- 
ences between the results of the two recalculation engines. 

Microsoft Word has a similar problem. Since speed is also critical in 
the page layout code of a word processor, the Word programmers wrote the 
layout code in hand-tuned assembly language. That was great for speed, 
but it was lousy in terms of keeping bugs out of the code. And, unlike the 
code for Excel's recalculation engine, which doesn't change very often, the 
layout code for Word changes regularly as new features are added to Word. 
To automatically catch layout bugs, the Word programmers write C ver- 
sions of every hand-tuned assembly language routine. If the two routines 
disagree, an assertion fires. 

In the same way, it made sense to use a debug-only disassembler to 
validate the primary disassembler in the tool I was working on. 

I won't bore you with the details of how I implemented pcDisasmAlt, 
the second disassembler, but it was logic rather than table driven. In brief, I 
used nested switch statements to successively peel away significant bits un- 
til I had isolated the exact instruction. The code on the next page shows how 
I used pcDisasmAlt to validate the primary disassembler. 
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i n s t r u c t i o n  * p c D i s a s m ( i n s t r u c t i o n  * P C ,  opcode *popcRet )  
t 

i d e n t  i t y  * p i d ;  
i n s t r u c t i o n  i n s t  = * P C ;  

' i n s t r u c t i o n  *pcRe t ;  

f o r  ( p i d  = & i d I n s t [ 0 1 ;  p id ->mask != 0 ;  p id++)  
t 

if  ( ( i n s t  & p id ->mask )  == p i d - > p a t )  
b r e a k ;  

1 

#i f d e f  DEBUG 
t 

opcode opc;  

/ *  Check b o t h  o u t p u t s  f o r  v a l i d i t y .  * /  
ASSERT(pcRet == pcDi  sasmAl t ( p c ,  &opc)  ) : 
ASSERT(compare-opc(popcRet. &opc)  == SAME); 

1 
#end i  f 

r e t u r n  ( p c R e t  ; 

1 

Normally, you should slip your debug checks into existing code with- 
out their getting in the way. I couldn't quite manage that here-I had to 
declare the pcRet local variable so that I could validate the pointer that 
pid->pcDecode returns. This is OK since it doesn't violate the cardinal rule 
''You should always execute debug code in addition to and not instead of 
ship code." That may seem blatantly obvious right now, but once you start 
using assertions and debug code you'll find that there are times when you'd 
rather execute debug code instead of ship code. We'll see an example of this 
in Chapter 3, but for now, let me say this: Resist the urge. I had to modify 
pcDisasm to make the debug checks, but all the ship code is still executed. 

I won't pretend that you should write two versions of every function 
in your program. That would be about as ridiculous as wasting the time to 
make every function as efficient as possible. I do believe that most programs 
have key functionality that must work no matter what else goes wrong. In a 
spreadsheet, it's the recalculation engine. In a word processor, it's the page 
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layout engine. In a project manager, it's the task scheduler. In a database, 
it's the search/extraction engine. And in every program, it's the code that 
guarantees that the user will never lose data. 

As you write code, keep an eye out for opportunities to validate your 
results. Bottleneck routines are particularly good places in which to look. 
And be sure to use a different algorithm, if possible, not just a second irnple- 
mentation of the same algorithm. By using a different algorithm, you not 
only find implementation bugs, but you also increase your odds of finding 
bugs in the algorithms themselves. - 

Use a second algorithm to validate 
your results. - 

Hey, What Goes On Here? 
Earlier in the chapter, I said that you must use care when defining the 
ASSERT macro. In particular, I said that the macro mustn't move memory, 
call other functions, or cause any unexpected side effects. If all of that is 
advisable, why did I use the assertions below in the pcDisasm function? 

I* Check b o t h  o u t p u t s  f o r  v a l i d i t y .  * /  
ASSERT(pcRet == pcDisasmAl t (pc.  &opc ) ) :  
ASSERT(compare-opc(popcRet. &opc) == SAME): 

The reason that ASSERT must not call functions is that the macro 
could possibly disturb the surrounding code in an unexpected way. But in 
the code above, ASSERT isn't calling the functions; I am-the programmer 
who used ASSERT. I knew that it was safe to call functions in pcDisasm with- 
out causing problems, so I had no qualms about calling functions within 
assertions. 

STOP BUGS AT THE STARTING LINE 
Up to now, I've been ignoring the register and mode bits of instructions, but 
what if special encoding for those fields change the underlying instruc- 
tion? For example, the pattern for the EOR instruction looks like this: 
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and the pattern for the CMPM instruction looks remarkably similar: 

1 13 7 4 3 2 1 0  

Notice that if the Effective Address Mode field of the EOR instruction 
is 001, the EOR instruction will look like the CMPM instruction. The prob- 
lem, of course, is that if EOR is placed earlier in the idInst table, it will incor- 
rectly pluck out any CMPM instructions that come through. 

The good news is that because pcDisasm and pcDisasmAlt use different 
algorithms, you will get an assertion failure the first time you disassemble a 
CMPM instruction. This happens because pcDisasm will fill the opcode struc- 
ture with an EOR instruction but pcDisasmAlt will correctly (we hope) fill it 
with a CMPM instruction. When the two structures are compared in the 
debug code, you will get an assertion failure. This is an example of the 
power of using different algorithms in your debug functions. 

The bad news is that you'll catch this bug only if you try to disas- 
semble a CMPM instruction. I'd like to think that your external test suites 
would be thorough enough to catch this bug, but remember what I said in 
Chapter 1: You want to catch bugs automatically, at the earliest possible 
moment, and without relying on the skills of others. 

So while you could push this off onto your testing group, don't. De- 
spite what many programmers believe, testers are not there to test your 
code. That's your job. If you disagree, just name one other job in which it's 
acceptable to do slipshod work simply because somebody else is going to 
review it for mistakes. Why should programming be an exception? If you 
want to consistently write bug-free code, you must grab the reins and take 
charge. So let's start here. 

Whenever you notice something risky about your code, ask yourself, 
"How can I automatically catch this bug at the earliest possible moment?" 
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By habitually asking yourself this question, you will find all sorts of ways to 
make your programs more robust. 

You can detect bugs in the table by scanning it in main just after you 
initialize your program. You do this by looking at every table entry to verify 
that no earlier entry will incorrectly intercept its instruction. The code to 
check the table for such bugs is short, but it's not necessarily clear: 

v o i d  C h e c k I d I n s t ( v o i d )  
I 

i d e n t i t y  * p i d .  * p i d E a r l  i e r ;  
i n s t r u c t i o n  i n s t ;  

I* For each i n s t r u c t i o n  i n  t h e  t a b l e  ... * I  
f o r  ( p i d  = & i d I n s t C 0 ] ;  p id->mask != 0; pid++) 
{ 

I* . . . v e r i f y  t h a t  no e a r l i e r  e n t r i e s  c o l l i d e  w i t h  i t .  *I 
f o r  ( p i d E a r l i e r  = & i d I n s t [ 0 ] ;  p i d E a r l i e r  < p i d ;  

p i d E a r l  i e r u )  
{ 

i n s t  = p i d - > p a t  I ( p i d E a r l i e r - > p a t  & -p id->mask) ;  
if ( ( i n s t  & p i d E a r l i e r - > m a s k )  == p i d E a r l i e r - > p a t )  

ASSERT(b i tcount (p id->mask)  < 
b i t c o u n t ( p i d E a r 1 i e r - > m a s k ) ) ;  

This check works by comparing the current instruction with each of 
the instructions that appear earlier in the table. All of the instructions have 
"don't care" bits-they are the register and mode bits that are masked out. 
But what if those "don't care" bits just happen to form the bit-pattern for an 
earlier instruction in the table? In that case, you would have a collision be- 
tween two table entries. Which entry should be placed earlier in the table? 

The answer is simple. If two entries in the table match the same in- 
struction, the entry with more explicit bits should appear earlier in the table. 
If this isn't intuitively evident to you, take another look at the patterns for 
EOR and CMPM. If both of those patterns matched the same instruction, 
which would you choose as the "right" match? Why? Since the masks have 
one bit set for each explicit 0 or 1 bit in the pattern, you can tell which entry 
is more specific by comparing the number of bits set in each mask. 

It's more difficult to tell whether two instructions collide. The idea is 
to take the pattern of one entry and force its "don't care" bits to exactly 
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match the pattern of each of the earlier entries. This is the value that is as- 
signed to inst in the code. By design, inst has to match the pattern of the 
current entry since you're changing only bits that don't matter, but if inst 
also matches the pattern of an earlier entry, the two entries collide and you 
must compare their masks. 

I A Word of Caution 
Once you start using assertions, you will probably see your bug counts 
climb dramatically. This can alarm people if they're not prepared for it. 

I once rewrote a buggy code library that several groups at Microsoft 
were sharing. The original version didn't have any assertions, but I loaded 
the new version with them. I got an unexpected surprise. When I released 
the new library to the groups, one programmer got angry and demanded 
that I give back the original version. I asked him why. 

"We installed the library, and we started getting lots of bugs," he said. 
"You mean the library is causing bugs?" I was shocked. 
"It seems to be. We're getting a lot of assertions that we didn't used to 

have." 
"Have you looked at any of those assertions?" 
"Yes we have, and they were bugs in our code, but there are so many 

assertions that they can't all be valid. We don't have time to waste tracking 
down phantom problems. I want the old library back." 

Well, I didn't think he was seeing phantom bugs, so I asked him to 
continue to use the library until he found an erroneous assertion. He was 
upset, but he agreed, and in the end, he found that all the bugs were in the 
project and not in the library. 

That programmer panicked because I hadn't told anybody that I had 
added assertions to the library, and nobody was expecting to get failures. If 
I had told people to expect assertion failures, I could have kept that pro- 
grammer from panicking. But programmers aren't the only people who 
panic. Because companies gauge the progress of projects by the number of 
features left to implement and by the number of outstanding bugs, any time 
the number of either of those climbs dramatically, everybody involved with 
the project gets nervous. If you can, alert people and prevent this anxiety. 
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By calling Checkldlnst at startup, you will catch collision bugs the very 
first time you execute the program-you won't need to disassemble a single 
instruction. You should look for similar types of startup checks in your own 
code because they can quickly alert you to bugs that otherwise might go 
unnoticed for some time. - 

Don't wait for bugs to happen; use 
startup checks. - 

In this chapter, you've seen how you can use assertions to automatically 
catch bugs in your code. And while this is a valuable tool that can help you 
find that "last" bug much sooner than before, you can overuse it as you can 
any tool. It's up to you to determine where to draw the line. For some pro- 
grammers, asserting that the denominator is not zero before every division 
operation might be critical; for others, it would be ridiculous. Use your best 
judgment. 

Another thing: You should leave assertions in your code for the life of 
the project--don't strip them out once you've shipped your program. Those 
assertions will be valuable again when you start adding features for the 
next version. 

QUICK REVIEW 

Maintain shipping and debugging versions of your program. 
Shrink-wrap the shipping version, but use the debugging ver- 
sion as much as possible to catch bugs quickly. 

Assertions are a shorthand way to write debugging checks. Use 
them to catch illegal conditions that should never arise. Don't 
confuse such conditions with error conditions, which you must 
handle in the final product. 

Use assertions to validate function arguments and to alert pro- 
grammers when they do something undefined. The more rigidly 
you define your functions, the easier it will be to validate the 
arguments. 
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Once you've written a function, review it and ask yourself, 
'What am I assuming?" If you find an assumption, either assert 
that your assumption is always valid, or rewrite the code to re- 
move the assumption. Also ask, 'What is most likely to be 
wrong in this code, and how can I automatically detect the prob- 
lem?" Strive to implement tests that catch bugs at the earliest 
possible moment. 

Textbooks encourage programmers to program defensively, but 
remember that this coding style hides bugs. When you write de- 
fensive code, use assertions to alert you if the "can't happen" 
cases do happen. 

Suppose you have to maintain a shared library and you want to 
include assertions but you don't want to release the library 
sources. How could you define ASSERTMSG, an assertion 
macro that displays a meaningful message instead of the file 
name and line number? For instance, the memcpy routine might 
display this assertion: 

A s s e r t i o n  f a i l u r e  i n  memcpy: The b l o c k s  o v e r l a p  

Each time you use ASSERT, the -FILE- macro generates a 
unique file name string. That means that if you use 73 assertions 
in the same file, the compiler may generate 73 identical copies of 
the file name string. How could you implement the ASSERT 
macro so that the file name string would be defined just once 
per file? 

What's wrong with the assertion in the function below? 

I* g e t l i n e  - -  r e a d  a \ n  d e l i m i t e d  l i n e  i n t o  a b u f f e r .  *I 

v o i d  ' g e t l i n e ( c h a r  *pch)  
{ 

i n t  ch; I* ch must be an i n t .  * /  

d  0 

ASSERT((ch = g e t c h a r 0 1  != E O F ) ;  
w h i l e  ((*pch++ = ch )  != ' \ n l ) :  

1 



44 WRITING SOLID CODE 

4. When programmers add new elements to an enumeration, they 
sometimes forget to add new cases to the appropriate switch 
statements. How could you use assertions to help detect this 
problem? 

5. Checkldlnst verifies that the idlnst table entries are in the correct 
order, but out-of-order entries aren't the only kind of problem 
that can occur in the table. With so many numbers, it would be 
easy to mistype the value of a mask or pattern. How could you 
enhance Checkldlnst to help automatically catch typing mistakes? 

6. Earlier we saw that when the Effective Address Mode field of the 
EOR instruction is 001, it is really a CMPM instruction. There are 
other restrictions in the EOR instruction. For example, the 2-bit 
mode field can never be 11 (that would make it a CMPA.L in- 
struction), and if the Effective Address Mode field is 111, the Ef- 
fective Address Register field must be either 000 or 001. Since 
pcDecodeEOR should never be called with these non-EOR combi- 
nations, how would you add assertions to it to catch bugs in the 
table? 

7. How could you use a second algorithm to verify the qsort func- 
tion? How could you verify a binary search routine? And how 
about verifying the itoa function? 

PROJECT: Contact the company who wrote your operating system 
and encourage them to provide a debugging version for pro- 
grammers. This, by the way, is good for both parties because OS 
companies want people to write applications for their operating 
systems. It's in their best interest to make it easier to bring prod- 
ucts to market. 



SUBSYSTEMS 

You can have 50,000 fans attending a football game, but you need only a 
handful of people to check tickets-provided, of course, that they stand at 
the gates. Your program has such gates; they're the entry points to your 
subsystems. 

Think of the file system you use. You open files, close them, read and 
write them, and create them. That's five basic operations, but the code to 
support those operations is often large and complex. You use the entry 
points without worrying much about file directories, free space maps, or 
how to read from or write to a specific hardware device whether it's a disk 
drive, a tape drive, or a network connection. 

Or what about a memory manager? You allocate memory, release it, 
and sometimes change its size. But again, there can be a lot of support code 
behind those operations. 
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In general, a subsystem hides its implementation details, which can be 
quite complex, and instead provides a few key entry points that program- 
mers use to communicate with the subsystem. If you were to add some de- 
bugging checks to the entry points of such a subsystem, you could get 
substantial error checking without having to make many, if any, changes to 
the rest of your program. 

Suppose you were asked to write the rnalloc,free, and realloc routines 
for a standard C runtime library. (Somebody has to write these things.) You 
could fill the code with assertions. You could thoroughly test it. And you 
could write a superb programmer's guide. But you and I both know that 
programmers are still going to have problems when they use the code. 
What can you do to help? 

Here's a suggestion: When you've finished writing a subsystem, ask 
yourself, "How are programmers going to misuse this subsystem, and how 
can I detect these problems automatically?" Ideally, you would have asked 
this question before you began coding, to eliminate risky designs, but ask it 
again anyway. For a memory manager, you can rely on programmers to 

* Allocate a block and use the uninitialized contents 

Free a block, but continue to reference the contents 

* Call realloc to expand a block and when it moves continue to ref- 
erence the contents at the old location 

* Allocate a block but "lose" it because the pointer isn't saved 

* Read or write beyond the boundaries of a block 

Fail to notice error conditions 

These are not wildly hypothetical problems-they show up all the 
time. Worse, they're usually hard to spot because they aren't repeatable. 
You crash once, never to see the problem again-at least not until one of 
your users calls up in a huff and asks you to please fix the bug that keeps 
clobbering her in some common scenario. 

These bugs are hard to spot, but that doesn't mean you can't improve 
things. Assertions are worthwhile, but you have to execute them if they're 
to report problems. Look at the problems above and tell me how assertions 
in your memory manager would catch them. They wouldn't. 

In this chapter, I'm going to talk about additional techniques you can 
use to ferret out subsystem bugs that you would otherwise have trouble 
spotting. I'll be using the C memory manager as a model, but you can apply 
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the points to any subsystem, whether it's a simple linked list manager or a 
shared text-retrieval engine. 

Now You SEE IT, NOW YOU DON'T 
Normally, you would build tests directly into your subsystems, but I'm not 
going to do that here for two reasons. The first is that I don't want to clutter 
the book's examples with the code for implementing rnalloc,free, and realloc. 
The second is that you sometimes don't have the source code for sub- 
systems that you use. Of the half-dozen compilers I'm using to test the ex- 
amples in this book, only two provide the sources for their standard libraries. 

Instead of building the tests into sources that you may not have, or 
that are undoubtedly different from what I have, I'm going to put scaffold- 
ing around the memory management routines in the form of cover func- 
tions. This is, after all, what you would have to do if you didn't have the 
sources to a subsystem. And while I'm at it, I'm going to adopt the naming 
convention I use throughout the rest of this book. 

Let's start with the cover function for malloc. It looks like this: 

I* fNewMemory - -  a l l o c a t e  a memory b l o c k .  *I 

f l a g  fNewMemory(void * *ppv,  s i ze - t  s i z e )  
{ 

b y t e  **ppb = ( b y t e  * * )ppv;  

*ppb = ( b y t e  * ) m a l l o c ( s i z e ) ;  
r e t u r n  (*ppb != NULL); I* Success? *I 

1 

This may look more complicated than rnalloc, but that's largely be- 
cause of the noise introduced by the void ** argument pointer. If you look at 
how a programmer would call this function, you can see that it is as clear, if 
not more clear, than a call to rnalloc. Instead of writing 

if ( (pbBlock  = ( b y t e  * ) m a l l o c ( 3 2 ) )  != NULL) 
success fu l  - -  pbB1ock p o i n t s  t o  the  b l o c k  

e l  se 
unsuccessful  - -  pbBlock i s  NULL 

you would write 
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i f  ( fNewMemory(&pbBlock.  3 2 ) )  
successful - -  pbBlock points to the block 

e l  s e  
unsuccessfu7 - -  pbB7ock i s  NULL 

which would achieve the same thing. The only difference between the two 
functions is that fNewMemoy separates the "success?" and "pointer" out- 
puts whereas malloc fuses them into one dual-purpose output. In both cases, 
pbBlock points to the block if it was allocated or is NULL if the block wasn't. 

In the last chapter, I said that you should either eliminate undefined 
behavior or use an assertion to verify that it doesn't happen. If you apply 
that advice to malloc, you should see that there are two undefined items you 
have to handle. First, it's meaningless (according to the ANSI standard) to 
ask malloc to allocate a zero-length block. Second, if malloc returns a block, it 
leaves the contents uninitialized-the block may be filled with zeros, or it 
may contain random garbage. You just don't know. 

Handling a request to allocate a zero-length block is simple. You check 
for it with an assertion. But what about the other problem? How can you 
assert that a block's contents are, or are not, valid? It doesn't make sense. 
That leaves you with just one option: Eliminate the undefined behavior. The 
obvious approach is to havefNewMemo y zero-fill blocks the moment it al- 
locates them. That would work, but in a correct program, the contents of the 
blocks shouldn't matter. Burdening your ship program with unnecessary 
fills is something you should avoid. 

Unnecessary fills can also hide bugs. 
Suppose you allocate memory for a data structure but you forget to 

initialize one of the fields-or alternatively, a maintenance programmer ex- 
tends the structure and forgets to add the initialization code for the new 
fields. That's a bug, but you may not notice it iffNavMemo y sets the field to 
0 or any other possibly useful value. 

Still, you don't want to leave the contents undefined because that 
makes bugs hard to reproduce. What if a bug showed up only when the 
garbage happened to be one particular value? You would miss the bug 
much of the time and periodically crash for no apparent reason. Imagine 
how hard it would be to reach zero-bugs if every bug happened only some 
of the time-programmers (and testers) would go crazy trying to track 
down problems. The key to exposing bugs is to eliminate random behavior 
wherever you find it. 
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Exactly how you do this depends on the subsystem and the random 
behavior involved. For malloc you can eliminate randomness by filling the 
block-but only in debug versions of your program. That solves the prob- 
lem without putting a ball and chain on the code you release. But remem- 
ber, you don't want to hide bugs. The idea is to fill the blocks using a weird 
value that looks like garbage but that makes bugs apparent. 

I use the value OxA3 for Macintosh programs. I chose this value by 
asking myself a number of questions: What would force a bad pointer to 
show itself? What about a bad counter or index? What if the contents of the 
block were executed? 

On some Macintosh models, you can't reference 16-bit or 32-bit values 
using an odd pointer, so I knew that the value should be odd. I also knew 
that I was more likely to spot a bad counter or index if it were large and 
caused noticeable delays or forced the system to misbehave. Finally, of all 
the weird-looking, odd-valued, and large numbers you can represent in a 
byte, I chose OxA3 because if the block were somehow executed, the unde- 
fined machine language instruction OxA3A3 would instantly crash in a 
clean, predictable way-you'd get an "undefined A-Line trap" error in the 
system debugger. This last point may seem nit-picky, but why not use every 
opportunity, however remote, to automatically catch bugs? 

The value you choose for your machine may be different. On Intel 
80x86-based machines, pointers can be odd, so having an odd-valued num- 
ber isn't important. But the process for choosing the value is similar: You 
would ask yourself how uninitialized data could be used and then look for 
ways to make it noticeable. Microsoft applications use OxCC to fill blocks 
because it is large and easily noticeable, and if executed, causes the code to 
safely drop into the debugger. 

If you add both the size-check assertion and the code to fill undefined 
memoryfhrewMemory becomes 

# d e f i n e  bGa rbage  0xA3 

f l a g  fNewMemory(void * *ppv,  s i z e - t  s i z e )  
E 

b y t e  * *ppb = ( b y t e  * * ) p p v ;  

*ppb = ( b y t e  * ) m a l l o c ( s i z e ) ;  

(continued) 
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#i f d e f  DEBUG 
{ 

i f  (*ppb != NULL) 
mernset(*ppb, bGarbage, s i z e ) ;  

1 
#endi f 

r e t u r n  (*ppb != NULL); 
1 

Not only does this version offNewMerno y help make bugs reproduc- 
ible, but it often makes them easier to track down. If you find yourself star- 
ing at a loop index with the value OxA3A3, or a pointer with the value 
OxA3A3A3A3, it's clear that you're looking at uninitialized data. More than 
once, I've been tracking down one bug, only to spot another in the process 
because I ran across some unexpected combination of OxA3s. 

So look at the subsystems in your application and isolate the design 
points that can cause random bugs. Once you have identified these points, 
either remove them by changing your design, or add debugging code to 
minimize the amount of random behavior. 

___e__ 

Eliminate random behavior. 
Force bugs to be reproducible. 

SHRED YOUR GARBAGE 
The cover function forfree looks like this: 

v o i d  FreeMemory(void *pv )  
{ 

f r e e ( p v 1 ;  
1 

The ANSI standard says thatfree is undefined if you pass it an invalid 
pointer. That sounds reasonable, but how can you tell whether pv is valid? 
How can you assert that pv points to the start of an allocated block? The 
answer is that you can't, at least not without more information. 

It gets worse. 
Suppose your program maintains a tree of some sort and that the 

deletenode routine calls FreeMemory to release one of the nodes. What will 
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happen if there is a bug in deletenode that causes it to release the node but fail 
to update the link pointers in the surrounding allocated nodes? Obviously, 
you will have a tree structure that contains a free node. But guess what? On 
most systems, that free node will still look valid. 

That shouldn't be too surprising. When you callfree, you're telling the 
memory manager that you don't need the memory anymore, so why should 
it waste time scrambling the contents? 

That's a reasonable optimization, but it has the nasty side effect that 
free memory-which is garbage-looks like it contains valid data. Instead 
of having a tree with a node that will crash the system the next time you 
traverse the structure, you have a tree that looks valid. How likely are you 
to spot that problem? Unless you have the luck of a lotto winner, not very. 

"No problem," you say, "I'll just add some debug code to FreeMemory 
to fill the block with OxA3 before it calls free. That way, the contents are 
guaranteed to look like garbage and the tree manipulation routines will 
break when they hit the free node." Good idea, but how large is the block? 
Oops, you don't know that either. 

You could throw up your hands at this point and declare that 
FreeMemory has beaten you. After all, you can't assert that pv is valid since 
you have no way to do it, and you can't destroy the contents of the block 
because you don't know how large it is. 

Instead of giving up, let's assume for a moment that you have a debug 
function, sizeofBlock, that will give you the size of any allocated memory 
block. If you have the sources to your memory manager, you could prob- 
ably write such a routine without much effort. But even if you don't, don't 
worry-I'll provide an implementation for sizeofBlock later in the chapter. 
Using sizeofBlock, you can destroy the memory before you release it: 

v o i d  FreeMemory( v o i  d * p v )  
E 

ASSERT(pv != NULL); 

# i f d e f  DEBUG 
{ 

rnernset(pv, bGarbage. s i z e o f B l o c k ( p v ) ) ;  
1 
#end i  f 
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This code not only fills the block, but it also validates pv as a side effect 
of calling sizeoj73lock. If the pointer is bad, sizeofBlock will assert-it can do 
this because, obviously, it must know about every allocated block. 

It might seem strange that I used an assertion to check that pv is not 
NULL even though NULL is a legal argument forfree-the ANSI standard 
says thatfree does nothing in this case. The reason shouldn't be too surpris- 
ing: I don't believe in passing NULL pointers to functions where it has no 
meaning but those conjured up for convenience; the assertion simply vali- 
dates this practice. Of course, your beliefs could be different, and you may 
want to remove the assertion. The point I want to make is that you don't 
need to blindly follow the ANSI standard. Just because somebody else 
thought thatfree should accept NULL pointers doesn't mean you're forced 
to accept that. 

realloc is another function that releases memory and creates garbage. 
Here is its cover function: 

f l a g  f R e s i z e M e m o r y ( v o i d  * *ppv,  s i z e - t  s izeNew)  
{ 

b y t e  * *ppb = ( b y t e  * * ) p p v ;  
b y t e  *pbNew; 

pbNew = ( b y t e  * ) r e a l l o c ( * p p b ,  s i zeNew) ;  
i f  (pbNew != NULL) 

*ppb = pbNew; 
r e t u r n  (pbNew != NULL); 

1 

Likef2vewMemo y,fResizeMemo y returns a status flag to indicate whether 
it successfully changed the size of the block. Assuming that pbBlock points to 
allocated memory, you could resize the block this way: 

i f  ( fRes izeMemory(&pbBlock.  s i zeNew) )  
success fu l  - -  pbB1ock p o i n t s  t o  the  new b lock  

el se 
unsuccessful  - -  pbB7ock p o i n t s  t o  t h e  o l d  b lock  

You should note that, unlike realloc, fXesizeMemo y does not return a 
null pointer if the operation fails; it returns the original pointer, which still 
points to the allocated, though unchanged, block. 

The realloc function (and sofResizeMernory) is interesting in that it con- 
tains elements of bothfree and malloc, depending on whether you're shrink- 
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ing a block or expanding it. In FreeMemo y, I. destroyed the block contents 
just before the block was released. InfNewMemoy, I filled the new block 
with weird-looking "garbage" right after calling malloc. You must do both 
to make fResizeMemoy robust. That requires two separate blocks of 
debug code: 

f l a g  fRes izeMemory (vo id  **ppv,  s i z e - t  s izeNew)  
E 

b y t e  **ppb = ( b y t e  * * ) p p v ;  
b y t e  *pbNew; 
#i f d e f  DEBUG' 

s i z e - t  s i z e o l d ;  
a e n d i  f 

ASSERT(ppb != NULL && s izeNew != 0 ) ;  

#i f d e f  DEBUG 
{ 

s i z e o l d  = s i z e o f B l o c k ( * p p b ) ;  

/ *  I f  s h r i n k i n g .  e r a s e  t h e  t a i l  c o n t e n t s .  *I 
i f  (s izeNew < s i z e o l d )  

memset((*ppb)+sizeNew, bGarbage.  s i z e o l d - s i z e N e w ) ;  
1 
#end i  f 

pbNew = ( b y t e  * ) r e a l l o c ( * p p b ,  s i zeNew) ;  
i f  (pbNew != NULL) 
E ' 

#i f d e f  DEBUG 
{ 

/ *  If expand ing ,  i n i t i a l i z e  t h e  new t a i l .  *I 
i f  (s izeNew > s i z e o l d )  

mernset(pbNew+sizeOld. bGarbage,  s i z e N e w - s i z e 0 l d ) :  
1 
#end i  f 

*ppb = pbNew; 
1 
r e t u r n  (pbNew != NULL); 

1 

That looks like a lot of extra code, but if you look closer you'll see that 
most of it is air, braces, #ifdef directives, and comments. But even if there 
were a lot of extra code, worrying about that would be wasted energy. 
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Debug versions don't have to have to be small and tight or have lightning 
fast response; they need to be usable only to the extent that programmers 
and testers will regularly use them. Unless the code gets so big or so slow 
that programmers and testers stop using it, add whatever debug code you 
feel is necessary to strengthen your application. If the code gets too big or 
too slow, make hybrid versions that contain specific sets of debug code. 

The important thing is to review your subsystems and isolate the cases 
in which they allocate or release memory, and make sure that the memory 
looks like the garbage it is. - 

Destroy your garbage so that 
it's not misused. - 

Using #ifdef with Locals Is Ugly! 
Take a look at sizeold, a debug-only local variable. Bracketing sizeold with 
an #@ef sequence may look ugly, but it's important that all debug code be 
removed from the ship versions of your program. Oh, I know, if you were 
to remove the #ifdef directive, the code would be much more readable and 
would function correctly in both the ship and the debug versions of your 
code. The only drawback? In the ship version, you would declare sizeold 
and then never use the variable. 

It may seem OK to declare sizeold in the ship version of your program 
and then not use the variable, but there's a serious problem with that. What 
if a maintenance programmer fails to notice that sizeold is a debug-only 
variable and erroneously uses it, uninitialized, in ship code? By bracketing 
sizeold's declaration with an #ifdef directive, you prevent the programmer 
from using the variable without getting a compiler error when the ship ver- 
sion of the code is built. 

It may look ugly using the #ifdef directive to remove debugging vari- 
ables, but the practice helps eliminate a source of potential bugs. 
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MOVERS AND SHAKERS 
Suppose that instead of freeing a tree structure node, your program calls 
fResizeMemory to expand the node to accommodate a variable-length data 
structure. If fResizeMemory moves the node as it expands it, you now have 
two nodes: the real one at the new location and the untouched garbage left 
at the old location. 

What would happen if the programmer who wrote expandnode wasn't 
aware that fResizeMemo y could move the node gs it expanded it? Wouldn't 
that programmer leave the tree structure in its old state, with surrounding 
nodes still pointing to the original unexpanded and valid-looking block? 
And wouldn't the new block end up floating out in memory space with 
nothing pointing to it? In effect, you would have a valid-looking but flawed 
tree structure-and a lost block of memory. That's not good. 

Now you might think'that fResizeMemoy could destroy the original 
memory any time it moved a block while expanding it. A simple call to 
memset would do the trick: 

f l a g  fResizeMemory(void * *ppv ,  s 
{ 

pbNew = ( b y t e  * ) r e a l l o c ( * p p b  
i f  (pbNew != NULL) 
E 

#i f d e f  DEBUG 

I* I f  t h e  b l o c k  moved, d e s t r o y  t h e  o l d  one. *I 
i f  (pbNew != *ppb) 

memset(*ppb, bGarbage, s i z e 0 l d ) ;  

I* I f  expanding.  i n i t i a l i z e  t h e  new t a i l .  *I 
i f ( s i  zeNew > s i  z e 0 l  d 

memset(pbNew+sizeOld, bGarbage, s izeNew-size0ld) ;  
1 
#endi f 

*ppb = pbNew; 
3 
r e t u r n  (pbNew != NULL); 

1 
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Unfortunately, you can't do that. Even though you know the size and 
location of the old block, you can't scramble the contents because you don't 
know what the memory manager does with its free memory. Some memory 
managers don't do anything with the memory, but others use it to store 
free-chain information, or other internal implementation data. The fact is 
that once you release memory, you don't own it, so you shouldn't touch it. 
If you do, you risk corrupting your system. 

"I've covered all the other cases, so is this one worth worrying about?" 
I think so, mainly because programmers either don't know, or regularly for- 
get, that realloc can move blocks. Detecting this problem is important. 

In one extreme case, when I was adding features to Microsoft's inter- 
nal 68000 cross assembler, I was asked by the Macintosh Word and Excel 
programmers to track down a long-time bug that would randomly crash 
the system. The only difficulty was that the bug showed up about as often 
as you get your hair cut. Individuals wouldn't get hit too often, but the bug 
was constantly biting somebody, and that gave it some priority. I'll spare 
you the details, but it took weeks, off and on, to come up with a reproduc- 
ible scenario for the bug, and then it took three days to track down the 
actual cause. 

That's a long time to find the cause of a reproducible bug, but I had no 
idea what was causing it, and every time I stepped through the data struc- 
tures, they looked perfect. I had no idea that those perfect data structures 
were, in fact, garbage left by an earlier call to realloc. 

But the real problem was not that it took me so long to find the exact 
cause of the bug; rather that it took so much effort to come up with a repro- 
ducible case. Not only did realloc have to move the block of memory as it 
was expanding it, but the old memory had to be reallocated and filled with 
new data. In the assembler, both happened rarely. 

This brings up another guideline for writing bug-free code: You don't 
want anything to happen rarely. You need to isolate those behaviors in your 
subsystems that may happen and make sure that they do happen. And of- 
ten. If you find rare behavior in your subsystems, be sure to do something- 
anything-to stir things up. 

The assembler bug could have been found within hours, instead of 
years, if realloc hadn't so rarely moved blocks when it expanded them. But 
the question is, how can you force realloc to move blocks more often? The 
answer is that you can't, at least not unless your particular operating system 
provides a way. But you can simulate what realloc does. If a programmer 
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callsfResizeMemo y to expand a block, you can move it infResizeMemoy by 
creating a new block, copying the contents of the old block to the new block, 
and finally releasing the old block. You can do exactly what realloc does: 

f l a g  f R e s i  zeMemory(void * *ppv,  s i  ze-t s izeNew) 
{ 

b y t e  **ppb = ( b y t e  * * ) p p v ;  
b y t e  *pbNew; 
#i f d e f  DEBUG 

s i z e - t  s i z e o l d ;  
#end i  f 

ASSERT(ppb != NULL && sizeNew != 0 ) ;  

#i f d e f  DEBUG 
{ 

s i z e o l d  = s i z e o f B l  ock ( *ppb)  ; 

I* I f  t h e  b l o c k  i s  s h r i n k i n g ,  p r e - f i l l  t h e  s o o n - t o - b e -  
* r e l e a s e d  memory. I f  t h e  b l o c k  i s  expand ing ,  f o r c e  
* i t  t o  move ( i n s t e a d  o f  expand ing  i n  p l a c e )  by  f a k i n g  
* a  r e a l l o c .  I f  t h e  b l o c k  i s  t h e  same s i z e ,  d o n ' t  do 
* a n y t h i n g .  
* 1 

i f  (s izeNew < s i z e o l d )  
rnemset((*ppb)+sizeNew. bGarbage, s i z e o l d - s i z e N e w ) ;  

e l s e  i f  (s izeNew > s i z e o l d )  
E 

b y t e  *pbForceNew; 

pbNew = ( b y t e  * ) r e a l l o c ( * p p b ,  s i zeNew) ;  

Here I've added new code that is executed only if the block is expand- 
ing. By allocating the new block before releasing the old block, you know 
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that the block will be moved unless, of course, the allocation fails. If that 
happens, the new code behaves like a big no-op instruction. 

But notice what I've done here. Not only does the code force the block 
to move regularly, but-as a side effect-the code also destroys the contents 
of the old block. That happens when it calls FreeMemo y to release the origi- 
nal block. 

Now maybe you're wondering, "Since the code fakes a realloc, why 
does it still call realloc?" After all, you could speed things up by embedding 
a return statement in the new code: 

i f  (fNewMemory(&pbForceNew, s izeNew))  
{ 

rnemcpy(pbForceNew. *ppb, s i z e o l d ) ;  
FreeMemory( *ppb) ; 
*ppb = pbForceNew; 
r e t u r n  ( T R U E ) ;  

1 

You could do that, but don't-it's a bad habit to get into. Remember 
that debug code is extra code, not different code. Unless there is a compel- 
ling reason not to, you should always execute the ship code, even if it's re- 
dundant. After all, there is no better way to catch bugs in code than to 
execute it, and you want to execute ship code as much as possible. 

Sometimes when I explain the concepts in this section to a program- 
mer, he or she will argue that always moving memory is just as bad as never 
moving it-that I've gone to the other extreme. That's an astute observation 
and is worth talking about for a moment. 

Always doing something would be as bad as never doing it if it were 
true for both the ship version and the debug version of your program. In 
this example, though, the ship version ofjResizeMemo y is practically cata- 
tonic while the debug version moves blocks with such zeal that you'd think 
it was on amphetamines. 

It's OK if something happens rarely, as long as it's not rare in both the 
ship and the debug versions of your program. - 

lf something happens rarely, force it 
to happen often. 
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The problem with the memory manager-from a debugging viewpoint-is 
that you know the size of a block when you first create it but you lose that 
information almost immediately unless you keep a record of it somewhere. 
You've already seen how valuable the sizeofBlock function can be, but imag- 
ine how useful it would be to know how many blocks are allocated and 
where they fall in memory. If you knew that, I could hand you an arbitrary 
pointer and you could tell me whether it was valid. Consider how useful 
that would be, particularly for validating pointer arguments to functions. 

Suppose you had a functionfValidPointer that took a pointer and a size 
and returned TRUE if the pointer actually pointed to size bytes of allocated 
memory. You could then write special-purpose, more-stringent versions of 
popular routines. For instance, if you found that you often fill parts of 
allocated memory, you could bypass the lenient memset function and in- 
stead call your own FillMemo y routine, which would rigorously validate 
the pointer argument: 

void FillMemory(void *pv, byte b. size-t size) 
{ 

A S S E R T ( f V a l i d P o i n t e r ( p v ,  size)); 

By callingfValidPointer, you ensure that pv points to a valid block and 
that there are at least size bytes from pv to the end of that block. That's a far 
stronger test than rnemset's null pointer check. This is an example of trading 
both size and speed for extra security. 

Or, if you choose, you can call FillMemo y in your debug versions but 
call memset directly in the ship versions. You do that by globally including a 
ship-version macro like this one: 

But I'm getting off the point. 
What I'm saying is that if you keep extra information in the debug 

versions of your programs, you can often provide much stronger error 
checking. 

So far, I've shown you how to use sizeofBlock to fill memory in 
FreeMemo y andfliesizeMemo y, but filling memory is a "weak" way to find 
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bugs compared to what you can do if you keep a record of every allocated 
memory block. 

Again, I'm going to assume the worst-case scenario: that you can't de- 
rive any information about allocated memory blocks from the subsystem 
itself. For the memory manager, this worst case means that you can't derive 
the size of a block, that you can't tell whether a pointer is valid, and that you 
can't even tell whether a block exists or how many there are. If you need this 
information, you have to provide it, and that means keeping an allocation 
log of some sort. How you keep the log doesn't matter, but you must have 
the information handy when it's called for. 

Here's one possible way to maintain such a log: When you allocate a 
block in ~ M e m o y ,  allocate an extra block for a log entry; when you re- 
lease a block in FreeMemory, release the log information; and when you 
change the size of a block in fResizeMemoy, update the log information to 
reflect the new size and location of the block. These three actions can be 
isolated in, not surprisingly, three debug interfaces: 

I* C r e a t e  a  memory r e c o r d  f o r  t h e  new b l o c k .  *I 
f l a g  f C r e a t e B l o c k I n f o ( b y t e  *pbNew. s i z e - t  s izeNew);  

I* Release t h e  i n f o r m a t i o n  s t o r e d  about a b l o c k .  * I  
v o i d  F r e e B l o c k I n f o ( b y t e  * p b ) ;  

I* Update t h e  i n f o r m a t i o n  about an e x i s t i n g  b l o c k .  *I. 
v o i d  U p d a t e B l o c k I n f o ( b y t e  *pbOld,  b y t e  *pbNew, s i z e - t  s i zeNew) ;  

How these routines maintain the log information isn't too important, 
provided, of course, that they don't slow the system down to the point that 
it's unusable. You can find code in Appendix B that implements these 
memory log functions. 

Modifying FreeMemo y and fResizeMemo y to call the appropriate 
memory log routines is straightforward. FreeMemory becomes 

v o i d  FreeMemory(void * p v )  
{ 

#i f d e f  DEBUG 
E 

memset(pv, bGarbage, s i z e o f B l o c k ( p v ) ) ;  
FreeBl  o c k I n f o ( p v )  ; 

1 
#endi f 
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In fResizeMemory, you call UpdateBlocklnfo if realloc successfully 
changes the size of the block. If realloc fails, there isn't anything to update. 
The tail part of fResizeMemory becomes 

f l a g  fResizeMemory(void  * *ppv ,  s i z e - t  sizeNew) 
{ 

pbNew = ( b y t e  * ) r e a l l o c ( * p p b ,  s i zeNew) ;  
i f  (pbNew != NULL) 
{ 

#i f d e f  DEBUG 
E 

UpdateBlockInfo(*ppb,  pbNew, s i zeNew) ;  

/ *  I f  expanding,  i n i t i a l i z e  t h e  new t a i l .  * /  
i f  (s izeNew > s i z e o l d )  

memset(pbNew+sizeOld. bGarbage, s i z e N e w - s i z e o l d ) ;  
1 
#endi f 

*ppb = pbNew; 
1 
r e t u r n  (pbNew != NULL); 

1 

Modifying fNavMemory is a bit more complicated, and that's why I've 
saved it for last. When you call PewMemory to allocate a block, the system 
must allocate two blocks: one for your request and one for the log informa- 
tion. For the call to succeed, both allocations must succeed; otherwise, you'll 
have a memory block with no log information to back it up. That's impor- 
tant because without that log information you'll get an assertion failure if 
you call any function that validates its pointer arguments. 

In the code on the next page, you'll see that if fNewMemo y allocates 
the memory requested but fails to allocate the memory for the log entry, it 
will release the first memory block and fake a memory failure. This keeps 
the memory system and the log information synchronized. 
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f l a g  fNewMemory(void * *ppv ,  s i z e - t  s i z e )  
E 

b y t e  * *ppb = ( b y t e  * * ) p p v ;  

ASSERT(ppv != NULL && s i z e  != 0 ) :  

*ppb = ( b y t e  * ) m a l l o c ( s i z e ) ;  

# i f d e f  DEBUG 
{ 

i f  ( * p p b  != NULL) 
{ 

memset(*ppb,  bGarbage, s i z e ) ;  

I* I f  u n a b l e  t o  c r e a t e  t h e  b l o c k  i n f o r m a t i o n ,  
* f a k e  a t o t a l  memory f a i l u r e .  
* / 

i f  ( ! f C r e a t e B l o c k I n f o ( * p p b .  s i z e ) )  
{ 

f r e e ( * p p b )  ; 
*ppb = NULL; 

I 
I 

I 
#end i  f 

r e t u r n  ( *ppb  != NULL); 
1 

That does it. 
Now that you have a total record of the memory system, you can eas- 

ily write functions like sizeofBlock andfValidPointer (see Appendix B) or any- 
thing else you find useful. - 

Keep debug information to allow 
stronger error checking. 

DON'T WAIT FOR BUGS TO CALL 
Up to this point, every change I've suggested helps you notice bugs when 
they happen. That's good, but it's not automatic. Think about the deletenode 
routine I talked about earlier. If that code called FreeMemoy to release a 
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node and left dangling pointers in the tree, would you have any chance of 
spotting the problem if those pointers never got used? No, you wouldn't. 
Or what if I had a bug in JResizeMemoy such as forgetting to call 
FreeMemory? 

The Uncertainty Principle and Other Specters 
Sometimes when I explain the concept of using debugging checks to a pro- 
grammer, he or she expresses a concern that adding such test code is intru- 
sive. Heisenberg's Uncertainty Principle always comes up. 

There is no question that the debug code will create differences be- 
tween the ship and the debug versions of your code, but as long as you're 
careful not to change the underlying behavior of the code, those differences 
shouldn't matter. The debug version of fResizeMernory may move blocks 
more frequently, but that doesn't change the code's basic behavior. Simi- 
larly,fNmMemo y may allocate more memory than you request (for the log 
information), but again, that shouldn't affect your code's behavior. If you 
count onfNewMemory or malloc to give you exactly 21 bytes when you ask 
for that amount, you're in trouble, with or without the debug code. To 
maintain alignment restrictions, memory managers routinely allocate more 
memory than you ask for. 

Another objection is that the debug code itself will increase the size of 
an application, which therefore uses more RAM. But remember, the pur- 
pose of the debug version is to catch bugs, not to make the maximal use of 
memory. It's OK if you can't load the largest possible spreadsheet, or edit 
the largest possible document, or do whatever memory-hogging thing it is 
that your application does. The worst case is that you'll run out of memory 
sooner than you normally would, forcing the program to exercise your er- 
ror handling code more often. The best case is that the debug code will catch 
bugs quickly with little or no real testing effort. 
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I would have introduced a subtle bug. It's subtle because nothing ob- 
vious will go wrong. But every time you execute the code you will "lose" a 
memory block because the only pointer to it is destroyed when you assign 
pbForceNm to *ppb. Will the debug code help catch this bug? Not at all. 

Bugs such as this one differ from the bugs I talked about earlier in that 
nothing illegal ever happens. Just as roadblocks are worthless if the crooks 
never try to leave town, the debug code I've shown so far is worthless for 
catching bugs when the data isn't used. That doesn't mean the bugs don't 
exist. They do. It just means that you can't see them-they're "lying low." 

To find these bugs, you do the programmer's equivalent of a house-to- 
house search. Instead of waiting for the bugs to show themselves, you add 
debug code to actively search for these kinds of problems. 

In the first case, you have a dangling pointer to a block that is no 
longer allocated. In the second case, you have a block that is allocated but 
that has no pointer to it. These bugs would normally be hard to find, but not 
if you've been keeping debug information. 

Think about how you find errors in your bank statement: You have a 
list of the funds you think you've allocated; the bank has a list it thinks 
you've allocated; you find errors by comparing the two lists. The way you 
find dangling pointers and lost blocks is no different. You compare the list 
of known pointers, which is stored in your data structures, to the list of 
known allocations, which is stored in the debug information. If you find 
pointers that don't reference allocated blocks, or blocks that don't have any 
pointers to them, you've got problems. 

But programmers-especially experienced programmers-balk at the 
idea of checking every pointer stored in every data structure because track- 
ing them down seems difficult, if not impossible. The reality, though, is that 
even poorly written programs clump pointers into classes of allocations. 

For example, the 68000 assembler I talked about earlier might allocate 
memory for 753 symbol names, but it doesn't keep track of them by means 
of 753 global variables. That would be silly. Instead, it uses an array, a hash 
table, a tree, or possibly a simple linked list. There may be 753 symbol 
names, but looping over any of these data structures is simple and takes 
little code. 

To compare the list of pointers stored in the data structures to the list 
of allocations stored in the debug information, I've defined three functions 
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that work together with the information gathering routines described in the 
last section-you can find their implementations in Appendix B: 

I* Mark a l l  b l o c k s  as "unre fe renced . "  * I  
v o i d  C l  earMemoryRefs(void 1 : 

I* Note t h a t  t h e  b l o c k  p o i n t e d  t o  by "pv" has a r e f e r e n c e .  *I 
v o i d  NoteMemory Ref ( v o i  d *pv 1 ; 

I* Scan t h e  r e f e r e n c e  f l a g s  l o o k i n g  f o r  l o s t  b l o c k s .  *I 
v o i d  CheckMemoryRefs(void1 ; 

The way you use these routines is straightforward. First, you call 
ClearMemoryRefs to set the debug information to a known state. Next, you 
scan your global data structures and call NoteMmoryRef for each pointer to 
allocated memory, both to validate the pointer and to mark that the block 
was referenced. Once you've accomplished that, every pointer should be 
validated and every block should have a reference mark. Finally, you call 
CheckMemoryRefs to verify that all blocks are marked; if CheckMemoryRefs 
finds an unmarked block, it asserts, alerting you to the lost block. 

Let's see how you would use these routines to validate the pointers in 
the 68000 assembler. For simplicity's sake, let's assume that the symbol 
table for the assembler is maintained in a binary tree in which each node 
looks like this: 

I* "symbol" i s  t h e  node d e f i n i t i o n  f o r  a symbol name. 
* We a l l o c a t e  one o f  t hese  nodes f o r  eve ry  symbol 
* d e f i n e d  i n  t h e  u s e r ' s  assembly source  code. 
* I  

t y p e d e f  s t r u c t  SYMBOL 
E 

s t r u c t  SYMBOL *psymRight;  
s t r u c t  SYMBOL *psymLef t ;  
char  *strName; I* t h e  t e x t u a l  r e p r e s e n t a t i o n  *I 

1 symbol ; I* naming: sym. *psym * I  

I've shown only the three fields that contain pointers. The first two fields 
are pointers to the left and right subtrees; the third is to the null-terminated 
symbol string. Once you've called ClearMemo yRefs, you traverse the tree 
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and note every pointer stored in it. I've isolated this code in one debug-only 
function: 

v o i d  NoteSyrnbolRefs(symbo1 *psym) 
{ 

i f  (psyrn != NULL) 
C 

I* V a l i d a t e  t h e  c u r r e n t  node b e f o r e  go ing  deeper.  *I 
NoteMernoryRef(psym); 
NoteMemoryRef(psyrn->strNarne): 

I* Now do t h e  sub t rees .  *I 
NoteSyrnbolRefs(psyrn->psyrnRight); 
NoteSyrnbolRefs(psyrn->psyrnLeft); 

This code traverses the symbol table in a pre-order fashion to note ev- 
ery pointer in the tree. Normally, because the symbol table is stored as an 
in-order tree, I would traverse it in an in-order fashion, but I didn't do that 
here because I wanted to validate psym before I dereferenced it. That re- 
quired a pre-order search. If you do an in-order or a post-order traversal, 
you must dereference psym before you validate it, and that could lead to a 
crash, probably after the function wildly recurses many times. True, you 
would see the bug, but it's much easier to track down a controlled assertion 
failure than it is to isolate a random crash. 

Once you've written Note-Ref routines for your other data structures, 
wrap them up in a single routine you can call from anywhere in your pro- 
gram. For the assembler, the routine might look like this: 

v o i d  CheckMernoryIntegr i ty(vo id)  
{ 

I* Mark a l l  b l o c k s  as "unre fe renced . "  *I 
C l  earMernoryRef s ( : 

I* Note a l l  known g l o b a l  a l l a c a t i o n s .  *I 
NoteSyrnbolRefs(psymRoot); 
NoteMacroRefsO:  

NoteCacheRefsO;  
No teVar i  a b l  eRefs ( ) ; 

/ *  Make su re  e v e r y t h i n g  i s  O K . ' * /  
CheckMernoryRefs( ; 

I 



FORTlFY YOUR SUBSYSTEMS 67 

The only remaining question is, When do you call this routine? Obvi- 
ously, you want to call it as often as you can, but when you call it really 
depends on your program. At a minimum, you should call the routine any 
time you're about to use the subsystem. Even better, you should check the 
subsystem any time your program is burning cycles waiting for the user to 
press a key, move a mouse, or twiddle a hardware switch. You might as 
well use the opportunity to check things out. 

Create thorough subsystem checks, 
and use them ojten. - 

In his book Influence: How and WhyTPeople Agree to Things (Morrow, 1984), 
Dr. Robert Cialdini points out that if you're a salesperson and somebody 
walks into your men's clothing store looking for a sweater and a suit, you 
should always show the person the suits first, and then the sweaters. You'll 
make larger sales because after you sell somebody a $500 suit, an $80 
sweater is going to look inexpensive by comparison. But if you drag the 
person to the sweaters first, $80 is going to look outrageous and you'll prob- 
ably sell a $35 sweater instead. This is obvious to anybody who takes 30 
seconds to think about it, but how many people do? 

In the same way, some programmers might have thought that choos- 
ing a value for bGarbage was trivial-pick any old number. Other program- 
mers might have thought it unimportant whether you recursed over the 
symbol table's tree structure with a pre-order, in-order, or post-order tra- 
versal. But, as I pointed out earlier, some choices are better than others. 

If you find yourself making an arbitrary choice about an implementa- 
tion detail, stop and take 30 seconds to review the possibilities; for each one, 
ask yourself, 'Will this cause bugs or will it help find them?" If you asked that 
question about the possible values for bGarbage, you could see that choosing 0 
could cause bugs and that a value such as 0xA3 could help find them. 
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Design your tests carefully. 
Nothing should be arbitrary. 

No doubt you'll also run across designs for subsystem tests that require 
various levels of knowledge about the tests in order to use them. Using 
fVaIidPointer is an example of this; you can't use it if you don't know that it 
exists. But the best tests are transparent-they work regardless of whether 
the programmer is aware of them. 

Suppose an inexperienced programmer or somebody unfamiliar with 
your project joins your team. Can't he or she freely use fhrewMemoy, 
fliesizeMemoy, and FreeMemory without ever knowing about the underly- 
ing tests? 

What if the new programmer is unaware thatfliesizeMmory can move 
blocks and introduces a bug like the one in the assembler. Does he or she 
need to know anything about the integrity checks for those checks to kick in 
and fire off an "illegal pointer" assertion? 

Suppose the new programmer creates a lost memory block? Again, 
the checks kick in and alert him or her to the problem with a "lost memory" 
assertion. The new programmer may not even know what a lost memory 
block is; he or she doesn't need to know that for the checks to work. Even 
better, by tracking down the failure, the new programmer will learn about 
lost memory-without stealing time from an experienced programmer. 

This is the power of well-designed subsystem tests-when they cor- 
ner a bug, they grab it by the antennae, drag it to the broadcast studio, and 
interrupt your regularly scheduled program. You can't ask for better feed- 
back than that. - 

Strive to implement transparent 
integrity checks. 
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YOU DON'T SHIP THE DEBUG VERSION 
I know that I've added a lot of code to the memory manager in this chapter. 
Some programmers might even be thinking, "This stuff seems worthwhile, 
but adding all these checks and including the code for log information is 
just too much." I have to admit that I once felt the same way. 

I had a gut revulsion to adding so much inefficiency to a program, but 
I soon learned that I was wrong. Adding such code to the ship version of a 
program would 'kill it in the marketplace, but this code is only in the debug 
version. Sure, debug code slows down performance, but what's worse: hav- 
ing your retail product crash on your users, or having your internal debug 
version be somewhat slower as it helps you find bugs? You shouldn't.worry 
too much about the efficiency of debug code. After all, your customers 
aren't going to be using that version. 

It's important to distinguish, at the emotional level, between debug 
and ship versions of your program. You use the debug version to find bugs. 
You use the ship version to please customers. And because that's true, the 
coding trade-offs you make for the two versions are radically different. 

Remember that as long as your product meets the size and speed 
needs of your customers, you can do anything you want in your debug 
code. If adding log routines to the memory manager helps you find all sorts 
of nasty bugs, everybody wins. Your users have a zippy program, and you 
find bugs without expending much time and energy. 

An Historical Note 
Microsoft used to routinely send debug versions of its applications to beta 
testers in order to find more bugs. They stopped doing that, at least for a 
while, when a "prerelease" magazine review-based on a debug beta ver- 
sion of a product--came out with the judgment that the program was great 
but was about as fast as a three-toed sloth. Consider yourself warned. Either 

1 don't release debug versions to your test sites, or make it very clear that the 
code is loaded with internal debug checks that affect performance. If your 
program has a sign-on message, it would be wise to show a disclaimer that 

I even Geraldo Rivera could not gloss over. 
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Microsoft programmers routinely load their programs with debug code. 
Microsoft Excel, for instance, contains memory subsystem tests (which are 
even more thorough than those here), a cell table integrity check, artificial 
memory failure mechanisms so that testers can force code to execute out-of- 
memory error handlers, and a host of other checks. That's not to say that 
Excel has never shipped with bugs-it has-but almost never in code that 
contained thorough subsystem checks. 

I know I've added a lot of code to the memory manager in this chap- 
ter, but consider this: All of the new code was built into the cover functions 
fNewMemo y, FreeMemo y, and JResizeMemo y; nothing was added to the 
callers of these functions, nor was anything added to the code that imple- 
ments malloc,free, and realloc. 

Even the speed degradation isn't as bad as you might expect it to be. If 
Microsoft's results are typical, the debug version of your application- 
packed with assertions and subsystem tests-should run at about half the 
speed of your ship version. - 

Don't apply ship version constraints 
to the debug version. Trade size and 

speed for error detection. - 
In this chapter, I've covered a half-dozen ways to enhance validation of a 
memory subsystem, but the points apply to any subsystem. Imagine how 
much harder it would be for bugs to go unnoticed in a program that thor- 
oughly validates itself. In all likelihood, if these debugging tests had been 
used in the 68000 assembler I talked about, the elusive realloc bug that took 
years to find could have been found automatically within hours or days of 
when the code was first written. It would not have mattered whether the 
programmer was highly skilled or inexperienced; the tests would have 
caught the bug. 

In fact, the tests would have caught all similar bugs. Automatically. 
Without the need for luck or skill. 

That's how you write bug-free code. 
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Look at your subsystems and ask yourself how programmers 
are likely to misuse them. Add assertions and validation checks 
to catch hard-to-spot and common bugs. 

You can't fix bugs if you can't repeatably find them. Look for 
anything that can cause random behavior and remove it from the 
debug version of your program. Setting "undefined" memory to 
a constant garbage value is one example of removing random 
behavior. That way, if something references the memory while 
it's still undefined, you'll get the same results every time you exe- 
cute the offending code. 

If your subsystems release memory (or other resources) and cre- 
ate "garbage," scramble the data so that it really looks like gar- 
bage; otherwise, code somewhere may continue to use the data 
without your noticing it. 

Similarly, if your subsystems contain behavior that may happen, 
add debug code to make sure such behavior does happen. Mak- 
ing everything happen increases your odds of catching bugs in 
code that is normally not executed. 

Make sure your tests work even for programmers who are un- 

aware of them. The best tests are those that require no knowl- 
edge of their existence. 

If possible, build tests into your subsystems instead of on top of 
them. And don't wait until the subsystem is coded to look for 
ways to validate it. For each design you consider, ask yourself, 
"How can I thoroughly validate this implementation?" If you 
find that it would be difficult or impossible to test the implemen- 
tation, seriously consider a different design, even if that means 
trading size or speed for the ability to test the system. 

Think twice before throwing out a validation test because it 
would be too slow or use too much memory. Remember, the 
validation code won't appear in the ship version of your pro- 
gram. If you find yourself thinking, "This test would be too slow 
(or too big)," stop and ask yourself, "How can I keep this test, 
but make it faster (or smaller)?" 
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1. If, while testing your code, you run across data made up of some 
combination of OxA3s, you know that you're probably looking at 
uninitialized data, or at data that has been released. How could 
you change the debug code to make it easier to determine which 
kind of data you've found? 

2. Programmers occasionally write code that fills past the end of an 
allocated memory block. Describe how you could enhance the 
memory subsystem checks to alert you to these types of bugs. 

Although the CheckMemo ylntegrity routine will catch dangling 
pointers, there are times when it can't find them. For instance, 
suppose you have a function that calls FreeMemo y but a bug in 
the code leaves a dangling pointer to the free block. Now further 
suppose that before the pointer can be validated, something calls 
fNewMemory and reallocates the block of memory released a mo- 
ment ago. What you're left with is a dangling pointer that points 
to allocated memory, but it's no longer the same block. That's a 
bug, but to CheckMemo ylntegrity, everything looks quite legal. If 
this were a common bug in your program, how could you en- 
hance the system to detect this problem? 

4. With the NoteMemoryRef routine, you can validate every pointer 
in your program, but how do you validate the block sizes? For 
instance, suppose you have a valid pointer to an 18-character 
string but the memory block is shorter than that? Or, what about 
the reverse case, in which your code thinks it has a 15-byte block 
but the log information shows that you allocated 18 bytes? That 
is often just as bad. How could you strengthen the integrity 
checks to catch these problems? 

5. The NoteMemo ?Ref routine in Appendix B lets you mark a block 
as being referenced, but it doesn't alert you to a problem if a 
block is referenced five times when it should be referenced only 
once. For example, a doubly linked list would have two refer- 
ences to each node: one for the forward pointer and one for the 
back pointer. But in most cases, your blocks should have exactly 
one reference to them and if there are more, you have a bug 
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someplace. How could you improve the integrity checks to al- 
low multiple references to some blocks but still assert for those 
for which this should never happen? 

6. Throughout the chapter, I talked about debug code that you 
could add to the memory system to help programmers detect 
problems. But what about adding code to help testers? Testers 
know that programmers often mishandle the error conditions, so 
how could you give testers the ability to fake out-of-memory 
conditions? 

PROJECT: Look at the major subsystems in your program. What 
kinds of debug checks could you implement to catch the com- 
mon bugs associated with using those subsystems? 

PROJECT: If you don't have a debug version of your operating sys- 
tem, get one if you can; otherwise, write your own, using cover 
functions. If you're feeling particularly benevolent, make your 
code availablein some way-to other developers. 





STEP '1 HROUGH 

I've said before that the best way to find bugs is to execute the code and then 
somehow spot them, either by eye or by using automated tests such as as- 
sertions and subsystem integrity checks. But while assertions and sub- 
system checks are valuable, they don't protect you from problems you 
haven't thought of in advance; in that respect, they are like the security sys- 
tem in your home. 

If you wire your doors and windows but thieves get in through a sky- 
light or basement opening, the alarm won't go off. If you put disturbance- 
sensors on your VCR, stereo, and other things you expect thieves to take but 
they grab your Barry Manilow collection, they're going to get away un- 
noticed. Similarly, if you validate your function arguments using assertions 
but the bugs show up in your logic, the alarms in your assertions are going 
to remain quiet. 
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In theory, you could put so many assertions and so much debug code 
into your programs that no bug could live long before you were alerted to 
its presence. In theory. In reality, including that much debug code would 
probably be a waste of time for most projects, and it would still require that 
you predetermine what the likely bugs are. 

Rather than going overboard with assertions and debug checks, a bet- 
ter approach is to actively look for bugs when they're most likely to occur. 
But when is that? Isn't it when you've just written new code, or changed 
existing code? Sure it is. Code doesn't break spontaneously-something has 
to change for code to start breaking. 

The best way to write bug-free code is to actively step through all new 
or modified code to watch it execute, and to verify that every instruction 
does exactly what you intended it to do. 

In this chapter, I'll talk not only about why it's important to step 
through your code, but about how to do it effectively. 

Recently, I was working on a feature for Microsoft's internal Macintosh de- 
velopment system. When I began testing the code, I found a bug and traced 
it to some new code written by another programmer. What puzzled me 
about this bug was that it was so central to the other programmer's code 
that I couldn't see how his feature could possibly have worked. I went to his 
office to ask him about it. 

"I think I've found a bug in the code you just finished," I said. "Do you 
have time to take a quick look at it?" 

He loaded the code into an editor and I showed him where I thought 
the problem was. When he saw the code, he was surprised. 

"You're right; the code is definitely wrong. I wonder why my test 
didn't catch the bug?" 

I was wondering the same thing. "How exactly did you test the code?" 
He explained his test to me, and it seemed as if it should have caught 

the bug. We were both confused. "Let's set a breakpoint on the function and 
step through the code to see what's really going on,'' I suggested. 

We tried to do just that, but when we set the breakpoint and hit the 
"run" key, the test ran to completion; it never hit the breakpoint. That's why 
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the programmer never saw the bug. It didn't take much longer to determine 
why the test wasn't reaching the breakpoint-a function a few steps up the 
call chain had an optimization that allowed it to sometimes skip unneces- 
sary work. In this case, it skipped the new code. 

Do you remember what I said in Chapter 1 about the problems with 
black-box testing? I said that testers throw inputs at code and decide 
whether the code works by looking at the outputs-if the outputs look cor- 
rect, the code works. The problem with that approach is that you can't tell 
what goes on between stuffing in the inputs and receiving the outputs. The 
programmer missed the bug above because he tested the code as a black 
box; he put in some inputs, got the correct outputs, and judged the code to 
be correct. H; didn't use the extra tools available to him as a programmer. 

Programmers, unlike most testers, have the ability to set breakpoints 
in code, step through code, and watch the process of inputs transforming 
into outputs. Strangely, though, few programmers make it a habit to step 
through their code when they test it; many don't even bother to set a 
breakpoint on the code to make sure that the code is executed. 

Let's go back to the point I made in the introduction to this chapter: 
The best way to catch bugs is to look for them the moment you write or 
change code. And what's the best way programmers can test their code? It's 
by stepping through it and taking a microscopic look at the intermediate 
results. I don't know many programmers who consistently write bug-free 
code, but the few I do know habitually step through all of their code. 

As a project lead, I've instructed many programmers to walk through 
their code when they test it. Almost universally, they stare in shock-not 
because they disagree with the concept but because the process sounds so 
time consuming. They're usually barely staying on schedule as it is-when 
are they going to find time to step through their code? 

Fortunately, that gut reaction is off. Yes, it does take time to step 
through your code, but only a fraction of the time it takes to write the code. 
Think about it. When you implement a new function, you must design the 
interface, figure out the algorithm, and physically type in the lines of pro- 
gram source. How much extra effort does it really take to set a breakpoint 
when you first run the code, and hit the "step" key as you check each line? 
Not much, especially once you make it a habit. It's like learning to drive a 

stick-shift car-it seems impossible at first, but after a few days of practice, 
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you don't even notice when you shift; you just do it. Similarly, once you 
make it a habit to step through your code, you don't think much about set- 
ting a breakpoint and going through the process; you just do it. And you 
catch bugs. 

Don't wait until you have a bug to 
step through your code. 

A FORK IN THE CODE 
Of course, there are techniques you can use to make stepping through your 
code more effective. After all, it doesn't do much good if you step through 
your code but you don't step through all of the code. For example, every 
programmer knows that error handling code often has bugs in it because it 
is so rarely tested, and those bugs will stay there unless you make an effort 

What About Sweeping Changes? 
In the past, programmers have asked, "What if I add a feature that touches 
code in many places? Stepping through all that new code is going to be time 
consuming." Let me answer that question with another: Can you make 
such sweeping changes without introducing any bugs? 

The habit of stepping through your code creates an interesting nega- 
tive feedback loop. Programmers who step through their code soon learn to 
write small, easily testable functions because stepping through large func- 
tions is so painful. Programmers also spend more time thinking about how 
they can localize the changes they need to make--again, so that they can 
more easily test their code. And isn't this exactly what you want? No project 
lead likes it when programmers touch a lot of code; it's too destabilizing. 
Nor do leads like large, unmanageable functions; they're often unmaintainable. 

Try hard to localize your changes. If you find that you must make per- 
vasive changes, think twice before you decide not to step through all the 
new code. 
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to test that code. Either you can create test cases that force the error condi- 
tions to occur, or you can simulate failures while you're stepping through 
the code. Simulating failures usually takes much less time. Take a look at 
this code extract, for example: 

p b B l o c k  = ( b y t e  * ) m a l l o c ( 3 2 ) ;  
i f  ( p b B l o c k  == NULL) 
E 

handle the error condition; 

1 

Normally, when you step through this code, malloc will allocate a 32- 
byte block of memory and return a non-NULL pointer, which causes the 
code to bypass the error handling code. But instead of leaving the error 
code untested, step through the code a second time and use the debugger to 
set pbBlock to the NULL pointer right after you execute this line: 

p b B l o c k  = ( b y t e  * ) m a l l o c ( 3 2 ) ;  

malloc may allocate the block, but if you set pbBlock to the NULL 
pointer, it will look to your code as if malloc failed, allowing you to step 
through the error handler. (For you detail-oriented readers: Yes, malloc's 
block will be lost when you change pbBlock, but this is only a test.) 

In addition to stepping through your error conditions, you should 
also step through every possible path in your code. The obvious cases in 
which you have more than one code path are the if and switch statements, 
but there are others: The &&, / I', and ?: operators also have two paths. 

The idea is to step through every instruction of your code at least once 
to verify that it works correctly. After you've done that, you can be more 
confident that your code is bug-free-at least you'll know that the code 
definitely works for some inputs. And if you choose good test cases, step- 
ping through your code can be invaluable. - 

Step through eve y code path. - 
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DATA FLOW, THE LIFEBLOOD OF CODE 
When I wrote the fast rnemset routine in Chapter 2, this is how my first ver- 
sion (stripped of assertions) looked: 

vo id  *rnernset(void *pv,  b y t e  b ,  s i z e - t  s i z e )  
{ 

b y t e  *pb = ( b y t e  * ) p v ;  

i f  ( s i z e  >= s i z e T h r e s h o l d )  
C 

uns i  gned 1 ong 1 ; 

I* Pack a long  w i t h  4 b y t e s .  *I 
1 = (b<<24)  I (b<<16)  I (b<<8)  I b ;  

pb = ( b y t e  * ) l o n g f i l l ( ( l o n g  * ) p b ,  1,  s i z e  I 4 ) ;  
s i z e  = s i z e  % 4 ;  

1 

w h i l e  ( s i z e - -  > 0 )  
*pb++ = b;  

r e t u r n  ( p v ) ;  
1 

That code may look correct, but it contains a subtle bug. After I wrote 
the code, I ran it in an existing application. No problem-the code worked 
fine. But to be sure that the code worked, I set a breakpoint on the routine 
and reran the application. The moment the code debugger gave me control, 
I looked at the arguments: The pointer looked valid, so did the size, and the 
byte was 0. Now I hate testing code using the value 0 because 0 makes it 
hard to see many types of data bugs, so I immediately changed the byte 
argument to a weird value like Ox4E. 

I first stepped through the case in which size was less than 
sizeThreshold. That path worked fine. Next I stepped through the case in 
which size was greater than or equal to sizeThreshold. I wasn't expecting to 
have any problems, but when I stepped over this line, 

I saw that 1 was set to Ox00004E4E, and not Ox4E4E4E4E, the value I was 
expecting to see. A quick assembly language dump of the function showed 
me the bug-and explained why the application worked in spite of it. 
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You see, the compiler I was using had 16-bit integers, and what is the 
result of b<<24 when you're using 16-bit integers? It is 0. And what about 
b<<16? Again 0. There wasn't anything wrong with the logic of the code, 
but the implementation was flawed. The code appeared to work with the 
application because it used memset to zero-fill blocks of memory, and 0<<24 
is 0, the correct answer-but for the wrong reason. 

I was able to catch that bug almost immediately because I spent an 
extra minute to step through the code before setting it aside and moving on. 
True, the bug was serious enough that somebody would have spotted it 
eventually, but remember that the goal is to catch bugs at the earliest pos- 
sible moment. Stepping through code helps to achieve that goal. 

The real power in stepping through your code is that you see the data 
as it flows through your function. If you were to focus on data flow as you 
stepped through your code, how many of these bugs do you think it would 
help you catch? 

0 Overflow and underflow bugs 

+ Data conversion bugs 

+ Off-by-one bugs 

NULL pointer bugs 

0 Bugs using garbage memory (OxA3 bugs) 

+ Assignment bugs in which you've used =instead of == 

+ Precedence bugs 

+ Logic bugs 

Wouldn't you catch all of those bugs? The value in focusing on the 
data is that it gives you a second, very different view of your code. You may 
not notice the assignment bug in this code: 

i f  ( c h  = ' \ t ' )  
E x p a n d T a b O ;  

but when you step through it focusing on data flow, it's easy to see ch get- 
ting clobbered. - 

A s  you step through code, focus 
on dataflow. 
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Why Didn't the Compiler Issue a Warning? 
Of the five compilers I used to test the code in this book, none warned me 
about my b<<24 bug, even though each compiler was set at its maximum 
warning level. The code is legal ANSI C, but I can't imagine any scenario in 
which the code would actually be what the programmer intended, so why 
no warning? 

As you run into bugs like this one, tell your compiler vendor about 
them so that future versions of the compiler will warn you about such mis- 
takes. Don't underestimate the power you wield as a paying customer. 

One problem with using a source level debugger is that stepping over a line 
of code can cause you to miss important details. Suppose that instead of 
typing && in the code below, you had typed & by mistake: 

/ *  I f  t h e  symbol e x i s t s  and i t  has a t e x t u a l  
* name. then  r e l e a s e  t h e  name. 
* / 

i f  (psym != NULL & psym->strName != NULL) 
{ 

FreeMemory(psym->strName); 
psym->strName = NULL: 

1 

This code is legal, but it's wrong. The intent of the if statement is to 
prevent a NULL psym pointer from being used to reference the strName field 
of a symbol structure, but the code doesn't do that. Instead, the code always 
references the strName field regardless of whether psym is NULL. 

If you use a source level debugger to step through the code and hit the 
"step" key when you reach the if statement, the debugger will execute the 
entire test as one operation. But to spot the bug, you would have to see that 
the right-hand side of the expression is executed even when the left side is 
FALSE. (Or, if you're lucky, your system will fault when you dereference a 
NULL pointer, but not many desktop computers do that, at least not yet.) 

Remember what I said earlier: The &&, i' i', and ?: operators have two 
code paths each, and to catch bugs, you must step through both paths. The 
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problem with a source debugger is that it steps over both paths of the &&, 
I I, and ?: operators with a single step. There are two practical approaches 
to overcoming this problem. 

First, anytime you step to a compound conditional that uses && and 
I I' operators, scan the list to verify that they are "spelled" correctly. Next, 
use the debugger to display the result for each side of the expression. This 
will help you catch bugs in which the full expression evaluates correctly but 
for the wrong reason. For example, if you think the first part of an I I ex- 
pression is TRUE and the second part FALSE but just the opposite is so, the 
expression will incorrectly evaluate the correct result. Looking at the indi- 
vidual parts of the expression will alert you to such problems. 

A second, more thorough approach is to step through compound con- 
ditionals and ?: operations at the assembly language level. Yes, this takes 

Turn Off Optimizations? 
If you're using a good optimizing compiler, stepping through your code 
can be an interesting exercise because the compiler may intermix the ma- 
chine code of adjacent source lines as it tries to generate optimal code. It's 
not at all uncommon for one "step" command to step over three lines of 
code; nor is it unusual to step across a source line that moves data from one 
spot to another and find that the data has not moved (yet). 

To make it easier to step through your code, consider turning off un- 
necessary compiler optimizations in the debug version of the program; 
those optimizations do nothing but scramble your code. 

I've heard programmers argue that by disabling optimizations, you 
introduce risk because you create unnecessary differences between the de- 
bug and ship versions of the code. There is truth in that reservation, espe- 
cially if you're concerned about code-generation bugs in your compiler. But 
remember that the purpose of the debug version is to catch bugs, and if 
disabling optimizations helps you do that, it's worth considering. 

The best approach is to try stepping through your optimized code to 
see how difficult it is. If you find that you must disable optimizations to step 
through the code effectively, then do it. You may miss the rare compiler 
generation bug, but you'll find many of your own bugs. The trade-off is 
worthwhile. 
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extra effort, but for critical code it is important that you actually step 
through the code to see the intermediate results. And as with stepping 
through your code in C, stepping through it in assembly language is quick 
once you're used to doing it; it just takes practice. - 

Source level debuggers can hide 
execution details. Step through critical 

code at the instruction level. 

I wish I knew a way to persuade programmers to step through their code, 
or at least to get them to try it for a month. But I've found that programmers 
in general can't get over thinking it will take too much time. That's one of 
the advantages of being a project lead; you can be a bit autocratic and insist 
that programmers on your project step through their code until they learn 
that it doesn't take much time and that it is worthwhile. 

If you're not already stepping through your code, will you start to? 
Only you know the answer. But I'm guessing that you picked up this book 
and began reading because you're serious about reducing the number of 
bugs in your code or in the code of the programmers you lead. It really 
comes down to this choice: Would you rather spend a small amount of time 
up front verifying your code by stepping through it, or would you rather let 
bugs get into your master sources and hope that testers will notice them so 
that you can fix them later? The choice is yours. 

Bugs don't grow in code spontaneously; they are the result of a 
programmer's writing new code or changing existing code. If 
you want to find bugs in your code, there is no better method 
than stepping through every line of the code the moment it's 
compiled. 
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Although your gut reaction might be that walking through your 
code will take a lot of time, your gut reaction would be wrong. 
Yes, initially it will take more timeuntil walking through your 
code becomes habitual. Once that happens, you'll zip right 
through your code. 

* Be sure to step through every code path-especially in your er- 
ror handling code-at least once. Don't forget that the &&, I' I', 
and ?: operators have two code paths to test. 

In some cases, you may need to step through code at the assem- 
bly language level. While you don't need to do this often, don't 
avoid doing it when it's necessary. 

PROJECT: If you take a look at the exercises in Chapter 1, you'll see 
that they talk about common bugs that a compiler could auto- 
matically detect for you. Review those exercises, but this time, 
ask yourself whether you would miss any of the bugs if you 
stepped through the code using your debugger. 

PROJECT: Take a look at the bugs that have been reported against 
your code over the last six months. How many would you have 
caught had you stepped through the code when you wrote it? 





One of the perks that Microsoft gives its employees is free soft drinks, fla- 
vored seltzer water, milk (chocolate too!), and those little cartons of fruit 
juices. As much as you want. But, dam it, if you want candy, you have to 
pay for that yourself. Occasionally, I would get the munchies and stroll 
down to a vending machine. I'd plunk in my quarters, press 4 and then 5 on 
the selection keypad, and watch in horror as the machine spit out jalapeiio- 
flavored bubble gum instead of the Grandma's Peanut Butter Cookie I 
thought I'd asked for. Of course, the machine was right and I was wrong- 
number 45 was the gum. A quick look at the little sign by the cookie would 
always verify my mistake: NO. 21, 45@. 
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That candy machine always infuriated me because if the engineers 
had spent an extra 30 seconds thinking about their design, they could have 
saved me, and I'm sure countless others, from getting something they 
didn't want. If one of the engineers had thought, "Hmm. People are going 
to be thinking '454' as they deposit their money-1'11 bet some of them are 
going to turn to the keypad and mistakenly enter the price instead of the 
selection number. To prevent that from happening, we should use an alpha- 
betic keypad instead of a numeric one." 

The machine wouldn't have cost any more to make, and the improve- 
ment wouldn't have changed the design in any appreciable way, but every 
time I turned to the keypad to punch in 454, I would find I couldn't and so 
be reminded to punch in the letter code. The interface design would have 
led people to do the right thing. 

When you design function interfaces, you face similar problems. Un- 
fortunately, programmers aren't often trained to think about how other 
programmers will use their functions, but as with the candy machine, a 
trivial difference in design can either cause bugs or prevent them. It's not 
enough that your functions be bug-free; they must also be safe to use. 

getchar GETS AN int, OF COURSE 
Many of the standard C library functions, and thousands of functions pat- 
terned after them, have candy-machine interfaces that can trip you up. 
Think about the getchar function, for instance. The interface for getchar is 
risky for several reasons, but the most severe problem is that its design en- 
courages programmers to write buggy code. Look at what Brian Kernighan 
and Dennis Ritchie have to say about it in The C Programming Language: 

Consider the code 

char  c ;  

On a machine which does not do sign extension, c is always positive 
because it is a c ha r, yet EO F is negative. As a result, the test always 
fails. To avoid this, we have been careful to use i n t instead of c h a r 
for any variable which holds a value returned by ge t  c h a r. 
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With a name such as getchar it's natural to define c to be a character, 
and that's why programmers get caught by this bug. But really, is there any 
reason getchar should be so hazardous? It's not doing anything complex; it's 
simply trying to read a character from a device and returning a possible 
error condition. 

The code below shows another problem common in many function 
interfaces: 

/ *  s t r d u p  - -  a l l o c a t e  a  d u p l i c a t e  o f  a  s t r i n g .  * /  

c h a r  * s t r d u p ( c h a r  * s t r )  
E 

c h a r  *s t rNew;  

strNew = ( c h a r  *)malloc(strlen(str)+1); 
s t r c p y ( s t r N e w .  s t r ) ;  

r e t u r n  ( s t r N e w ) ;  
1 

This code will work fine until you run out of memory and malloc fails, 
returning NULL instead of a pointer to memory. Who knows what strcpy 
will do when the destination pointer, strNew, is NULL, but whether strcpy 
crashes or quietly trashes memory, the result won't be what the program- 
mer intended. 

Programmers have trouble using getchar and malloc because they can 
write code that appears to work correctly even though it's flawed. It's not 
until weeks or months later that the code crashes unexpectedly because, as 
in the sinking of the Titanic, a precise series of improbable events takes place 
and leads to disaster. Neither getchar nor malloc leads programmers to write 
correct code; both lead programmers to ignore the error condition. 

The problem with getchar and malloc is that their return values are im- 
precise. Sometimes they return the valid data that you expect, but other 
times they return magic error values. 

If getchar didn't return the funny EOF value, declaring c to be a charac- 
ter would be correct and programmers wouldn't run into the bug that 
Kernighan and Ritchie talk about. Similarly, if malloc didn't return NULL as 
though it were a pointer to memory, programmers wouldn't forget to 
handle the error condition. The problem with these functions is not that 
they return errors, but that they bury those errors in normal return values 
where it's easy for programmers to overlook them. 
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What if you redesigned getchar so that it returned both outputs sepa- 
rately? It could return TRUE or FALSE depending upon whether it success- 
fully read a new character, and the character itself could be returned in a 
variable that you pass by reference: 

f l a g  fGe tChar (char  * p c h ) ;  I* p r o t o t y p e  *I 

With the interface above, it would be natural to write 

char  ch:  

i f  ( f G e t C h a r ( & c h ) )  
ch has Che next  c h a r a c t e r ;  

el se  
h i t  EOF, ch i s  garbage; 

The problem with char vs. int goes away, and it's unlikely that any 
programmer, no matter how green, would accidentally forget to test the er- 
ror return value. Compare the return values for getchar and fGetChar. Do 
you see that getchar emphasizes the character being returned, whereas 
fGetChar emphasizes the error condition? Where do you think the emphasis 
should be if your goal is to write bug-free code? 

True, you do lose the flexibility to write code such as 

but how often are you certain that getchar won't fail? In almost all cases, the 
code above would be wrong. 

Some programmers might think, "Sure,fGetChar may be a safer inter- 
face, but you waste code because you have to pass an extra argument when 
you call it. And what if a programmer passes ch instead of &ch? After all, 
forgetting the & is an age-old source of bugs when programmers use the 
scanf function." 

Good questions. 
Whether the compiler will generate better or worse code is actually 

compiler dependent, but granted, most compilers will generate slightly 
more code at each call. Still, the minor difference in code size is probably not 
worth worrying about when you consider that the cost of disk and memory 
storage is plummeting while program complexity and associated bug rates 
are climbing. This gap will only get larger in the future. 
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The second concern-passing a character to fGetChr instead of a 
pointer to a character--shouldn't worry you if you're using function proto- 
types as suggested in Chapter 1. If you pass fGetChr anything but a pointer 
to a character, the compiler will automatically generate an error and show 
you your mistake. 

The reality is that combining mutually exclusive outputs into a single 
return value is a carryover from assembly language, where you have a lirn- 
ited number of machine registers to manipulate and pass data. In that envi- 
ronment, using a single register to return two mutually exclusive values is 
not only efficient but often necessary. Coding in C is another matter--even 
though C lets you "get close to the machine," that doesn't mean you should 
write high-level assembly language. 

When you design your function interfaces, choose designs that lead 
programmers to write correct code thefirst time. Don't use confusing dual- 
purpose return values--each output should represent exactly one data 
type. Make it hard to ignore important details by making them explicit in 
the design. - 

Make it hard to ignore error conditions. 
Don 't bury error codes in return values. - 

Programmers know when they're combining multiple outputs into a single 
return value, so acting on the suggestion above is easy-they just stop do- 
ing it. In other cases, though, an interface can seem fine but, like the Trojan 
horse, contain hidden danger. Take a look at this code to change the size of a 
memory block: 

pbBuf = ( b y t e  * ) r e a l l o c ( p b B u f ,  s izeNew);  
i f  (pbBuf != NULL) 

u s e / i n i t  i a  7 i r e  t h e  l a r g e r  b u f f e r  

Do you see what's wrong with this? If you don't, don't worry-the 
bug is serious, but it's subtle, and very few people spot it unless they're 
given a hint. So, here's a hint: If pbBuf is the only pointer to the block about 
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to be resized, what happens if the call to realloc fails? The answer is that 
NULL is stuffed into pbBuf when realloc returns, destroying the only pointer 
to the original block. The code creates lost memory blocks. 

Here's a question: How many times do you want to resize a block and 
store the pointer to the new block in a different variable? I'd imagine about 
as often as you'd want to drive to a restaurant in one car and leave in an- 
other. Sure, there are cases in which you want to store the new pointer in a 
different variable, but normally, if you change the size of a block, you want 
to update the original pointer. That's why programmers so often fall into 
realloc's trap. realloc has a candy-machine interface. 

Ideally, realloc would always return an error code and a pointer to the 
memory block regardless of whether the block was expanded. That's two 
separate outputs. Let's take another look at fliesizeMemoy, the cover func- 
tion for realloc that I talked about in Chapter 3. Here it is again, stripped of 
all the debug code: 

f l a g  fResizeMemory(void * *ppv,  s i ze - t  sizeNew) 

b y t e  **ppb = ( b y t e  * * ) p p v ;  
b y t e  *pbNew; 

pbNew = ( b y t e  * ) r e a l l o c ( * p p b ,  s izeNew);  
i f  (pbNew != NULL) 

*ppb = pbNew; 
r e t u r n  (pbNew != NULL); 

1 

Take a look at the if statement in the code a b o v e i t  ensures that the 
original pointer is never destroyed. If you rewrote the realloc code at the 
start of this section using fResizeMemo y, you would have 

if (fResizeMemory(&pbBuf,  s izeNew))  
use/initialize the larger buffer 

In this case, if the attempt to resize the block fails, pbBuf is left un- 
touched and continues to point to the original block; pbBuf is not set to 
NULL. That's exactly the behavior you want. So here's a question: "How 
likely is it that a programmer will lose a memory block using 
fResizeMernoy?" Here's another: "How likely is it that a programmer will 
forget to handle fResizeMemory's error condition?" 

Another interesting point to note is that programmers who habitually 
follow the earlier suggestion in this chapter-"Don't bury error codes in 
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return values"-would never design an interface such as realloc's. Their first 
attempt would be more like jResizeMemoy's-and so wouldn't have 
realloc's "lost block" problem. The recommendations in this book build on 
each other and interact in ways that you might not expect. This is an ex- 
ample of that happening. 

But separating your outputs is not always going to save you from de- 
signing interfaces with hidden traps. I wish I could offer a better piece of 
advice, but the only sure way to catch such hidden traps is to stop and think 
about your design. The best approach is to examine every possible combi- 
nation of inputs and outputs and look for side effects that can cause prob- 
lems. I know this can sometimes be tedious, but remember, it's relatively 
cheap for you to take the extra time up front to think about this. The worst 
thing you can do is to skip this step and force who knows how many other 
programmers into tracking down and fixing bugs caused by a poorly de- 
signed interface. 

Imagine how much total time has been wasted by programmers all 
over the world who have been forced to track down bugs caused by the 
interface traps of getchar, malloc, and realloc-to say nothing of all the func- 
tions that have been written using one of these three as a model. It's a sober- 
ing amount of time. - 

Always look for, and eliminate, 
flaws in  your inte faces. - 

Although I spent a lot of time talking about the realloc function in Chapter 3, 
I didn't cover many of its more bizarre aspects. If you pull out your C li- 
brary manual and look up the full description of realloc, you'll find some- 
thing like this: 

void *realloc(void *pv, size-t size); 

realloc changes the size of a previously allocated memory block. The 
contents of the block are preserved up to the lesser of the new and old 
block sizes. 

(continued) 
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con t in  ued 

If the new size of the block is smaller than the old size, realloc 
releases the unwanted memory at the tail end of the block 
and pv is returned unchanged. 

If the new size is larger than the old size, the expanded block 
may be allocated at a new address and the contents of the 
original block copied to the new location. A pointer to the ex- 
panded block is returned, and the extended part of the block 
is left uninitialized. 

If you attempt to expand a block and realloc cannot satisfy the 
request, NULL is returned. realloc will always succeed when 
you shrink a block. 

If pv is NULL, then realloc behaves as though you called 
malloc(size) and returns a pointer to a newly allocated block, 
or NULL if the request cannot be satisfied. 

If the new size is 0 and pv is not NULL, then realloc behaves as 
though you called free(pv) and NULL is always returned. 

If pv is NULL and size is 0, the result is undefined. 

Whew! realloc is a prime example of implementation overkill-it's a 
complete memory manager in just one function. Why do you need malloc? 
Why do you need free? realloc does it all. 

There are several good reasons why you should not design functions 
this way. First, you can't expect programmers to use such a function safely. 
There are so many details that even experienced programmers don't know 
them all. If you doubt this, take a survey and tally how many programmers 
know that passing a NULL pointer to realloc simulates a call to malloc. Tally 
how many know that passing a 0 size is the same as calling free. True, this is 
fairly arcane behavior, so ask them a question they must know the answer 
to if they hope to avoid bugs. Ask them what happens when they call realloc 
to expand a block. Do they know that the block can move? 

Here's another problem with realloc: You know it's possible to pass 
garbage to realloc, but because its definition is so general it's hard to guard 
against invalid arguments. If you pass a NULL pointer by mistake, that's 
legal. If you pass a 0 size by mistake, that's legal too. It's too bad if you 
malloc a new block or free the current one when your intent is to resize a 
block. How can you assert that realloc's arguments are valid if practically 
everything is legal? No matter what you throw at it, realloc handles it, even 
to extremes. At one extreme it frees blocks; at the other it mallocs them. These 
are totally opposite behaviors. 



CANDY-MACHINE 1NTERFACES 95 

To be fair, programmers don't usually sit down and think, "I'm going 
to design an entire subsystem in a single function." realloc and functions like 
it almost always arise for one of two reasons. Either they evolve into multi- 
purpose functions, or the extra behavior (such asfvee and malloc) falls out of 
the implementation and the programmer extends the formal description to 
include this "fortunate" behavior. 

If, for whatever reason, you write a multipurpose function, break it 
down into its distinct behaviors. For realloc the breakdown would be ex- 
panding a block, shrinking a block, allocating a block, and freeing a block. 
By breaking realloc down into four distinct functions, you'll be able to do 
much better error checking. If you're shrinking memory, for instance, you'll 
know that the pointer must be to a valid block and you'll know that the new 
size must be less than (or possibly equal to) the current size. Anything else 
is an error. With a separate ShrinkMemo y function, you could use assertions 
to validate those arguments. 

In some cases, you may actually want a function to do more than one 
task. For example, when you call realloc, do you usually know whether the 
new size will be smaller or larger than the current one? Whether you know 
depends on your program, but I usually don't know (although I can often 
derive the information). I've found it better to have one function that both 
shrinks and expands blocks so that I don't have to write ifconstructs every 
time I need to resize memory. True, I give up some extra argument check- 
ing, but this is offset by the i$s that I no longer need to write (and possibly 
mess up). I do always know when I'm allocating memory or freeing it, so I 
would rip those tasks out of realloc and make them separate functions. 
fr\lewMemo y, FreeMemory, and fResizeMemo y from Chapter 3 are the three 
well-defined functions. 

If I were working on a program in which I normally knew whether I 
was expanding or shrinking the block, I would definitely break the expand 
and shrink functions out of realloc and create two additional functions: 

f l a g  fGrowMemory(vo id  **ppv,  s i z e - t  s i z e l a r g e r ) ;  

v o i d  Shr inkMemory (vo id  *pv ,  s i z e - t  s i z e s m a l l e r ) ;  

This division of labor would allow me not only to thoroughly validate 
the pointers and sizes, but also to call ShrinkMemoy with less risk since I 
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would be guaranteed that the block would always be shrunk and that the 
block would never move. Instead of having to write 

ASSERT(sizeNew <= s izeo fB lock (pb) )  ; I* Val i d a t e  pb and sizeNew * I  
( v o i d ) r e a l l o c ( p b ,  s izeNew);  I* S h r i n k  c a n ' t  f a i l  * I  

I could write 

and be done with it. The simplest reason for using ShrinkMemo y instead of 
realloc is that the code is so much clearer. With ShrinkMemory, you don't 
need the comment explaining that it can't fail, you don't need the void cast 
to drop an unused return value, and you don't need to verify that pb and 
sizeNew are valid-ShrinkMemory will do that for you. - 

Don't write multipurpose functions. 
Write separate functions to allow 
stronger argument validation. - 

Earlier I said that your outputs should be separate and explicit to avoid con- 
fusing the programmers who use your functions. If you also apply that 
advice to the inputs of your functions, you naturally avoid writing all- 
encompassing functions such as realloc. realloc takes a pointer to a memory 
block, but sometimes it can be the magic NULL value that forces realloc to 
mimic malloc. realloc also takes a size value, but it allows the magic size of 0 
that forces it to mimic pee. These magic numbers may seem harmless 
enough, but they destroy comprehension. Quick, is the code below resizing, 
allocating, or releasing a memory block? 

pbNew = r e a l l o c ( p b ,  s i z e ) ;  

You can't tell; it could be doing any one of those actions-it all de- 
pends on the values of pb and size. But if you knew that pb had to point to a 
valid block and that size had to be a legal block length, you'd know instantly 
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that the code was resizing memory. Just as explicit outputs make it easier to 
decipher what's going on, so do explicit inputs, and that explicitness can be 
invaluable to maintenance programmers who have to read and understand 
code they didn't write. 

Sometimes wishy-washy inputs aren't as easy to spot as realloc's. For 
example, take a look at this specialized string copy routine that takes the 
first size characters of strFrom and turns them into a string stored at strTo: 

char  *CopySubStr(char * s t r T o ,  char  *s t rF rom,  s i ze - t  s i z e )  
{ 

char  * s t r S t a r t  = s t r T o :  

w h i l e  ( s i z e - -  > 0 )  
*strTo++ = *strFro,m++; 

* s t r T o  = ' \ 0 ' ;  

r e t u r n  ( s t r s t a r t ) ;  
3 

CopySubStr is similar to the standard strncpy function, but unlike 
strncpy, it guarantees that the string at strTo is a true zero-terminated C 
string. You would typically use CopySubStr to extract a portion of a larger 
string-say, to pull the name of a day out of a packed string: 

s t a t i c  cha r  strDayNamesC1 = "SunMonTueWedThuFriSat"; 

ASSERT(day >= 0 && day <= 6); 
CopySubStr (s t rDay,  strDayNames + day*3, 3 ) ;  

Now that you understand how CopySubStr works, do you see the 
questionable input? It's easy to spot if you try to write assertions to validate 
the arguments. The validation for strTo and &From would be 

ASSERT(strT0 != NULL && s t rF rom != NULL); 

but how do you validate the size argument? Is 0 a legal size? What if the size 
is larger than the length of strFrom? If you look at the code, you'll see that it 
handles both cases, sort of. The while loop quits if size is 0 on entry, so that 
works; and if size is larger than strFrom, the while loop will copy the entire 
string, including the nu1 character terminating it. You just need to docu- 
ment the function to explain it, as in the example on the next page. 
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I *  CopySubStr - -  e x t r a c t  a  s u b s t r i n g  f r o m  a  s t r i n g .  
* 
* Conver t  t h e  f i r s t  " s i z e "  c h a r a c t e r s  o f  s t r F r o m  i n t o  
* a  s t r i n g  s t o r e d  a t  s t r T o .  I f  t h e r e  a r e  fewer  t h a n  
* " s i z e "  c h a r a c t e r s  i n  s t r F r o m ,  t h e n  t h e  e n t i r e  s t r i n g  
* i s  c o p i e d  t o  s t r T o .  I f  s i z e  i s  0 ,  s t r T o  i s  s e t  
* t o  t h e  n u l l  s t r i n g .  
* 1 

c h a r  *CopySubStr (char  * s t r T o ,  c h a r  * s t r F r o m ,  s i z e - t  s i z e )  
{ 

Sound familiar? Sure, because functions that behave that way are as 
common as dust on lightbulbs. Still, is this the best way to handle the size 
input? The answer is no, at least not when you view it in terms of writing 
bug-free code. 

Suppose, for example, that a programmer rnistyped 3 as 33 when he or 
she called CopySubStr: 

That's a realistic bug, but given its definition it's perfectly legal to call 
CopySubStr with a ridiculous value like 33. Oh sure, you would probably 
catch the bug before you released the code, but you wouldn't find it auto- 
matically; somebody would have to spot it. And don't forget that it's faster 
to track down an error starting from an assertion close to the bug than it is 
starting from faulty output. 

From a "bug-free" point of view, if an argument is out of range or is 
meaningless, it should be illegal, because by silently accepting oddball val- 
ues, you hide bugs rather than find them. In a way, allowing "loose" inputs 
is another form of defensive programming. Keep the defensive code for ro- 
bustness, but disallow the questionable inputs: 

CopySubStr - -  e x t r a c t  a  s u b s t r i n g  f r o m  a  s t r i n g .  

Conver t  t h e  f i r s t  " s i z e "  c h a r a c t e r s  o f  s t r F r o m  i n t o  
a  s t r i n g  s t o r e d  a t  s t r T o .  There  must be  a t  l e a s t  
" s i z e "  c h a r a c t e r s  i n  s t r f r o m .  
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c h a r  *CopySubSt r ( cha r  * s t r T o ,  c h a r  * s t r F r o m ,  s i z e - t  s i z e )  

c h a r  * s t r S t a r t  = s t r T o ;  

ASSERT(strT0 != NULL && s t r F r o m  != NULL); 
ASSERT(size <= s t r l e n ( s t r F r o m ) ) ;  

w h i l e  ( s i z e - -  > 0 )  
*s t rTo++ = *strFrom++; 

* s t r T o  = ' \ 0 ' ;  

r e t u r n  ( s t r s t a r t ) ;  

Sometimes allowing a meaningless argument-such as a size of 0-is 
worthwhile because it can eliminate unnecessary tests at the caller. For ex- 
ample, since memset allows its size argument to be 0, you don't need the if 
statement in the code below: 

i f  ( s t r l e n ( s t r 1  != 0 )  I* F i l l  s t r  w i t h  spaces *I 
m e m s e t ( s t r ,  ' ' ,  s t r l e n ( s t r ) ) :  

But be careful when you allow 0 sizes. Programmers regularly handle 
sizes (or counts) of 0 because they can, not because they should. If you write 
a function that takes a sue, you're not required to handle 0. Instead, ask 
yourself, "How often will programmers call this routine with a size of O?" If 
the answer is never, or even rarely, don't handle 0; assert instead. Remem- 
ber that every time you ease a restriction, you eliminate a chance to catch a 
corresponding bug. A good rule is to initially choose strict definitions for 
your inputs to maximize the effectiveness of your assertions. If you later 
find that a restriction is overly harsh, you can remove it without affecting 
the rest of your program. 

I used this philosophy in Chapter 3 when I included the NULL pointer 
check in FreeMemoy. Since I would never call FreeMemoy with a NULL 
pointer, it was more important to me to have the stronger error checking. 
Your views may be different-there is no right and wrong here. Just be sure 
that whatever you do is a conscious choice and not merely a habit you've 
picked up. - 

Don't be wishy-washy. Define explicit 
function arguments. 
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Microsoft has a policy of asking potential employees technical questions 
during their interviews, and for programmers, that means being handed 
one or more coding problems. I used to start candidates off with the task of 
writing the standard tolower function. I would hand the candidate an ASCII 
table and ask, "How would you write a function that would convert an up- 
percase letter to its lowercase equivalent?" I would be deliberately vague 
about how to handle symbols and lowercase letters, primarily to see how 
the programmer would handle those cases. Would those characters remain 
unchanged? Would the programmer's code assert? Would symbols and 
lowercase letters be ignored? More than half the time, candidates would 
write something like this: 

c h a r  t o 1  ower (char  c h )  
E 

re turn  ( c h  + ' a '  - ' A ' ) ;  
1 

This code works if ch is an uppercase letter, but if ch is anything else, it 
breaks. When I would point this out to interviewees, sometimes they'd say, 
"I assumed that the character had to be uppercase. I could handle all charac- 
ters by returning the character unchanged if it wasn't a capital letter." 
That's a reasonable solution; other solutions were less so. More often than 
not, candidates would say, "I didn't think of that. I can fix the problem by 
returning an error if ch isn't a capital letter." Sometimes they'd have tolower 
return NULL, at other times the nu1 character, but the clear winner, for some 
reason, was -1: 

c h a r  t o 1  ower (char  c h )  
{ 

i f  ( c h  >= ' A '  && ch  <= ' Z ' )  
r e t u r n  ( c h  + ' a '  - ' A ' ) ;  

e l s e  
r e t u r n  ( -1 ) ;  

Returning -1 violates the interface suggestion I made earlier because it 
mixes an error value with a real piece of data. But the problem is not that the 
candidates failed to heed a suggestion they'd probably never heard of, but 
rather that they were generating an error when they didn't need to. 
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This brings up another observation: If a function returns an error, ev- 
ery single caller must handle that error. If tolower were to return -1, instead 
of writing the simple 

you would have to write something like this: 

i n t  chNew; I* This  *must* be an i n t  i n  o rde r  t o  h o l d  -1. *I 

If you consider how you'd have to use tolower at every call, you can 
see that returning an error may not be the best way to define the function. 

If you find yourself designing a function so that it returns an error, 
stop and ask yourself whether there's any way you can redefine the func- 
tion to eliminate the error condition. Instead of defining tolower to "return 
the lowercase equivalent of an uppercase letter," have tolower "return the 
lowercase equivalent of ch if one exists; otherwise, return the character un- 
changed." 

If you find that you can't eliminate an error condition, consider disal- 
lowing the problematic cases altogether. For example, you could require 
that the argument to tolower be a capital letter and say that any other charac- 
ter is illegal. You would then use an assertion to verify the argument: 

char  t o lower (cha r  ch)  
{ 

ASSERT(ch >= ' A '  && ch <= ' Z ' ) ;  

r e t u r n  (ch  + ' a '  - ' A ' ) ;  
1 

Whether you redefine a function or disallow the problematic cases, 
you remove the need for callers to do runtime error checking, which results 
in smaller code and fewer bugs. - 

Write functions that, given valid 
inputs, cannot fail. 
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READ BETWEEN THE LINES 
I can't emphasize enough how important it is to examine your interfaces 
from the point of view of the caller. When you consider that you define a 
function just once but you call it from many places, it seems foolish not to 
examine how it will be called. The getchar, realloc, and tolower examples 
we've seen bring this point home-all complicate code at the point of call. 
But fusing outputs and returning needless error codes aren't the only ways 
in which you can complicate code. Sometimes all it takes is a careless disre- 
gard for how the function will "read" when you call it. 

Suppose you were trying to improve the disk handling portion of 
your application and you ran into a file seek call written this way: 

if ( fseek( fpDocument ,  o f f s e t .  1) == 0 )  

You can tell that some sort of seek is happening, and you can see that 
the error is being handled, but how readable is the call? What kind of seek is 
happening-from the beginning of the file, from the current file position, or 
from the end-of-file? If the return value is 0, does that indicate success or 
failure? 

Suppose, instead, that the programmer had written the call using pre- 
defined names: 

# i  n c l  ude < s t d i  o. h> I*  P u l l  i n  SEEKCUR. * I  
# d e f i n e  ERRNONE 0 

i f  ( f seek ( fpDocument ,  o f f s e t ,  SEEKCUR) == ERRNONE) 

Does this clarlfy the call? Sure it does. But this isn't a surprising new 
revelation-programmers have known for decades that they should avoid 
using magic numbers in their code. What I would like to point out is that 
NULL, TRUE, and FALSE are not named constants the way they're often 
used, but rather are textual representations of magic numbers. For instance, 
what do the calls below do? 

Uns ignedToSt r (u ,  s t r .  TRUE); 

Uns ignedToSt r (u ,  s t r ,  FALSE): 
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You can probably guess that these calls convert an unsigned value to 
its textual representation, but how does the boolean argument affect that 
conversion? Would it be clearer if I instead wrote the calls as 

# d e f i n e  BASE10 1 
# d e f i n e  BASE16 0  

UnsignedToStr (u .  s t r ,  BASE10); 
UnsignedToStr (u ,  s t r .  BASE16); 

When a programmer sits down to write such functions, the boolean 
values may seem perfectly clear. First the programmer launches into a de- 
scription and then into the implementation: 

I* UnsignedToStr 
* 
* T h i s  f u n c t i o n  conve r t s  an uns igned va lue  t o  i t s  
* t e x t u a l  r e p r e s e n t a t i o n .  I f  fDecimal i s  TRUE. u  i s  
* conve r ted  t o  a  decimal r e p r e s e n t a t i o n ;  o the rw i se .  
* u i s  conver ted  t o  a hexadecimal r e p r e s e n t a t i o n .  
* I 

v o i d  UnsignedToStr (uns igned u ,  char  * s t rResu l  t ,  f l a g  fDecima1) 
E 

What could be clearer than that? 
The reality is that boolean arguments often indicate that the designer 

didn't put much thought into what he or she was doing. Either the function 
is doing two different things and the boolean argument selects which of the 
two behaviors you want, or the function is generally flexible but the pro- 
grammer used a boolean to specify the only two cases he or she was inter- 
ested in. Often both are true. 

If you view UnsignedToStr as a function that is doing two different 
things, you could drop the boolean argument and and split UnsignedToStr 
into two specific functions: 

v o i d  Uns ignedToDecStr (uns igned u,  char  * s t r ) ;  

v o i d  UnsignedToHexStr(unsigned u ,  char  * s t r ) ;  
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But a better solution-in this case-would be to make UnsignedToStr 
more flexible by changing the boolean argument to a general-purpose one. 
Instead of passing in TRUE or FALSE, have programmers pass in the con- 
version base: 

v o i d  UnsignedToStr(unsigned u, char * s t r ,  unsigned base);  

This solution gives you a clean, flexible design that makes the calling code 
understandable and that at the same time increases the usefulness of the 
function. 

This advice may seem to contradict what I said earlier about defining 
your arguments rigidly-we went from a concrete TRUE or FALSE input to 
a general one in which most of the possible values aren't useful. But remem- 
ber, base may be general, but you can always include an assertion to venfy 
that it is either 10 or 16. If you later decide that you also need binary or octal 
conversions, you can relax the assertion to allow programmers to pass in 2 
and 8. 

That's far better than some functions I've seen that have an argument 
with the values TRUE, FALSE, 2, and -1! Because boolean arguments don't 
extend easily, you either end up with such nonsense or have to update every 
preexisting call. - 

Make the code intelligible at the 
point of call. 

Avoid boolean arguments. - 
WARN PEOPLE OF THE HAZARDS 
As a final guard against bugs, write your documentation so that it both em- 
phasizes the hazards and shows how you expect people to use the code. 
Instead of documenting getchar this way, 

I* getchar  - -  t h i s  i s  t h e  same as g e t c ( s t d i n 1 .  *I 

i n t  ge tcha r (vo id1  
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which doesn't really help programmers much, you could write something 
like this: 

I* getcha r  - -  e q u i v a l e n t  t o  g e t c ( s t d i n 1 .  
* 
* ge t cha r  r e t u r n s  t h e  n e x t  c h a r a c t e r  f r o m  s t d i n .  When 
* an e r r o r  occu rs ,  i t  r e t u r n s  t h e  * i n t *  EOF. A t y p i c a l  
* use i s  
* 
* i n t  ch; I/ ch *must* be an i n t  i n  o rde r  t o  h o l d  EOF. 
* 
* i f  ( ( c h  = g e t c h a r ( ) )  != EOF) 
* I/ success - -  ch has t h e  n e x t  c h a r a c t e r  
* e l  se 
* /I f a i l u r e  - -  f e r r o r ( s t d i n 1  g i v e s  e r r o r  t y p e  

* I 

i n t  g e t c h a r ( v o i d 1  

If you were to hand both of these descriptions to a programmer just 
learning the C library, which one do you think would leave stronger im- 
pressions about the hazards of using getchar? And what about when that 
programmer uses getchar for the first time? Do you think she's going to 
make up new code, or do you think she will simply copy the "typical use" 
example from your documentation and adapt it to her needs? 

Another positive side effect of documenting functions this way is that 
it forces less-careful programmers to stop and think about how other pro- 
grammers have to use their functions. If a programmer writes a function 
with a clunky interface, he should notice that the interface is bad when he 
tries to write the "typical use" example. But even if he doesn't notice the 
problems with the interface, it won't matter as long as the example is thor- 
ough and correct. What if the documentation for realloc provided an ex- 
ample such as the one on the next page? 
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I *  r e a l l o c ( p v ,  s i z e )  
* . . .  
* A t y p i c a l  use i s  

* v o i d  *pvNew; / I  used t o  p r o t e c t  pv i f  r e a l  l o c  f a i l s  
* 

pvNew = r e a l l o c ( p v ,  s izeNew) ;  
i f  (pvNew != NULL) 
E 

/ /  success - -  u p d a t e  pv 
pv  = pvNew; 

1 
e l  se 

/ I  f a i l u r e  - -  d o n ' t  d e s t r o y  pv  w i t h  t h e  NULL pvNew 

v o i d  * r e a l l o c ( v o i d  *pv ,  s i z e - t  s i z e )  

By copying such an example, less-cautious programmers are more 
likely to avoid the lost memory problem I talked about earlier in this chap- 
ter. Your examples won't protect all programmers, but like the warnings on 
medicine bottles, they will influence some people, and every bit helps. 

But don't use examples as a substitute for designing good interfaces. 
getchar and realloc both have bug-prone interfaces-their hazards should be 
eliminated, not merely documented. - 

Write comments that emphasize 
potential hazards. 

__e__ 

THE DEVIL IS IN THE DETAILS 
Designing bug-resistant interfaces is not difficult, but it does take some ex- 
tra thought and a willingness to abandon ingrained coding habits. The sug- 
gestions in this chapter show how, with simple changes to your interfaces, 
you can lead programmers to write correct code without much thought on 
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their part. The key concept running through this chapter is "Make every- 
thing as clear and as obvious as possible." If programmers understood and 
remembered every detail, they might not make mistakes; but programmers 
do make mistakes, in part because they forget about or never learned about 
the important details. Make it hard for programmers to unwittingly ignore 
details; design bug-resistant interfaces. 

Create function interfaces that are easy to use and understand: 
Ensure that input and output represent exactly one type of data. 
Mixing error and other speciat-purpose values into your inputs 
and outputs does nothing but clutter your interfaces. 

Design your function interfaces in such a way that programmers 
are forced to think about all the important details, such as han- 
dling error conditions. Don't make it easy for them to ignore or 
forget the details. 

Consider how programmers must call your functions. Look 
for flaws in your function interfaces that can cause programmers 
to unwittingly introduce bugs. Of particular importance: Strive to 
write functions that always succeed so that callers don't need to 
do any error handling. 

Increase comprehension and thus reduce bugs by making sure 
that the calls to your functions are understandable to program- 
mers who have to read those calls. Magic numbers and boolean 
arguments work against this goal. 

Break apart multipurpose functions. Not only do the more spe- 
cific function names increase comprehension (for example, 
ShrinkMemory instead of realloc), but you can use more rigid as- 
sertions to automatically detect bad arguments. 

Document your interfaces to show programmers how to prop- 
erly call your functions. Emphasize the danger zones. 
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1. The strdup function at the beginning of the chapter allocates a 
duplicate string but returns NULL if it fails. What would be a 
more bug-resistant interface for strdup? 

2. I said that the presence of boolean inputs often indicates that 
there could be a better interface for the function. But what about 
boolean outputs? For example, if fGetChar fails, it returns FALSE 
and requires programmers to call ferror(stdin) to determine the 
cause of the error. What would be an even better interface for 
getchar? 

3. Why is the ANSI strncpy function bound to trip up the unwary 
programmer? 

4. If you're familiar with C++'s inline function specifier, describe its 
contribution to the writing of bug-resistant interfaces. 

5. C++ introduced & reference arguments similar to Pascal's VAR 
arguments. Instead of writing 

f l a g  f G e t C h a r ( c h a r  *pch)  ; I* p r o t o t y p e  * /  

ch has t h e  new cha rac te r . .  . 

you could write 

f l a g  f G e t C h a r ( c h a r  & c h ) ;  I* p r o t o t y p e  * /  

i f  ( f G e t C h a r ( c h 1 )  I* &ch i s  a c t u a l l y  passed. * /  
ch has t h e  new cha rac te r . .  . 

On the surface, this appears to be a good addition since pro- 
grammers can't "forget" the explicit & required in regular C. But 
why would using this feature result in bug-prone rather than 
bug-resistant interfaces? 
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6. The standard strcmp function takes two strings and compares 
them, character by character. If the two strings are equal, strcmp 
returns 0; if the first is less than the second, it returns a negative 
number; and if the first is greater than the second, it returns a 
positive number. So, when you call strcmp, the code usually 
looks like this: 

i f  (strcmp(str1. str2) rel-op 0 )  

where rel-op is one of ==, !=, >, >=, <, or <=. This works, but the 
code is meaningless unless you're familiar with the strcmp func- 
tion. Describe at least two other function interfaces for string 
comparisons. The interfaces should be both more bug-resistant 
and more readable than strcmp's interface. 

PROJECT: Review the functions in the standard C library and rede- 
sign the interfaces so that they will be more bug-resistant. What 
are the pros and cons of renaming the functions so that they are 
more intelligible? 

PROJECT: Search a large body of code for all occurrences of memset, 
memmove, memcpy, and the set of stm- functions (strncpy, etc.). 
How many of those calls require that the function accept a 0 
count? Does your organization use the convenience enough to 
justrfy allowing it? 





If you were to put a programmer at the top of a cliff and give him a rope and 
a hang glider, how do you think he'd get to the bottom? Would he climb 
down the rope, or would he glide to the bottom? I have no idea whether 
he'd use the rope or the hang glider, but I'll bet you anything that he 
wouldn't jump to the bottom-it's too risky. But for some reason, when 
programmers can choose among several possible implementations, they of- 
ten consider only size and speed and completely ignore risk. What if the 
programmer on that cliff ignored risk and instead just took the most effi- 
cient route to the bottom? Geronimoooooooooo. . . 

There are at least two reasons why programmers ignore risk. 
Programmers ignore risk, in part, because they blindly assume that no 

matter how they implement their code, they're going to implement it with- 
out bugs. Nobody says, "Guess what, I'm going to write a quicksort routine 
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and I plan to have three bugs in it." Programmers don't plan to have bugs; 
they're just not very surprised when bugs show up later. 

But the major reason, I believe, that programmers ignore risk is that 
they have never been taught to ask questions such as, "How risky is this 
design?" "How risky is this implementation?" "Is there a safer way to write 
this expression?" "Is it even possible to test this design?" To ask questions 
like these, you must let go of the belief that regardless of your choices you'll 
end up with bug-free code. That might even be a well-founded belief, but 
the question in that case is When will you have bug-free code? Will it be 
hours or days from now because you use safe coding practices, or will it be 
weeks or months from now because you ignore risk and have lots of bugs to 
track down and fix? 

Throughout this chapter I will talk about the risks inherent in some 
common coding practices and about what you can do to reduce, or even 
eliminate, those risks. 

HOW LONG IS A long? 
When the ANSI committee looked at the various flavors of C running on 
numerous platforms, they saw that C wasn't the truly portable language 
everybody thought it was. Not only were the standard libraries different on 
every system, but even the preprocessor and the language itself differed in 
important ways. The ANSI committee standardized most of these problem 
areas, giving programmers a real shot at writing portable code, but one im- 
portant area that the ANSI standard largely ignores is the definitions of the 
intrinsic data types. Rather than concretely defining char, int, and long, the 
ANSI standard leaves important implementation details up to the compiler 
writer. 

Thus, one ANSI standard compiler can have 32-bit ints and signed 
chars, while another ANSI compiler can have 16-bit ints and unsigned chars. 
Yet even with such profound differences, it's possible for both compilers to 
strictly adhere to the ANSI standard. 

Take a look at this code: 

char  ch; I* Dec la re  ch.  * /  

ch  = 0xFF; 
i f  ( c h  == 0xFF) 
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My question is Will the expression in the ifstatement evaluate to TRUE or to 
FALSE? 

Of course the expression will evaluate to TRUE--or will it? The correct 
answer is that you don't know; the result is completely compiler depen- 
dent. If your characters are unsigned by default, the expression will indeed 
be TRUE. But on compilers in which char is signed, as is often the case for 
80x86 and 680x0 compilers, the test will fail every time. The reason has to do 
with C's promotion rules. 

In the code above, the character ch is being compared to the integer 
OxFF. According to Cfs promotion rules, the compiler must first promote ch 
to an int so that it can compare compatible types. The catch is that if ch is 
signed, promoting it sign-extends the value from OxFF to OxFFFF (assuming 
you have 16-bit ints). That's why the test can fail, despite the fact that it 
looks as if it should always succeed. 

I realize that the code above is just a contrived example to demon- 
strate my point, and you could claim that it's an unrealistic piece of code, 
but you'd run into exactly the same problem with this common code extract: 

char  *pch; I*  Dec la re  pch. * I  

The char type isn't alone in this kind of ill-defined behavior; bit fields 
are just as bad. What's the numerical range for the bit field below? 

i n t  r eg  : 3;  

Again, you don't know. Even though reg is defined to be an int, which 
implies that it's signed, reg can be either signed or unsigned, depending 
upon your compiler. You must use signed int or unsigned int if you definitely 
want reg to be one or the other. 

And how big is a short? An int? A long? The ANSI standard doesn't 
say, preferring to leave it up to the compiler writer to decide. 

I don't want to leave you with the impression that the members of the 
ANSI committee were blind to the problems of ill-defined data types. That's 
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far from the truth. In fact, they looked at numerous C implementations and 
concluded that, because the types varied so widely across compilers, defin- 
ing a strict standard would invalidate too much preexisting code. That vio- 
lated one of the committee's guiding principles: Existing code is important. 
Their goal was not to create a better language but to standardize an existing 
one, and whenever possible, they weren't going to break large bodies of 
existing code. 

Nailing down the types would also have violated another of the 
committee's guiding principles, which is Keep the spirit of C: Make it fast, even 
if it is not guaranteed to be portable. If an implementor feels that signed charac- 
ters are more efficient for a given machine, that's what you'll get. This atten- 
tion to speed also means that implementors get to choose whether ints will 
be 16 bits, 32 bits, or some other "natural" size dictated by the hardware. 
And it means that you have no idea whether you'll have signed or unsigned 
bit fields by default. 

The point I'm making here is that the intrinsic types have gaping holes 
in their specifications, holes you can fall into the next time you upgrade or 
switch compilers, move to a new target environment, share your code with 
another group or company, or even switch jobs and find yourself using a 
compiler in which all the rules have changed. 

None of this means that you can't safely use the intrinsic types. You 
can. But to reduce risk you shouldn't assume that the types have any prop- 
erties that the ANSI standard doesn't explicitly specify. 

For instance, you can use the fickle char data type provided that you 
stick to the values 0 through 127, the intersection of the guaranteed ranges 
of signed and unsigned characters. So, while the code below works with 
any compiler because it doesn't make range assumptions, 

char  * s t r c p y ( c h a r  *pchTo, char  *pchFrom) 
{ 

char  * p c h S t a r t  = pchTo; 

w h i l e  ((*pchTo++ = *pchFrom++) != I \ @ ' )  

{ 3 

return ( p c h s t a r t ) ;  
3 



the code below will not: 

/ *  s t rcmp - -  compare two  s t r i n g s .  
* 
* Re tu rns  a n e g a t i v e  /I i f  s t r L e f t  < s t r R i g h t .  
* 0 i f  s t r L e f t  == s t r R i g h t .  and a p o s i t i v e  /I 
* i f  s t r L e f t  > s t r R i g h t .  
* / 

i n t  s t r c m p ( c o n s t  c h a r  * s t r L e f t ,  c o n s t  char  * s t r R i g h t )  
E 

f o r  ( ; * s t r L e f t  == * s t r R i g h t ;  s t r L e f t + + ,  s t r R i g h t + + )  
E 

i f  ( * s t r L e f t  == ' \ 0 ' )  / *  Match t o  t h e  end? * /  
r e t u r n  ( 0 ) ;  

I 

r e t u r n  ( ( * s t r L e f t  < * s t r R i g h t )  ? - 1  : 1); 
1 

The code above isn't portable because of the comparison in the last 
line. The moment you use <, or any other operator that uses sign informa- 
tion, you force the compiler to generate nonportable code. It's easy to fix 
strcmp. Either declare strLeft and strRight to be unsigned character pointers, 
or cast them in the comparison: 

( * ( u n s i g n e d  c h a r  * ) s t r L e f t  < * ( u n s i g n e d  c h a r  * ) s t r R i g h t )  

A good rule to remember, one worth taping to your wall, is Don't use 
"plain" chars in expressions. A similar rule for bit fields, since they suffer 
from the same problems, is Never use "plain" bit fields. I say "never" because 
of the misleading nature of the int keyword when applied to bit fields. 

If you read the ANSI standard and interpret it conservatively, you can 
derive a well-defined set of portable types that work across compilers and 
across the three most common numbering systems--one's complement, 
two's complement, and signed magnitude: 

c  ha r 0 through 127 
s i gned c h a r -127 (not -128) through 127 

uns igned char 0 through255 
Unknown size, but no smaller than 8 bits 

(continued) 
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continued 

short 
signed short 

unsigned short 

i n t  
signed in t  

unsigned in t  

1 o n g  
signed 1 ong 

unsigned 1 ong 

i n t  i:n 
signed i n t  i:n 

unsigned i n t  i:n 

-32767 (not -32768) through 32767 
-32767 through 32767 
0 through 65535 
Unknown size, but no smaller than 16 bits 

-32767 (not -32768) through 32767 
-32767 through 32767 
0 through 65535 
Unknown size, but no smaller than 16 bits 

-2147483647 (not -2147483648) through 2147483647 
-2147483647 through 2147483647 
0 through 4294967295 
Unknown size, but no smaller than 32 bits 

0 through 2"-l-1 
-(2"-l-1) through 2"-l-1 
0 through 2L1 

Unknown size, but at least n bits 

Using the Portable Data Types I 

Some programmers may be concerned that using the portable types is less 
efficient than using "natural" types. For instance, the int type is supposed to 
be whatever size is optimally efficient for the target hardware. That means 
its "natural" size could well be larger than 16 bits and hold values greater 
than 32767. 

Suppose your compiler uses 32-bit ints and you have a value with the 
range 0 through 40000. Do you use an int because your machine can effi- 
ciently handle 40000 in an int, or do you stick to the portable types and use a 
long instead? 

Here's a nice weasely answer: If your machine uses 32-bit ink, it prob- 
ably also uses 32-bit longs and will generate similar if not identical code for 
the two (historically, that has been true), so use a long. If you're worried that 
a long may be inefficient on some future machine you have to support, you 
should be using portable types anyway. 
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OK, so maybe you don't need to worry about writing portable code. 
But treat the issue the way you would choose new tile for your kitchen 
counter. If you'ie like most people, you would pick tile that you like and 
that you think future home buyers will at least tolerate. That way, you get a 
pattern you want, but also one you don't have to rip out and replace in 
order to sell your house. View portable code the same way because in many 
cases it's just as easy to write portable code as it is to write nonportable code. 
Protect yourself from a future reconstruction job-write portable code when- 
ever possible. - 

Use well-defined data types. 

Some of the most sinister bugs are those in which the code appears to be 
obviously correct yet fails because of a subtle implementation problem. The 
"plain char" bug has that property, and so does the code below, which ini- 
tializes a lookup table for the standard tolower macro: 

# i n c l u d e  <l i m i  t s  . h> I* P u l l  i n  UCHARMAX. * I  

c h a r  chToLower[UCHARMAX+11; 

v o i d  Bu i  1  dToLowerTable(vo id)  I* ASCII v e r s i o n  * I  
{ 

uns igned  c h a r  ch;  

I* F i r s t  s e t  e v e r y  c h a r a c t e r  t o  i t s e l f .  * I  
f o r  ( c h  = 0 ;  ch  <= UCHARMAX; ch++) 

chToLower[ch] = ch: 

I* Now poke lowercase  l e t t e r s  i n t o  t h e  uppercase s l o t s .  * I  
f o r  ( c h  = ' A ' ;  ch  <= ' Z ' ;  c h t t )  

chToLower [ch l  = ch  + ' a ' - " A ' :  
1 
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Despite how solid the code looks, BuildToLowerTable will probably 
hang your system. Take a look at the test in the first loop. When will ch be 
greater than UCHAR-MAX? If you guessed Never, you're right. If you 
didn't guess that way, let me explain. 

Suppose ch is equal to UCHAR-MAX and the loop executes for what 
you expect is the last time. Then, just before the final test, ch is incremented 
to UCHAR-MAX+1, causing it to overflow and wrap to 0. The machine 
hangs in an infinite loop because ch will always be less than or equal to 
UCHAR-MAX. 

How obvious is that problem when you look at the code? 
You can underflow a variable and find yourself in a similar predica- 

ment. Below is an implementation for the memchr function, which searches 
a block of memory for the first occurrence of a character. If it finds the char- 
acter in the block, it returns a pointer to the character's location; otherwise, 
it returns the NULL pointer. And like BuildToLowerTable above, the code for 
memchr seems correct when you read it but fails nevertheless. 

v o i d  *memchr(vo id  *pv ,  u n s i g n e d  c h a r  ch ,  s i z e - t  s i z e )  
E 

uns igned  c h a r  *pch = ( u n s i g n e d  c h a r  * ) p v ;  

w h i l e  ( - - s i z e  >= 0 )  
{ 

i f  ( * p c h  == c h )  
r e t u r n  ( p c h ) ;  

pch++; 
1 

r e t u r n  (NULL);  
1 

When will the loop terminate? When size is less than 0, of course, but 
will that ever be true? No, because size is an unsigned value-when it 
reaches 0, the expression - -size will cause it to underflow and wrap to the 
largest unsigned value defined by the type size-t. 

This underflow bug is worse than the bug in BuildToLowerTable be- 
cause memchr will work correctly as long as it finds ch in the memory run. 
Even if it doesn't find the character, it probably won't hang your system- 
it'll just keep searching memory until it finds ch somewhere, and return a 
pointer to that character. This could be a hard bug to spot. 



I'd like to think that your compiler would warn you of the "plain char" 

bug, and of the other two bugs above, but I've found very few compilers 
that do warn of these problems, although there is no technical reason why 
they couldn't. Until compiler vendors learn that there's more to a compiler 
than good code generation, you'll have to spot such overflow and 
underflow bugs yourself. 

The good news is that if you step through your code as I suggested in 
Chapter 4, you'll pounce on all three bugs. You'll see that *pch is promoted 
to OxFFFF before it's compared to OxFF, you'll see that ch overflows and 
wraps to 0, and you'li see that size underflows to OxFFFF. You could read 
your code for hours and never spot overflow bugs because they are so 
subtle, but if you look at the data flow in a debugger, such bugs will become 
obvious. - 

Always ask, "Can this variable or 
expression over- or underflow?" - 

You can see another often-used overflow example in the code below, which 
converts an integer to its ASCII representation: 

v o i d  I n t T o S t r ( i n t  i, c h a r  * s t r )  
{ 

c h a r  * s t r D i g i  t s ;  

i f  ( i  < 0 )  
{ 

= ' - '  . 
i = - j ;  I* S t r i p  i ' s  n e g a t i v e  s i g n .  * /  

1 

/ *  D e r i v e  t h e  d i g i t s  i n  r e v e r s e  o r d e r .  * /  
s t r D i g i t s  = s t r ;  
d  0 

* s t r + +  = (i % 1 0 )  + ' 0 ' :  
w h i l e  ( ( i  I= 1 0 )  > 0 ) :  
* s t r  = ' \ 0 ' ;  

R e v e r s e S t r ( s t r D i g i t s ) ;  I*  Unreverse  t h e  d i g i t s .  *I 
1 
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This code breaks on two's-complement machines for the single case in 
which i is equal to the smallest negative number (-32768 on a 16-bit ma- 
chine, for instance). The reason usually given is that the -i in the expression 
i = 4; overflows the range of the inf type, and that's perfectly true. But the 
real bug lies in the way the programmer implemented the code: He didn't 
implement his design; he implemented something almost the same. 

The design says, "If i is negative, stuff in a minus sign, and convert i's 
unsigned counterpart to ASCII." But that's not what the code does. The 
code actually implements, "If i is negative, stuff in a minus sign, and con- 
vert its positive but signed counterpart to ASCII." It's the signed math that 
causes all the trouble. If you follow the original design and use unsigned 
math, the code works fine, plus you can break the code into two, more use- 
ful, functions: 

v o i d  I n t T o S t r ( i n t  i, char  * s t r )  
E 

i f  ( 1  < 0 )  

* s t r f t  = ' - ' ;  
j = -i. . 

1 
UnsToSt r ( (uns igned) i .  s t r ) ;  

1 

v o i d  UnsToStr (uns igned u ,  char  * s t r )  
E 

char  * s t r S t a r t  = s t r ;  

d  0 
*s t r++  = ( U  % 10)  + ' 0 ' ;  

w h i l e  ( ( u  I= 10)  > 0 ) ;  
* s t r  = ' \ 0 ' :  

You might be wondering why this code works, given that it negates i 
just as the previous example did. It works because if i is the smallest nega- 
tive number, 0x8000, and you negate it by "flipping all the bits and adding 
1," you still get 0x8000, which looks like -32768 as a signed number, but like 
32768 as an unsigned number. It's all in how you interpret the bits. By 
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definition, flipping the bits and adding 1 must give you the negative value 
of any two's-complement number, but it's up to you to correctly interpret 
the bit-pattern. In this case, interpreting the bit-pattern as a signed value is 
wrong. 

Still, being right is not always being smart. The code above feels 
wrong. It also assumes that -32768 is a valid int, which it isn't-at least not 
if you're sticking to the portable types. If you agree that -32768 is a 
nonportable int, you can cast aside the whole mess with one well-placed 
assertion in IntToStr: 

v o i d  I n t T o S t r ( i n t  i, c h a r  * s t r )  
{ 

I *  i o u t  o f  range?  Use LongToStr  ... * I  
ASSERT(i >= -32767 && i <= 32767) ;  

By using such assertions you not only avoid oddball problems related 
to one particular numbering system, but you also nudge other program- 
mers into writing more portable code. 

Implement your designs as accurately 
as possible. Being kinda close is being 

kinda buggy. - 
I once thoroughly reviewed the code for Character Windows-a Windows- 
like library designed for Microsoft's character-based DOS applications- 
because the two primary groups using the library, the Word and Works 
groups, felt that the code was bulky, sluggish, and unstable. I had just be- 
gun reviewing the code when I ran across an example of programmers not 
quite implementing what they had designed-and of the violation of an- 
other guiding principle for writing bug-free code. 

But first, some background. 
The basic design for Character Windows was simple: The user views 

the video display as a set of windows, each of which can have its own 
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subwindows. In the design, a root window represents the entire display, 
and this whdow has subwindows: a menu bar, pull-down menus, applica- 
tion document windows, dialogs, and so on. Each of these windows may 
have its own subwindows. A dialog might have subwindows for OK and 
Cancel buttons, and it might have a listbox window that has its own 
subwindows for scrollbars. You get the idea. 

To represent the hierarchical window structure, Character Windows 
used a binary tree in which one branch pointed to subwindows, called 
"children," and the other branch pointed to windows with the same parent, 
called "siblings": 

t ypede f  s t r u c t  WINDOW 
{ 

s t r u c t  WINDOW *pwndChild; I* NULL i f  no c h i l d r e n  *I 
s t r u c t  WINDOW *pwndSibling; I* NULL i f  no b r o t h e r s l s i s t e r s  * /  
char  *strWndTi t l  e; 

1 window; I* Naming: wnd, *pwnd *I 

You can turn to any algorithm book and find efficient routines to ma- 
nipulate binary trees, so I was a bit shocked when I reviewed the Character 
Windows code for inserting a child window into the tree. The code looked 
like this: 

I* pwndRootChi ldren i s  t h e  p o i n t e r  t o  t h e  l i s t  o f  t o p - l e v e l  
* windows, such as t h e  menu b a r  and t h e  main document windows. 
* I 

s t a t i c  window *pwndRootChi ldren = NULL; 

Why a Hierarchy of Windows? 
If you're wondering why it's worthwhile having a hierarchy of win- 

dows, consider this: The hierarchical arrangement simplifies operations 
such as moving, hiding, and deleting windows. What if you moved a dialog 
window and the OK and Cancel buttons stayed where they were? Or what 
if you hid a window and its subwindows remained visible? That's not what 
you want. By supporting subwindows, you can say "move this window" 
and know that all of its associated windows will tag along. 
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v o i d  AddChild(window *pwndParent, window *pwndNewBorn) 
{ 

I* New windows may have c h i l d r e n  b u t  n o t  s i b l i n g s  . . .  *I 
ASSERT(pwndNewB0rn->pwndSibling == NULL); 

i f  (pwndparent == NULL) 
{ 

I* Add window t o  t h e  t o p - l e v e l  r o o t  l i s t .  *I 
pwndNewBorn->pwndSibling = pwndRootChildren; 
pwndRootChildren = pwndNewBorn; 

1 
e l  se 
{ 

I* I f  Paren t ' s  f i r s t  c h i l d .  s t a r t  a new s i b l i n g  cha in ;  
* o therw ise ,  add c h i l d  t o  t h e  end o f  t h e  e x i s t i n g  
* s i b l i n g  chain.  
* I 

i f  (pwndparent->pwndChild == NULL) 
pwndparent->pwndChild = pwndNewBorn; 

e l  se 
C 

window *pwnd = pwndparent->pwndChild; 

w h i l e  (pwnd->pwndSibl ing != NULL) 
pwnd = pwnd->pwndSibling; 

pwnd->pwndSibling = pwndNewBorn; 
1 

1 
1 

Despite the fact that the windowing structure was designed to be a 
binary tree, it hadn't been implemented that way. Since the root window 
(the one representing the entire display) never has siblings and never has a 
title and since you can't move, hide, or delete it, the only field in the window 
structure that ever has any meaning is pwndchild-it points to the menu bar 
and application subwindows. That led somebody to decide that declaring 
an entire window structure was wasteful, and the wndRoot structure was 
replaced with pwndRootChildren, a simple pointer to the top-level windows. 

Replacing wndRoot with a pointer may have saved a few bytes of data 
space, but the cost in code space was enormous. Instead of working with a 

simple binary tree, routines such as AddChild had to handle two different 
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data structures: a linked list of window trees at the root level, and the win- 
dow trees themselves. Worse, every routine that took a window pointer as 
an argument-and there were many-had to check for the special NULL 
pointer that represented the display "window." No wonder the Word and 
Works groups were concerned about code bloat. 

I didn't bring up the problems with AddChild so that I could talk about 
design issues, but rather to point out that its implementation violated at 
least three guiding principles for writing bug-free code. You've seen two of 
these principles already: Don't accept special purpose arguments such as the 
NULL pointer, and implement your design, not something that approximates it. 
The third principle is new: Strive to make everyfunction perform its task exactly 
one time. 

What do I mean by that? If you think about it, AddChild has one task, to 
add a child to an existing window, but the code has three separate insertion 
routines. Common sense tells you that if you have three pieces of code in- 
stead of one, you're more likely to have bugs. If you find yourself writing a 
function in which you do "the task" more than once, stop and ask yourself 
whether you can do the same job with one piece of code. 

You may sometimes want to write a function so that it does whatever 
it does more than once. The fast version of memset in Chapter 2 is an ex- 
ample of that-recall that it has two separate fill loops, a fast one and a slow 
one. You can break the rules; just be sure you have a good reason to. 

The first step in improving AddChild is easy enough: Rip out the "opti- 
mization" and implement the original design. To do that, you replace 
pwndRootChildren with pwndDisplay, a pointer to a window structure repre- 
senting the display. And instead of passing NULL to AddChild to insert root- 
level windows, you pass pwndDisplay. That eliminates the need for any 
special code to handle root windows. 

/ *  pwndDisp lay  p o i n t s  t o  t h e  r o o t - l e v e l  window. w h i c h  i s  
* a1 l o c a t e d  d u r i n g  program i n i t i a l i z a t i o n .  
* / 

window *pwndDisp lay  = NULL; 
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v o i d  AddChild(window *pwndParent, window *pwndNewBorn) 

I* New windows may have c h i l d r e n  b u t  n o t  s i b l i n g s  ... *I 
ASSERT(pwndNewB0rn->pwndSibling == NULL); 

I* I f  P a r e n t ' s  f i r s t  c h i l d ,  s t a r t  a new s i b l i n g  c h a i n ;  
* o t h e r w i s e ,  add c h i l d  t o  t h e  end o f  t h e  e x i s t i n g  s i b l i n g  
* c h a i n .  
* 1 

i f  (pwndparent->pwndChild == NULL) 
pwndparent->pwndChild = pwndNewBorn; 

e l  se 

window *pwnd = pwndparent->pwndChild;  

w h i l e  (pwnd->pwndSibi ing != NULL) 
pwnd = pwnd->pwndSibl ing; 

pwnd->pwndSibl ing = pwndNewBorn; 
1 

1 

The code above not only improves AddChild (and every other function 
that had to accommodate the oddball tree structure) but also fixes a bug in 
the original version whereby root windows were inserted backwards. Inter- 
estingly enough, that bug had been "fixed" in Character Windows by the 
expedient of handling root-level windows in reverse order everywhere it 
mattered-adding to the code bloat. 

Implement "the task" just once. 

That last version of AddChild is better than its predecessor, but it's still doing 
twice the work it needs to do. The trip wire that should set off alarms in 
your head is the if statement, a sure sign that you're probably doing the 
same work twice, although in different ways. True, there are cases in which 
you legitimately need an if statement in order to take some conditional ac- 
tion, but many times an ifstatement is the result of a sloppy implementation 
or design-it's a lot easier to whip together a design filled with exceptions 
than it is to stop and derive a model without them. 
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For example, to traverse the sibling chain, you work with window 
structures and the pointers to the "next window," but you can traverse the 
sibling chain in L o  ways: You can enter the loop pointing to the window 
structure and step from window to window as you loop, or you can enter 
the loop pointing to the "next window" pointer and step from pointer to 
pointer. You use either a window-centric algorithm or a pointer-centric one. 
The current implementation for AddChild uses a window-centric algorithm. 

But if you use the pointer-centric model, you're always pointing at the 
"next window" pointer, and it doesn't matter whether that "next window" 
pointer is the parent's child pointer or merely a sibling pointer. This lets you 
eliminate the if statement required in the window-centric algorithm because 
there is no special case. It may be easier to understand this point if you com- 
pare the code below with the previous implementation: 

v o i d  AddChi ld(window *pwndParent, window *pwndNewBorn) 
{ 

window **ppwndNext; 

I* New windows may have c h i l d r e n  b u t  n o t  s i b l i n g s  ... *I 
ASSERT(pwndNewBorn->pwndSibl ing == NULL): 

I* Trave rse  t h e  s i b l i n g  c h a i n  u s i n g  a p o i n t e r - c e n t r i c  
* a l g o r i t h m .  We s e t  ppwndNext t o  p o i n t  a t  
* pwndparent ->pwndChi ld  s i n c e  t h e  l a t t e r  p o i n t e r  
* i s  t h e  f i r s t  " nex t  s i b l i n g  p o i n t e r "  o f  t h e  l i s t .  
* 1 

ppwndNext = &pwndParent->pwndChiId;  

w h i l e  (*ppwndNext != NULL) 
ppwndNext = &(*ppwndNext ) ->pwndSib l ing ;  

Don't be surprised if the code above seems familiar. It should. After 
all, it's a minor variant of the classic "dummy header" linked-list insertion 
algorithm famous for handling empty lists without any special-case code. 

If you're concerned that this version of AddChild violates my earlier 
advice about implementing your design and not something that approxi- 
mates it, you needn't be. The code may not implement the design the way 
you normally think about a linked list, but it does implement it truthfully. 
It's like looking at a lens in a pair of glasses-is the lens concave or convex? 
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It could be either, depending upon how you view it. For AddChild, using a 
pointer-centric algorithm lets you write code without special cases. 

And if you're worried about code efficiency, think about this: This fi- 
nal version of AddChild will generate much less code than any of the previ- 
ous versions. Even the code for the loop will be comparable to-and 
possibly better than-the code generated for previous versions. Don't let 
those extra *s and &s trick you into thinking the loop is doing more than 
before-it's not. Compile the two to see for yourself. 

Get rid of extraneous if statements. 

C programmers must regularly forget that the ?: operator is nothing but an 
if-else statement in disguise; nothing else adequately explains why pro- 
grammers write code using ?: that they would never write using explicit 
e l s e  statements. I ran across a good example of this in Excel's dialog han- 
dling code. The code contained the function below, which determines the 
"next state" for a checkbox: 

I* uCycleCheckBox - -  r e t u r n  t h e  n e x t  s t a t e  f o r  a checkbox. 
* 
* Given t h e  c u r r e n t  s e t t i n g .  uCur, r e t u r n  what t h e  n e x t  
* checkbox s t a t e  shou ld  be. T h i s  f u n c t i o n  hand les  b o t h  
* t w o - s t a t e  checkboxes t h a t  t o g g l e  between 0 and 1, and 
* t h r e e - s t a t e  checkboxes t h a t  c y c l e  t h rough  2, 3, 4 ,  2, . . .  
* I 

uns igned  uCycleCheckBox(unsigned uCur) 

r e t u r n  ( ( uCu r<= l )  ? (uCur?O: l )  : (uCur==4)?2 : (uCur+ l ) ) :  
1 

I've worked with programmers who wouldn't think twice about writ- 
ing uCycleCheckBox using the nested ?: above, but these same programmers 
would switch to COBOL before putting their name on the version below 
that uses explicit I$, even though the code generated by all but the best 
compilers would be nearly, if not actually, identical for the two versions. 
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unsigned uCycleCheckBox(unsigned uCur) 
{ 

unsigned uRet ; 

i f  (uCur <= 1) 
{ 

i f  (uCur != 0 )  I* Handle t h e  0, 1, 0,.  . . cyc le .  * /  
uRet = 0; 

e l  se 
uRet = 1; 

1 
e l  se 
{ 

i f  (uCur == 4 )  I* Handle t h e  2, 3 ,  4. 2. ... cyc le .  * /  
uRet = 2; 

e l  se 
uRet = uCur+l;  

1 
r e t u r n  (uRet ) ;  

1 

And the code of those compilers that do generate better code for the 
nested ?: version isn't that much better. If you have a good compiler that's 
efficient for your target machine, you would get code comparable to this: 

unsigned uCycleCheckBox(unsigned uCur) 
{ 

unsigned uRet ; 

i f  (uCur <= 1) 
E 

uRet = 0; I*  Handle t h e  0, 1, 0. ... c y c l e .  * /  
i f  (uCur == 0 )  

uRet = 1; 
1 
e l  se 
E 

uRet = 2; I* Handle t h e  2 ,  3, 4. 2. ... c y c l e .  * I  
i f  (uCur != 4 )  

uRet = uCur+l;  
1 
r e t u r n  (uRet ) ;  

1 
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Take a good look at the three versions of uCycleCheckBox. Even though 
you know exactly what they're supposed to be doing, how obvious is it 
from the implementations? If I asked you what the return value would be if 
I passed in 3, could you easily see that the answer is 4? I couldn't. For func- 
tions that maintain two simple cycles, these implementations are about as 
clear as the used oil in your car, and about as hard to grasp. 

The problem with the ?: operator is that it's concise and easy to use; it 
appears ideal for producing efficient code, so programmers don't look for 
better solutions. Even worse, programmers will collapse the if version into 
the ?: version to get a "better" solution that isn't better at all. It makes about 
as much sense as exchanging a $100 bill for 10,000 pennies so that you'll 
have more money. If these programmers would take the time to derive an 
alternative algorithm instead of expressing the same one in a slightly differ- 
ent way, they might come up with this straightforward implementation: 

unsigned uCycleCheckBox(unsigned uCur) 
{ 

ASSERT(uCur >= 0 && uCur <= 4 ) ;  

i f  (uCur == 1 )  I* Time t o  r e s t a r t  t h e  f i r s t  c y c l e ?  * /  
r e t u r n  ( 0 ) ;  

i f  (uCur == 4)  I* What about  t h e  second one? * I  
r e t u r n  ( 2 ) ;  

r e t u r n  (uCur+ l ) ;  I* Nope, n o t h i n g  s p e c i a l  t h i s  t ime.  * I  
1 

Or they might come up with this table solution: 

unsigned uCycleCheckBox(unsigned uCur) 
C 

s t a t i c  cons t  uns igned uNex tS ta te [ l  = { 1, 0, 3 ,  4, 2 1; 

ASSERT(uCur >= 0 && uCur <= 4 ) ;  
r e t u r n  (uNex tS ta te [uCur ] ) ;  

1 

By avoiding the nested ?:, you can derive better algorithms instead of 
algorithms that just look better. Compare the table implementation with 
any of the previous implementations. Which is the easiest to understand? 
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Which generates the best code? And which is most likely to be correct the 
very first time? That should tell you something. - 

Avoid using nested ?: operators. - 
Here's an obvious point: If you find that you must support a special case, at 
least try to isolate the code so that the details aren't sprinkled throughout 
the function where a maintenance programmer might later miss them and 
unwittingly introduce bugs. 

Earlier I showed you two implementations for IntToStr. What I didn't 
show you is the way IntToStr is often shown in C programming books- 
although there it's called itoa. The code usually looks something like this: 

v o i d  I n t T o S t r ( i n t  i, char * s t r )  
E 

i n t  i o r i g i n a l  = i; 
char *pch; 

i f  ( i o r i g i n a l  < 0 )  
i = -i; I* S t r i p  i ' s  nega t i ve  s ign .  *I 

I* Der ive  t h e  s t r i n g  i n  reverse  order .  *I 
pch = s t r ;  
d  0 

*pch+k = ( 1  % 10)  + ' 0 ' ;  
w h i l e  ((i I =  10) > 0 ) ;  

I* Don' t  f o r g e t  t h e  ' - '  s ign .  *I 

I* Unreverse t h e  s t r i n g .  *I 

Notice that the two if statements in the code are testing for the same 
special case. My question is why, when, as we saw on page 119, it's so easy 
to wrap the two bodies of code under a single if statement. 



Sometimes repeated tests don't appear in ifstatements, but in the con- 
ditions of for or while statements, as in this other possible implementation of 
the memchr function: 

v o i d  *memchr(void *pv,  uns igned char  ch, s i ze - t  s i z e )  

uns igned  char  *pch = (uns igned  char  * )pv ;  
uns igned char  *pchEnd = pch + s i z e ;  

w h i l e  (pch  < pchEnd && *pch != ch)  
pch++; 

r e t u r n  ( ( p c h  < pchEnd) ? pch : NULL); 
1 

But compare that version to this one: 

v o i d  *rnernchr(void *pv, uns igned char  ch, s i ze - t  s i z e )  
E 

uns igned  char  *pch = (uns igned  cha r  * )pv ;  
uns igned  char  *pchEnd = pch + s i z e ;  

w h i l e  (pch  < pchEnd) 
{ 

i f  ( *pch  == ch)  
r e t u r n  (pch) ;  

pch++; 
1 

r e t u r n  (NULL) ; 
1 

Which looks better to you, the first one, which compares pch to pchEnd 
twice, or the second one, which compares pch to pchEnd only once? Which is 
easier to figure out? And the crucial question: Which is more likely to be 
correct the first time you execute the code? 

By localizing the block range check in the while condition, the second 
version is easier to understand and does exactly what it needs to do, and 
no more. 

Handle your special cases just once. 
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If those last two versions of memchr look correct to you, look again-they 
share the same subtle bug. Do you see it? Here's a hint: What range of 
memory would memchr search when pv points to the last 72 bytes of 
memory and size is also 72? If you said "all of memory, over and over and 
over," you're right. Those versions of memchr go into an infinite loop be- 
cause they use a risky language idiom-and Risk wins. 

A risky language idiom is any phrase or expression that appears to 
work correctly but in fact fails for some specific cases. C is loaded with such 
phrases, and you need to avoid them whenever possible. Here's the risky 
idiom in memchr: 

pchEnd = pch + s i z e ;  

w h i l e  (pch < pchEnd) 

So that pchEnd can be used in the while expression, it is set to point to 
the memory location right after the last character to be searched. While this 
may be convenient for programmers, it works only if such a memory loca- 
tion exists, and if you're searching right up to the end of memory, of course 
the location does not exist. (The one exception to this-if you're using ANSI 
C-is that you can always compute the address of the first element beyond 
the end of a named array. ANSI C requires implementations to support 
this capability.) 

As a first attempt to fix the bug, you might rewrite the code so that it 
tests against the last legal memory location: 

pchEnd = pch + s i z e  - 1; 

w h i l e  (pch <= pchEnd) 

but that doesn't work either. Remember the UCHAR-MAX overflow bug 
we saw earlier in BuildToLowerTable? You have the same bug here. pchEnd 
may now point to a legal memory location, but the loop will never end be- 
cause every time pch is bumped to pchEnd+I/ it overflows. 

The safe way to cover a range when you have both a pointer and a 
counter is to use the counter as the control expression: 
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v o i d  *memchr(void *pv.  unsigned char  ch.  s i z e - t  s i z e )  
( 

unsigned char  *pch = (unsigned char  * ) p v ;  

w h i l e  ( s i z e - -  > 0 )  
( 

i f  ( *pch == ch)  
r e t u r n  (pch)  ; 

p c h t t ;  
1 

r e t u r n  (NULL);  
1 

The code above is not only correct, but may also generate better code 
than the previous versions since it does not have to initialize pchEnd. A com- 
mon belief is that the size- - version will be larger and slower than the 
pchEnd version because size must be duplicated (for the imminent test 
against 0) before it can be decremented. The reality, though, is that the 
size - - version is actually slightly faster and smaller for many compilers; 
the code you get depends on how the compiler allocates the machine 
registers, and in the case of 80x86 compilers, on which memory model you 
use. But either way, the difference in size and speed is so small as to be 
unnoticeable. 

This brings up another language idiom I touched upon earlier. Some 
programmers would urge you to rewrite the loop expression using - -size 
instead of size - -: 

w h i l e  ( - - s i z e  >= 0 )  

The rationale for the change is that writing the expression above 
should never generate worse code than before but may in some cases gener- 
ate slightly better code. The only problem with that advice is that if you 
blindly follow it, bugs will swoop down on your code like vultures to a 
carcass. 

Why? 
Well, for starters, the expression never works if size is an unsigned 

value (as it is in memchr) because unsigned values, by definition, will always 
be greater than or equal to 0. The loop will execute forever. Oops. 

The expression doesn't work properly for signed values either. What 
happens if size is an int and enters the loop with the most negative value 
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possible, INT-MIN? size will be predecremented and will underflow, 
causing the loop to execute a large number of times instead of not at all. 
Oops again. 

Using size - - > 0 works correctly no matter how you declare size-a 
subtle but important distinction. 

The only reason programmers use --size >= 0 is to gain some effi- 
ciency, but let's take a look at that rationale for a moment. If you really have 
a speed problem, making such a minuscule improvement would be about 
as effective as cutting your lawn with nail clippers-you can do it, but one 
snip isn't going to show. And if you don't have a speed problem, why take 
the risk? Just as it's not important for every blade of grass to be exactly the 
same length, it's not important that every line of code be optimally efficient. 
What is important is the overall effect. 

For some programmers, the idea of tossing aside any possible effi- 
ciency gain seems almost criminal. But, as you've seen throughout this 
book, the idea is to systematically reduce risk by using safer designs and 
implementations even though they might be slightly less efficient. Users 
won't notice if you slip in a few extra cycles here and there, but they will 
notice the occasional bug you introduce as you try to save those cycles. In 
investment terms, the return doesn't j u s w  the risk. 

Another risky idiom that falls into the category of "wasted efficiency" 
is using bitwise operators to multiply, divide, and mod values by a power 
of 2. For example, the fast version of memset I showed you in Chapter 2 had 
these lines: 

pb = (byte *)longfill((long *)pb. 1 ,  size / 4); 
size = size % 4; 

I'm sure some programmers read that code and thought, "How ineffi- 
cient." Those are the same programmers who would have written the divi- 
sion and the modulo operations using bitwise operators: 

pb = (byte *)longfill((long *)pb, 1 ,  size >> 2); 
size = size & 3; 

Using the bitwise operators is much faster than dividing or mod'ing 
on many machines, but it's also true that dividing or mod'ing an unsigned 
value (such as size) by a perfect power of 2 is such a basic inefficiency- 
along with adding 0, and multiplying by 1-that even the stupidest com- 
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mercial compilers will routinely optimize the expressions for you if that 
will be more efficient for your target machine. There is no reason to hand- 
optimize these unsigned expressions. 

But what about signed expressions? Are the explicit optimizations 
worthwhile for those? Well, they are and they aren't. 

Suppose you have a signed expression such as this one: 

midpoint = (upper + lower) / 2; 

A two's-complement compiler would not optimize the division to a 
shift because shifting a negative value would give you a different result 
than a signed division would. But if you knew that upper+lower was always 
positive, you could rewrite the expression using a shift to get faster code: 

midpoint = (upper + lower) >> 1 ;  

So, yes, explicitly optimizing a signed expression is worthwhile. The 
question, though, is whether shifting is the best way to do it. And the an- 
swer is No. Casting works just as well and is far safer than shifting. Try this 
with your compiler: 

midpoint = (unsigned)(upper + lower) 1 2; 

The idea is not to tell the compiler what to do, but rather to give it the 
information it needs to do optimization for you. By telling the compiler that 
the sum is unsigned, you grant it permission to shift. Compare the cast with 
the shift. Which is easier to understand? Which is more portable? 

Over the years, I have tracked down bugs in which programmers used 
shifts to divide signed values that weren't guaranteed to be positive. I've 
tracked down bugs in which programmers shifted in the wrong direction. 
I've tracked down bugs in which programmers used the wrong shift count. 
I've even tracked down bugs in which programmers introduced prece- 
dence errors by carelessly converting expressions such as a=b+c/4 to 
a=b+c>>2. I don't recall ever tracking down a bug in which a programmer 
meant to divide by 4 and made a mistake typing the characters /and 4 .  

There are many other risky language idioms in C. The best way for 
you to find those that you use is to look at every bug you have and ask 
yourself the question I've given you before: "How could I have prevented 
this bug?" You'll soon develop your personal list of risky idioms to avoid. 



136 WRITING SOLID CODE 

Avoid risky language idioms. - 
Don't Overestimate the Cost 
Microsoft was one of the few companies ready with Macintosh applications 
when Apple introduced the Macintosh in 1984. For obvious reasons, being 
the first out the door with products was good for Microsoft, but there were 
also drawbacks. To release products at the time the Macintosh was intro- 
duced meant that Microsoft had'to develop the products while the Macin- 
tosh itself was still under development. As a result, Microsoft programmers 
sometimes had to use work-arounds to get the software to function cor- 
rectly on the evolving Macintosh. That wasn't a problem until Apple tried 
to do their first major upgrade to the Macintosh operating system and 
found that their seemingly innocent changes broke Microsoft products. To 
make a long story short: Apple asked Microsoft to remove the outdated 
work-arounds and conform to the final operating system as described in 
their Inside Macintosh volumes. 

Removing one of the work-arounds in Microsoft Excel meant rewrit- 
ing a critical hand-optimized assembly language routine, and the rewrite 
added 12 cycles to the code. Since the routine was critical, a drawn-out de- 
bate went on about whether the function should be updated. It was a battle 
between those who wanted to conform and help Apple out and those who 
wanted to keep the speed. 

Finally, one of the programmers put a temporary counter into the 
function and ran Excel's three-hour torture test to see how many times the 
function was actually called. The number was high: about 76,000 times. But 
even with that large number of calls, rewriting the function and executing 
the 12 extra cycles 76,000 times would have extended the three-hour test by 
a mere tenth (0.1) of a second, and that was assuming that you ran the test 

1 on Apple's slowest Macintosh. With these findings, the code was changed. 
This is just another example which demonstrates that worrying about 

local efficiency is rarely worthwhile. If you're concerned about efficiency, 
focus on global and algorithmic efficiency, where you might see significant 
results for your efforts. 
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THE 

Take a look at the code below, which contains one of the easiest kinds of 
bugs to keep out of your code: a precedence bug. 

word = h igh<<8 + low:  

The code is supposed to pack two 8-bit bytes into a 16-bit word, but 
because the + operator has a higher precedence than the shift operator, 
that's not what the code does-it shifts high by 8ilow. The bug is under- 
standable because programmers don't normally mix the bitwise and arith- 
metic operators. But why mix bitwise and arithmetic operators when it's 
just as easy to stick with one type or the other? 

word = h igh<<8  I low;  / *  b i t w i s e  s o l u t i o n  * I  

word = h igh*256  + low;  / *  a r i t h m e t i c  s o l u t i o n  * /  

Are these examples ziny harder to understand than the first? Are they 
any less efficient than the first? Of course not. But there's one big difference: 
Both of these solutions are correct. 

When programmers write expressions that contain just one kind of 
operator, they have a better chance of writing bug-free code because intu- 
itively they know the precedence order within each group of operators. 
Sure, there are exceptions, but as a rule it's true. How many programmers 
do you know who would write 

m i d p o i n t  = upper + 1 ower 1 2; 

and expect the addition to happen before the division? 
Programmers don't seem to have much trouble remembering the pre- 

cedence order of the bitwise operators either-I suspect because memories 
of their Logic 101 courses linger on, where they played with functions like 
f (A,B,C )=AB+c. Most programmers know that the order from high to low 
is -, &, and then /, and it doesn't take much extra thought to squeeze the 
shift operators between - and &. 



138 WRITING SOLID CODE 

Programmers tend to know the precedence order within groups of 
operator types, and it's not until they start mixing operator types that they 
run into trouble. So the first guideline is Don't mix operator types ifyou don't 
have to. The second guideline is lfyou must mix operator types, use parentheses 
to isolate those operations. 

You've already seen how the first guideline can protect you from 
bugs. You can see how the second guideline protects you by taking another 
look at the while loop we saw in the first exercise in Chapter 1: 

w h i l e  ( c h = g e t c h a r O  != EOF) 

The loop mixes an assignment operator with a comparison operator 
and introduces a precedence bug. You could fix the bug by rewriting the 
loop without mixing operators, but the result looks terrible: 

d 0 

ch = g e t c h a r 0 ;  
i f  ( c h  == EOF) 

b reak ;  

} w h i l e  (TRUE) ; 

In this case, it's better to ignore the first guideline and instead apply 
the second by separating the operations with parentheses: 

w h i l e  ( ( c h = g e t c h a r O )  != EOF) 

Don't needlessly mix operator types. I f  you 
must mix operators, use parentheses to 

isolate the operations. - 
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Don't Look I t  Up! 
When it comes to inserting parentheses, some programmers will turn 

to a precedence table to see whether they're necessary, and if not, they'll 
leave them out. If you're one of those programmers, tape this message to 
your monitor: If you have to look it up, the code is not obvious; make it obvious. 
If that means inserting parentheses where technically they may not be 
needed, so what? Don't just be right-be obviously right so that nobody 
has to look it up. This guideline is good for more than parentheses. It's 
worth thinking about anytime you have to look up a nit-picky detail. 

DON'T ASSOCIATE WITH FAILURES 
In Chapter 5, I pointed out that if your functions return errors it's easier for 
programmers to mishandle or ignore those error conditions. I suggested 
that you simply design your functions so that they don't return errors. In 
this chapter, I'm going to turn that around and say, Don't call functions that 
return errors. That way, you won't mishandle or ignore an error condition 
returned by somebody else's function. Sometimes you have no choice, and 
in those cases, be sure to walk through your error handling code in a 
debugger to be sure it works. 

There is one bit of advice I want to stress: If you repeatedly handle the 
same error condition throughout your program, isolate that error handling. The 
simplest approach, the one every programmer already knows about, is to 
localize error handling in a subroutine. That works fine, but in some cases 
you can do even better. 

Suppose that Character Windows had code to rename a window in 
half a dozen spots. The code below changes the window title if it can grab 
enough memory to hold the new title; otherwise, it keeps the current title 
and tries to handle the error condition somehow. 

if (fResizeMemory(&pwnd->strWndTitle, strlen(strNewTitle)+l)) 
strcpy(pwnd->strWndTi tle. strNewTi tle); 

el se 
I* Unable to allocate space for the window title ... * I  
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But the question is How do you handle the error? Do you alert the 
user? Ignore the request and silently keep the old title? Copy a truncated 
version of the new title on top of the current one? Hmm. None of those solu- 
tions is ideal, particularly if the code is part of a general subroutine. 

This is one of those cases in which you just don't want the code to 
fail-ever. You always want to be able to rename a window. And you can. 

The problem with the code above is that you're not guaranteed to 
have enough memory for the new window title. But that's easy to guarantee 
if you're willing to over-allocate the title memory. For instance, in a typical 
Character Windows application, there are only a handful of windows that 
you would ever rename, and none of those windows' titles takes much 
memory, even at maximum length. Instead of allocating just the memory 
you need for the current title string, allocate enough memory to hold the 
longest possible title. Renaming a window then becomes as simple as a 
string copy: 

Better still, you could hide the implementation in a RenameWindow 
function and use assertions to verify that the allocated title memory is large 
enough to hold any possible title: 

v o i d  RenameWindow(window *pwnd, char  *strNewT 

A S S E R T ( f V a l i d W i n d o w ( p w n d ) ) ;  
ASSERT(strNewTit1e != NULL); 

The obvious drawback to this approach is that you waste memory. But at 
the same time, you regain code space because you don't need any error han- 
dling code. Your job is to weigh data-space against code-space and decide 
which is more important in each case you run across. - 

Avoid calling functions that return errors. - 
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A SLAP ON THE RISK 
By now, you should have a good idea of what I meant when I said that 
programming is "risky business." All of the points in this chapter focus on 
trading in a risky coding practice for one that produces results comparable 
in size and speed but less error-prone. 

But don't stop with these points. Pull out your listings and take a hard 
look at the way you code. Did you think through all your coding habits, or 
did you adopt them because you saw other programmers using them? En- 
try level programmers often think shifting to divide is a "trick," and experi- 
enced programmers think it's perfectly obvious and have no qualms about 
doing it. But should they? Who is really right here? 

QUICK REVIEW 

Choose your data types carefully. Even though the ANSI stan- 
dard requires all implementations to support chars, ints, longs, 
and so on, it does not concretely define those types. Protect your- 
self from bugs by relying only on what the ANSI standard spe- 
cifically guarantees. 

Remember that it's possible for your algorithm to be correct but 
still have bugs because of less-than-ideal characteristics of the 
hardware it runs on. In particular, always check that your calcu- 
lations and tests don't overflow or underflow your data types. 

Be faithful to your design. The easiest way to introduce subtle 
bugs is to cheat on the implementation. 

Every function should have one well-defined task, but more 
than that, it should have only one way to accomplish that task. If 
the same code executes regardless of the inputs, you decrease 
the odds of having undetected bugs. 

An ifstatement is a particularly good warning sign that you may 
be doing more work than necessary. Strive to eliminate every 
unnecessary if statement in your code by asking yourself, "How 
can I change my design to remove this special case?" Sometimes 
you may have to alter your data structures, and at other times 
you may have to alter the way you view them. Remember, is the 
lens concave or convex? 
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Don't forget that if statements are sometimes disguised as con- 
trol expressions in while andfor loops. The ?: operator is another 
type of if statement. 

Be wary of risky language idioms-always keep an eye out for 
comparable but safer idioms. Pay particular attention to coding 
tweaks that supposedly give you better performance. Since it's 
rare for an implementation tweak to have any noticeable effect 
on overall efficiency, the extra risk is rarely worth the trade-off. 

When you write expressions, try not to mix different types of 
operators. If you must mix operators, use parentheses to sepa- 
rate the operations. 

The special case of special cases is error handling. If possible, 
avoid calling functions that can fail. But if you must call a func- 
tion that can return an error, try to localize the error handling- 
this will increase your chances of finding bugs in the error 
handling code. 

In some cases, it's possible to eliminate general error handling by 
guaranteeing that what you want to do can't fail. That may mean 
handling the error once during initialization, or it may mean 
changing your design. 

What is the portable range of a "plain" 1-bit bit field? 

How are functions that return boolean values like "plain" 1-bit 
bit fields? 

At one point I changed AddChild to use pwndDisplay instead of 
pwndRootChildren. Instead of using pwndDisplay, which points to 
an allocated window structure, I could have declared a global 
window structure, wndDisplay. Although that would have worked, 
why do you think I didn't take that approach? 

Occasionally a programmer will ask whether, for efficiency, he 
or she should take a loop like 
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w h i l e  ( e x p r e s s i o n )  
C 

A ;  
i f  ( f )  I* f i s  a  c o n s t a n t  exp ress i on .  *I 

' B ;  
e l  se 

C ; 
D: 

1 

and rewrite it as 

i f  ( f )  
w h i l e  ( e x p r e s s i o n )  
E 

A ;  
B ;  
D ;  

1 
e l  se 

w h i l e  ( e x p r e s s i o n )  
E 

A ;  
C; 
D  ; 

1 

where A and D represent collections of statements. The second 
version will be faster, but how risky is it compared to the first 
version? 

If you read the ANSI standard, you'll find functions that have 
several nearly identical arguments-for example, 

i n t  s t r cmp(cons t  char  *sl, c o n s t  cha r  *s2 ) ;  

Why is using such similar names risky? How could you eliminate 
the risk? 

I've shown why it's risky to use loop conditions such as 

w h i l e  (pch++ <= pchEnd) 

But why is it risky to use similar countdown loops? 

w h i l e  ( p c h - -  >= p c h s t a r t )  
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7. For efficiency or brevity, some programmers take the shortcuts 
below. Why should you avoid them? 

a. Using prinflstr); instead of printf("%sl', sty); 

b. Using f = 1 -f; instead off = !j 

c. Using multiple assignments as in 

i n t  ch ;  I* ch *must*  be an i n t .  * I  

instead of using two separate assignment statements. 

8. tolower, uCycleCheckBox, and the disassembler in Chapter 2 use 
table-driven algorithms. What are the pros and cons of using 
such tables? 

9. Assuming that your compiler does not automatically use bitwise 
operators for unsigned power-of-2 math, why, besides the risk 
and nonportability issues, should you still avoid using shifts and 
&s in explicit optimizations? 

10. One of the golden rules in programming is Nmer lose the user's 
data. Suppose that in order to save a user's file, you had to suc- 
cessfully allocate a temporary data buffer. How could you en- 
sure that it would be possible to save the user's data even in low 
memory situations? 

PROJECT: Make a list of all the risky language features you can think 
of-falling through switch cases, arbitrary gotos, evaluating the 
same macro argument more than once, and so on-and write 
down the pros and cons of using the feature. Next, for each item 
on your list, decide under what conditions you're willing to ac- 
cept the risk and use the feature. 



'1 REACHERIES OF 
THE'f RADE 

When you write a mystery novel, you want every page to grip the reader. 
You want to evoke surprise, fear, suspense in the reader. If you wrote, 
"Someone walked up and stabbed Joe," you'd put your reader to sleep. For 
the reader to remain interested, you'd have to make her feel Joe's fear with 
each footstep behind him. you'd have to make her experience Joe's pound- 
ing heart as the steps got slowly closer. You'd have to raise in the reader a 
feeling of panic, like Joe's, as the pace of the footsteps picked up. Most im- 
portant, you'd have to keep the reader wondering: Will Joe get away? 

Using surprise and suspense in a mystery novel is critical, but using 
them in code is terrible. When you write code, the "plot" should be so obvi- 
ous and boring that other programmers know well in advance what's going 
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to happen. If your code has to have someone walk up and stab Joe, then "So 
and So walked up and stabbed Joe" is exactly what you want. It's short, it's 
clear, and it tells you everything you need to know. 

But for some reason, programmers resist writing code that is obvious 
and boring. The urge to use tricks, to be clever, to do things out of the ordi- 
nary, seems to be overpowering. 

In this chapter we'll look at a few coding styles that don't result in 
straightforward, boring code. The examples are clever, tricky, and anything 
but obvious. And, of course, they all cause subtle bugs. 

THE NEED FOR SPEED 
Here's the bug-free version of memchr we saw in the last chapter: 

v o i d  *rnemchr(void *pv,  uns igned  c h a r  ch,  s i z e - t  s i z e )  
E 

uns igned  c h a r  *pch = ( u n s i g n e d  c h a r  * ) p v :  

w h i l e  ( s i z e - -  > 0 )  
E 

i f  ( *pch  == c h )  
r e t u r n  ( p c h ) ;  

pch++; 
1 

r e t u r n  (NULL); 
1 

One of the games most programmers play is the "How can I make this 
code even faster?" game. That's not a bad game to play, but, as we've 
seen throughout this book, it can have unexpected results if you take it to 
extremes. 

If you played that game with the memchr code above, you'd ask your- 
self, "How can I speed up the loop?" There are only three possibilities: Re- 
move the size check, remove the character test, or remove the pointer 
increment. It may seem impossible to remove any of those steps, but you 
can-if you're willing to chuck traditional coding practices and try some- 
thing daring. 

Take a look at the size check. You need that check only so that you can 
return NULL if you don't find ch in the first size bytes of memory. To remove 
the check, you simply guarantee that you can always find ch, and you can 
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guarantee that by storing ch at the tail of the memory run, where you know 
it will be found in the "not found" case: 

v o i d  *memchr(void *pv, unsigned char ch. s ize- t  s i z e )  
{ 

unsigned char *pch = (unsigned char * )pv ;  
unsigned char *pchPlant ;  
unsigned char  chSave: 

I* pchPlan t  p o i n t s  t o  t h e  f i r s t  cha rac te r  f o l l o w i n g  
* t h e  memory run  t h a t  memchr i s  searching.  P l a n t  
* ch a t  t h a t  l o c a t i o n  so t h a t  memchr i s  guaranteed 
* t o  f i n d  ch even i f  i t  i s  n o t  i n  t h e  run.  
* I 

pchPlan t  = pch + s i z e ;  

chSave = *pchPlant ;  I* Save t h e  o r i g i n a l  char .  *I 
*pchPlan t  = ch; 

w h i l e  (*pch != ch) 
pch++; 

*pchPlant  = chSave; I* Now p u t  t h e  o r i g i n a l  back. *I 

r e t u r n  ( (pch  == pchPlan t )  ? NULL : pch) ;  
1 

Clever, right? By blotting out the character that pchPlant points to, you 
guarantee that memchr will find ch, and that allows you to remove the size 
check, doubling the speed of the loop. 

But is it robust? Is it solid? 
memchr may look robust in this new incarnation, particularly since it 

meticulously preserves the character that it changes, but this version of 
memchr has more problems than Batman has gadgets. For starters, think 
about these points: 

If pchPlant points to read-only memory, storing ch at *pchPlant 
will have no effect and the function will return an invalid pointer 
if it can't find ch in the first size+l characters. 

If pchPlant points to memory-mapped I/O, storing ch at 
*pchPlant could cause any weird interaction, from making 
floppy disks stop (or start) spinning to making factory robots go 
berserk with their welding torches. 
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If pch points to the last size bytes of RAM,  both pch and size will 
be legal, but pchPlant will point to nonexistent or write-protected 
memory. Storing ch at *pchPlant could cause a memory fault, or 
it could quietly do nothing and the function would fail if ch 
weren't in the first size+l characters. 

If pchPlant points to data shared by concurrent processes, one 
process storing ch at *pchPlant could garble memory that an- 
other process might need to reference when it switches into 
context. 

The last possibility is particularly troublesome because there are so 
many ways in which you can crash your system if you have concurrent pro- 
cesses. What if you call memchr to search a block of memory that you've 
allocated and it garbles one of your memory manager's data structures? If a 
concurrent process-a code thread or an interrupt routine, say-then 
switches into context, it had better not invoke the memory manager because 
the system may crash. What if you call memchr to scan a global array and it 
steps on an adjacent variable used by another task? Or what if two instances 
of your program try to search shared data in parallel? Any number of sce- 
narios can kill your program. 

Of course, you probably won't realize that the optimized memchr 
causes subtle bugs, because unless it modifies critical memory, it will ap- 
pear to work fine. But when functions such as the optimized memchr do 
cause bugs, isolating those bugs is about as easy as finding your contact lens 
in the middle of a sandstorm: After all, the process executing memchr will 
work fine; it's the other process-the one with mangled memory-that will 
crash. And you'll have no reason to suspect that memchr is the culprit. 

If you've ever wondered what those $50,000 in-circuit emulators are 
for, now you know-they keep a record of every cycle, every instruction, 
and every piece of data the computer references up to the point of a crash. It 
may take you days to wade through an emulator's output, but if you're per- 
sistent and you don't go blind staring at the reams of output, you should 
find the bug. 

But why go through all that pain and effort? The alternative is so 
much easier: Don't reference memory that you don't own. And note: "Refer- 
ence" means reading as well as writing. Reading unknown memory may 
not cause weird interactions with other processes, but such references can 
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stop your program in its tracks if you reference protected memory, nonex- 
istent memory, or memory-mapped I/O. - 

Don't reference memo y 
that you don't own. 

A THIEF WITH A KEY IS STILL A THIEF 
Curiously enough, I know programmers who would never reference 
memory they didn't own but who would feel just fine writing code like the 
FreeWindowTree routine below: 

v o i d  FreeWindowTree(window *pwndRoot) 
E 

i f  (pwndRoot != NULL) 
( 

window *pwnd; 

I* Release pwndRootls c h i l d r e n  ... * /  
pwnd = pwndRoot->pwndChild; 
w h i l e  (pwnd != NULL) 
{ 

FreeWindowTree(pwnd); 
pwnd = pwnd->pwndSi b l  i ng ; 

I 

if (pwndRoot->strWndTi t le  != NULL) 
FreeMemory(pwndRoot->st rWndTi t le) ;  

FreeMemory(pwndRoot); 
1 

1 

Take a look at the while loop. Do you see the problem with it? As 
FreeWindowTree releases each child window in the linked list of siblings, it 
first frees pwnd and then references the freed block in the line 

pwnd = pwnd->pwndSibl ing 

But what is the value of pwnd ->pwndSibling once pwnd has been freed? 
It's garbage, of course, but some programmers don't accept that. The 
memory wasn't garbage a moment ago, and they haven't done anything to 



150 WRITING SOLID CODE 

affect it; therefore, they think, it should still be valid. They haven't done 
anything, that is, but release it. 

I've never understood why some programmers believe it's permis- 
sible to reference memory they have released. How is that different from 
using a spare key to enter an apartment you once lived in, or to drive off in 
a car you once owned? You can't safely reference freed memory because as 
I pointed out in Chapter 3, the memory manager may use that storage for 
free chains or for other private information. 

The Privileges of Data 
You may not see it in any programming manuals, but every piece of data in 
your code has implied read and write privileges associated with it. The 
privileges aren't blatantly announced; they're not emblazoned across the 
front of every variable you declare. Rather they're implied by the designs of 
your subsystems and your function interfaces. 

For example, there is an implicit covenant between a programmer 
who calls a function and a programmer who writes a function that in effect 
declares, 

If I, the Caller, pass you, the Callee, a pointer to an input, you agree to 
treat that input as if it were constant and promise not to write to it. 
Furthermore, if I pass you a pointer to an output, you agree to treat the 
output as a write-only object and promise never to read from it. Fi- 
nally, whether the pointer is to an input or to an output, you agree to 
restrict your references to the memory required to hold that input or 
output. 

In return, I, the Caller, agree to treat read-only outputs as if they were 
constant and promise never to write to them. I further agree to restrict 
references to those outputs to the memory required to hold them. 

In other words, "Don't mess with my stuff, and I won't mess with 
yours." Remember this: Any time you violate an implied read or write 
privilege, you risk breaking code written by programmers who believed 
that every programmer would honor the agreement. A programmer who 
calls a function such as memchr should not have to worry that memchr may 
behave erratically in uncommon scenarios. 
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Don't reference memory 

that you have freed. - 
In the last chapter, I presented an implementation for the UnsToStr func- 
tion. It looked like this: 

I* UnsToStr  - -  c o n v e r t  an u n s i g n e d  v a l u e  t o  a  s t r i n g .  *I 

v o i d  UnsToSt r (uns igned  u .  c h a r  * s t r )  
{ 

c h a r  * s t r S t a r t  = s t r ;  

d  0 
* s t r + +  = ( U  % 1 0 )  + ' 0 ' ;  

w h i l e  ( ( u  I= 1 0 )  > 0 ) :  
* s t r  = ' \ 0 ' ;  

The code above is a straightforward implementation of UnsToStr, but 
no doubt there are programmers who feel uncomfortable with it because 
the code derives digits in reverse order, requiring a call to ReverseStr to reor- 
der the digits. That seems wasteful. If you're going to derive the digits in 
reverse order, why not build the string backwards and eliminate the need 
for ReverseStr? Why not, indeed: 

v o i d  UnsToSt r (uns igned  u, c h a r  * s t r )  
{ 

c h a r  *pch; 

I* u o u t  o f  range?  Use U longToSt r  . . .  *I 
ASSERT(u <= 65535) ;  

I* S t o r e  t h e  d i g i t s  i n  s t r  f r o m  back t o  f r o n t .  S t a r t  
* s t o r i n g  t h e  d i g i t s  deep enough i n t o  t h e  s t r i n g  t o  
* h o l d  t h e  l a r g e t  p o s s i b l e  v a l u e  f o r  u. 
* I 

(con tinuen) 
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pch = & s t r [ 5 ] ;  
*pch  = I \ @ ' ;  

d 0 

* - - p c h  = ( U  % 10)  + ' 0 ' ;  
w h i l e  ( ( u  /= 10)  > 0 ) ;  

Some programmers feel more comfortable with this code because it's 
more efficient and easier to understand. UnsToStr becomes more efficient 
because strcpy (which you still need) is faster than ReverseStr, particularly 
for compilers that can generate the "call" as a few inline instructions. The 
code is easier to understand because C programmers are familiar with strcpy. 
When programmers see ReverseStr, they stumble for a moment much the 
way people do when they hear that a friend in the hospital is "ambulatory." 

What's the catch? Why am I telling you this if UnsToStr is now so per- 
fect? Well, it's not perfect. In fact, the new UnsToStr has a serious flaw. 

Tell me, how much memory does the str parameter point to? You 
don't know. But that's not unusual for C interfaces. The unspoken rule be- 
tween the caller and the implementor is that str will point to enough 
memory to hold the textual representation for u. But this optimized 
UnsToStr assumes that str points to enough memory to convert the largest 
possible value for u when that may not be the case. What if the caller wrote 

D i  s p l  ayScore(  
{ 

c h a r  s t rScoreC31 ;  I* U s e r s c o r e  i s  f r o m  0 t h r o u g h  25. * I  

Since UserScore will never generate a string longer than three charac- 
ters (two digits plus the nu1 character), it's perfectly reasonable for a pro- 
grammer to define strScore as a 3-character array. UnsToStr, however, will 
assume that strScore is a 6-character array and destroy the 3 bytes of 
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memory following strscore. In the Displayscore example above, UnsToStr 
would typically-if you're using a machine with a down-growing stack- 
destroy the frame back-pointer or the return address to DisplayScore's caller 
or maybe both. You'd notice that problem since your machine would likely 
crash. But if strScore weren't the only local variable, you might not notice 
that UnsToStr was mangling the variable that follows strScore in memory. 

I'm sure there are programmers who will argue that it's risky declar- 
ing strScore to be "just big enough" to hold the longest string that it needs. 
This is risky, but only because of programmers who write code like this last 
version of UnsToStr. It's not necessary to be this tricky when you can imple- 
ment UnsToStr efficiently and safely by building the string in a local buffer 
and then copying the finished product to str: 

v o i d  UnsToStr (uns igned u, cha r  * s t r )  

cha r  s t r D i g i  tsC61 ; I* c o n v e r s i o n  b u f f e r  * I  
cha r  *pch; 

I* u o u t  o f  range? Use UlongToStr  ... * /  
ASSERT(u <= 65535);  

I* S t o r e  t h e  d i g i t s  i n  s t r D i g i t s  f r om  back t o  f r o n t .  *I 
pch = & s t r D i g i  tsC51; 
*pch = ' \ 0 ' ;  
d 0 

* - - p c h  = ( u  % 10)  + ' 0 ' ;  
w h i l e  ( ( u  I= 10)  > 0 ) ;  

You need to remember that, unless they are defined otherwise, point- 
ers such as str don't point to memory you can use as workspace buffers. 
Pointers such as str are outputs that for efficiency's sake are passed by refer- 
ence instead of by value. 

Don't use output memo y as 
works pace buffers. 
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Of course, some programmers think that even calling strcpy in UnsToStr is 
too inefficient. After all, UnsToStr just created the output string. Why copy 
it to another buffer when you can save cycles by returning a pointer to the 
string you already have? 

char  *s t rF romUns(uns igned  u )  
E 

s t a t i c  c h a r  * s t r D i g i t s  = " ? ? ? ? ? " ;  I* 5  c h a r s  + ' \ 0 '  *I 
c h a r  *pch; 

I* u  o u t  of range? Use U longToSt r  ... * I  
ASSERT(u <= 65535) ;  

I* S t o r e  t h e  d i g i t s  i n  s t r D i g i t s  f r o m  back t o  f r o n t .  *I 
p c h  = & s t r D i g i t s [ 5 ] ;  
ASSERT(*pch == ' \ 0 ' ) ;  
d  0 

* - - p c h  = ( u  % 1 0 )  + ' 0 ' ;  
w h i l e  ( ( u  I= 10)  > 0 ) ;  

r e t u r n  ( p c h ) ;  
1 

This code is nearly identical to the version of UnsToStr we saw in the 
last section, except that strDigits is declared to be static so that it will remain 
allocated even after strFromUns returns. 

But imagine this: You have to implement a function in which you need 
to convert two unsigned values to strings, and you write 

What's wrong with that? Well, by calling strFrornLlns to convert Score, 
you destroy the string that strHighScore points to. 

You could argue that the bug is in the code that calls strFrornLlns and 
not in strFromLlns itself, but remember what we talked about in Chapter 5: 
It's not enough that functions work correctly; they must also prevent pro- 
grammers from making obvious mistakes. I would argue that at the very 
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least strFromUns has an interface bug because you and I both know that 
some programmers will make the mistake above. 

Even if programmers are aware of the fragile existence of 
strFromUns's strings, they can still introduce bugs without realizing they're 
doing it. Suppose a programmer calls strFromUns and then calls another 
function which, unbeknownst to her, also calls strFrornUns and destroys her 
string. Or suppose there are multiple code threads and one code thread calls 
strFrornUns, wiping out a string still in use by another thread. 

But even those threats are minor compared to the bomb ticking in 
strFrornUns, a bomb that will surely explode as your project evolves. If you 
decide to insert a call to strFromUns into one of your functions: 

You must ensure that none of your callers (and callers to your 
callers, and so on) is still using a string that strFromUns returned 
to it. In other words, you must verify that no function in any of 
the possible call chains to your function assumes that 
strFromUns's private buffer is preserved. 

You must also ensure that you don't call any functions that call 
strFromUns, destroying a string that you still need. Of course, 
that means that you can't call a function that calls a function (and 
so on) that calls strFrom Uns. 

A Global Problem 
The strFromUns example illustrates the dangers you face when you return 
data through a pointer to static memory. What the example doesn't show is 
that the same hazards exist any time you pass data in a nonlocal buffer. You 
could rewrite strFromUns so that it builds the numeric string in a global 
buffer, or even in a permanent buffer that you allocate at program startup 
using malloc, but that wouldn't defuse strFromUns because programmers 
could still call the function twice in a row and the second call would destroy 
the string returned by the first call. 

The rule of thumb is Never pass data in global bufers unless you absolutely 
have to. You can avoid the entire problem if you force the calling function to 
provide a pointer to the output buffer. 
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If you insert a call to strFromUns into one of your functions without 
performing these two checks, you risk introducing a bug. That's bad 
enough. Imagine how much more difficult it is to adhere to those two condi- 
tions as programmers fix bugs and add new features. Every time they 
change a call chain to your function, or modify functions that your code 
calls, maintenance programmers must reverify the two conditions. But do 
you think they will? Hardly. Those programmers won't even realize that 
they should be verifying those conditions. After all, they're just fixing bugs, 
rearranging code, and adding features; what does that have to do with 
strFromUns, a function they may never have used or even seen? 

Functions such as strFromUns cause bugs again and again because 
their very design makes it easy to introduce bugs as programs are main- 
tained. And of course, when programmers isolate a strFromUns class of bug, 
the bug is not in strFromLlns but in code that uses strFromUns incorrectly. 
Instead of fixing the true problem by rewriting strFromUns, programmers 
fix the specific bug and leave strFrornUns in the program, ticking away. . . . - 

Don't pass data in static (or global) 
memo y. - 

Passing data in public buffers is risky, but you can get away with it if you're 
careful and a bit lucky. But writing parasitic functions that rely on the inter- 
nal workings of other functions is not only risky, but also irresponsible: If 
you change the host function, you kill the parasite. 

The best example I know of a parasitic function is from, of all places, a 
widely ported, widely promoted standard implementation of the FORTH 
programming language. In the late 1970s and early 1980s, the FORTH Inter- 
est Group tried to stimulate interest in the FORTH language by providing 
public domain implementations of the FORTH-77 standard. Those FORTH 
implementations defined three standard functions: FILL, which filled a 
block of memory with a byte; CMOVE, which copied memory using a head- 
to-head algorithm; and <CMOVE, which copied memory using a tail-to-tail 
algorithm. CMOVE and <CMOVE were specifically defined as "head-to- 
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head" and "tail-to-tail" moves so that programmers would know which 
function to use when they needed to copy overlapping memory blocks. 

In the FORTH implementations, CMOVE was written in optimized 
assembly language, but for portability, FILL was written in FORTH itself. 
The code for CMOVE (translated into C here) was what you would expect: 

I* CMOVE - -  move memory us ing  a  head- to-head move. *I 

v o i d  CMOVE(byte *pbFrom. b y t e  *pbTo, s i ze - t  s i z e )  
{ 

w h i l e  ( s i z e - -  > 0 )  
*pbTo++ = *pbFrom++; 

1 

But the implementation for FILL was surprising: 

I* FILL  - -  f i l l  a range o f  memory. *I 

v o i d  F I L L ( b y t e  *pb,  s i z e - t  s i z e ,  b y t e  b )  
{ 

i f  ( s i z e  > 0 )  
{ 

*pb = b: 
CMOVE(pb, pb+l ,  s i z e - 1 ) ;  

I 
I 

FILL calls CMOVE to do its job, which is surprising until you figure 
out how it works. Then the implementation is either "clever" or "gross," 
depending upon your point of view. If you think that FILL is clever, con- 
sider this: FORTH may require that you implement CMOVE as a head-to- 
head move, but what if, for efficiency, you rewrite CMOVE so that it moves 
memory using longs instead of bytes? The answer, of course, is that you 
could write a bug-free, blazing version of CMOVE and break every function 
that calls FILL. To me, that's not clever; that's gross. 

But let's suppose you know that CMOVE absolutely won't change. 
You've even placed an ominous comment in CMOVE warning other pro- 
grammers that FILL relies on its internal workings. That fixes only half the 
problems with CMOVE. 

Suppose you're working on the control code for a simple four-axis fac- 
tory robot, where each axis has 256 positions. A simple design for such a 
robot would be to use 4 bytes of memory-mapped 1 /0  such that each 
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memory location would control a separate axis. To reposition an axis, you 
would write a value from 0 through 255 into its corresponding memory lo- 
cation. To retrieve the current position of an axis (which is especially useful 
while the axis is moving to a new position), you would read a byte from the 
corresponding memory location. 

If you wanted to "home" all four axes to the (0,0,0,0) position, you 
could, in theory, write 

FILL(pbRobotArm, 4 ,  0 ) ;  I* P u t  r o b o t  t o  bed.  * /  

Of course, that code doesn't work given the way FlLL is defined- 
FlLL would write a 0 to the first axis and garbage to the other three axes, 
causing the robot to go wild. Why? If you look at FILL's design, you can see 
that it fills memory by copying the previously stored byte to the current 
byte. But when FlLL reads the first byte-expecting it to be &it reads in- 
stead the first axis's current location, which is probably not 0 since the axis 
won't have moved to position 0 in the fraction of a second between storing 
the 0 and trying to read it back. That location could be any value, sending 
the second axis to some indeterminate spot. Of course, the third and fourth 
axes will be sent to similarly strange positions. 

For FlLL to work correctly, you would have to guarantee that it. could 
read the same value from memory that it just wrote to memory. And you 
can't guarantee that for memory-mapped I/O. 

Assertions Keep Programmers Honest 
If CMOVE had used an assertion to verify that its arguments were valid 
(that is, that the source memory would not be destroyed before being cop- 
ied to the destination), the programmer who wrote FILL would have gotten 
an assertion the first time he tested his code. That would have left the pro- 
grammer with two choices: Rewrite FlLL using a reasonable algorithm, or 
remove the assertion from CMOVE. Fortunately, very few programmers 
would remove CMOVE's assertion just so that FILL's slimy implementation 
would work. 
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But my point is that FILL is wrong because it peeks at the private de- 
tails of another function and abuses that knowledge. That FILL doesn't 
work correctly with anything but RAM is a secondary problem, but it again 
demonstrates that you ask for trouble any time you stray from straightfor- 
ward, boring code. - 

Don't write parasitic functions. 

One of the oldest tricks in home maintenance is to pick up a screwdriver to 
pry the lid off a can of paint and then use the screwdriver as a stir-stick. I 
should know; I have a collection of multicolored screwdrivers. Why do 
people use screwdrivers to stir paint when they know darn well they 
shouldn't? I'll tell you why: because at that moment the screwdriver is con- 
venient, and it works. There are programming tricks that are convenient 
and guaranteed to work and, like those screwdrivers, are not used for their 
intended purpose. 

Take a look at the code below, which uses the result of a comparison 
as part of a computational expression: 

uns igned  a t o u ( c h a r  * s t r ) ;  I* uns igned  v e r s i o n  o f  a t o i  *I 

I*  a t o i  - -  c o n v e r t  an A S C I I  s t r i n g  t o  an i n t e g e r  va l ue .  *I 

i n t  a t o i  ( cha r  * s t r )  
{ 

/ *  s t r  has t h e  f o rma t  " [ w h i t e  s p a c e ] [ + / - ] d i g i t s w .  * /  

w h i l e  ( i s s p a c e ( * s t r ) )  
s t r++;  

/ *  S k i p  t h e  o p t i o n a l  I + '  s i g n  i f  t h e r e  i s  one. *I 
r e t u r n  ( ( i n t ) a t o u ( s t r  + ( * s t r  == * + ' ) ) I ;  

1 
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The code skips an optional leading + sign by adding the result of the 
test ( * s t y  == '+I) to the string pointer. You can write such code because the 
ANSI standard states that the result of any relational operation will be 
either 0 or 1. But what some programmers fail to recognize is that the ANSI 
standard is not a rulebook that tells you what you can and can't do any 
more than the tax code tells you how to do your taxes. In both cases, you can 
adhere to the letter of the law but violate the intent. 

The real problem in this example is not so much in the code as in the 
programmer's attitude. If a programmer feels comfortable using logical 
evaluations in computational expressions, what other shortcuts is he or she 
willing to take? How safe are those? - 

Don't abuse your programming 
language. - 

Standards Change 
When the FORTH-83 standard was released, some FORTH programmers 
found that their code broke. Boolean results that had been defined as 0 and 
1 in the FORTH-77 standard were, for a variety of reasons, changed to 0 and 
-1 in the FORTH-83 standard. Of course, that change broke code that relied 
on "true" being 1. 

FORTH programmers weren't alone. 
UCSD Pascal was quite popular in the late 1970s and early 1980s. If 

you used Pascal on a microcomputer, the odds were good that it was a 
UCSD implementation. Then one day, UCSD Pascal programmers received 
a compiler update, and many found that their code stopped working. The 
compiler writers, for whatever reason, had changed the value for "true." 

Who can say that in some future standard, C won't change? If not C, 
what about C++ or some other derivative language that you may have mi- 
grated to? 



TREACHERlES OF THE TRADE 161 

APL SYNDROME 
Programmers who aren't aware of how C code translates into machine code 
will often try to improve the quality of the machine code by using terse C. 
Their idea is that if you use a minimal amount of C, you should get a mini- 
mal amount of machine code. There is a correlation between the size of your 
C code and the size of the corresponding machine code, but that correlation 
breaks down when you apply it to individual lines of code. 

Do you remember the uCycleCheckBox function from Chapter 6? 

unsigned uCycleCheckBox(unsigned uCur) 
( 

r e t u r n  ( ( u C u r < = l )  ? (uCur?B: l )  : (uCur==4)?2: (uCur+l ) ) ;  
1 

uCycleCheckBox may be terse C code, but as I've already pointed out, it 
generates terrible machine code. And what about the return statement we 
saw in the last section? 

r e t u r n  ( ( i n t ) a t o u ( s t r  + ( * s t r  == ' + ' ) I ) ;  

Adding the result of a comparison to a pointer may generate decent 
code if you use a good optimizing compiler and your target machine can 
generate a 0 / 1  test result without using any branches. If that doesn't de- 
scribe your setup, more likely than not your compiler will internally expand 
the comparison to a ?: operation and generate machine code as though you 
had written the C code below: 

r e t u r n  ( ( i n t ) a t o u ( s t r  + ( ( * s t r  == ' + ' I  ? 1 : 0 ) ) ) ;  

Since a ?: operation is nothing but an if-else statement in disguise, you 
would get worse code than if you had written the obvious, boring, and 
straightforward version: 

if ( * s t r  == I + ' ) '  I* Sk ip  t h e  o p t i o n a l  '+' s i g n .  * /  
s t r++ :  

r e t u r n  ( ( i n t ) a t o u ( s t r ) ) ;  
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Of course, there are other ways to optimize the code. I've seen cases in 
which a programmer took a two-line if statement and "improved" it by re- 
placing the if statement with an I I operator: 

( * s t r  I =  I+') I I  str++; / *  S k i p  t h e  o p t i o n a l  '+ '  s i g n .  * I  
r e t u r n  ( ( i n t ) a t o u ( s t r ) ) ;  

Such code works because of C's rules for short-circuit evaluation, but 
fitting the code onto a single line doesn't guarantee that you'll get better 
machine code than if you used an if statement; you could even get worse 
code using I I if your compiler generated a 0 or a 1 result as a side effect. 

A simple guideline is Use I I for logical expressions, use ?:for conditional 
expressions, and use if for conditional statements. Following this guideline may 
be downright boring, but your code will be more likely to be efficient and 
maintainable. 

If you suffer from the dread "one-line-itis" disease (also known as 
"APL syndrome") in which you constantly use bizarre expressions so that 
your C code will fit on one source line, get into your best yoga position, take 
a deep breath, and start repeating, "It is possible for efficient code to span 
multiple lines. It is possible for efficient code to span multiple lines. . . ." 

__t__ 

Tight C does not guarantee eficien t 
machine code. - 

Some computer experts can't bring themselves to use plain, everyday 
English in their documentation and technical papers. Instead of saying, 
"That bug may hang or crash your system," one of these experts would say, 
"Such a software defect may cause a loss of system control or cause system 
termination." These experts throw around terms like "axiomatic program 
verification" and "defect taxonomies" as though they were part of a pro- 
grammer's everyday vocabulary. Rather than helping readers, such experts 
confuse readers by burying their message in obscure terminology. 

Technical writers aren't alone in this tendency to obfuscate; some pro- 
grammers actually strive to write obscure code, thinking that it is impres- 
sive when it is merely unclear. For example, how does this function work? 
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v o i d  *memmove(void *pvTo, v o i d  *pvFrom, s i z e - t  s i z e )  
{ 

b y t e  *pbTo = ( b y t e  * )pvTo ;  
b y t e  *pbFrom = ( b y t e  * )pvFrom;  

( ( p b T o  > pbFrom) ? t a i l m o v e  : headmove)(pbTo. pb f rom,  s i z e ) ;  

r e t u r n  ( p v T 0 ) ;  
1 

Would you understand the function better if I rewrote it like this? 

v o i d  *memmove(void *pvTo, v o i d  *pvFrom, s i z e - t  s i z e )  
{ 

b y t e  *pbTo = ( b y t e  * )pvTo :  
b y t e  *pbFrom = ( b y t e  *)pvFrom; 

i f  (pbTo > pb f rom)  
t a i l m o v e ( p b T o ,  pb f rom,  s i z e ) ;  

e l  se  
headmove(pbTo, pbFrom. s i z e ) ;  

r e t u r n  ( p v T o ) ;  
1 

The first example may not look like legal C, but it is. And the odds are 
good that your compiler will generate much smaller code for the first ex- 
ample than for the second one. But how many programmers will grasp 
how that first function works? What if they have to maintain that code? 
You're not doing anybody a favor if you write correct, small code that no- 
body can understand. You might as well write the code in hand-optimized 
assembly language. 

Here's another example that confuses many programmers: 

whi  1 e ( e x p r e s s i o n )  
{ 

i n t  i = 33; I* D e c l a r e  l o c a l s .  * /  
c h a r  s t rC201 ;  

/ *  code ... * /  

Quick! Is i initialized each time through the loop, or only the first time 
the loop is entered? Do you know the correct answer without thinking 
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about it? If you're not sure, you're in good company-even expert C pro- 
grammers usually pause for a few moments as they mentally scan C's 
initializer rules. 

What if I tweaked the code slightly? 

w h i l e  ( e x p r e s s i o n )  
E 

i n t  i: I*  D e c l a r e  l o c a l s .  * /  
c h a r  s t r C 2 0 1 ;  

I*  code . . .  * /  

r 

Who Does Maintenance Programming? 
At Microsoft, the amount of new code you write is directly proportional to 
how well you understand the internal workings of the product you're 
working on; the more you know, the more new code you write and the less 
maintenance programming you do. And, of course, if you're at the other 
end of the spectrum and know very little about your project, you spend 
most of your time reading other people's code, fixing other people's bugs, 
and adding small localized enhancements to existing features. That ar- 
rangement makes sense. After all, you can't very well add major features to 
a project unless you already know something about how it is written. 

I 

The downside to that arrangement is that, as a general rule, experi- 
enced programmers write new code and novice programmers maintain 
code. This is a practical arrangement, and it works. But it works only if the 
experienced programmers understand that they have a responsibility to 
write code that maintenance (novice) programmers can maintain. 

Don't misunderstand me. I'm not saying that you should write in 
baby-C so that any novice programmer can understand your code; that 
would be silly. I'm saying that you should avoid writing difficult or arcane 
C when you can use common, everyday language. If you make your code 
easy to understand, novices should be able to maintain it without introduc- 
ing bugs. You also won't have to keep explaining how the code works. 



TREACHERIES OF THE TRADE 165 

Do you have any doubt that i is set to 33 each time through the loop? 
Would any programmer on your team doubt it? Of course not. 

Programmers frequently forget that they have two audiences: the cus- 
tomers who use the code and the maintenance programmers who have to 
update the code. I don't know many programmers who forget about the 
customer, but judging from the code I've read over the years, I get the im- 
pression that programmers do tend to forget about their second audience, 
the maintenance programmers. 

The idea that you should be writing maintainable code is nothing 
new. Programmers know they should be writing such code. Programmers 
don't always realize, though, that if they use language that only C experts 
will understand, their code is not actually maintainable. After all, maintain- 
able code is, by definition, code that maintenance programmers can easily 
understand and modify without introducing bugs. And regardless of 
whether they should be, the maintenance programmers tend to be the new- 
comers to a project, not the experts who have been there awhile. 

Keep those maintenance programmers in mind as you code. - 
Write code for the "average" 

programmer. - 
We've looked at a number of questionable coding practices, many of which 
may look fine at first glance. But as we've seen, the second, or even fifth, 
glance may not alert you to the subtle side effects that tag along with clever 
code. If you find yourself writing code that feels tricky to you, stop and find 
another solution. If your code feels tricky, that's your gut telling you that 
something isn't right. Listen to your gut. If you find yourself thinking of a 
piece of your code as a neat trick, you're really saying to yourself that an 
algorithm produces correct results even though it's not apparent that it 
should. The bugs won't be apparent to you either. 

Be truly clever; write boring code. You'll have fewer bugs, and the 
maintenance programmers will love you for it. 
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If you're working with data you don't own, don't write to it, 
even temporarily. And though you might think that reading 
from data is always safe, remember that reading from memory- 
mapped 1 /0  may be hazardous to your hardware. 

Don't reference memory once you have released it. There are too 
many ways in which referencing free memory can cause bugs. 

It may be tempting, for efficiency, to pass data in global or static 
buffers, but that's a shortcut fraught with dangers. If you write a 
function that creates data useful only to the caller, return the 
data to the caller, or guarantee that you won't unexpectedly 
change that data. 

Don't write functions that rely on the specific implementations 
of other functions. That FILL routine we saw had no business 
calling CMOVE the way it did. Such nonsense is suitable only as 
an example of bad programming. 

When you program, write clear, accurate code by using your 
programming language as it was intended to be used. Avoid 
questionable programming idioms even though the language 
standard happens to guarantee that they will work. Remember, 
standards can change. 

Logically, it would seem that the efficient expression of a con- 
cept in C would result in similarly efficient machine code. It 
doesn't work that way. Before you take a clean multiline piece of 
C code and squash it into something that fits on one line, be sure 
that you're getting better machine code for your trouble. Even 
then, remember that local efficiency gains are rarely noticeable 
and are not usually worth mucking up your code. 

Finally, don't write code the way lawyers write contracts. If an 
average programmer can't read and understand your code, it's 
too complicated; use simpler language. 
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1. C programmers regularly modify the arguments passed to func- 
tions. Why doesn't this practice violate the write privilege for in- 
put data? 

2. I've already talked about the major flaw with the strFromUns 
function below-recall that it returns data in an unprotected 
buffer. That major problem aside, what specifically is risky about 
the declaration of strDigits? 

c h a r  *s t rFrornUns(uns igned u )  
{ 

s t a t i c  c h a r  * s t r D i g i t s  = " ? ? ? ? ? " ;  / *  5 c h a r s  + ' \ 0 '  * /  
c h a r  *pch:  

I* u o u t  o f  range? Use U longToSt r  . . .  * /  
ASSERT(u <= 65535);  

/ *  S t o r e  t h e  d l g i t s  i n  s t r D i g i t s  f r o m  back  t o  f r o n t .  * /  
pch = & s t r D i g i t s [ 5 1 ;  
ASSERT(*pch == '\@'I; 
d 0 

* - - p c h  = ( u  % 10 )  + ' 0 ' ;  
w h i l e  ( ( u  /= 10)  > 0 ) ;  

r e t u r n  ( p c h ) ;  
1 

3. I was once reading some code in a journal when I noticed a func- 
tion that set three local variables to 0 using, of all things, the 
memset function: 

v o i  d Dosomethi ng ( . . . 
E 

. i n t  i; 
i n t  j ;  
i n t  k ;  

mernset(&k. 0. 3 * s i z e o f ( i n t ) ) ;  I* Set  i, j. and k t o  0 .  * /  

Such code may work with some compilers, but why should you 
avoid using this trick? 
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4. Although your computer may have parts of its operating system 
stored in read-only memory, why would you be taking a risk if, 
to avoid unnecessary overhead, you bypassed the system inter- 
faces and called the ROM routines directly? 

5. C has traditionally allowed programmers to pass fewer argu- 
ments to a function than the function expects to receive. Some 
programmers use that feature to optimize calls that don't require 
all the arguments. For instance, 

DoOperat ion(opNegAcc) ;  I* No need t o  pass v a l .  * I  

v o i d  D o O p e r a t i o n ( o p e r a t i o n  op, i n t  v a l  
{ 

s w i t c h  ( o p )  
{ 
case opNegAcc: 

a c c u m u l a t o r  = - a c c u m u l a t o r ;  
b r e a k ;  

case  opAddVal :  
accumul a t o r  += v a l  ; 
b r e a k ;  

Although the optimization works, why should you avoid it? 

6. The following assertion is correct. Why should it be rewritten? 

7. Take another look at the version of memmove that used the code 
below: 

( ( p b T o  > p b f r o m )  ? t a i l m o v e  : headmove)(pbTo, pb f rom,  s i z e ) ;  

How could you rewrite memmove so that it retains the efficiency 
of the code above but is easier to understand? 



TREACHERlES OF THE TRADE 169 

8. The assembly language code below shows a common shortcut to 
calling a function. Why are you asking for trouble if you use this 
practice? 

move r 0  ,#PRINTER 
c a l l  P r i n t + 4  

P r i n t :  move r0,#DISPLAY ; ( 4 - b y t e  i n s t r u c t i o n )  

; r 0  == d e v i c e  I D  

9. The assembly language code below shows another trick that 
pops up every once in a while. The' code suffers from the same 
problems as the code in the previous exercise, relying as it does 
on the internal implementation of the Print code, but why else 
should you avoid this trick? 

i nstCl  earR0 = 0x36A2 ; hex f o r  " c l ea r  r0" i n s t r u c t i o n  

c a l l  P r i n t + 2  ; o u t p u t  t o  t h e  PRINTER 

P r i n t :  move r0 .# i ns tC lea rR0  ; ( 4 - b y t e  i n s t r u c t i o n )  
comp r0.#0 ; @==PRINTER. non-@==DISPLAY 





Throughout this book, I've talked about techniques you can use to detect 
and to prevent bugs. Using these techniques won't guarantee that you'll 
write bug-free code any more than having a team of skillful ball players will 
guarantee that you'll have a winning team. The other necessary ingredient 
is a set of good habits and attitudes. 

Would you expect those ball players to have a winning season if they 
grumbled all day about having to practice? What if they were constantly 
angry because their salary was a meager $1.2 million per year or were al- 
ways worried about being traded or cut? These concerns have nothing to do 
with playing ball, but they have everything to do with how well the players 
perform. 

You can use all of the suggestions in this book to help eliminate bugs, 
but if you have "buggy" attitudes or coding habits that cause bugs, you're 
going to have a tough time writing bug-free code. 
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In this chapter, I'll talk about some of the most common barriers to 
writing bug-free code. All are easily correctable; often all you need to do is 
become aware of them. 

How many times have you asked somebody about a bug they were fixing 
and heard in response, "Oh, that bug went away"? I said that once, many 
years ago, to my very first manager. He asked me if I'd managed to track 
down a bug in the Apple I1 database product we were wrapping up, and I 
said, "Oh, that bug went away." The manager paused for a moment and 
then asked me to follow him into his office, where we both sat down. 

"Steve, what do you mean when you say 'the bug went away'?" 
"Well, you know, I went through the steps in the bug report, and the 

bug didn't show up." 
My manager leaned back in his chair. "So what do you suppose hap- 

pened to that bug?" 
"I don't know," I said. "I guess it already got fixed." 
"But you don't know that, do you?" 
"No, I guess I don't," I admitted. 
"Well don't you think you had better find out what really happened? 

After all, you're working with a computer; bugs don't fix themselves." 
That manager went on to explain the three reasons bugs disappear: 

The bug report was wrong, the bug has been fixed by another programmer, 
or the bug still exists but isn't apparent. His final words on the subject were 
to remind me that, as a professional programmer, it was my job to deter- 
mine which of the three cases described my disappearing bug and to act 
accordingly. In no case was I to simply ignore the bug because it had disap- 
peared. 

That advice was valuable in the days of CP/M and Apple IIs when I 
first heard it, it was valuable in the decades before that, and it's still valu- 
able today. I didn't realize how valuable the advice was until I became a 
project lead myself and found that it was common for programmers to hap- 
pily assume that the testers were wrong or that somebody had already fixed 
the bug in question. 

Bugs will often disappear simply because you and the tester are using 
different versions of the program. If a bug doesn't show up in the code 
you're using, dig up the version the tester was using. If the bug still doesn't 
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show up, n o w  the testing team. If the bug does show up, track it down in 
those earlier sources, decide how to fix it, and then look at the current 
sources to see why the bug disappeared. Very often, the bug still exists but 
surrounding changes have hidden it. You need to understand why the bug 
disappeared so that you can take appropriate steps to correct it. - 

Bugs don't just "go away." - 
Too Much Effort? 
Programmers sometimes grumble when I ask them to drag out older 
sources to look for a reported bug; it seems like a waste of time. If it seems 
that way to you, consider that you're not reverting to earlier sources on a 
whim. You're looking at those sources because there is an excellent chance 
that there is a bug and looking at those older sources is the most efficient 
way to track it down. 

Suppose you isolate the bug in those earlier sources and find that the 
bug has indeed been fixed in the current sources. Have you wasted your 
time? Hardly. After all, which is better, closing the bug as "fixed" or label- 
ing it as "nonreproducible" and sending it back to the testing group? What 
will the testers do then? They certainly can't assume that the bug has been 
fixed-their only two options are to spend additional time trylng to repro- 
duce the bug or to leave it marked as nonreproducible and hope that it was 
fixed. Both options are a lot worse than tracking down the bug in earlier 
sources and closing the bug as "fixed." 

When I first joined the Microsoft Excel group, the, practice was to postpone 
all bug-fixes to the end of the project. It's not that the group had a cast-iron 
scroll staked to a wall that read, "Thou shalt not fix bugs until all features 
have been implemented," but there was always pressure to keep to the 
schedule and knock out features. At the same time, there was very little 
pressure to fix bugs. I was once told, "Unless a bug crashes the system or 
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holds up the testing group, don't worry about fixing it. We'll have plenty of 
time to fix bugs later, after we complete the scheduled features." In short, 
fixing bugs was not a high priority. 

I'm sure that sounds backwards to current Microsoft programmers 
because projects aren't run that way anymore; there were too many prob- 
lems with that approach, and the worst was that it was impossible to pre- 
dict when you would finish the product. How do you estimate the time it 
takes to fix 1742 bugs? And of course, there aren't just 1742 bugs to fix- 
programmers will introduce new bugs as they fix old ones. And (closely 
related) fixing one bug can expose other, latent, bugs that the testing group 
was unable to find because the first bug was getting in the way. 

And those weren't the only problems. 
By finishing the features before fixing the bugs, the developers made 

the product look like it was much further along than it actually was. Impor- 
tant people in the company would use the internal releases, see that they 
worked except for the occasional bug, and wonder why it was taking Devel- 
opment six months to finish a nearly final product. They wouldn't see out- 
of-memory bugs or the bugs in features they never tried. They just knew 
that the code was "feature complete" and that it basically appeared to work. 

Fixing bugs for months on end didn't do much for morale either. Pro- 
grammers like to program, not to fix bugs, but at the end of every project 
they would spends months doing nothing but fixing bugs, often under 
much pressure because it was obvious to everybody outside Development 
that the product was nearly finished. Why couldn't it be ready in time for 
COMDEX, MacWorld Expo, or the local computer club meeting? 

What a mess. 
Then a run of buggy products, starting with Macintosh Excel 1.03 and 

ending with the cancellation-because of a runaway bug list-of an 
unannounced Windows product, forced Microsoft to take a hard look at the 
way it developed products. The findings were not too surprising: 

You don't save time by fixing bugs late in the product cycle. In 
fact, you lose time because it's often harder to fix bugs in code 
you wrote a year ago than in code you wrote days ago. 

4 Fixing bugs "as you go" provides damage control because the 
earlier you learn of your mistakes, the less likely you are to re- 
peat those mistakes. 
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0 Bugs are a form of negative feedback that keep fast but sloppy 
programmers in check. If you don't allow programmers to work 
on new features until they have fixed all their bugs, you prevent 
sloppy programmers from spreading half-implemented features 
throughout the product-they're too busy fixing bugs. If you al- 
low programmers to ignore their bugs, you lose that regulation. 

By keeping the bug count near zero, you have a much easier time 
predicting when you'll finish the product. Instead of trying to 
guess how long it will take to finish 32 features and 1742 bug- 
fixes, you just have to guess how long it will take to finish the 32 
features. Even better, you're often in a position to drop the unfin- 
ished features and ship what you have. 

None of these points is uniquely suited to Microsoft development; 
they are general points that apply to any software development. If you are 
not already fixing bugs as you find them, let Microsoft's negative experi- 
ence be a lesson to you. You can learn through your own hard experience, 
or you can learn from the costly mistakes of others. - 

Don't fix bugs 1ater;fix them now. 

BUG-DOCTOR TO THE RESCUE! 
In his book Awaken the Giant Within, Anthony Robbins tells the story of a 
doctor who is standing beside a raging river when she hears the cry of a 
drowning man. The doctor looks around and seeing nobody else to help, 
jumps into the water. She swims out, brings the drowning man to shore, 
and gives him mouth-to-mouth resuscitation. She no sooner has the man 
breathing again than she hears two more cries from the river. She dives in 
and brings those two ashore. Just as she stabilizes those people, the doctor 
hears four cries for help. Then she hears eight cries for help. . . . Unfortu- 
nately, the doctor is so busy saving people that she has no time to go up- 
stream to find out who is throwing them in. 
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Like that doctor, programmers are sometimes so busy "healing" bugs 
that they never stop to figure out what's causing them. The strFromUns 
function we talked about in Chapter 7 is an example of this problem. The 
strFrqmUns routine causes bugs because it forces programmers to pass data 
in static memory. But when bugs show up, they're downstream in the call- 
ers to strFromUns, not in strFromUns itself. Which buggy routine do you 
think gets fixed, strFromUns-the true source of the bugs--or the functions 
that call strFromUns and wipe out the results of a previous call? 

Another example of this problem occurred when I was porting a Win- 
dows Excel feature to Macintosh Excel. (They were still two independent 
bodies of source code at the time.) After I ported the feature, I began testing 
the code and found a function that was getting an unexpected NULL 
pointer. I looked at the code, but it wasn't clear whether the bug was in the 
caller (passing NULL) or in the function (not handling NULL). I went to the 
original programmer and explained the problem to him. He promptly 
loaded the function into an editor and said, "Oh, that function can't take a 
NULL pointer." Then, as I stood there watching, he fixed the bug by insert- 
ing a "quick escape" if the pointer was NULL: 

i f  ( p b  == NULL)  
return ( F A L S E ) :  

I pointed out that if the function shouldn't be getting a NULL pointer, 
the bug was in the caller, not in the function, to which he replied, "I know 
the code; this will fix it." And it did. But to me the solution felt as if we'd 
fixed a symptom of the bug and not the cause of it, so I went back to my 
office and spent 10 minutes tracking down the source of the NULL pointer. 
Not only was the NULL pointer the true bug, but it also accounted for two 
other known bugs. 

Other times, I've tracked a bug to its source and then thought, "Wait, 
this can't be right; if it is, this function over here would be broken too, and 
it's not." I'm sure you can guess why that other function worked. It worked 
because somebody had used a local fix for a more general bug. 

Fix the cause, not the symptom. 
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"If it ain't broke, fix it anyway" seems to be the battle cry of some program- 
mers. No matter how well a piece of code works, some programmers feel 
compelled to put their mark on it. If you've ever worked with a program- 
mer who reformats entire files to suit his or her tastes, you know what I'm 
talking about. Most programmers are much more conservative than that 
about "cleaning up" code, but all programmers seem to clean up code to 
some degree. 

The trouble with cleaning up code is that programmers don't always 
treat their improved version of the code as if it were new code. There are 
programmers who, while scrolling through a file, might see the code below 
and feel compelled to change the test against 0 to a test against '\O1; others 
might feel compelled to remove the test altogether. 

char  * s t r c p y ( c h a r  *pchTo, char *pchFrorn) 
{ 

char  *pchS ta r t  = pchTo; 

w h i l e  ((*pchTo++ = *pchFrorn++) != 0 )  
{ 1 

r e t u r n  ( p c h s t a r t ) ;  
I 

The problem with changing the 0 to a nu1 character is that it's easy to 
mistakenly type '0' instead of '\Of, but how many programmers would 
bother to test strcpy after making such a simple change? Here's a better 
question: When you make such simple changes, do you thoroughly test the 
code as though it were freshly written? If you don't, you risk introducing 
bugs with those unnecessary changes. 

You might think that some changes couldn't possibly be wrong as 
long as the code still compiles. How could changing the name of a local 
variable, for example, cause problems? Well, it can. I once tracked a bug to a 

function which had a local variable named hPrint that was conflicting with 
a global variable of the same name. Since the function had worked until 
recently, I looked at the older sources to see what had changed and to verify 
that my fix would not reintroduce an earlier bug. What I found was a clean- 
up. The earlier version had a local variable named hPrintl, but no hPrint2 or 
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hPrint3 to justify the '1' in the name. Whoever removed the 'I' probably 
assumed that hPrintl was an artifact from earlier days and cleaned it up, 
causing the name conflict and a bug. 

To keep yourself from making the same kind of clean-up mistake, tape 
yet another message to your monitor: The programmers I work with are not 
bozos. That message should remind you that if you see code that is obvi- 
ously wrong, or clearly unnecessary, you should proceed with utmost cau- 
tion. If the code is that obviously questionable, there is probably a good, but 
nonobvious, reason it's there. I've seen ridiculous code whose only purpose 
was to work around a compiler code-generation bug. Clean up the code, 
and you reintroduce the bug. Of course, such code should have a comment 
to explain what's going on, but not all programmers are that thoughtful. 

If you find code like 

char  chGetNext (vo id )  
{ 

i n t  ch;  I* ch *must* be an i n t .  *I 

ch = g e t c h a r (  1; 
r e t u r n  (chRemapChar(ch));  

1 

don't clean up the function by removing the obviously "unnecessary" ch: 

char  chGetNext (vo id1  
{ 

r e t u r n  ( c h R e m a p C h a r ( g e t c h a r 0 ) ) ;  
1 

If you remove ch, you could introduce a bug if chRemapChar is a macro 
that evaluates its argument more than once. Keep the "unnecessary" local 
and prevent the unnecessary bug. 

Don't clean up code unless the clean- 
up is critical to the product's success. 
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PUT 'TOOL" FEATURES INTO COLD STORAGE 
Refraining from code clean-ups is a specific case of a more general principle 
that results in fewer bugs: Don't write (or change) code ifyou don't have to. That 
may seem like strange advice, but you'd be surprised by how often you can 
drop a feature by asking, "How important is this feature to the success of 
the product?" 

Some features add no value to the product and exist merely to fill out 
feature sets; others exist because large corporate customers ask for them; 
and still others exist because a competitor's product has them and a re- 
viewer somewhere decided to put them on a feature-list chart. If you have a 
good marketing and product planning team, you shouldn't run into any of 
these useless features. But as a programmer, you may run into or even origi- 
nate unnecessary features. 

Have you ever heard a programmer say something like "It would be 
so cool if Wordsmasher could do. . ."? The question, though, is whether the 
feature is "cool" because it would improve the product or because imple- 
menting it would be technically challenging. If the feature will improve the 
product, postpone consideration of it until the next version of your pro- 
gram so that it can be properly evaluated and scheduled. If it is merely chal- 
lenging, kill it. I don't suggest this to stifle creativity; I suggest it to stifle 
needless feature growth and associated bugs. 

Sometimes technically challenging features improve the product; 
sometimes they don't. Choose carefully. - 

Don't implement nonstrategic 
features. - 

"Free" features are another source of unnecessary bugs. On the surface, free 
features seem worthwhile because they fall out of existing designs with 
little or no effort. What could be better than that? But there's one big fat 
problem with free features-they're almost never critical to the success of 
the product. And of course, any noncritical feature is a potential source of 
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bugs. Programmers add free features to a program because they can, not 
because they should. After all, why shouldn't you add a feature if it doesn't 
cost you anything? 

There's the fallacy. Free features may not cost the programmer much, 
but there is more to a feature than code. Somebody has to write documenta- 
tion for the feature. Somebody has to test the feature. And of course some- 
body has to fix any bugs that show up with the feature. 

When I hear a programmer say that a feature is free, that tells me he or 
she has not spent much time thinking about the true costs involved. 

__e__ 

There are no freefeatures. 
__e__ 

Another strategy you can use to prevent bugs is to strip unnecessary flexi- 
bility from your designs. You've seen me use this principle throughout the 
book. In Chapter 1, I used optional compiler warnings to disallow redun- 
dant and risky C language idioms. In Chapter 2, I defined ASSERT as a 
statement to prevent the macro from being mistakenly used in expressions. 
In Chapter 3, I used an assertion to catch NULL pointers passed to 
FreeMemo y even though it's quite legal to call thefiee function wit$ a NULL 
pointer. From every chapter I could list examples in which I reduced flexi- 
bility in order to prevent bugs. 

The trouble with flexible designs is that the more flexible they are, the 
harder it is to detect bugs. Do you remember the points I made about realloc 
in Chapter 5? You can throw almost any set of inputs at realloc and it will do 
something, even though that something may not be at all what you expect. 
Worse, it's hard to detect realloc bugs because the function is so flexible that 
you can't insert meaningful assertions into it to validate the inputs. But if 
you break realloc into four specific functions that expand, shrink, allocate, 
and release memory blocks, you make it much easier to validate function 
arguments. 

In addition to watching out for unduly flexible functions, you should 
keep a wary eye open for unduly flexible features. Flexible features are 
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troublesome because they can lead to unexpected "legal" situations that 
you didn't think to test for or even realize were legal. 

When I was adding color support to Microsoft Excel for Apple's then 
new Macintosh I1 machines, I ported code from Windows Excel that would 
allow users to speclfy the color of the text displayed in a spreadsheet cell. To 
add color to a cell, the user would take an existing cell format like the one 
below 

$#,##0.0@ I* P r i n t  1234.5678 as $1,234.57. *I 

and tack a color specification onto the front of it. To display a number in 
blue, the user would change the format to 

If the user typed fredl, the number would be drawn in red, and so on. 
Excel's product specification was quite clear-the color specification 

should preface the number format-but after I ported the feature and began 
testing the code, I found that the formats below would work as well: 

The user could put the [blue] anywhere. When I asked the original pro- 
grammer whether this was a bug or a feature, he said that the arbitrary 
placement of the color specification "just fell out of the parsing loop." He 
didn't see anything wrong with allowing a bit of extra flexibility-nor did I 
at the t i m ~ o  the code remained that way. In retrospect, I see that we 
should never have allowed that extra flexibility. 

It didn't take the testing group long to find half a dozen subtle bugs, 
all ultimately traceable to the format parser, which did not expect to find 
color specifications in the middle of a format. 

Unfortunately, instead of fixing the problem by removing the unnec- 
essary flexibility-a fix that would have taken one simple ifstatement-the 
other programmer and I kept fixing the specific bugs- fixing symptoms- 
in order to retain a flexibility that nobody needed. To this day, Microsoft 
Excel lets you put color specifications anywhere you want. 
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When you implement features in your own projects, make them easy 
to use; don't make them unnecessarily flexible. There is a difference. - 

Don't allow unnecessa y flexibility. - 
Ported Code Is New Code 
One lesson I learned from porting so much Windows Excel code to Macin- 
tosh Excel was that there is a temptation to skimp on testing such code. 
After all, you reason, it was tested in the original product. I should have 
caught all of the bugs in the Excel number formatting code before the code 
ever reached the testing group, but I didn't. Instead, I copied the code to 
Macintosh Excel, made the necessary changes to hook the code into the 
project, and then casually tested the code to verify that I had hooked it in 
correctly. I didn't thoroughly test the feature itself since I thought it had 
already been tested. That was a mistake, especially since Windows Excel 
was under development itself and this was still in the days when Microsoft 
groups postponed fixing bugs to the end of the product cycle. 

It doesn't matter how you implement your features-whether you de- 
sign and implement them from scratch or leverage existing code-you are 
still responsible for keeping bugs out of the code that you add to your 
project. The fact that Windows Excel had the same bugs didn't make the 
bugs any less severe in Macintosh Excel. I got lazy, and it showed. 

How many times have you said something like "I can't figure out how 
to. . ." and another programmer has answered, "Have you tried . . ."? 

You'll see that dialogue in one form another in almost every programmers' 
news group on the Usenet. One programmer will post a message asking 
"How do I hide the cursor so that it doesn't obscure the display?" and 
somebody will respond, "Try moving the cursor to an off-screen coordi- 
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nate." Another will suggest, "Try setting the cursor mask to zeros to indi- 
cate that none of the cursor pixels should be visible." Still a third might say, 
"The cursor is just a bitrnap, so try setting its width and height to zero." 

Try. Try. Try. 
Admittedly, this is a silly example, but I'm sure you've seen such dia- 

logues take place, whether in a Usenet news group or in front of the office 
coffee maker. And more often than not, none of the things you're supposed 
to "try" is the proper course to pursue. When somebody tells you to try 
something, they're giving you an educated guess, not the officially docu- 
mented solution. 

So what's wrong with trying different approaches to solving a prob- 
lem? Nothing, provided that everything you try is clearly defined by the 
system you're using. But more often than not, when programmers start try- 
ing things, it means that they've gone beyond the system as they under- 
stand it and have entered the realm of looking for anything that works, even 
though what works may rely on an unintended side effect that can change 
in the future. How do you think those programmers who intentionally read 
from free memory got into that bad habit? free certainly doesn't define what 
happens to the contents of free memory, but at some point those program- 
mers felt they needed to reference free memory. They tried it, it worked, 
and now they rely on free to allow that behavior. 

Listen carefully to the suggestions that follow "Have you tried . . ." I 
think you'll probably find that most of those suggestions exploit undefined 
or ill-defined side effects of code. If the programmers making the sugges- 
tions knew the proper solution, they wouldn't tell you to "try" something. 
They'd tell you to "Just use the SetCursorState(1NVISIB LE) system call." 

Don't keep "trying" solutions' until 
you find one that works. Take the 
time to find the correct solution. 
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Don't "Try!' Read. 
For years the Macintosh programmers at Microsoft received read-only com- 
pilations of the Macintosh news groups on the Usenet. Those compilations 
were interesting, but it was frustrating not being able to respond to the 
questions other programmers posed. Programmers were always asking 
questions that were clearly answered in Apple's Inside Macintosh manuals, 
but it seemed as if the programmers responding would outline every pos- 
sible solution but the one that was clearly documented. Fortunately, there 
were always a few Inside Macintosh experts who would post precise an- 
swers if nobody else would: "See Inside Macintosh IV, page 32. It says there 
that you should. . . ." 

If you find yourself testing possible solutions to a problem, stop your- 
self, pull out your manuals, and read. No, it's not as much fun as playing 
around with code, or as easy as asking everybody for something to try, but 
you'll learn more about your operating system and about how to write pro- 
grams for it. 

There are programmers who, when given a sizable feature to implement, 
will spend two weeks hunched over a keyboard writing code, never bother- 
ing to test their work. Other programmers will implement a dozen small 
features before stopping to check things out. There's nothing wrong with 
those approaches provided that the programmers thoroughly test their 
code. But do they? 

Think about the case in which a programmer has five days in which to 
implement five features. Suppose that the programmer has two choices: to 
implement and test the features one at a time or to implement all five fea- 
tures and then test all five. Which approach, in practice, do you think will 
result in sturdier code? I've seen both coding styles over the years, and with 
rare exceptions, programmers who test code as they go have fewer bugs. I 
can even tell you why that's true. 

Suppose the programmer uses all five days to implement the five fea- 
tures but then realizes that he doesn't have much, if any, scheduled time 
remaining to thoroughly test the code. Do you think the programmer will 
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take an extra day or two to thoroughly test his code, or do you think he'll 
merely play with the code and verify that it seems to work? The answer will 
depend to an extent upon the programmer and the work environment. But 
it comes down to slipping the schedule, which is frowned upon at most 
companies, or cutting back on testing, which often results in no negative 
feedback whatsoever; the programmer will probably be praised for staying 
on schedule. It takes only one difficult feature per batch to suck up the test- 
ing time for all of the features. 

A drawback to using a schedule is that programmers will give it 
higher priority than testing, which essentially means that the schedule gets 
higher priority than writing correct code does. My experience has been that 
if a programmer can write the code for a feature in the scheduled amount of 
time, he will "finish the feature on schedule, even if that means cutting 
back on testing. "Besides," he'll think, "if there are any unknown bugs in 
the code, the testing group will let me know about them." 

To counteract this tendency, programmers should write and test each 
feature before moving on to the next. Then if it takes five days to im- 
plement the first three features, the programmers are forced into taking ex- 
tra time to implement the remaining two features. They might still skip 
testing on the final two features to incur as little schedule slip as possible, 
but at least the first three features will have been tested, which is better than 
none at all. - 

Write and test code in small chunks. 

Always test your code, even if that 
means your schedule will slip. 

In Chapter 5, I explained how getchar's name often tricks programmers into 
thinking that the function returns a character when it actually returns an int. 
In the same way, programmers often believe that the testing group is re- 
sponsible for testing their code. What else would a testing group be for? But 
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despite what many programmers believe, the testing group's job is not to 
test programmers' code; the group is there to protect the company and ulti- 
mately the customer from shoddy workmanship. 

It might be easier to understand the role testing plays if you look at the 
same process in another field: house construction. There, contractors do the 
work, and inspectors verify it. But inspectors don't test the work. An electri- 
cian would never wire up a house and then leave without first turning on 
the power, testing the circuit breakers, and checking every outlet using a 
receptacle tester. The electrician would never think "I don't need to make 
these tests. If there's a problem, the inspector will let me know about it." 
Any electrician who thought that way would soon find it hard to get work. 

The good reason that testers, like inspectors, are not responsible for 
testing the work is that they rarely have the necessary access, tools, or skills. 
Despite computer folklore to the contrary, testers cannot test your code bet- 
ter than you can. Can testers add assertions to catch bad data flow? Can 
they incorporate subsystem tests like the ones in Chapter 3 for the memory 
manager? Can they use a debugger to step through the code one instruction 
at a time to check that every code path is executed and works as expected? 
The sad truth is that programmers, who actually can test their code more 
effectively than testers, often don't. 

The testing group plays a valuable part in the development process; 
it's just not the part that many programmers think it is. When testers exam- 
ine a product, they look for flaws and holes in features, they verify that the 
product is backwards compatible with previous releases, they alert the de- 
velopment team to quirks and rough edges that, if smoothed, would im- 
prove the product, and they use the product in "real world" scenarios to 
make sure that the features are truly useful. And testers report any bugs 
they notice. 

Even if your testers do nothing but look for bugs, you still cannot as- 
sume that they will test your code for you. Remember what I said in Chap- 
ter 1: Testers hurl inputs at programs and hope that lurking bugs will 
somehow show themselves. Of course, nobody really thinks of it that way, 
because with modem testing tools it seems as if the approach is more scien- 
tific than that. But in fact, modem testing tools simply make the approach 
more efficient. The strongest statement a tester can make is "The code 
appears to work." To me, that's not nearly as reassuring as knowing that the 
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programmer has stepped through and observed every path in his or her 
code, verifying that legal inputs generate the correct outputs. 

Besides, from a practical viewpoint, what if some members of the test- 
ing team aren't very experienced? Or what if you don't even have a testing 
team because they've been pulled off your project to work on something 
more pressing? This happens all the time at Microsoft; I'm sure it happens 
elsewhere too. 

Duplication of Effort? 
If programmers are responsible for thoroughly testing their code, the ques- 
tion naturally arises, "Aren't programmers and testers duplicating each 
other's efforts?" Perhaps they do here and there, but when programmers 
test code, they test it from the inside and move out. Testers start from the 
outside and move in. 

Programmers start by testing each function, stepping through every 
code path one instruction (or line) at a time, vedying code and data flow. 
From there, they move one step outward to verlfy that each function works 
correctly with the other functions in its subsystem. Finally programmers 
use unit tests to venfy that the subsystems interact properly. The unit tests 
may, as extra verification, regularly check the state of internal data struc- 
tures throughout the tests. 

Testers view code as a black box and write global tests that throw all 
possible inputs at the program as a way of looking for flaws. The testers 
may also use regression tests to vedy  that all reported bugs have been fixed 
and have stayed fixed. From there, testers move steadily inward, using code 
coverage tools to give them an idea of how much internal code their global 
tests are executing. The testers use that information to create new tests that 
try to execute the untouched code. 

This is a grand example of using two separate "algorithms" to test the 
program. The combination of approaches works because programmers 
focus on code while testers focus on features. With the two working from 
opposite directions, the chances of finding unknown bugs are increased. 
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You simply cannot rely on the testing group to test your code for you- 
at least not if you want to consistently write bug-free code. - 

Don't rely on the testing group tofind 
your bugs. - 

Have you ever noticed how some programmers heave a sigh of relief when 
the testing group finds a bug? "Whew!" they say, "I'm sure glad Testing 
found that bug before we shipped." Other programmers resent it when a 
tester reports a bug, especially if the tester reports many bugs against the 
same piece of code. I've seen programmers bristle with anger: "Why won't 
that tester leave me alone?" I've heard project leads (who should know bet- 
ter) say, "It's Testing's fault that we've slipped this beta date." Once, I even 
had to prevent a project lead and a testing lead from throwing punches at 
each other. 

Does that sound silly? It's easy for us to sit back and see how ridicu- 
lous such behavior is when we're not the ones under pressure to ship a 
product and under attack. But when you're months past your ship date and 
buried in bugs, it's easy to view the testers as the Bad Guys. 

When I see programmers getting upset with testers, I pull them aside 
and ask them why they're holding the testers responsible for bugs that pro- 
grammers created. It makes no sense to get angry at testers; they're just the 
messengers. 

When a tester reports a bug in your code, your first reaction should be 
shock and disbelief-you should never expect testers to find bugs in your 
code. Your second reaction should be gratitude because that tester has 
saved you from shipping a bug. - 

Don't blame testers forfinding your bugs. - 
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There Are No Silly Bugs 
Sometimes you'll hear a programmer complain that a particular bug is 
ridiculous, or that certain testers regularly report silly bugs. If you hear a 
programmer grumbling about silly bugs, stop and remind him or her that 
it's not up to testers to judge how serious bugs are or whether they're worth 
fixing. Testers must report all bugs, silly or not, because for all they know, 
those silly bugs may be the side effects of serious problems. 

The real question isn't whether the bug is silly but why the program- 
mer who tested the code didn't catch the bug. Even if the bug is minor and 
not worth fixing, it's still important to determine its cause so that you can 
prevent similar bugs in the future. 

A bug may be minor; that it exists is serious. 

If you flip back through the pages of this book and look at all of the Quick 
Review points, you might be surprised to find that some of them appear to 
contradict others. Then again, maybe you won't be surprised. After all, pro- 
grammers have long dealt with the sometimes contradictory goals of writ- 
ing fast code and writing tight code. 

When you're faced with a choice between two possible implementa- 
tions, which do you choose? I doubt you would have trouble choosing be- 
tween a fast algorithm and a small one-you make that choice all the 
time-but what about choosing between a fast algorithm and a maintain- 
able one, or between a small-but-risky algorithm and a larger-but-easily- 
tested one? Some programmers could answer those questions without 
much thought, but others would be unsure, and if you asked them the same 
questions weeks apart, you might get different answers. 

Those programmers would be unsure about such trade-offs because 
they don't know what their priorities are beyond the common ones such as 
size and speed. Programming without a clear set of priorities is like going 
on a trip without knowing your destination. At every corner you have to 
stop and ask, "What do I do now?" and you're bound to take wrong turns. 
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Then there are programmers who know quite clearly what their pri- 
orities are but who, because their priorities are wrong or conflicting, don't 
ponder at corners and instead take wrong turns consistently. For example, 
many experienced programmers are still locked into the priorities of the late 
1970s, when memory was scarce and microcomputers were so slow that a 
pong game taxed them. To write a usable program then, you had to trade 
maintainability for size and speed. But today, RAM is plentiful and com- 
puters are fast enough to accomplish most tasks without delay even if you 
use a poor algorithm. The priorities have reversed. It simply doesn't make 
sense to consistently trade maintainability for size and speed because in 
most cases you end up with an unnoticeably faster program that you can't 
maintain. Still, some programmers contrive to make Size and Speed the 
gods that rule all of their code. These programmers consistently make the 
wrong implementation choices because their priorities are outdated. 

Whether you've never thought about your priorities or haven't re- 
viewed them lately, you need to sit down and consciously create a road- 
map for yourself (or for your team if you're a project lead) so that you can 
consistently make the best choices to accomplish the goals of your project. 
Notice what I said there: "the goals of your project." Your priority list 
should reflect not what you want to do, but what you should do. If a pro- 
grammer listed "personal expression" as a high priority, would that benefit 
the programmer or the product? Would that programmer accept a naming 
standard or agree to use a I )-placement style other than his or her own? 

There is no one "right" way to order your priorities, but the order you 
choose will dictate the style and quality of your code. Take a look at the 
priorities of two programmers, Jack and Jill: 

Jack's Priority List Jill's Priority List 
Correctness Correctness 

Global efficiency Testability 

Size Global efficiency 

Local efficiency Maintainability/clarity 
Personal convenience Consistency 
Maintainability/clarity Size 

Personal expression Local efficiency 

Testability Personal expression 
Consistency Personal convenience 
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How will these priorities affect Jack's and Jill's code? Both program- 
mers focus on writing correct code above all else, but that's the end of their 
agreement on priorities. You can see that Jack emphasizes size and speed, is 
only marginally concerned about writing clear code, and doesn't appear to 
think much at all about how easy it will be to test the code. 

Jill puts an emphasis on writing correct code too, both now and for the 
future, when the code will have to be maintained. She worries about size 
and speed only if it's vital to the success of the product. She has "testability" 
high on her list because she believes that unless you can easily test the code, 
you can't easily verify that it is correct (which is, of course, her highest 
priority). 

Given these two programmers, who is more likely 

To enable all optional compiler warnings to automatically catch 
bugs, even though it requires some extra work to use the safe 
work-arounds? 

To use assertions and subsystem debug checks? 

To walk through every code path, microscopically verifying all 
new code the moment it is written? 

To use safe function interfaces over risky ones even though they 
may generate an extra instruction or two at every call site? 

To use portable types, and to divide or multiply when using a 
shift would work (for example, using /4 instead of >>2)? 

To avoid the efficiency tricks described in Chapter 7? 

Is that a list of loaded questions? I don't think so. I could just as easily 
have asked, "Which of the two programmers do you think will read this 
book and act on the suggestions it contains?" "Which programmer would 
read The Elements of Programming Style, or any other how-to book, and act 
on those suggestions?" 

Because of his priorities, Jack would focus on code to the detriment of 
the product. He would waste time trying to make every line of code as fast 
and as small as possible, and he would give little thought to the long-term 
health of the product. Jill is just the opposite. With her priorities, she would 
focus on the product, not the code, and she wouldn't concern herself with 
size or speed unless there were a demonstrated (or obvious) need. 
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Ask yourself which is more important to your company, the code or 
the product. Where do you think your priorities should be? - 

Establish your priorities and stick to them. - 
Gee, I Don't Know 
Have you ever looked at somebody's code and wondered why they wrote it 
the way they did? When you asked them about the code, have they said 
something like, "Gee, I don't know why I wrote it that way. I guess it just 
felt right at the time"? 

I'm always reviewing code, looking for ways to help programmers 
improve their skills, and I've found the "Gee, I don't know" response to be 
pretty common. I've also foundk that the programmers who respond with 
"Gee, I don't know" don't have clear priorities; they make their decisions 
based, it sometimes seems, on what they had for lunch that day. Program- 
mers with clear priorities know exactly why they chose a specific imple- 
mentation and will rattle off the reasons if you ask. 

If you find that you often don't know why you wrote a piece of code 
the way you did, that's a good indication that you need to stop and create a 
priority list for yourself. 

You DON'T GET WHAT YOU DON'T ASK FOR 
One important point I haven't yet mentioned in this chapter is that you 
must develop the habit of asking questions about how you code. This entire 
book is the result of consistently asking a few simple questions over a long 
period of time: 

0 How could I have automatically detected this bug? 

4 How could I have prevented this bug? 

And in this last chapter: 

+ Does this belief help or hinder my ability to write bug-free code? 
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It is important to question your beliefs because they are reflected in 
your personal priority list. If you believe that the testing group exists to test 
your code, you're going to have trouble writing bug-free code because 
you'll think, at some level, that it's okay to skimp on testing. Consider this: 
What are your chances of writing bug-free code if you don't believe that it's 
possible? If you don't believe it's possible, will you even try? 

If you want to write bug-free code, you need to weed out the beliefs 
that prevent you from achieving that goal. The way to start weeding is to 
ask whether this or that belief helps or hinders your ability to write bug- 
free code. 

Bugs don't create themselves; nor do they fix themselves. If you 
have a bug report but you can't reproduce the bug, don't assume 
that the tester was seeing things. Make the effort to find the bug, 
even if that means reverting to an older version of the program. 

Don't fix bugs "later." It's becoming alarmingly common to read 
of major products being canceled because of runaway bug lists. 
Your project won't suffer that fate if you fix bugs as you find 
them. You can't have a runaway bug list if the project is always 
near zero bugs. 

When you track down a bug, always ask yourself whether the 
bug is a symptom of a larger bug. Yes, it's easier to fix the symp- 
tom you've tracked down, but you should always make the effort 
to find the true cause. 

Don't write unnecessary code or make unnecessary fixes. Let 
your competitors implement cool but worthless features, clean 
up code, and slip their ship dates because of "free" features that 
aren't. Let your competitors waste time fixing the unnecessary 
bugs that come with all that useless code. 



194 WRITING SOLID CODE 

Remember that being flexible is not the same as being easy to 
use. When you design functions and features, focus on making 
them easy to use; if they're merely flexible-as the realloc func- 
tion and that color formatting feature in Microsoft Excel are- 
you're not making them more useful; you're making it more 
difficult to find the bugs. 

Resist the urge to "try" things to achieve a desired effect. Use the 
time you would have spent trying things to do some research to 
find the correct solution. If you have to, call the company respon- 
sible for your operating system and talk to their developer sup- 
port group. That's better than coming up with oddball 
implementations that may break in the future. 

Write your code in chunks small enough to thoroughly test, and 
don't skimp on your testing. Remember, if you don't test your 
code, it's possible that nobody will. Whatever you do, don't ex- 
pect the testing group to test your code for you. 

+ Determine what the priorities are for your group and follow 
them. If you're a Jack but your project requires a Jill, you're go- 
ing to have to change your habits, at least at work. 

PROJECT: Persuade your programming team to create and adopt a 
priorities list that they agree to work by. If your company recog- 
nizes different skill levels (entry level programmer, regular old 
programmer, senior-level programmer, awesome programmer, for 
example), you might want to consider using different priority lists 
for the different levels. Why? 



Epilogue 
/ 

GO FROM HERE? 

We've reached the end. And you're probably wondering if I really believe 
it's possible to write bug-free programs. The answer is no, I don't, not abso- 
lutely. But I do believe you can come very close to writing bug-free pro- 
grams, much closer than the current norm; you just have to decide to do it. 
You can paint a room in your house without getting paint where you don't 
want it, but you have to put down drop cloths, tape up the baseboards, and 
use care. Painting without getting splotches everywhere doesn't just hap- 
pen-it takes effort, effort you must decide to make. In the same way, it 
takes effort to keep bugs out of your code. And the only way you're going to 
make that effort is to decide that it's necessary. 

Even if you make writing bug-free code a priority, using the tech- 
niques in this book isn't enough. Nobody's list of guidelines will protect 
you from bugs. The key is to continue to build the list by asking yourself 
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how you could have detected or prevented every bug you find in the future. 
Some of your findings may surprise you. Mine have surprised me. 

I once introduced a nasty but subtle bug into Microsoft Excel's 
recalculation engine when I accidentally deleted a line while I scrolled 
though a file. I didn't detect the mistake, and I merged that change into the 
master sources along with a feature I had just implemented. Eventually 
somebody noticed the bug and tracked it to my deletion. When I asked my- 
self how I could have detected or prevented the bug, the answer was clear: 
Use the source code control manager to list my changes before merging 
them into the master sources. That extra step takes practically no time, and 
in the five years that I've been doing it, it has caught three serious bugs and 
a number of minor changes I intentionally made but thought I had re- 
moved. Is three bugs in five years worth the effort? Yes, to me it's worth the 
effort because it takes almost no time and I know if I do it that no unex- 
pected changes will make it into the master sources. Again, you have to 
decide that keeping bugs out of your code is a priority. 

You may find that code reviews help solve your problems, or that pro- 
viding better documentation for the internal workings of the product will 
help. If you're not using unit tests, maybe you should start. You may even 
find it worthwhile to add DEBUG code specifically to help your testers. 

The reality is that you will never completely eliminate bugs, but you 
can increase the time between occurrences by constantly striving to abolish 
every class of bug you encounter. To help you in this endeavor, I've pro- 
vided a task-oriented programmer's checklist in Appendix A that covers 
the most important guidelines in this book. 

The final key to successfully writing bug-free code can be summed up 
with one last guideline: 

Never allow the same bug to bite you twice. 



CODING 
CHECKLISTS 

To remind you of the most important points in the book, I've created several 
checklists you can review during the primary development steps: design, 
implementation, DEBUG support, testing, and debugging. I haven't listed 
the points that have to do with development overall-I assume that you're 
using your optional compiler warnings, maintaining DEBUG versions of 
your program, fixing bugs as they are reported, and so on. 

To make effective use of these checklists, review them each time you 
add new code to your project. From a practical standpoint, "each time" 
really means the "next few times" you write new code. After that, you 
should have developed a sixth sense for code that bends or breaks the 
guidelines. 
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DESIGN 
When you consider different designs for a feature, don't stop with the de- 
sign that gives you the fastest or the smallest result. Consider the risks 
involved in implementing, maintaining, and using the code that will result 
from your design. For each possible design, review these points. 

Does this design include undefined or meaningless behavior? 
What about random or rare behavior? Does the design allow un- 
necessary flexibility or make unnecessary assumptions? Are 
there arbitrary details in the design? 

Do you pass any data in static or global buffers? Do any func- 
tions rely on the internal workings of other functions? Do any 
functions do more than one task? 

Does your design have to handle any special cases? Have you 
isolated the code that handles those special cases? 

Look at the inputs and outputs of your functions. Does each of 
the inputs and outputs represent exactly one type of data, or do 
some of them contain error values or other hard-to-notice val- 
ues? Robust interfaces make every input and output explicit so 
that programmers can't miss important details such as the NULL 
error value returned by malloc, or the fact that realloc can release a 
memory block if you pass in a size of 0. 

Anticipate how programmers will call your functions. Does the 
"obvious" approach work correctly? Recall that in realloc's case, 
the obvious approach creates lost memory blocks. 

On the maintenance side, are your functions readable at the 
point of call? Each function should perform one task, and its ar- 
guments should make the meaning of the call clear. The presence 
of TRUE and FALSE arguments often indicates that a function is 
doing more than one task, or that it is not well designed. 

Do any of your functions return error values? Is it possible to 
redefine those functions to eliminate the error conditions? Re- 
member that when a function returns an error, that error must be 
handled-or mishandled-at every point of call. 
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Most important, is it possible to automatically and thoroughly 
validate the design using a unit test? If not, you should consider 
using an alternative design that can be tested. 

IMPLEMENTATION 
After implementing your design, you should review these points to ensure 
that your implementation is robust and error resistant. 

Compare your implementation to your design. Have you accu- 
rately implemented the design? Be careful. Minor differences 
between your design and your implementation can trip you up. 
Remember the UnsToStr example that broke because it used non- 
negative integers when the design called for integers that were 
unsigned. 

Do you make unnecessary assumptions in the code? Have you 
used nonportable data types when portable data types would 
work? Are there any arbitrary aspects of the implementation? 

Examine the expressions in your code. Can any of them overflow 
or underflow? What about your variables? 

Have you used nested ?: operators or other risky C language 
idioms such as shifting to divide? Have you mixed bitwise opera- 
tors and arithmetic operators without good cause? Have you 
used any C idioms in a questionable way? For example, using the 
0/1 result of a logical expression in an arithmetic context? Re- 
write risky expressions using comparable yet safer expressions. 

Take a close look at your code. Have you used any arcane C 
that the average programmer on your team wouldn't under- 
stand? Consider rewriting the code using mainstream C. 

Each of your functions probably does a single task, but is that 
task implemented using a single code path, or is the task actually 
achieved using different code to implement various special 
cases? If the task is implemented using special-case code, can 
you eliminate those special cases by using an alternative algo- 
rithm? Try to eliminate every if statement in your code. 
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4 Do you call any functions that return errors? Can you alter your 
design so that the call is unnecessary and thus eliminate the need 
to do error handling? 

+ Do you reference memory you have no right to touch? Specifi- 
cally, do you reference memory you have released? Do you peek 
at private data structures owned by other subsystems? 

4 If your functions take pointers to inputs or to outputs, does your 
code restrict its references to only the memory required to hold 
those inputs and outputs? If not, your code may be making an 
erroneous assumption about how much memory the caller has 
allocated for that data. 

ADDING DEBUG SUPPORT 
Adding assertions and other debugging code to your implementations can 
reduce the time required to find any bugs hiding in your code. This check- 
list points out worthwhile assertions and debugging code you should con- 
sider using. 

Have you used assertions to validate your function arguments? 
If you find that you can't validate a particular argument because 
you don't have enough information, would maintaining extra 
debug information help? Recall how the debug-only sizeofBlock 
function was useful in validating pointers to allocated memory. 

Have you used assertions to validate your assumptions, or to 
detect illegal uses of undefined behavior? Asserting for unde- 
fined behavior prevents programmers from abusing unspecified 
details of your implementations. 

Defensive programming "fixes" internal bugs when they occur, 
making such bugs hard to spot. Have you used assertions to de- 
tect these bugs in the DEBUG version of your program? (Of 
course, this view of defensive programming doesn't apply to de- 
fensive programming used to correct bad end-user inputs.) 

Are your assertions clear? If not, be sure to include comments to 
explain the tests. Unfortunately, when programmers get an as- 
sertion failure and don't understand the purpose of the test, they 
will often assume that the assertion is invalid and remove it. 
Comments help preserve your assertions. 
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If your code allocates memory, have you used debug-only code 
to set the uninitialized contents to a known but obviously gar- 
bage state? Setting memory to a consistent value will make it 
easier to find and reliably reproduce bugs that use uninitialized 
memory. 

If your code releases memory, does it first destroy the contents 
so that you don't have valid-looking garbage hanging around? 

Are any of your algorithms critical enough that you should use a 
second, but different, debug-only algorithm to venfy the pri- 
mary one? 

Are there any debug checks you can make at program startup to 
detect bugs at the earliest possible moment? In particular, are 
there any data tables you could validate at program startup? 

TESTING 
It is vitally important that programmers test their code, even if it means 
slipping the schedule. The questions in this section point out the most bene- 
ficial testing steps to take. 

Does the code compile without generating any warnings, includ- 
ing all optional compiler warnings? If you're using lint, or a simi- 
lar diagnostic tool, does the code pass all tests? Does the code 
pass your unit tests? If you've skipped any of these steps, you're 
missing an opportunity to easily detect bugs. 

Have you stepped through all new code using a debugger, fo- 
cusing not only on the code, but also on the data flowing through 
that code? This is perhaps the best approach to catching bugs in 
your implementations. 

Have you "cleaned up" any code? If so, have you tested the 
code? Have you stepped through the code in a debugger? Re- 
member, code that has been cleaned up is actually new code that 
must be thoroughly tested. 

Should you write a unit test for the new code? 
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DEBUGGING 
You should review the questions below each time you have to track down 
a reported bug. 

Were you able to find the reported bug? If not, remember that 
bugs don't just go away; either they're hiding, or they have been 
fixed already. To determine which is true, you should look for 
the bug in the same version of the code in which the bug was 
reported. 

Have you found the true cause of the bug or merely a symptom 
of the bug? Be sure to track down the cause of the bug. 

How could this bug have been prevented? Come up with a pre- 
cise guideline that could prevent this bug in the future. 

How could this bug have been detected automatically? Would 
an assertion catch it? What about some DEBUG code? What 
changes in your coding practices or process would help? 



The code in this appendix implements a simple linked-list version of the 
memory logging routines that are discussed in Chapter 3. The code is inten- 
tionally simple so that it can be easily understood-it is not meant to be 
used in any application that makes heavy use of the memory manager. But 
before you spend time rewriting the routines to use an AVL-tree, a B-tree, or 
any other data structure that provides fast searches, first try the code to 
verlfy that it is indeed too slow for practical use in your application. You 
may find that the code works well for you as is, particularly if you don't 
maintain many globally allocated memory blocks. 
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The implementation in this file is straightforward: For every allocated 
memory block, these routines allocate an extra bit of memory to hold a 
blockinfo structure that contains the log information. See its definition below. 
When a new blockinfo structure is created, it is filled in and placed at the 
head of the linked-list structure-there is no attempt to maintain any par- 
ticular ordering for the list. Again, this implementation was chosen because 
it is simple and easy to understand. 

#i f d e f  DEBUG 

* b l o c k i n f o  i s  a  s t r u c t u r e  t h a t  c o n t a i n s  t h e  memory l o g  
* i n f o r m a t i o n  f o r  one a l l o c a t e d  memory b l o c k .  Every 
* a l l o c a t e d  memory b l o c k  has a  cor respond ing  b l o c k i n f o  
* s t r u c t u r e  i n  t h e  memory l o g .  
* / 

t ypede f  s t r u c t  BLOCKINFO 
{ 

s t r u c t  BLOCKINFO *pb iNex t ;  
b y t e  *pb; I* S t a r t  o f  b l o c k  * / 
s i ze - t  s i z e ;  I* Length o f  b l o c k  * / 
f l a g  fReferenced;  I* Ever r e fe renced?  * / 

) b l o c k i n f o ;  I* Naming: b i  . *pb i  * I  

f l a g  f C r e a t e B l o c k I n f o ( b y t e  *pbNew, s i ze - t  sizeNew); 
v o i d  FreeBl  o c k I n f o ( b y t e  *pbToFree) ; 
v o i d  Upda teB lock In fo (by te  *pbOld, b y t e  *pbNew, s i ze - t  sizeNew); 
s i ze - t  s i z e o f B l o c k ( b y t e  *pb) ; 

v o i d  C l  ea rMemory Ref s  ( v o i  d  ; 
v o i d  NoteMemoryRef(void * p v ) :  
v o i d  CheckMemoryRefs(void); 
f l a g  f V a l i d P o i n t e r ( v o i d  *pv. s i ze - t  s i z e ) :  
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#i f d e f  DEBUG 

* The f u n c t i o n s  i n  t h i s  f i l e  must compare a r b i t r a r y  p o i n t e r s ,  
* an o p e r a t i o n  t h a t  t h e  ANSI s t anda rd  does n o t  guaran tee  t o  
* be p o r t a b l e .  
* 
* The macros be low i s o l a t e  t h e  p o i n t e r  comparisons needed i n  
* t h i s  f i l e .  The imp lemen ta t i ons  assume " f l a t "  p o i n t e r s ,  f o r  
* wh ich  s t r a i g h t f o r w a r d  comparisons w i l l  a lways work. The 
* d e f i n i t i o n s  below w i l l  * n o t *  work f o r  some o f  t h e  common 
* 80x86 memory models.  
* 1 

s t a t i c  b l o c k i n f o  *pbiHead = NULL; 

p b i G e t B l o c k I n f o  searches t h e  memory l o g  t o  f i n d  t h e  
b l o c k  t h a t  pb p o i n t s  i n t o  and r e t u r n s  a  p o i n t e r  t o  t h e  
co r respond ing  b l o c k i n f o  s t r u c t u r e  o f  t h e  memory l o g .  
Note: pb *must* p o i n t  i n t o  an a l l o c a t e d  b l o c k  o r  you 
w i l l  g e t  an a s s e r t i o n  f a i l u r e ;  t h e  f u n c t i o n  e i t h e r  a s s e r t s  
o r  succeeds - -  i t  never  r e t u r n s  an e r r o r .  

(continued) 
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* b l  o c k i  n f o  *pb i  ; 
* . . . 
* p b i  = pb iGetB l  o c k I n f o ( p b )  ; 
* / I  p b i - > p b  p o i n t s  t o  t h e  s t a r t  o f  p b ' s  b l o c k  
* I /  p b i - > s i z e  i s  t h e  s i z e  of t h e  b l o c k  t h a t  pb p o i n t s  i n t o  
* 1 

s t a t i c  b l  o c k i n f o  * p b i G e t B l o c k I n f o ( b y t e  *pb) 
E 

b l  o c k i  n f o  * p b i  ; 

f o r  ( p b i  = pbiHead; p b i  != NULL; p b i  = p b i - > p b i N e x t )  
{ 

b y t e  * p b S t a r t  = p b i - > p b ;  I* f o r  r e a d a b i l i t y  * /  
b y t e  *pbEnd = p b i - > p b  + p b i - > s i z e  - 1; 

i f  ( f P t r G r t r E q ( p b ,  p b S t a r t )  && fP t rLessEq(pb ,  pbEnd) 1 
b reak ;  

1 

I* C o u l d n ' t  f i n d  p o i n t e r ?  I s  i t  ( a )  garbage? ( b )  p o i n t i n g  
* t o  a  b l o c k  t h a t  was f r e e d ?  o r  ( c )  p o i n t i n g  t o  a  b l o c k  
* t h a t  moved when i t  was r e s i z e d  by fResizeMemory? 
* / 

ASSERT(pbi != NULL); 

r e t u r n  ( p b i  ; 

1 

* T h i s  f u n c t i o n  c r e a t e s  a  l o g  e n t r y  f o r  t h e  memory b l o c k  
* d e f i n e d  by pbNew:sizeNew. The f u n c t i o n  r e t u r n s  TRUE i f  i t  
* s u c c e s s f u l l y  c r e a t e s  t h e  l o g  i n f o r m a t i o n ;  FALSE o t h e r w i s e .  
* 
* i f  ( fCrea teB lock In fo (pbNew.  s izeNew)) 
* / I  success - -  t h e  memory l o g  has an e n t r y .  
* e l  se 
* / /  f a i l u r e  - -  no e n t r y ,  so r e l e a s e  pbNew 

* / 
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f l a g  f C r e a t e B l o c k I n f o ( b y t e  *pbNew, s i z e - t  sizeNew) 
E 

b l  o c k i  n f o  *pb i  ; 

ASSERT(pbNew != NULL && sizeNew != 0 ) ;  

p b i  = ( b l o c k i n f o  *)malloc(sizeof(blockinfo)); 
i f  ( p b i  != NULL) 
{ 

p b i - > p b  = pbNew; 
p b i - > s i z e  = sizeNew; 
pb i ->pb iNex t  = pbiHead; 
p b i  Head = p b i  ; 

1 

r e t u r n  ( f l a g ) ( p b i  != NULL); 
1 

* T h i s  f u n c t i o n  des t roys  t h e  l o g  e n t r y  f o r  t h e  memory b l o c k  
* t h a t  pbToFree p o i n t s  t o .  pbToFree *must* p o i n t  t o  t h e  
* s t a r t  o f  an a l l o c a t e d  b l o c k ;  o the rw i se ,  you w i l l  g e t  an 
* a s s e r t i o n  f a i l u r e .  
* / 

v o i d  F r e e B l o c k I n f o ( b y t e  *pbToFree) 

b l  o c k i  n f o  *pb i  . *pb i  Prev;  

pb iPrev  = NULL; 
f o r  ( p b i  = pbiHead; p b i  != NULL; p b i  = p b i - > p b i N e x t )  
{ 

if ( f P t r E q u a l ( p b i - > p b ,  pbToFree)) 
E 

i f  (pb iP rev  == NULL) 
p b i  Head = p b i  ->pb i  Next ; 

e l  se 
p b i  Prev->pb i  Next = p b i  ->pb i  Next ;  

break:  
1 
p b i  Prev = p b i  ; 

1 

(continued) 
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I *  I f  pb i  i s  NULL, then pbToFree i s  i n v a l i d .  * I  
ASSERT(pbi != NULL); 

I *  Destroy t h e  con ten ts  o f  *pb i  b e f o r e  f r e e i n g  them. * I  
memset(pbi, bGarbage, s i z e o f ( b 1 o c k i n f o ) ) ;  

/ * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

* UpdateBlockInfo(pbO1d. pbNew, sizeNew) 
* 
* UpdateBlockInfo l o o k s  up t h e  l o g  i n f o r m a t i o n  f o r  t h e  memory 
* b lock  t h a t  pbOld p o i n t s  t o .  The f u n c t i o n  then updates t h e  
* l o g  i n f o r m a t i o n  t o  r e f l e c t  t h e  f a c t  t h a t  t h e  b l o c k  now 
* l i v e s  a t  pbNew and i s  "sizeNewN by tes  long .  pbOld *must* 
* p o i n t  t o  t h e  s t a r t  o f  an a l l o c a t e d  b lock ;  o therw ise .  
* you w i l l  g e t  an a s s e r t i o n  f a i l u r e .  
* I  

v o i d  UpdateBlockInfo(byte *pbOld, b y t e  *pbNew, s ize- t  sizeNew) 
{ 

b l  o c k i n f o  *pb i  ; 

ASSERT(pbNew != NULL && sizeNew != 0 ) ;  

pb i  = pbiGetBl  ock In fo (pb01 d l  ; 
ASSERT(pb0ld == p b i - > p b ) ;  

pb i ->pb  = pbNew; 
pb i  - > s i z e  = sizeNew; 

/ * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

* s i zeo fB lock (pb )  
* 
* s i zeo fB lock  r e t u r n s  t h e  s i z e  of t h e  b l o c k  t h a t  pb p o i n t s  t o .  
* pb *must* p o i n t  t o  t h e  s t a r t  o f  an a l l o c a t e d  b lock ;  
* o therw ise ,  you w i l l  g e t  an a s s e r t i o n  f a i l u r e .  
* 1 
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s i ze - t  s i z e o f B l o c k ( b y t e  *pb) 
E 

b l  o c k i  n f o  *pb i  ; 

pb i  = pbiGetBl  ock In fo (pb) ;  
ASSERT(pb == p b i  ->pb) ; 

r e t u r n  ( p b i  - > s i  ze) ; 
1 

1 * The f o l l o w i n g  r o u t i n e s  a re  used t o  f i n d  dang l i ng  * / 
/ * p o i n t e r s  and l o s t  memory b locks .  See Chapter 3 * / 
/ * f o r  a  d i scuss ion  of these r o u t i n e s .  * / 
/ * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  * / 

v o i  d  C l  earMemoryRefs ( v o i  d  
{ 

b l  o c k i  n f o  *pb i  : 

f o r  ( p b i  = pbiHead; p b i  != NULL; p b i  = pb i ->pb iNex t )  
p b i  ->fReferenced = FALSE; 

1 

/ * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

* NoteMemoryRef(pv) 
* 
* NoteMemoryRef marks t h e  b l o c k  t h a t  pv p o i n t s  i n t o  a s  be ing  
* re fe renced.  Note: pv does * n o t *  have t o  p o i n t  t o  t h e  s t a r t  
* o f  a  b lock ;  i t  may p o i n t  anywhere w i t h i n  an a l l o c a t e d  b lock .  
* / 

(continued) 
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v o i d  NoteMemoryRef(void *pv )  
( 

b l  o c k i  n f o  *pb i  : 

p b i  = p b i G e t B l o c k I n f o ( ( b y t e  * ) p v ) :  
pb i -> fRe fe renced  = TRUE; 

* CheckMemoryRefs(void) 
* 
* CheckMemoryRefs scans t h e  memory l o g  l o o k i n g  f o r  b l o c k s  t h a t  
* have n o t  been marked w i t h  a c a l l  t o  NoteMemoryRef. I f  t h i s  
* f u n c t i o n  f i n d s  an unmarked b l o c k .  i t  a s s e r t s .  
* / 

v o i d  CheckMemoryRefs(void) 
{ 

b l  o c k i  n f o  *pb i  : 

f o r  ( p b i  = pbiHead; p b i  != NULL; p b i  = p b i - > p b i N e x t )  
( 

/ *  A s imp le  check f o r  b l o c k  i n t e g r i t y .  I f  t h i s  
* a s s e r t  f i r e s .  i t  means t h a t  something i s  wrong 
* w i t h  t h e  debug code t h a t  manages b l o c k i n f o  o r .  
* p o s s i b l y .  t h a t  a w i l d  memory s t o r e  has t r a s h e d  
* t h e  da ta  s t r u c t u r e .  E i t h e r  way, t h e r e ' s  a  bug. 
* / 

ASSERT(pbi->pb != NULL && p b i - > s i z e  != 0 ) ;  

/ *  A  check f o r  l o s t  o r  l e a k y  memory. I f  t h i s  a s s e r t  
* f i r e s ,  i t  means t h a t  t h e  app has e i t h e r  l o s t  t r a c k  
* o f  t h i s  b l o c k  o r  t h a t  n o t  a l l  g l o b a l  p o i n t e r s  have 
* been accounted f o r  w i t h  NoteMemoryRef. 
* 1 

ASSERT(pbi ->fReferenced);  
1 

1 
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/ * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

* f V a l i d P o i n t e r ( p v ,  s i z e )  
* 
* f V a l i d P o i n t e r  v e r i f i e s  t h a t  pv p o i n t s  i n t o  an a l l o c a t e d  
* memory b l o c k  and t h a t  t h e r e  a r e  a t  l e a s t  " s i z e "  a l l o c a t e d  
* by tes  f r om pv t o  t h e  end of t h e  b l o c k .  I f  e i t h e r  c o n d i t i o n  
* i s  n o t  met, f V a l i d P o i n t e r  w i l l  a s s e r t ;  t h e  f u n c t i o n  w i l l  
* never  r e t u r n  FALSE. 
* 
* The reason f V a l i d P o i n t e r  r e t u r n s  a  f l a g  a t  a l l  (a lways TRUE) 
* i s  t o  a l l o w  you t o  c a l l  t h e  f u n c t i o n  w i t h i n  an ASSERT macro. 
* Whi le  t h i s  i s n ' t  t h e  most e f f i c i e n t  method t o  use, u s i n g  t h e  
* macro n e a t l y  handles t h e  debug -vs . - sh ip  v e r s i o n  c o n t r o l  
* i s s u e  w i t h o u t  you r  hav ing  t o  r e s o r t  t o  # i f d e f  DEBUG'S o r  
* t o  i n t r o d u c i n g  o t h e r  ASSERT-like macros. 
* 
* ASSERT( fVa l idPo in te r (pb .  s i z e ) ) ;  

* / 

f l a g  f V a l i d P o i n t e r ( v o i d  *pv, s i z e - t  s i z e )  
E 

b l  o c k i  n f o  *pb i  ; 
b y t e  *pb = ( b y t e  * )pv ;  

ASSERT(pv != NULL && s i z e  != 0 ) ;  

p b i  = p b i G e t B l o c k I n f o ( p b )  ; I* Th i s  v a l i d a t e s  pv. *I 

I* s i z e  i s n ' t  v a l i d  i f  pb+size o v e r f l o w s  t h e  b l o c k .  *I 
ASSERT(fPtrLessEq(pb + s i z e .  p b i - > p b  + p b i - > s i z e ) ) ;  

r e t u r n  (TRUE): 
1 





This appendix contains the answers to all of the questions in the "Things to 
Think About" sections in the book. Note that the open-ended PROJECT 
ideas aren't treated in this appendix. 

1. The compiler catches the precedence bug because it interprets 
the expression as 

w h i l e  ( c h  = ( g e t c h a r 0  != E O F ) )  

In other words, the compiler sees an expression being assigned 
to ch, assumes that you've mistyped == as =, and warns of the 
possible assignment bug. 
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2a. The simplest way to catch accidental "octal bugs" is to use an 
optional compiler switch that would cause the compiler to gen- 
erate an error anytime it ran across an octal constant. The work- 
around: Use decimal or hexadecimal instead. 

2b. To catch cases in which programmers mistype & for && (or I 
for I I ), the compiler could apply the same test that it uses to 
catch the case in which you mistype = for ==. The compiler 
would generate an error when you used & (or / ) in an if state- 
ment or a compound conditional without explicitly comparing 
the result against 0. So this would generate a warning: 

i f  ( U  & 1 )  / *  I s  u odd? * I  

but this would not: 

i f  ( ( u  & 1 )  != 0 )  I* Is u odd? * /  

2c. The simplest method to warn of unintentional comments is to 
have the compiler issue a warning whenever the first character 
in a comment is either a letter of the alphabet or an opening 
parenthesis. Such a test would catch the two questionable cases: 

quot=numer/* ( p o i n t e r  express  i o n )  ; 

To silence the warning, you would make your intentions clear 
by separating the / and the * with either a space or an opening 
parenthesis: 

quot = numer / *pdenom; 

/*But note: 
I* This one 
/ * - - - - - -  - - - 

This comment generates  a warning.*/ 
does not because of t he  leading space. * /  

-Nor does t h i s  comment. - -  - -  - -  - -  - - * I  
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2d. You could have the compiler detect possible precedence errors 
by having it look for troublesome operator pairs that are used in 
the same unparenthesized expression. For example, program- 
mers occasionally introduce precedence bugs when they use 
the <<and +operators together, so the compiler would issue a 
warning for this code: 

word = bHigh << 8  + bL0w; 

The compiler would not issue a warning for the statements be- 
low because they make use of parentheses: 

word = ( b H i g h  << 8) + bLow; 

word = bHigh << ( 8  + bLow);  

A less ad hoc approach would be to use a heuristic such as 
"If the two operators have different precedence and they are not 
parenthesized, then issue a warning." That heuristic is too 
simple to be practical, but you get the idea. Developing a good 
heuristic would require running a lot of code through the com- 
piler and tweaking the heuristic until the compiler produces use- 
ful results. You certainly wouldn't want to get warnings for 
these common expressions: 

word = bHigh*256  + bLow; 

3. The compiler could alert you to possible dangling-else clauses by 
issuing a warning whenever it encountered two consecutive if 
statements followed by an else statement: 

i f ( express i o n l  
i f ( express i on21  

i f  ( express i o n l  
i f ( express i on21  



216 WRITING SOLID CODE 

To silence the warning, you would use braces around the 
inner i f  statement to make the binding of the else explicit: 

i f ( express i o n l  1 
{ 

i f ( express ion21 

i f ( express i o n l  1 
{ 

i f ( express ion21 

4. Putting constants and expressions on the left-hand side of your 
comparisons is useful because it provides one more method of 
automatically detecting bugs, but unfortunately, it works only 
when one of the operands is a constant or an expression-the 
technique is worthless if both operands are variables. Another 
problem with this method is that programmers must learn and 
remember to use the technique as they write code. 

If, on the other hand, you use the compiler switch, the com- 
piler would alert you to every possible assignment bug. Even 
better, the switch would work for programmers straight out of 
CS 101 who have never learned the benefits of reversing oper- 
ands in their comparisons. 

If you have the compiler switch, use it; if you don't, put 
your constants and expressions on the left-hand side of your 
comparisons until you get a more helpful compiler. 

5. To prevent undefined preprocessor macros from generating un- 
expected results, the compiler (really the preprocessor) should 
have a switch that allows programmers to turn uses of unde- 
fined macros into error conditions. There is little need for unde- 
fined macros to be "defined" as 0 now that ANSI C compilers 
support both the old #ifd# preprocessor directive and the new 
preprocessor defined unary operator for use in #if expressions. 
Instead of using undefined macros in #if expressions, 
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I* S e t  up t a r g e t  equates .  * I  

which would generate an error if you used the optional switch, 
you would use the defined unary operator: 

I* S e t  up t a r g e t  equates .  * I  

#i f d e f  i ned ( I NTEL8080 1 

#el i f d e f  i ned( MC680x0 1 

The switch should not give a warning if you use an undefined 
macro in an #ifdef statement, since that use would be intentional. 

One possible implementation of the ASSERTMSG macro could 
have the macro take both an expression to validate and a string 
to display if the assertion fails. For example, to print the memcpy 
message, you would call ASSERTMSG this way: 

ASSERTMSG(pbT0 >= pbFrom+size I I pbFrom >= pbTo+size,  
"memcpy : t h e  b locks  over1 ap" ; 

In the implementation of the ASSERTMSG macro shown on the 
next page, you would put ASSERTMSG's definition in a header 
file and the PssertMsg routine in a convenient source file. 
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#i f d e f  DEBUG 

v o i d  -Asser tMsg(char  * s t r M e s s a g e ) ;  I* p r o t o t y p e  * /  

# d e f i n e  ASSERTMSG(f. s t r  \ 
i f  ( f )  \ 

E 1 \ 
e l  s e  \ 

- A s s e r t M s g ( s t r )  

# d e f i n e  ASSERTMSG(f, s t r  1 

And here's the routine, in another file: 

#if  d e f  DEBUG 

v o i d  -Asser tMsg(char  * s t r M e s s a g e )  
{ 

f f l  ush(NULL1; 
f p r i n t f ( s t d e r r .  " \ n \ n A s s e r t i o n  f a i l u r e  i n  % s \ n W ,  

s t r M e s s a g e ) ;  
f f l u s h ( s t d e r r 1 ;  
a b o r t (  1 ;  

1 

The easy solution-if your compiler supports it-is to throw the 
optional switch that tells the compiler to allocate all identical 
strings in the same location. With that option enabled, your 
assertions may declare 73 copies of the same file name but the 
compiler will allocate only one string. The drawback to this ap- 
proach is that it will "overlap" all identical strings in your source 
files, not just assertion strings, and you may not want that extra 
behavior. 

An alternative is to change the implementation of the 
ASSERT macro so that it intentionally references the same file 
name string throughout the file. The only difficulty lies in creat- 



ANSWERS: Chapter 2 219 

ing the file name string, but even that is no great difficulty-you 
can bury the details in a new ASSERTFlLE macro that you use 
once at the start of each source file: 

#I n c l  ude < s t d i  o .  h> 

#i n c l  ude <debug. h> 

ASS 

v o i d  *memcpy(void *pvTo, v o i d  *pvFrom, s i z e - t  s i z e )  
{ 

b y t e  *pbTo = ( b y t e  * )pvTo;  
b y t e  *pbFrom = ( b y t e  *)pvFrom; 

ASSERT(pvTo != NULL && pvFrom != NULL); 

You can see that the call to ASSERT is unchanged. Here is the 
code to implement the ASSERTFILE macro and the version of 
ASSERT that works with it: 

#i f d e f  DEBUG 

# d e f i n e  ASSERTFILE(stt-1 \ 
s t a t i c  char  s t r A s s e r t F i l e C 1  = s t r ;  
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Using this version of ASSERT, you can gain a lot of memory. For 
example, in the small application I used to test the code in this 
book, the new implementation cut 3K off the data area. 

The problem with the assertion is that the test contains code that 
should remain in the nondebug version of the function. As it is, 
the nondebug code will enter an endless loop unless ch happens 
to equal the newline character when the do loop is executed. The 
function should be written this way: 

v o i d  g e t l i n e ( c h a r  *pch) 
{ 

i n t  ch: I* ch *must* be an i n t .  *I 

d  0 

E 
ch = g e t c h a r 0 ;  
ASSERT(ch != E O F ) ;  

1 
w h i l e  ( ( *pch*  = ch)  != '\n'); 

1 

4. The simplest way to detect bugs in switch statements that have 
not been updated is to include assertions in the default cases to 
alert you to unexpected cases that pop up. In some instances the 
default case should never be invoked because all of the possible 
cases are explicitly handled. When all cases are handled explic- 
itly, use 

d e f a u l t :  
ASSERT( FALSE) ; I* We should never  g e t  h e r e .  * /  
break :  

1 

5. By design, the pattern for each entry in the table must be a subset 
of the corresponding mask. For example, if the mask is OxFF00, 
the pattern must not have any bits set in the low byte; otherwise, 
it would be impossible for any instruction, once masked, to 
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match the pattern. The Checkldlnst routine could be enhanced to 
verify that the pattern is a subset of the mask: 

v o i d  C h e c k I d I n s t ( v o i d )  
{ 

i d e n t i t y  * p i d .  * p i d E a r l i e r ;  
i n s t r u c t i o n  i n s t :  

f o r  ( p i d  = & i d I n s t [ 0 ] ;  p id->mask != 0; pid++) 
{ 

/ *  Make sure  t h a t  p a t  i s  a subse t  o f  mask. * I  
ASSERT((pid->pat & p id->mask)  == p i d - > p a t ) ;  

6.  Use assertions to verrfy that inst has none of the problematic 
settings: 

i n s t r u c t i o n  *pcDecodeEOR(inst ruct ion i n s t ,  i n s t r u c t i o n  *PC,  

opcode *pope) 
{ 

/ *  Did we ge t  a  CMPM o r  CMPA.L i n s t r u c t i o n  by mistake? * /  
ASSERT(eamode(inst) != 1 && mode ( i ns t1  != 3 ) ;  

/ *  I f  nonreg mode. a l l o w  o n l y  abs word and l o n g  modes. * /  
ASSERT(eamode(inst) != 7 ! 1 

(eareg( inst .1  == 0 : :  e a r e g ( i n s t 1  == 1 ) ) ;  

The important point in choosing a backup algorithm is that it be 
a different algorithm. To verify that qsort is working, you could 
scan the data after a sort to venfy that the order is correct. Scan- 
ning is not sorting and therefore qualifies as a different algo- 
rithm. To venfy that the binary search is working, follow it with 
a linear search to see whether the two searches give the same 
result. Finally, to venfy that the itoa function is working, take the 
string it returns, reconvert the string to an integer, and compare 
the value to the integer originally passed to itoa; they should 
be equal. 
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Of course, you probably don't want to use backup algo- 
rithms for every piece of code you wr i te tha t  is, unless you're 
working on code for the space shuttle, a radiation machine, or 
any other device in which a coding bug could be life threatening. 
But you probably should be using backup algorithms for all of 
the major engines in your application. 

You can make it easier to distinguish between code that uses 
uninitialized data and code that continues to use released data 
by using different debug values to destroy the two kinds of 
memory. For example, f NewMemory could destroy new, unin- 
itialized memory using bNewGarbage, and FreeMemo y could de- 
stroy the memory it releases using bFreeGarbage: 

fResizeMernory creates both types of garbage-you could use the 
two values above, or you could create two more values. 

One way to catch "overfill" bugs is to periodically check the 
bytes following each allocated block to verify that they have 
not been modified. But while that test sounds straightforward, it 
requires that you remember what all those trailing bytes are, and 
it ignores the potential problems you might run into by reading 
from memory that isn't part of the allocated block. Fortunately, 
there is a simple way to implement the test, provided you're 
willing to allocate 1 extra byte for every block that you allocate. 

For example, when you callfNewMemory with a size of 36, 
you could actually allocate 37 bytes and store a known "debug- 
ging byte" in the extra memory location. Similarly, you could 
allocate and set an extra byte in fResizeMemory when it calls 
realloc. To catch the overfill bugs, you would then put assertions 
in sizeofBlock, f ValidPointer, FreeBlockInfo, NoteMemoyRef, and 
CheckMemoryRefs to verify that the debugging byte has not been 
touched. 
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One way you could implement the code is shown below. 
First, you would define bDebugByte and sizeof DebugByte: 

I* bDebugByte i s  a  magic  v a l u e  t h a t  i s  s t o r e d  a t  t h e  
* t a i l  o f  e v e r y  a l l o c a t e d  memory b l o c k  i n  DEBUG 
* v e r s i o n s  o f  t h e  program.  s i z e o f D e b u g B y t e  i s  added 
* t o  t h e  s i z e s  passed t o  m a l l o c  and r e a l l o c  so t h a t  
* t h e  c o r r e c t  amount o f  space i s  a l l o c a t e d .  
* / 

# d e f i n e  bDebugByte 0xE1 

#i f d e f  DEBUG 
# d e f i n e  s i zeo fDebugBy te  1 

# e l  s e  
# d e f i n e  s i z e o f D e b u g B y t e  0 

# e n d i  f 

Next, you would use sizeof DebugByte to adjust the calls to malloc 
and realloc in f NezuMmoy and f ResizeMmo y, and you would 
use bDebugByte to fill in the extra bytes if the allocations are 
successful: 

f l a g  fNewMemory(void * *ppv,  s i z e - t  s i z e )  
{ 

b y t e  * *ppb = ( b y t e  * * ) p p v ;  

*ppb = ( b y t e  * ) m a l l o c ( s i z e  + s i z e o f D e b u g B y t e ) ;  

#i f d e f  DEBUG 
E 

i f  ( *ppb  != NULL) 
{ 

* ( * p p b  + s i z e )  = bDebugByte; 

memset(*ppb, bGarbage,  s i z e ) ;  

(con t i m e d )  
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f l a g  fResizeMemory(void * *ppv,  s i ze - t  sizeNew) 
E 

b y t e  **ppb = ( b y t e  * * ) p p v ;  
b y t e  *pbNew; 

pbNew = ( b y t e  * ) r e a l l o c ( * p p b ,  sizeNew + sizeofDebugByte); 
i f  (pbNew != NULL) 
E 

#i f d e f  DEBUG 
E 

*(pbNew + sizeNew) = bDebugByte; 

Finally, you would put the assertion below into the sizeof Block, 
f ValidPointer, FreeBlocklnfo, NoteMemoryRef, and CheckMemmy* 
routines that are in Appendix B: 

/*.  V e r i f y  t h a t  n o t h i n g  wrote  o f f  end o f  b l o c k .  * /  
ASSERT(*(pbi->pb + p b i - > s i z e )  == bDebugByte); 

With these changes, the memory subsystem would catch bugs in 
which code writes past the end of your allocated memory blocks. 

There are many ways you could catch the not-so-dangling 
pointer bug. One possible solution would be to change the de- 
bug version of FreeMemoy so that it wouldn't actually free the 
blocks it receives, but would instead build a list of free but allo- 
cated blocks. (The blocks would look allocated to the system but 
would look free to your program.) Moddying FreeMemoy this 
way would keep a "free" block from being reallocated before the 
memory subsystem could be validated with a call to Check- 
Memo yRefs. CheckMemo yRefs would then validate the memory 
system and finish up by taking FreeMemory's "free" list and re- 
leasing all the blocks. 

Now, while this solution would catch not-so-dangling 
pointers, you probably shouldn't use it unless your program 
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suffers from such bugs. The reason: The solution violates the 
principle that debug code is extra-not different-code. 

4. To validate the sizes of the objects that your pointers reference, 
you must consider two cases: pointers to entire blocks and point- 
ers to suballocations within blocks. For pointers to entire blocks, 
the strongest tests you can make are to verify that the pointers 
reference the starts of their blocks and that the block sizes match 
what the sizeofBIock function would return for them. For pointers 
to suballocations within blocks, the tests should be weaker: The 
pointer must point into a block, and the size must not reach be- 
yond the tail end of the block. 

So instead of using the existing NoteMemoryRef routine to 
mark both suballocations and complete blocks, you could use 
two functions to mark the two types of blocks. For sub- 
allocations, you could extend the existing NoteMemoryRef func- 
tion by adding a size argument, and for marking full blocks, you 
could create a new NoteMemoryBlock function. 

I* NoteMemoryRef(pv, s i z e )  
* 
* NoteMemoryRef marks t h e  b l o c k  t h a t  pv p o i n t s  i n t o  as 
* be ing  re fe renced .  Note: pv does * n o t *  have t o  p o i n t  t o  
* t h e  s t a r t  o f  a  b l o c k ;  i t  may p o i n t  anywhere w i t h i n  an 
* a l l o c a t e d  b l o c k ,  b u t  t h e r e  must be a t  l e a s t  "size'.' by tes  
* l e f t  i n  t h e  b l o c k .  Note: For e n t i r e  b l o c k s .  use 
* NoteMemoryBlock - -  i t  p r o v i d e s  s t r o n g e r  v a l i d a t i o n .  
* 1 

v o i d  NoteMemoryRef(void *pv, s i ze - t  s i z e ) ;  

I* NoteMemoryBl ock(pv.  s i z e )  
* 
* NoteMemoryBlock marks t h e  b l o c k  t h a t  pv p o i n t s  t o  as 
* b e i n g  re fe renced .  Note: pv *must* p o i n t  t o  t h e  s t a r t  
* o f  a  b l o c k  t h a t  i s  e x a c t l y  " s i z e "  b y t e s  l o n g .  
* I 

v o i d  NoteMemoryBlock(vold *pv ,  s i ze - t  s i z e ) ;  

These two functions would let you catch the bugs posed in 
the question. 
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5. To improve the integrity checks in the routines in Appendix B, you 
would first change the reference flag in the blockinfo structure to a 
reference count, and you would then update ClearMmoryR@ and 
NoteMemoryRef to handle the counter. That part is straightforward. 
The question, though, is how do you mochfy ChckMemo yRefs so 
that it will assert when some blocks have multiple references but 
won't assert for other blocks? 

One solution to this problem would be to enhance the 
NoteMemoryRef routine so that it would take a block ID tag in 
addition to the pointer to the block. NoteMemoryRef could then 
store the tag in the blockinfo structure, and CheckMemoyRefs 
could come along later and use the tag to venfy the reference 
count. You can see the code to implement this change below. For 
header comments, see the original functions in Appendix B. 

I* b l o c k t a g  i s  a l i s t  o f  a l l  o f  t h e  t ypes  o f  a l l o c a t e d  
* b l o c k s  ma in ta i ned  by t h e  a p p l i c a t i o n .  ClearMemoryRefs 
* s e t s  a l l  b l ocks  t o  tagNone. NoteMemoryRef s e t s  t h e  
* t a g  t o  a s p e c i f i c  b l o c k  t ype .  
* I 

t ypede f  enum 
{ 

tagNone. 
tagSymName, 
tagSymStruct ,  
t a g L i  stNode, 

1 b l  ock tag ;  

I* L i s t  nodes must have two r e f s .  * /  

v o i d  ClearMemoryRefs(void) 
{ 

b l o c k i n f o  * p b i ;  

f o r  ( p b i  = pbiHead: p b i  != NULL; p b i  = p b i - > p b i N e x t )  
{ 

pb i ->nReferenced  = 0; 
p b i - > t a g  = tagNone; 

1 
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v o i d  NoteMemoryRef(void *pv, b l o c k t a g  t a g )  
C 

b l  o c k i  n f o  *pb i  ; 

p b i  = p b i G e t B l o c k I n f o ( ( b y t e  * ) p v ) :  

p b i  ->nReferenced++; 

ASSERT(pbi->tag == tagNone I I  p b i - > t a g  == t a g ) :  
p b i - > t a g  = t a g ;  

1 

v o i d  CheckMemoryRefs( v o i  d  
{ 

b l  o c k i n f o  *pb i  ; 

f o r  ( p b i  = pbiHead; p b i  != NULL; p b i  = p b i  ->pb iNex t )  
{ 

I* A s imp le  check f o r  b l o c k  i n t e g r i t y .  I f  t h i s  
* a s s e r t  f i r e s ,  i t  means t h a t  something i s  wrong 
* w i t h  t h e  debug code t h a t  manages b l o c k i n f o  o r .  
* p o s s i b l y ,  t h a t  a  w i l d  memory s t o r e  has t r a s h e d  
* t h e  da ta  s t r u c t u r e .  E i t h e r  way. t h e r e ' s  a  bug. 
* I  

ASSERT(pbi->pb != NULL && p b i - > s i z e  != 0 ) :  

I* A check f o r  l o s t  o r  l e a k y  memory. I f  t h e r e  a r e  
* no re fe rences  a t  a l l ,  i t  means e i t h e r  t h a t  t h e  
* app has l o s t  t r a c k  o f  t h i s  b l o c k  o r  t h a t  n o t  
* a l l  g l o b a l  p o i n t e r s  a r e  b e i n g  accounted f o r  
* w i t h  NoteMemoryRef. Some t ypes  o f  b l o c k s  may 
* have more than  one r e f e r e n c e  t o  them. 
* / 

s w i t c h  ( p b i - > t a g )  
{ 
d e f a u l t :  

I* Most b l ocks  have a  s i n g l e  r e f e r e n c e .  * I  
ASSERT(pbi->nReferenced == 1); 
break;  

case tagL is tNode:  
ASSERT(pbi->nReferenced == 2 ) :  
b reak ;  

1 
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6. MS-DOS, Windows, and Macintosh developers normally test 
out-of-memory conditions by using a tool to gobble memory 
until the application's memory requests begin to fail. That ap- 
proach can work, but it is not very preciseit  causes some allo- 
cation request somewhere in the program to fail. The technique 
is not very useful if you want to test an individual feature. A bet- 
ter technique is to build an out-of-memory simulator directly 
into the memory manager. 

But notice, memory errors are just one type of resource fail- 
ure-you can have disk errors, out-of-paper errors, the-phone- 
line-is-busy errors, all sorts of errors. What's really needed is a 
general tool to fake failures. 

One possible solution would be to create a failureinfo struc- 
ture that would contain information to tell the failure mecha- 
nism what to do. The idea is that programmers and testers 
would fill in the failureinfo structure from an external test and 
then exercise their feature. Microsoft applications often have de- 
bug-only dialogs that allow testers to use such systems, and in 
applications such as Excel, which have macro languages, debug- 
only macros allow testers to automate the process. 

To declare the failureinfo structure for the memory man- 
ager, you would use 

f a i l u r e i n f o  f iMemory ;  

Then to simulate out-of-memory errors in fNmMemory and 
fliesizeMemory, you would insert a small block of debug code 
into each function: 

f l a g  fNewMemory(void * *ppv.  s i z e - t  s i z e )  
E 

b y t e  **ppb = ( b y t e  * * ) p p v ;  

#i f d e f  DEBUG 
i f  (fFakeFailure(&fiMemory)) 
{ 

*ppb = NULL; 
r e t u r n  (FALSE) ; 

1 
#end i  f 
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f l a g  fResizeMemory(void * *ppv,  s i z e - t  sizeNew) 
C 

b y t e  **ppb = ( b y t e  * * ) p p v ;  
b y t e  *pbNew: 

#i f d e f  DEBUG 
i f  ( f F a k e F a i l u r e ( & f i M e m o r y ) )  

r e t u r n  (FALSE): 
#endi f 

With these changes, the failure mechanism is in place. To make it 
work, you would call the SetFailures function to initialize the 
failureinfo structure: 

Calling SetFailures with 5 and 7 tells the failure system that you 
want to call the system five times before getting seven consecu- 
tive failures. Two common calls to SetFailures are 

I* D o n ' t  f a k e  any f a i l u r e s .  *I 
S e t F a i l u r e s ( & f i M e m o r y ,  UINT-MAX, 0 ) ;  

I* Always f a k e  f a i l u r e s .  *I 
S e t F a i l u r e s ( & f i M e m o r y ,  0 ,  UINT-MAX); 

Using SetFailures, you can write unit tests that call the same code 
over and over but each time call SetFailures with different values 
to simulate all possible error patterns. A common test is to hold 
the second "fail" value at UINT-MAX while the first "success" 
count is progressively bumped from 0-"always fail1'- to some 
number that is deemed large enough to test each successful call 
to the system. 

Finally, there are times when you will want to call the 
memory system, disk system, and so on, and you definitely 
won't want any fake failures; this is often true when you're allo- 
cating resources from within other debug code. The two nestable 
functions on the next page allow you to temporarily disable the 
failure mechanism. 
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D i  sableFai  1  ures(&f iMemory)  ; 
do some a 1 locating 

EnableFailures(&fiMemory) ; 

The code below implements the four functions that make up the 
failure mechanism. 

t ypede f  s t r u c t  
{ 

unsigned nsucceed; / *  # o f  c a l l s  be fo re  f a i l i n g  * /  
unsigned n F a i l  ; / *  # o f  t imes t o  f a i l  * I 
uns i  gned n T r i  es ; / *  # o f  t imes a l ready  c a l l e d  * /  
i n t  l o c k :  / *  I f  > 0, d i s a b l e  mechanism. *I 

} f a i l u r e i n f o ;  

v o i d  S e t F a i l u r e s ( f a i 1 u r e i n f o  * p f i ,  unsigned nsucceed, 
unsigned n F a i l  

{ 
/ *  I f  n F a i l  i s  0, r e q u i r e  t h a t  nSucceed be UINT-MAX. *I 
ASSERT(nFai1 != 0 1 1  nSucceed == UINT-MAX); 

p f i ->nSucceed = nsucceed; 
p f i - > n F a i l  = n F a i l ;  
p f i  ->nTr ies  = 0; 
p f i  - > l o c k  = 0;  

1 

v o i d  EnableFai l  u r e s ( f a i  1  u r e i n f o  * p f i  
{ 

ASSERT(pf1->lock > 0 ) ;  
p f i  - > l o c k - - ;  

1 

v o i d  D i s a b l e F a i l  u r e s ( f a i 1 u r e i n f o  * p f i  ) 
E 

ASSERT(pf i->lock >= 0 && p f i - > l o c k  < INT-MAX); 
p f i  ->lock++; 

1 
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f l a g  fFakeFailure(fai1ureinfo * p f i )  
E 

ASSERT(pf1 != NULL) ; 

i f  ( p f i - > l o c k  > 0 )  
r e t u r n  ( FALSE ; 

I* P i n  n T r i e s  a t  UINT-MAX. * /  
i f  ( p f i  - > n T r i e s  I =  UINT-MAX) 

p f i  - > n T r i  e s u ;  

if ( p f i  - >nT r i es  <= p f i  ->nSucceed) 
r e t u r n  (FALSE) ; 

if ( p f i - > n T r i e s  - p f i ->nSucceed <= p f i - > n F a i l )  
r e t u r n  (TRUE) ; 

r e t u r n  (FALSE); 
I 

There were no questions in Chapter 4, although some projects were 
suggested. 

strdup has a risky interface because its error return value is dis- 
guised as a NULL pointer where, like rnalloc's, it can be over- 
looked. A less error-prone interface would separate the error 
condition from the pointer output to make the error condition 
obvious. One such interface would be 

char  *s t rDup;  I* p o i n t e r  t o  t h e  cop ied  s t r i n g  * /  

i f  ( fS t rDup (&s t rDup ,  s t rToCopy))  
success fu l  - -  strDup p o i n t s  t o  the  new s t r i n g  

e l  se 
unsuccessful  - -  strDup i s  NULL 
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2. A better interface for getchar thanfGetCharls interface would be 
one that returns an error code instead of a TRUE or FALSE 
"SUCC~SS" value-for example, 

I *  These a r e  t h e  e r r o r s  t h a t  e r rGe tChar  may r e t u r n .  * I  

t y p e d e f  enum 
E 

errNone = 0 ,  
errEOF. 
errBadRead, 

1 e r r o r ;  

v o i d  ReadSomeStuf f (void)  
E 

c h a r  ch;  
e r r o r  e r r ;  

if ( ( e r r  = e r r G e t C h a r ( & c h ) )  == e r rNone)  
success - -  ch has t h e  next  c h a r a c t e r  

e l  se 
f a i l u r e  - -  e r r  has t h e  e r r o r  type 

This interface is better than fGetChar's interface because it allows 
errGetChar to return multiple error conditions (and multiple suc- 
cess conditions, for that matter). If you don't care about the spe- 
cific kind of error being returned, you can eliminate the local 
variable ew and revert to fGetCharls interface style: 

i f  ( e r r G e t C h a r ( & c h )  == er rNone)  
success - -  ch has t h e  next  c h a r a c t e r  

e l  se 
f a i l u r e  - - we d o n ' t  c a r e  what k ind  o f  e r r o r  we have 

3. The trouble with strncpy is that it is inconsistent in its behavior: 
Sometimes strncpy terminates the destination string with a nu1 
character, and sometimes it doesn't. strncpy is listed along with 
the other general-purpose string functions, and programmers 
may erroneously conclude that strncpy is itself a general-purpose 
function. It isn't. sfrncpy really shouldn't be in the ANSI stan- 
dard, given its unusual behavior, but was included because of its 
widespread usage in pre-ANSI implementations of C. 



ANSWERS: Chapter 5 233 

4. C++'s inline function specifier is valuable because it allows you 
to define functions that are as efficient as macros-if you're us- 
ing a good compiler-yet don't have the troublesome side effects 
that macro "functions" have in evaluating their parameters. 

5. The serious problem with C++'s new & reference arguments is 
that such arguments hide the fact that you are passing the vari- 
able by reference, not by value, and that can cause confusion. For 
example, suppose you redefine the f ResizeMemo y function so 
that it uses a reference argument. Programmers could then write 

if (fResizeMernory(pb,  s i zeNew) )  
res ize was success fu7 

But notice, programmers unfamiliar with the function would 
have no reason to believe that pb might be changed during the 
call. How do you think that will affect program maintenance? 

A related concern is that C programmers often manipulate 
the formal arguments to their functions because they know those 
arguments are passed by value, not reference. But consider the 
maintenance programmer who fixes a bug in a function he 
didn't write. If that programmer fails to notice the & in the decla- 
ration, he could modify the argument without realizing that the 
change won't be local to the function. & reference arguments are 
risky because they hide an important implementation detail. 

6.  The problem with strcmp's interface is that its return value leads 
to unintelligible code at the point of call. To improve strcmp, you 
would design the interface so that the return value is easily un- 
derstood, even by those unfamiliar with the function. 

One possible interface is a minor variant of the one that 
strcmp already has. Instead of returning arbitrary negative and 
positive values for unequal strings-which forces programmers 
to make all their comparisons relative to 0-you could change 
strcmp so that it returns three well-defined named constants: 

i f  ( s t r c m p ( s t r L e f t ,  s t r R i g h t )  == STR-LESS) 

i f  ( s t r c m p ( s t r L e f t ,  s t r R i g h t )  == STR-GREATER) 

i f  ( s t r c m p ( s t r L e f t ,  s t r R i g h t )  == STR-EQUAL) 
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Another possible interface would be to use separate func- 
tions for each type of comparison: 

This second interface has the advantage that you can use macros 
to implement it on top of the existing strcmp function: 

i n e  f S t r G r e a t e r ( s t r L e f t ,  s t r R i g h t )  \ 
( s t r c m p ( s t r L e f t ,  s t r R i g h t )  > 0 )  

i n e  f S t r E q u a l ( s t r L e f t ,  s t r R i g h t )  \ 
( s t r c m p ( s t r L e f t ,  s t r R i g h t )  == 0 )  

You can increase readability even further by defining macros for 
the <= and >= comparisons. The result would enhance read- 
ability without any loss in size or speed. 

The portable range of a "plain" 1-bit bit field is simply 0, which is 
not too useful. The bit field does have a non-zero state-you just 
don't know what it is. The value can be either -1 or 1, depending 
upon whether your compiler defaults to signed or unsigned bit 
fields. You can safely use both states of the bit field if you 
restrict all of your comparisons to 0. For example, if you assume 
that psw.cawy is a plain 1-bit bit field, you can safely write any of 
these four tests: 

But the following tests are risky because they depend upon the 
compiler you are using. 
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2. Functions that return boolean values are like "plain" 1-bit bit 
fields in that you cannot safely predict what the "true" return 
value will be. You can rely on FALSE to be 0, but programmers 
often return any convenient non-zero value for "true," which of 
course does not equal the constant TRUE. If you assume that 
fnTmMemo y returns a boolean value, you can safely write 

i f  (fNewMemory( . . . I  == FALSE) 

i f  (fNewMemory( ... 1 != FALSE) 

Or, even better, 

But the code below is risky because it assumes that fNewMemo y 
will never return a non-zero value other than TRUE: 

i f  (fNewMemory( . . . I  == TRUE) I* Risky!  *I 

A good rule to remember is Never compare boolean values to TRUE. 

3. If you declare wndDisplay as a global window structure, you give 
it a special attribute that no other window structure has: It is a 
global. That may seem like a minor detail, but it can introduce 
unexpected bugs. For instance, suppose you want to write a rou- 
tine to free a window and all of its children. This function will do it: 

v o i d  FreeWindowTree(window *pwndRoot) 
{ 

i f  (pwndRoot != NULL) 
{ 

window *pwnd, *pwndNext; 

(continued) 
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f o r  (pwnd = pwndRoot->pwndChild; pwnd != NULL; 
pwnd = pwndNext) 

{ 
I* Get "Next"  p o i n t e r  b e f o r e  f r e e i n g  i t .  * /  
pwndNext = pwnd->pwndSib l ing;  
FreeWindowTree(pwnd): 

1 

i f  (pwndRoot ->s t rWndT i t le  != NULL) 
FreeMemory(pwndRoot->st rWndTi t le ) :  

FreeMemory(pwndRoot); 
1 

1 

Now notice, if you want to free every window, you can safely 
pass pwndDisplay because it points to an allocated window struc- 
ture, but you can't pass &wndDisplay because the code will try to 
free wndDisplay, which is impossible because it's a global. To 
make the code work correctly with &wndDisplay, you would 
have to insert 

before the call to FreeMemoy(pwndRoot). If you do that, you tie 
the code to a global data structure. Yuck. 

One of the best ways to keep bugs out of your code is to 
keep arbitrary design quirks out of your implementations. 

4. The second version is much riskier than the first for several rea- 
sons. Because A, D, and expression are common code in the first 
version, they are going to be executed-and therefore tested- 
no matter what the value off is. In the second version, the A's 
and D's will be tested separately, and unless they're identical, 
you risk missing bugs in one case or the other. (The A's and D's 
would not be identical if they were optimized specifically for use 
with B or C.) 

In the second version, you'll also have problems keeping 
the A's and D's synchronized as programmers fix bugs and en- 
hance the code. That's particularly true if the A's and D's are not 
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identical. So use the first version unless calculating f is so expen- 
sive that the user will notice the difference. Here's another good 
rule to remember: Minimize the drfierences by maximizing the 
amount of common code. 

5. It's risky using similar names such as sl and s2 because it's easy 
to type s l  when you mean s2. Worse, the code will compile with- 
out issuing an error. Using similar names also makes it harder to 
spot bugs where you have swapped the names by mistake: 

i n t  s t r c m p ( c o n s t  c h a r  * s l ,  c o n s t  c h a r  * s 2 )  
{ 

f o r  ( ; * s l  == *s2 ;  s l t t ,  s 2 u )  

i f  ( * s l  == ' \@'I I* Match t o  t h e  end? *I 
r e t u r n  ( 0 ) ;  

1 

r e t u r n  ( ( ' * (uns igned  c h a r  * I s 2  < * ( u n s i g n e d  c h a r  * ) s l )  ? 
- 1  : 1); 

1 

The code above is wrong because the test in the return statement 
is backwards, but it's hard to see the bug because the names have 
no meaning. If you use descriptive and distinct names such as 
sLeft and sRight, the odds of having either the mistyping or the 
swapping kind of bug drop dramatically, and the code is more 
readable too. 

6. The ANSI standard guarantees that you can address the first 
byte following a declared array, but it does not guarantee that 
you can reference the byte that precedes such an array. Nor does 
the standard guarantee that you can address the byte preceding 
a block that you allocate using malloc. 

For example, the pointers for some 80x86 memory models 
are implemented using base:ofiset pairs in which only the un- 
signed offsets are manipulated. If pchStart is such a pointer and 
it points to the start of an allocated block, its offset is 0. If you 
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assume that pch starts out with a value of pchStart+size, pch can 
never be less than pchStart because its offset can never be less 
than pchStartts offset of 0-it wraps to OxFFFF. 

7a. Using printf(str); instead of printf("%s ", sb); will cause bugs if str 
contains any % signs; printf will misinterpret them as format 
specifications. The trouble with printf("%stt, str); is that it can so 
"obviously" be optimized to printf(str); that unwary program- 
mers will occasionally clean up the code and introduce bugs. 

7b. Using f = 1-f; instead off = !f; is risky because it assumes that f is 
either 0 or 1, whereas using !f clearly shows that you are flipping 
a flag and works for all values off. The only reason to use 1-f is 
that it may generate slightly more efficient code than !f, but re- 
member, local efficiency improvements rarely have any overall 
effect on a program's performance. Using I-f merely increases 
your risk of having a bug. 

7c. The risk in using multiple assignments in one statement is that it 
may cause unexpected data conversions. In the example here, 
the programmer was careful to declare ch as an int so that it , 

could properly handle the EOF value that getchar might return. 
But notice that getchar's value is first stored in a string, which 
means that the value is converted to a char, and it is the con- 
verted char-not the returned int-that is assigned to ch. This 
unexpected conversion re-introduces the getchar bug we covered 
in Chapter 5, despite the fact that ch was so carefully defined to 
be an int. 

8. In a typical case, a table simplifies code by making it smaller and 
faster, which increases the odds that it will be correct. You get a 
more balanced view of this question, though, when you consider 
the data in the table. The code may be small, but the table takes 
memory, so overall, the,table solution may use more memory 
than the nontable implementation. The other problem with a 
table is risk-you must ensure that the data in the table is correct. 
Sometimes that's easy, as it is in the tolower and uCycleCheckBox 
tables, but in a large table like the one in the disassembler in 
Chapter 2, it would be easy for a bug to creep in. The,n.de is Don't 
use a table unless you can validate the data. 
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9. If your compiler doesn't make such basic optimizations as con- 
verting multiplies and divides to shifts (when appropriate), you 
must have far worse code generation problems to worry about; 
you won't notice an improvement by using a shift instead of a 
division. Don't make minor efficiency tweaks to overcome the 
limitations of a poor compiler. Instead, keep your code clean and 
get a better compiler. 

10. To guarantee that it's always possible to save the user's file, sim- 
ply allocate the buffer sometime before the user changes the file. 
If you need one buffer per file, allocate a buffer every time you 
open a file. If the allocation fails, open the file as a read-only 
document, or don't open the file at all. But if you need just one 
buffer to handle all open files, you could allocate that buffer dur- 
ing program initialization. And don't worry about "wasting" 
memory by having that buffer hanging around most of the time 
doing nothing. It's much better to waste that memory and guar- 
antee that you can save the user's data than to let him or her 
work for five hours and then fail to save the data because you 
can't allocate the buffer. 

1. The code below modifies pchTo and pchfrom, both of which are 
inputs to the function: 

cha r  * s t r c p y ( c h a r  *pchTo, cha r  *pchFrom) 
{ 

cha r  * p c h S t a r t  = pchTo; 

w h i l e  (*pchTo++ = *pchFrom++) 
E I 

r e t u r n  ( p c h s t g r t ) ;  
1 

Modifying pchTo and pchFrom doesn't violate the write privilege 
associated with those arguments because they are passed by 
value, which means that strcpy receives duplicates of the inputs, 
and strcpy is therefore allowed to change them. But note that 
not all computer languages-FORTRAN is one example-pass 
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arguments by value. This practice is quite safe in C, but it can be 
hazardous if you use it with other languages. 

2. The trouble with strDigits is that it is declared as a static pointer, 
not as a static buffer, and that subtle difference can cause prob- 
lems if you use a compiler option that allows the compiler to 
treat all string literals as constants. Some compilers that support 
the "constant string literal" option store all string literals with 
the other constants in your program, and because constants 
don't change, such compilers tend to scan all constant strings 
and throw out duplicates. In other words, if both strFromUns 
and strFromInt declare static pointers to a string like "?????", the 
compiler may allocate one-not two-copies of that string. Some 
compilers are even more thorough and combine strings when- 
ever one string matches the tail portion of another, as "her" 
matches the tail of "mother". Changing one string will change 
the other. 

It is much safer to treat all string literals as constants and 
restrict your code to reading from them. If you want to change a 
string, declare a character buffer, not a string pointer: 

char *strFromUns(unsigned u) 
{ 

s t a t i c  c h a r  s t r D i g i t s [ ]  = " ? ? ? ? ? " ;  

But even this code is risky because it relies on the program- 
mer to type the correct number of question marks and it assumes 
that the trailing nu1 character will never be destroyed. Nor is 
using question marks as space holders such a smart idea. Is the 
string really five question marks, or do trigraphs affect it? If 
you're not sure, you understand why you should use a different 
character as a space holder. 

A safer implementation would be to declare the size of the 
buffer and replace the assertion with a store: 

c h a r  *s t rF romUns(uns igned  u )  
{ 

s t a t i c  c h a r  s t r D i g i t s [ 6 ] ;  / *  5 d i g i t s  + ' \ @ @  * /  

pch = & s t r D i  g i  t s [ 5 ]  ; 
*pch = I \ @ ' ;  / *  Replaces t h e  ASSERT. * /  
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3. Using memset to initialize adjacent locals is both extremely risky 
and inefficient compared to using the straightforward 

I* S e t  i. j .  and k  t o  0 .  * I  

or using the more terse 

i = j = k = 0 .  / *  S e t  i, j, and k t o  0 .  * /  

These pieces of code are both portable and efficient, and they are 
so obvious that you don't even need the comments. The memset 
version is another matter. 

I'm not sure what the original programmer was trying to 
gain by using memset, but I'm sure he or she didn't get a good 
return on the effort. For starters, on all but the best compilers, the 
overhead alone of calling memset is more expensive than explic- 
itly clearing i, j, and k. But let's assume that the programmer was 
using a smart compiler that inlines small fills when the fill value 
and length are known at compile time. That doesn't improve 
things much: The code still assumes that the compiler will allo- 
cate i, j, and k adjacently on the stack, with k lowest in memory. 
The code also assumes that i, j, and k abut each other without any 
extra "pad" bytes to align the variables for efficient access. 

But who says that the variables even have frame storage? 
Good compilers routinely perform life-span analysis and use the 
information to keep locals in registers for their entire lives. The 
locals i and j may be allocated in registers and spend their entire 
lives there, never getting frame storage. The variable k, on the 
other hand, must be given frame storage because its address is 
passed to memset-you can't take the address of a register. In this 
scenario, i and j would remain uninitialized, and 2 *sizeof(int) 
bytes following k would be erroneously set to 0. 

4. You face two risks when you call or jump to a fixed address in 
your machine's ROMs. The first is that the ROMs may never 
change on your own machine but they will almost certainly 
change on future models of your hardware. But even if the ROM 
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routines never change, hardware vendors sometimes fix bugs in 
their ROMs by using RAM-resident software patches that are 
invoked through the system interfaces. If you bypass the inter- 
faces, you bypass the patches as well. 

5. The problem with not passing val if it isn't needed is that the 
caller is making an assumption about the internal workings of 
DoOperation in much the way that FILL was making assumptions 
about CMOVE. Suppose that a programmer enhances Dooperation 
and in the process rewrites it so that it always references val: 

v o i d  DoOpera t ion(opera t ion  op, i n t  v a l )  
{ 

i f  (op  < opPr imary0ps)  
DoPrlmaryOps(op, v a l  1 ; 

e l s e  i f  (op  < opF loa t0ps)  
DoFloatOps(op, v a l  1; 

e l s e  

What happens when DoOperation references the nonexistent val? 
That depends upon your operating system, but the code could 
abort if val is in a read-protected portion of the stack frame. 

You can make it difficult for programmers to play tricks 
with your functions by forcing them to pass placeholders for un- 
used variables. In the documentation, you could say, "Pass 0 for 
val whenever you call DoOperation with opNegAcc." A well- 
placed assertion would help keep programmers honest: 

case opNegAcc: 
ASSERT(va1 == 0 ) ;  I* Pass 0 f o r  v a l .  * I  
accumulator  = -accumula to r ;  
b reak ;  

6. The assertion verifies that f is either T R U E  or FALSE. Not only is 
the assertion unclear, but more important, there is no reason to 
be so fastidious in debug code; after all, the code will be stripped 
from the ship version. The assertion would be better written as 

ASSERT(f == TRUE I I  f == FALSE); 
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7. Instead of doing all the work in one line, declare a function 
pointer and break the work into two lines: 

vo id  *memmove(void *pvTo, v o i d  *pvFrom, s i z e 2  s i z e )  
{ 

v o i d  ( *p fnMove) (by te  *,  b y t e  * ,  s ize - t  ; 
b y t e  *pbTo = ( b y t e  *)pvTo; 
b y t e  *pbFrom = ( b y t e  *)pvFrom; 

pfnMove = (pbTo > pbfrom) ? t a i l m o v e  : headmove; 
(*pfnMove)(pbTo, pbfrom, s i z e ) ;  

r e t u r n  (pvTo) ;  
1 

8. Simply put, the code calling the Print routine relies on the inter- 
nal implementation of the Print code. If a programmer changes 
the Print code without realizing that other code calls Print by 
jumping 4 bytes beyond the entry point, that programmer may 
modify the code in a way that breaks the Print +4 callers. If you 
find that you must write code with entry points into the middle 
of a routine, at least make the entry points apparent to mainte- 
nance programmers: 

move r0.#PRINTER 
c a l l  P r i n t D e v i c e  

P r i  n t D i  spl  ay : move r 0  .#DISPLAY 
P r i n t D e v i  ce:  ; r 0  == dev ice  I D  

9. Jumping into the middle of an instruction was popular when 
microcomputers had such small amounts of memory that every 
byte was precious. Using this trick usually saved a byte or two. 
Such nonsense was a bad practice then, and it still is. If people on 
your team still write code like this, politely ask them to change 
their ways, or ask them to leave your group. You don't need the 
headaches that come with such code. 

There were no questions in Chapter 8, although there was a suggested 
project. 
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Dooperation function, 168,242 

efficiency. See also shortcuts 
of debug code, 63,69-70 
vs. maintenance of code, 189-90 
program design and, 134,136,142-43 
of stepping through code, 77,84 

Elements of Programming Style, The (Kernighan and 
Plauger), xxiii, 191 
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else clauses, 10,215-16 
environment assumptions, assertion macros for, 

23-27,43,220 
equals (==). See == 
error conditions. See also garbage 

assertion macros and, 22,42 
calling functions that return, 139-40,142 
function interface design and, 101 

error handling code 
localizing in subroutines, 139-40,142 
in return values, 89-91 
stepping through, 78-79,139-40 

error messages, expression strings in, 18 
Excel. See Microsoft Excel 
expressions 

assignment bugs in, 4-5,10,11,216 
logical evaluations in computational, 159-60 
mixing operators in, 137-38,142 
optimizing signed and unsigned, 134-35 
overflow and underflow bugs in, 117-19,132,141 

failureinfo function, 228-31 
fCreateBlock1nfo function, 206-7 
features. See also design 

checklist for implementing, 199-200 
flexibility of, 180-82,194 
implementing, 1791-80 

flush function, 18 
fGetChar function, 90-91,108,231-32 
FillMemo y function, 59 
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fNewMemoy function. See also malloc function 

boolean values and, 235 
catching overfill bugs with, 223 
destroying new memory with, 222 
eliminating random behavior of, 47-50 
memory logging routine for, 60,61-62 
simulating out-of-memory errors in, 228 
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if statements in, 13,142 
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implementations of CMOVE and FILL, 156-59 
standard change, 160 

fputc function, 5-6 
FreeBlocklnfo function, 207-8,222, 224 
"free" features, 179430,193 
free function 

common errors with, 46 
cover function for (see FreeMemoy function) 
NULL pointers and, 52 

FreeMemory function. See also free function 
dangling pointers in, 62-63,72,224-25 
destroying free memory with, 50-52,201,222 
memory logging routine for, 60-61 
NULL pointers in, 99 

FreeWindowTree routine, 149-50 
fResizeMemoy function. See also realloc function 

catching overfill bugs with, 222,223-24 
dangling pointers in, 62-63 
debug code for, 52-53 
memory logging routine for, 60-61 
moving and expanding nodes with, 55-58 
reference arguments in, 233 
and resizing blocks, 92-93 
simulating out-of-memory errors in, 228-29 

function interface design, 87-109 
boolean arguments in, 102-4,107-8 
burying error codes in return values, 89-91 
defining explicit function arguments, 96-99 
documenting hazards in, 104-6,107 
eliminating flaws in, 91-93 
for functions that cannot fail, 100-101,107 
inputs and, 96-99,107 
making code intelligible at point of call, 102-4, 

107 
making error conditions obvious, 88-91 
multipurpose functions and, 93-96,107 
naming, xxvii 
outputs and, 91-93,107 
overview of, 87-88,106-7 
separating function tasks for argument 

validation, 93-96 
function prototypes 

catching calling bugs with, 5-6,7 
p e t c h a r  function and, 91 
generating, 11 

functions. See also function interface design 
arguments in, 143,237 
calling in assembly language, 169,243 
flexiblity of, 180-82,194 
naming conventions for, xxvii-xxviii 
parasitic, 156-59, 166 
passing arguments to, 167,168,239,242 
performing tasks once with, 121-25 
that return errors, 139-40,142 
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catching overfill bugs with, 222,224 
as memory logging routine, 59,62,68,210-11 

garbage. See also error conditions 
destroying, 50-54 
returning to function callers, 33-38 
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getline function, 43,220 
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guidelines. See programming guidelines 

habits. See attitudes 
header files, 11 
Heisenberg's Uncertainty Principle, 63 
heuristics, 215 
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idioms, risky language. See language idioms, risky 
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in ASSERT macro, 17 
debugging with, 15 
removing debugging variables with, 54 
repackaged as assert macro, 16 
undefined macros and, 216-17 

#if directives, 11,216-17 
if statements 

?: expressions as, 127-29,142,161-62 
assignment bugs in, 4-5,11,216 
dangling-if errors, 17 
eliminating unnecessary, 125 -27,141 
stepping through, 79 
testing special cases with, 130 
use of, 161-62 

illegal conditions, assertion macros for, 22,42 
Influence: How and Why People Agree to Things 

(Cialdini), 67 
inline function specifier, C++, 108,232 
inputs, function interface design and, 96-99 
Inside Macintosh manuals, 136,184 
int data type, 112-13,116,141 
integers 

converting strings to, 159-60 
converting to strings, 119-21 

interface design. See function interface design 
IntToStr function, 119-20,130 
itoa function 

backup algorithm for, 44,221-22 
testing special cases in, 130 

Kernighan, Brian, xxiii, 88-89,191 
Knuth, Donald, xxi 

language idioms, risky, 132-36,142,159-60,166, 
239-42 

libraries. See code libraries 
lint function, 7-8 
logical AND. See && 
logical evaluations, in computational expressions, 

159- 60 
logical OR. See I I 
long data type, 112,113,116,141 
longfill function, 24-27 
lookup tables, 11 7-1 8 
loop conditions 

countdown, 143,237 
overflow and underflow bugs in, 117-19 

lowercase characters, converting uppercase to, 
100-101 

Lynch, Peter, 6 

machine code, terse C and, 161-62,166 
Macintosh compilers, 18 
Macintosh computers 

even-alignment on, 25-26 
forcing bad pointers, counters, and indexes to 

show, 49 
Microsoft program development for, xvii, xxiv 

136 
Macintosh Excel. See Microsoft Excel 
macros, undefined preprocessor, 1 1,216-1 7 
maintenance 

vs. efficiency of code, 189-90 
writing code for, 162-65,166 

malloc function 
common errors with, 46 
cover function for (see fNewMemoy function) 
debug code for, 13-15 
eliminating random behavior in, 49 
return values for, 89 
testing error conditions in, 78-79 

masks, 40-42,44220-21 
memchr function 

prototype checking for, 6 
risky language idioms in, xxv, 132-35 
speeding up, 146-48 
testing special cases in, 130-31 
underflow bug in, 118 

memcpy function 
assertion macro for, 16-17,43,217-18 
assert macro in, 16 
checking for NULL pointers, 13-15,18 
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memcpy function, continued 
checking for undefined behavior of, 19-21 
illustrating misplaced semicolon, 3 

memmove function, 163, 168, 243 
memory. See also buffers 

overview of, xxii-xxiii 
passing data in static, 154-56,166 
searching locations, 131-32 
simulating out-of-memory conditions, 228-31 
using output memory as workspace buffers, 

151-53 
memory blocks 

allocating, 47-50 
allocating and releasing, 50-54, 201 
common errors with, 46 
expanding and moving, 55-58 
filling 

and moving in FORTH, 156-59 
overfill bugs, 72,222-24 
random behavior and, 48-50 

memory logging routines for, 60-62,203-11, 
226-27 

overlapping, 19-21,23 
referencing 

freed memory, 149-51,166 
memory you don't oyn, 146-49,166 
NoteMemoryRef function and, 73 

resizing, 91-92 
validating size of, 72,225 

memory logging routines, 60-62,203-11,226-27 
memory managers. See memory system checks 
memory mapped I/O, 147-49,166 
memory system checks. See also subsystem integrity 

checks 
allocating memory, 47-50 
allocating and releasing memory, 50-54 
checking pointers stored in data structures, 

62-67 
common problems with, 46 
expanding and moving memory blocks, 55-58 
memory logging routines, 59-62,203-11,226-27 
for out-of-memory conditions, 73,228-31 

memset function 
data flow tests and, 79-80 
destroying original memory blocks with, 55-56 
environment assumptions in, 23-27,124 
fast and slow fill loops in, 23-27,124 
setting local variables with, 167-68,241 
size arguments in, 99 
validating pointer arguments with, 59 

"Meta-Programming: A Software Production 
Method" (Simonyi), xxviii 

Microsoft compilers, 27 

Microsoft Corporation 
debugging practices at, xix-xx, 173-75 
history of, xiii-xvii 
maintenance programming at, 164 
testing groups at, xiii-xv, xvi, xxi 

Microsoft Excel 
assertion macros in, 36 
author's interest in, xvii, xxiv 
color support in, 181 
debugging practices and, 173-74,176,196 
design and efficiency in, 136 
dialog handling code in, 127 
overview of, xxiv 
subsystem checks in, 69 

Microsoft Multiplan, xiii, xiv 
Microsoft Windows compilers, 18 
Microsoft Word 

assertion macros in, 20,36 
overview of, xxiv 

modulo operations, 134 
MS-DOS compilers, 18 
multiplication, with bitwise operators, 134 

naming conventions, xxv-xxviii 
nodes, freeing, 50-52 
nondebug code. See ship version code 
NoteMemoryRef function, 209 

catching overfill bugs with, 222,224 
improving integrity checks in, 226-27 
referencing memory blocks with, 73 
validating block sizes with, 72,225 
validating pointers with, 65,66 

NULL pointers. See also pointers 
debug code for, 13-15,17,18 
free function and, 52 

null statements 
compiler warnings for, 4,10 
in strcpy function, 4,5 

octal bugs, 10,214 
operating systems 

calling ROM routines in, 168,241-42 
debug version of, 44 
writing debug version for, 73 

operators 
arithmetic, 137 
bitwise, 134-35 
mixing types of, 137-38,142 
precedence order of, 10,137-38,213,215 
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sizeof, 25, 27 
using parentheses with, 138-39 

out-of-memory conditions, 73,228-31 
output memory, as workspace buffers, 151-53 
outputs, function interface design and, 91-93 
overfill bugs, 72,222-24 
overflow bugs, 117-18,119,132,141 
overlapping memory blocks, 19-21,23 

parasitic functions, 156-59 
parentheses (0). See 0 
parent windows, 122 
Pascal 

standard change, 160 
VAR arguments and C++ & arguments, 108 

pbBlock function, 78-79 
pbBuf function, 91-92 
pbExpand function 

assertions and defensive programming in, 30-33 
detecting impossible conditions in, 28-29 

pbiGet BlockZnfo function, 205-6 
pcDisasmAlt function, 35-36,39 
pcDisasm function, 34-36,38,39 
Plauger, P. J., xxiii, 19 
plus (+). See + 
pointer arguments, validating, 59 
pointer-centric algorithms, 126-27 
pointers. See also NULL pointers 

dangling, 62-67,72,224-25 
declaring static, 239-40 
forcing bad to show, 49 
memory logging routines for, 205-6,209-11 
naming conventions for, xxvi-xxviii 
passing by reference, 153 
and resizing memory blocks, 91-92 
stream, 5 
validating block sizes referenced by, 72,225 

portability 
bugs and, 182 
data types and, 112,114,115,117 
lint function and, 7-8 
memset function and, 23-27 

precedence bugs, 10,135,137,213,215 
preprocessor bug warnings, 11,216-17 
printf function, 144,237-38 
priorities, 189-92 
programmers 

responsibility of, for testing, xxi, 1-3 
vs. testers, xvi-xvii, 185-88 

programming. See also attitudes; programming 
guidelines; risky programming practices; 
shortcuts 

for "average" programmers, 162-65, 166 
defensive, 29-33,43 

programming attitudes. See attitudes 
programming guidelines 

Enable all optional compiler warnings, 1-7 
Use lint to catch bugs the compiler misses, 7-8 
Use unit tests, 8-9 
Maintain ship and debug versions of your code, 

14-15 
Use assertions to validate function arguments, 

16-19 
Strip undefined behavior from your code, 

or use assertions to catch illegal uses of 
undefined behavior, 19-21 

Document unclear assertions, 21-23 
Remove implicit assumptions, or assert that they 

are valid, 23-27 
Use assertions to detect impossible conditions, 

28-29 
Don't hide bugs when you program defensively, 

29-33 
Use a second algorithm to validate your results, 

33-38 
Use startup checks, 38-42 
Eliminate random behavior. Force bugs to be 

reproducible, 47-50 
Destroy your garbage so that it's not misused, 

50-54 
If something happens rarely, force it to happen 

often, 55-58 
Keep debug information to allow stronger error 

checking, 59-62 
Create thorough subsystem checks, and use them 

often, 62-67 
Design tests carefully. Nothing should be 

arbitrary, 67-68 
Strive to implement transparent integrity checks, 

68 
Don't apply ship version constraints to the debug 

version. Trade size and speed for error 
detection, 69-70 

Don't wait until you have a bug to step through 
your code, 76-78 

Step through every path, 78-79 
As you step through code, focus on data flow, 

80-81 
Source level debuggers can hide execution 

details. Step through critical code at the 
instruction level, 82-84 
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programming guidelines, continued 
Make it hard to ignore error conditions. Don't 

bury error codes in return values, 88-91 
Always look for, and eliminate, flaws in your 

interfaces, 91-93 
Don't write multipurpose functions. Write 

separate functons to allow stronger argument 
validation, 93-96 

Don't be wishy-washy. Define explicit function 
arguments, 96-99 

Write functions that, given valid inputs, cannot 
fail, 100-101 

Make the code intelligible at the point of call. 
Avoid boolean arguments, 102-4 

Write comments that emphasize potential 
hazards, 104-6 

Use well-defined data types, 11 221 7 
Always ask, "Can this variable or expression 

over- or underflow?", 117-19 
Implement your designs as accurately as 

possible. Being kinda close is being kinda 
buggy, 119-21 

Implement "the task" just once, 121-25 
Get rid of extraneous if statements, 125-27 
Avoid using nested ?: operators, 127-30 
Handle your special cases just once, 130-31 
Avoid risky language idioms, 132-36 
Don't needlessly mix operator types. If you must 

mix operators, use parentheses to isolate the 
operations, 137-38 

Avoid calling functions that return errors, 139-40 
Don't reference memory that you don't own, 

146-49 
Don't reference memory that you have freed, 

149-51 
Don't use output memory as workspace buffers, 

151-53 
Don't pass data in static (or global) memory, 

154-56 
Don't write parasitic functions, 156-59 
Don't abuse your programming language, 159-60 
Tight C does not guarantee efficient machine 

code, 161-62 
Write code for the "average" programmer, 

162-65 
Bugs don't just "go away", 172-73 
Don't fix bugs later; fix them now, 173-75 
Fix the cause, not the symptom, 175-76 
Don't clean up code unless the clean-up is critical 

to the product's success, 177-78 
Don't implement nonstrategic features, 179 
There are no free features, 179-80 
Don't allow unnecessary flexibility, 180-82 
Don't keep "trying" solutions until you find one 

programming guidelines, continued 
that works. Take the time to find the correct 
solution, 182-83 

Write and test code in small chunks. Always test 
your code, even if that means your schedule 
will slip, 184-85 

Don't rely on the testing group to find your 
bugs, 185-88 

Don't blame testers for finding your bugs, 188 
Establish your priorities and stick to them, 

189-92 
Minimize the differences by maximizing the 

amount of common code, 142- 43, 
236-37 

Don't use a table unless you can validate the 
data, 144,238 

programming shortcuts. See shortcuts 
Projectb) 

assertion macro, 44 
attitudes, 194 
compiler warning, 11 
function interface design, 109 
risky programming practices, 144 
stepping through code, 85 
subsystem integrity checks, 73 

project priorities. See priorities 
prototypes 

catching calling bugs with, 5-6,7 
fGetChar function and, 91 
utility for generating, 11 

psym function, 66 

Q 
qsort function, 44,221-22 

RAM. See memory 
random behavior, eliminating, 47-50,71 
read-only memory (ROM) routines, operating 

system, 168,241-42 
read privileges, implied, 150 
realloc function 

common errors with, 46 
cover function for (see fResizeMemory 

function) 
documenting hazards in, 105-6 
expanding and moving memory blocks with, 

55-58 
inputs and, 96-97 
interface for, 91-93 
memory logging routines for, 60-62 
as a multipurpose function, 93-96,180 
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realloc function, continued 
outputs and, 91-93 

released data, 72,222 
Rename Window function, 140 
return statements, 58 
return values, error codes in, 89-91 . 

ReverseStr function, 151-52 
risky programming practices. See also shortcuts 

abuse of language, 159- 60 
data types and, ll2-l7,14l 
functions that return errors, 13940,142 
handling special cases, l30-31,142 
implementing designs, 119-21,141 
implementing function tasks, 121-25,141 
mixing opera tor types, 137-38,142 
nested ?: operators, 127-29,142 
overflowing and underflowing data types, 

117-19,141 
overview of, 11 1-44 
risky language idioms, 132-36,142,159-60,166 
unnecessary if statements, 125-27,141 

Ritchie, Dennis, 88-89 
Robbins, Anthony, 175 
ROM routines, operating system, 168,241-42 

schedules, testing and, 184-85 
SetFailures function, 229 
shift operators, 10,134-35,137,143,238. See 

also c< 
ship version code. See also debug version code 

applying constraints of to debug version, 
69-70 

compiler optimizations and, 83 
vs. debug version code, 14-15,42,63,69-70 
rare behavior in, 55-58 
removing debug-only variables from, 54 

shortcuts, 145-69. See also efficiency; risky 
programming practices 

output memory as workspace buffers, 
151-53,166 

overview of, 145-46,166 
parasitic functions, 156-59,166 
passing data in static or global memory, 

154-56,166 
referencing freed memory, 149-51,166 
referencing memory you don't own, 146-49,166 
terse C and machine code, 161-62,166 
using programming idioms, 160,166 
writing for the "average" programmer, 

162-65,166 
short data type, 116 
ShrinkMemory function, 95-96 

sibling windows, 122-23 
signed char data type, 112,113,114,115 
signed expressions, optimizing, 134-35 
signed int data type, 113,116 
signed long data type, 116 
signed short data type, 116 
Simonyi, Charles, xxv, xxviii 
size checks, removing, 146-48 
size function, 133-34 
sizeofBlock function 

catching overfill bugs with, 222,224 
as memory logging routine, 51-52,62,208-9 

sizeofDebugByte function, 223-224 
sizeof operator, 25/27 
source code control managers, 196 
source debuggers, 82-83 
speed. See efficiency; shortcuts 
Standard C Library, The (Plauger), 19 
Standard C (Plauger and Brodie), 19 
startup checks, 38-42 
static memory, passing data in, 154-56,166 
stderr stream pointer, 5 
stdi0.h header files, 5 
stepping through code, 75-85 

vs. assertion macros, 75-76 
compiler optimizations and, 83 
efficiency of, 77, 84 
focusing on data flow, 79-81 
importance of, 76-77,84 
at instruction level, 82-83, 84 
overview of, 75-76,84 
source debuggers and, 82-83 
stepping through code paths, 78-79,84 
sweeping vs. localized changes and, 78 

strcmp function, 108-9, 115, 233-34 
strcpy function 

data types and, 114 
naming conventions and, xxvii 
null statements in, 4, 5 
passing arguments to, 239 
renaming windows with, 140 

strdup function 
assertion macros for, 22 
function interface design and, 89,107,231 

stream pointers, 5 
strFrom function, 97 
strFromUns function, 154-56, 167, 176,239-40 
str function, 152-53 
strings 

in assertion macros, 43,218-20 
comparison functions for, 108-9 
converting ASCII, to integers, 159-60 
converting integers to, 119-21 
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strings, continued 
converting unsigned values to, 120-21, 

151-56 
string inputs to copy functions, 97-99 
treating string literals as constants, 239-40 

strncpy function, 97,108,232 
strTo function, 97 
subsystem integrity checks, 45-73. See also memory 

system checks 
avoiding ship version constraints in, 69-70,71-72 
common problems with subsystems, 45-47 
creating thorough, 62-67 
debug logs, 59-62 
designing carefully, 67-68 
destroying garbage in, 50-54,71 
eliminating random behavior, 47-50,71 
forcing rare behavior to happen often, 55-58,71 
implementing transparent, 68,71 
overview of, 45-47/71-72 
trading size and speed for error detection, 

69-70,71-72 
switch statements 

assertion macro for, 220 
stepping through, 79 

table-driven algorithms, 117-18, l B ,  144,238 
terse C, machine code and, 161-62,166 
testing code 

checklist for, 201-2 
programmers responsibility for, xiii-xv, xxi, 1-3 
as you go, 184-85,194 

testing groups 
blaming for bugs, 188 
debugging and, 1-3 
disappearing bugs and, 172-73,193 
function of, 185-88 
at Microsoft, xiii-xv, xvi, xxi 
shipping debug code to beta, 70 

QX: The Program (Knuth), xxi 
tips. See programming guidelines 
tolower macro, 100-101,117-18 
tree structure nodes, freeing, 50-52 
tricks. See shortcuts 

UCSD Pascal, 160 
uCycleCheckBox function 

?: expressions in, 127-29,161-62 
terse C code and, 161-62 

UINT-MAX, 11,27,229 
Uncertainty Principle, Heisenberg's, 63 
undefined preprocessor macros, 11,216-17 
underflow bugs, 118-19,141 
uninitialized data, 72,222 
unit tests, 8-9 
unsigned char data type, xxv, 112,113,114,115 
unsigned expressions, optimizing, 135 
unsigned int data type, 113,116 
unsigned long data type, 116 
unsigned short data type, 116 
UnsignedToStr function, 102-4 
unsigned values, converting to strings, 120-21, 

151-56 
UnsToStr function, 120-21,151-53 
UpdateBlocklnfo function, 208 
uppercase characters 

converting to lowercase, 100-101 
in function names, xxvii 

VAR arguments, Pascal, 108 
variables 

clean-up mistakes and, 177-78 
naming conventions for, xxv, xxvii 
overflowing and underflowing, 117-19 
removing debug-only, 54 
setting with memset, 167-68,241 

void ** argument pointer, 47 

warnings. See compiler warnings 
while statements 

disabling assignments in, 4-5/10 
if statements in, 142 
misplaced semicolons in, 3-4 
precedence bugs in, 10, 138,213 
testing special cases with, 130-31 

window-centric algorithms, 126-27 
windows 

hierarchical arrangement of, 122 
implementing child, 121-25,142,235-36 
renaming, 139-40 

Windows. See Microsoft Windows compilers 
Word. See Microsoft Word 
work-arounds, in Macintosh programs, 136 
workspace buffers, 151-53 
write privileges, 150,167,239 
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