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f(z,y, z). Multidimensional interpolation is often accomplished by a sequence of
one-dimensional interpolations. We discuss thi§3rb.
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3.1 Polynomial Interpolation and Extrapolation

Through any two points there is a unique line. Through any three points, a
unique quadratic. Et cetera. The interpolating polynomial of defree1 through
the N pointsy; = f(z1),y2 = f(x2),...,y~v = f(zn) is given explicitly by
Lagrange’s classical formula,

(x — x2)(x — x3)...(x — N) (x —x1)(x — 23)...(x — 2N)
(1 — x2)(x1 — 23)...(x1 — TN) ! (x2 — x1) (T2 — 23)...(T2 — TN
(x —21)(x — x2)...(x —2N_1)
(xny —z1) (N — 22)...(xN —TN—_1)

P(z) = T2
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(3.1.7

There areNV terms, each a polynomial of degrée— 1 and each constructed to be
zero at all of ther; except one, at which it is constructed to e

It is not terribly wrong to implement the Lagrange formula straightforwardly,
but it is not terribly right either. The resulting algorithm gives no error estimate, and
it is also somewhat awkward to program. A much better algorithm (for constructing
the same, unique, interpolating polynomialNeville's algorithm, closely related to
and sometimes confused wilitken’salgorithm, the latter now considered obsolete.

Let P, be the value atr of the unique polynomial of degree zero (i.e.,
a constant) passing through the point;,y1); so P, = y;. Likewise define
Py, P;,...,Py. Now let P;o be the value atx of the unique polynomial of
degree one passing through bdth;,y;) and (z2,y2). Likewise Pss, Py, ...,
P(n—1)n- Similarly, for higher-order polynomials, up #,23_.. v, which is the value
of the unique interpolating polynomial through allpoints, i.e., the desired answer.
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3.1 Polynomial Interpolation and Extrapolation 109

The variousP’s form a “tableau” with “ancestors” on the left leading to a single
“descendant” at the extreme right. For example, with= 4,

T n=n
Prp
T Y2 = P Pra3
Pss Prasy (3.1.2
z3: ys = P3 Py3y
Py
T4 ys =Py

Neville’s algorithm is a recursive way of filling in the numbers in the tableau
a column at a time, from left to right. It is based on the relationship between a
“daughter” P and its two “parents,”

(& = Zitm) Pigi1)...i4m—1) + (@i — 2)Plg1)(it2)...(i+m)

(3.1.3

This recurrence works because the two parents already agree at points..
Litm—1-

An improvement on the recurrence (3.1.3) is to keep track of the small
differences between parents and daughters, namely to definenffee 1,2,...,
N —1),

Pyt (i+m) = P—

Cm,i = Pz(z-i—m) - Pi...(i+m—1)
Dini = Pi._(irm) = Plit1)...i+m)- (3.14

Then one can easily derive from (3.1.3) the relations

(itms1 — ) (Cmiv1 — Dims)

Dm 4
i Ti — Titm+1 (3.1.5

(zi —x)(Crit1 — Dimyi)
T — Ti+m+1

Oerl,i -

At each leveln, theC’s and D’s are the corrections that make the interpolation one
order higher. The final answét; _ x is equal to the sum dany y; plus a set of>’s
and/orD’s that form a path through the family tree to the rightmost daughter.
Here is a routine for polynomial interpolation or extrapolation frdminput
points. Note that the input arrays are assumed to be unit-offset. If you haves:
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UYHON apisino

zero-offset arrays, remember to subtract 1 (¢k@): §§

g3
#include <math.h> = g
#include "nrutil.h" @®

void polint(float xal[l, float yal[l, int n, float x, float *y, float *dy)
Given arrays xa[1..n] and ya[1..n], and given a value x, this routine returns a value y, and
an error estimate dy. If P(x) is the polynomial of degree N — 1 such that P(xa;) = ya,,i =
1,...,n, then the returned value y = P(x).
{

int i,m,ns=1;

float den,dif,dift,ho,hp,w;
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110 Chapter 3. Interpolation and Extrapolation

float *c,*d;

dif=fabs(x-xal[1]);
c=vector(l,n);
d=vector(1l,n);

for (i=1;i<=n;i++) { Here we find the index ns of the closest table entry,
if ( (dift=fabs(x-xal[il])) < dif) {
ns=ij;
dif=dift;
}
clil=yalil; and initialize the tableau of ¢'s and d’s.
d[il=yalil;
}
*xy=ya[ns--1; This is the initial approximation to y.
for (m=1;m<n;m++) { For each column of the tableau,
for (i=1;i<=n-m;i++) { we loop over the current c¢'s and d's and update
ho=xal[i]-x; them.

hp=xa[i+m]-x;
w=c[i+1]-d[i];

if ( (den=ho-hp) == 0.0) nrerror("Error in routine polint");
This error can occur only if two input xa’s are (to within roundoff) identical.
den=w/den;

d[i]l=hp*den; Here the c¢'s and d's are updated.

c[i]l=ho*den;

}
*y += (*dy=(2%ns < (n-m) ? c[ns+1] : d[ns-—-1));
After each column in the tableau is completed, we decide which correction, ¢ or 4,
we want to add to our accumulating value of y, i.e., which path to take through the
tableau—forking up or down. We do this in such a way as to take the most “straight
line” route through the tableau to its apex, updating ns accordingly to keep track of
where we are. This route keeps the partial approximations centered (insofar as possible)
on the target x. The last dy added is thus the error indication.

¥

free_vector(d,1,n);

free_vector(c,1,n);

Quite often you will want to callpolint with the dummy argumentga
and ya replaced by actual arraysith offsets. For example, the construction
polint (&xx[14],&yy[14],4,x,y,dy) performs 4-point interpolation on the tab-
ulated valuesx[15. .18], yy[15. . 18]. For more on this, see the end§¥.4.
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3.2 Rational Function Interpolation and Extrapolation 111

3.2 Rational Function Interpolation and
Extrapolation

Some functions are not well approximated by polynomials, #met well
approximated by rational functions, that is quotients of polynomials. We de-
note by Riiy1)..i+m) @ rational function passing through the + 1 points
(i, Yi) - - - (Titm, Yitm). More explicitly, suppose

R ) :Pu(l'):p0+p1x+...+puxp
i(i+1)...(i+m) Qv (x) Qo+ qx+-+qa

(3.2.0)

Since there arg + v + 1 unknownp’s andq’s (¢o being arbitrary), we must have
m+l=p+v+1 (3.2.2

In specifying a rational function interpolating function, you must give the desired
order of both the numerator and the denominator.

Rational functions are sometimes superior to polynomials, roughly speaking,3
because of their ability to model functions with poles, that is, zeros of the denominators
of equation (3.2.1). These poles might occur for real values, of the function 8
to be interpolated itself has poles. More often, the funcifén) is finite for all
finite real z, but has an analytic continuation with poles in the complgXane.
Such poles can themselves ruin a polynomial approximation, even one restricted t
real values oft, just as they can ruin the convergence of an infinite power series
in z. If you draw a circle in the complex plane around yeuartabulated points,
then you should not expect polynomial interpolation to be good unless the neares
pole is rather far outside the circle. A rational function approximation, by contrast,
will stay “good” as long as it has enough powersuah its denominator to account
for (cancel) any nearby poles.

For the interpolation problem, a rational function is constructed so as to go
through a chosen set of tabulated functional values. However, we should als
mention in passing that rational function approximations can be used in analyti
work. One sometimes constructs a rational function approximation by the criterion
that the rational function of equation (3.2.1) itself have a power series expansio
that agrees with the firsh + 1 terms of the power series expansion of the desired
function f(z). This is calledPadé approximation, and is discussed i§b.12.
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Bulirsch and Stoer found an algorithm of the Neville type which performs
rational function extrapolation on tabulated data. A tableau like that of equation 3
(3.1.2) is constructed column by column, leading to a result and an error estimatei,'
The Bulirsch-Stoer algorithm produces the so-catliegonal rational function, with '
the degrees of numerator and denominator equah (i§ even) or with the degree
of the denominator larger by one (if. is odd, cf. equation 3.2.2 above). For the
derivation of the algorithm, refer td]. The algorithm is summarized by a recurrence
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