1.0

The Magic of Data-Driven
Design

Steve Rabin

Games are made up of two things: Jagic and dite. This is 2 powerful distincrion, Sep-
arate, they are wseless, but topether, they make vour game come alive. The logic
defines the core rules and algorithms of the game engine, while the dara provides the
details of content and behavior. The magic happens when logic and dara are decou-
pled from each other and allowed o blossom independently.

Obviously, game dara should be loaded from files, not embedded inside the code
base. The genius comes from knowing how far 1o run with this concept. This arricle
gives seven ideas that will revolurionize the way you make your games, or at least con-
firm your suspicions.

Idea #1: The Basics

Create a system that can parse text files on demand (not Jusc ar startup), This is essen-
tial to puming data-driven design to work. Every game needs 2 clean way to read in
general-purpose data. The game should evennually be read in binary files, bur the abil-
ity to read in cext files during development is crucial. Texe files are dead simple for
editing and making changes. Withour alrering a single line of cade, your whole team,
including testers and game designers, can rry out new things and experiment with dif-
ferent variations. Thus, something thar is crivial to implement can quickly become an
indispensable 1ool.

Idea #2: The Bare Minimum

Don't hard-code consmnes. Put constancs in text files so that they can be easily
changed withour recompiling code. For example, basic functionality such as camera
behavior should be exposed completely. IF this is done properly, the game designer,
the producer, and the kid down the street will all be able o alter the behavier of the
camera with nothing more than Notepad. Game designers and producers are often ar
the merey of programmers, By expasing algorithm constants, non-programmers can

3

4 Saction 1 Programming Techniquas

tune and play with the values to get the exact behavior they desire—without bother-
ing 4 single programmer.

Idea #3: Hard-Code Nothing

Assume thar anything can change, and probably will. If the game calls for a splic
screen, don't hard-code it! Wiire your game o supporr any number of viewpors, each
with is own camera logic. It isn't even any more work if it's designed right. Through
the magic of text files, you could define whether the game is single-screen, splic-
screen, or quad-screen. The files would also define all the staming camera values, such
as position, direction, field of view, and dlc, The best par is that your game designers
have direct access to all elements wichin the vext files.

When core design decisions are flexible, the game is allowed ro evolve o is full
potential. In facr, the process of absrracting a game o s core helps remendously in
the design. Insread of designing 1o a single purpose, you can design each component
o its general funcrionality. In effect, designing flexibly forces you 1o recognize whar
you should really be building instead of the limited behavior outlined in the design
ijn-:um-l:nl!-

Far I'_'EJ.I.'I.'I.PII:. |-.|:_1.|.1|: Finl.' |.-.||.|.'. Fn:r u:rll._:,r :|-ur.|.r I'._1_,'1.H= -Elf wl.—jpu:rl.i.].'n-u L‘l':lulr.‘l ng_rﬂm
a petlectly good system that encompasses all of them. However, if you abseract away
the funcrionality of each weapon, using dara w define is behavior, you'll allow for the
possibility of countless weapons that have very distiner personalivies. All ir takes is a
few changes in a text file in order 1o experiment with new ideas and game-play
dynamics. This mindser allows the game 10 evolve and ultimarely become a much

berter game

Did You Belicve Me When | Said "Nothing™?

The wuth is that games need to be tuned, and great games evolve dramatically from
the oniginal vision. Your game should be able to deal with changing rules, characters,
races, weapons, levels, control schemes, and objects. Without this flaxibility, change is
costly, and every change involves a programmer—which is simply a2 waste of
resources. If change is difficult, it promotes far fewer improvements to the original
design. The game will simply not live up to its full potential,

Idea #4: Script Your Control Flow

A scripe is simply 2 way to define behavior outside of the code. Scripts are great for
defining sequential steps thar need o oocur in a game or game events thar need o be
riggered. For example, an in-game cur-scene should be scripred. Simple cause-and-
effect logic should also be scripred, such as the completion conditions of a quest or
environment triggers. These are all grear examples of the dara-driven philosophy ar
work

1.0 The Magic of Data-Driven Design 5

When designing 2 scripting language. branching instructions require some
thought. There are two ways to branch. The first is to keep variables inside the serip-
ing language and compare them using mathematical operators such as equals (=) or
less than [<). The second iz o directly eall evaluanion funcions that compare vari-
ables that exist solely inside the code, such as IsLifeBelones reantege|50). You could
always use a mix of these techniques, but kecping your scrips simple will pay off. A
game designer will have a much csier time dealing with evaluation Rinctions than
declaring variables. updaring them, and then comparing them. It alss will be easier 1o
debug,

Unforrunately, scripts require a scripting lanpuage, This means that you need o
create an entitely new syntax for defining your behavior. A scripuing language also
involves creating 2 script parser and possibly a compiler to convere the scripe w a
binary filc for faster execution. The other choice is to use an existing Language such as
Java, bur thar requires a large amount of peripheral support as well. In arder nor o
sink too much time into this, it pays off to design simple system. Overall, the ren-
dency is w make the scripring linguage oo powerful, The nex idea explains same
pitfalls of a complicated scripting language.

Idea #5: When Good Scripts Go Bad

Using scripts to data-drive behavior is a natural consequence of the dara-driven
methodology. However, you need to praciice good common sense. The key is remem-
bering the core philosophy: Separate logic and data. Complicated logic go<s in the
code; dara stays outside.

The problem arises when the desire 1o data-drive the game goes two far. Ar zome
poin, you'll be tempred o pur complicated logic inside scriprs. When a SCTi[T $tarts
holding state informartion and needs to branch, it becomes 2 fiwite stare machine,
When the number of states increases, the innocent scriptwriter (some poor game
designer) has the job of programming. If the scripting becomes sufficiently complex,
the jobs revens to the programmer whe must program in a fictonal language thar’s
severely limiting. Seripts are supposed ta make peoplc’s jobs easier, nor more difficult.

Why is it so important to keep complicated logic inside the code? Irs simply a
macter of funcrionality and debugping. Since scripes are not directly in the code, they
need 10 duplicate many of the concepes that exist in progeamming languages. The
nawural tendency is to expose more and more functionality until it rivals 2 real lan-
guage. The more complicated scripes become, the more debugging information is
needed to figure our why the scripts are failing, This addirional information results in
mare and more effort devoted 1o monitoring every aspect of the scripe as it runs.

As you probably guessed, non-trivial logic in scripts can ger very involved.
Months of work can be wasted writing script parsers, compilers, and debuggers. It's as
though programmers didn’t realize they had a pertectly good comgpiler already in front
of them.

& Section 1 Programming Technigues

The Fuzzy Line

There i no doubr thar the line berween code and scripis is fuzzy. Generally, ics 2 bad
idea 1o put ardfical intelligence (AT) behavior in scripts, wheneas it's generally a goed
idea o have a scripred trigger system for making the world interactive. The rule
should be: If the logie & too complicated, it belongs in the code. Scripting languapes
need to be kepr simple, so they dont consume your game (and all of your program-
fMiNg resources),

Howeever, some games are designed to let players write their own AL Most com-
monly, these games are first-person shooters thar allow the creation of bots. When this
is the goal, ir’s inevitable thar the scripting languape will resemble a real programming
language. An example of chis situation is Quake C. Since bot creation was 2 require-
ment of the design, resources and energy had to be pur into maki ng the scripting lan-
guage as useful as C. A scriping language of this magnitude & 2 huge commitment
and shouldn’t be aken lishdy.

Abave all, remember thar you don’t want your game designers or scriptwriters
programming the game. Somertimes programmers are trying o shirk responsibilicy
when they create seripting languages. Tt's all too easy to lure game designers into pro-
gramming the game. Ideally, programmers should be boiling down the problem and
exposing the essential controls in arder to manipulate the logic. Thars why program-
mers get paid the big bucks!

Idea #6: Avoiding Duplicate Data Syndrome

Its standard programming practice to never duplicate code, If vou need the same
behavior {for example, 2 commen function) in twe different spots, it needs to exist in
only one place. This idea can be applied 1o dam by using references 1o global chunks
of dara. Furthermore, by mking a reference to a chunk of dara and modifying some of
its values, you end up with a concept very close to inheritance.

Inheritance is 2 great idea that should be applicd to your dasa. Imagine thar your
game has goblins thar live inside dungeons. In any particular dungeon, your data
defines where each goblin stands, along with its propertics. The right way o encapsu-
lare this data is to have a global definition of 2 goblin. Each dungeon's data simply has
a reference 1o thar global definition for every instance of 2 goblin. In order 1o make
cach goblin unique, the reference can be accompanied b a list of propertes to over-
ride. This rechnique allows every goblin o be different while eliminaring duplicate
dara.

This idea can be raken to multiple levels by allowing cach chunk of dara o have 2
reference. Uking this technique, you can have 2 global definition of a goblin along
with another global definition of a fast gablin thar inherits from the basic goblin,
Then inside each dungeon definition, regular goblins or Fast goblins can be instanced
erivially. Figure 1.0.1 shows this inheritance concepr using referencing and overriding
of values.

1.0 The Magic of Data-Driven Design T

Goblin Fast Gablin Goblin Instance
B —— T
Spesd = 1) Refeeses - Gobln Reference = Fast Gobn
Lifis - 30 Spond - 20 Tasiam = (%, 0, 0
Anncl = 5 Faciy = (1 0,)

FIGURE 1.0.1. Daia inheritanee,

ldea #7: Make the Tool That Makes the Data

With any large game, text files eventually become unruly and hard to work with. The
real solution is 1o make a tool that writes the rext files. Call this tool 2 game editor, a
level editor, or a scripe editor, but you'll speed up the game development process by
building the sight tools. Having 1 tool doesn't change the data-driven methodology; it
merely makes it more robust and efficient. The time you save always makes the exiea
tool development ame worth it

Conclusion

Its casy to buy into the dara-driven methodology, bur irs harder to visualize the dra-
matic results, When everything is dara driven, amazing possibilities unfold.

An example of this rule is the game Total Annihilation. The designer, Chris Tay-
lor, pushed data-driven design to the limit. Total Annihilation was an RTS that fea-
tured twe distiner races. the Arm and the Core. Although the entire game was
centered on these two factions, they were never hard-coded into the game. Theoreti-
cally, data could have been added 1o the gamc o support theee aces, even after the
game shipped. Although this possibility was never exploited, Total Annihilarion ok
full advancage of it flexibilicy. Sinee all units were complezely defined by daca, new
units were released en a weekly basis aver the gamc’s Web site, In fact, many people
created their own units with funcrionality thar shocked even the gamne’s developers.

The data-driven design helped Toral Annihilation maincain a commireed follow-
ing in a crowded genre, Since Toral Aanihilarion, ather games, such as The Sims, have
emplayed the same idea by providing new data content over their Web sices. Without
developers’ serious commitment o the dara-driven philosophy, this unprecedented
expandability wouldn't be possible.

1.1

Object-Oriented Programming
and Design Techniques

James Boer

It is easy to undesstand the popularity of C++ among game programming profession-
als. While not straying too far from the highly portable and efficient roots of C, it also
offers the design benefits of an objec-oriented language. Inherent in this power,
though, is the requirement that C++ code be properly designed and implemented.
Although the object-oriented programming (OOP) paradigm was created 1o enhance
program design, portzbility, and maintainability, the brutal fact of the marer is char
pootly designed C++ programs can be worse than poorly written U programs.

Many books and articles give good advice on general object-oriented design prac-
tices; very few teach those practices with game programmers specifically in mind.
Game programmers are a slightly different breed than the typical applicarion pro-
grammer. Because their woek is always expecred o be cutting edge, pushing both
human and hardware constaints wo the limit, game developers tend 1o be much more
willing to bend or even bresk traditional programming design rules. Unforrunarely,
this tendency often has the negative side effect of creating unmaintainable code due 1o
a poor understanding or implementation of basic OOF principles.

As games grow more and more complex, companies are looking to reuse more
and mote code o mitigate ever-increasing development costs. Engine licensing is
hecoming maore prominent as companies focus on content and game play and wall
undoubtedly grow into a major and separate support industry in the near futurs. This
sart of development work requires much more seabilicy and long-term planning than
was previously known in the game development world. Mo longer is it acceptable 1o
completely scrap your previous ende with each new game.

This article obviously can't even begin 1o cover all thar a game programmer needs
to kenow. Instead, ir identifies key areas in which a game programmer, and a company.
can take steps to improve the quality and consistency of production code, which will
in turn lead o both more robust and more reusable libraries and game engines. We
also point you toward resources that much mere tharoughly cover the topics dis-

cussed,

1.1 Object-Oriented Programming and Design Techniques 8

Coding Style

Programming style can often degrade into a religious argument. I'm not going 1o
cnter the debacle of where curly braces should be placed, bur it is important for a
company 10 adopt a style, and for everyone in that company to use ir.

A company, not to mention an individual, should stive for consistency in class,
function, and varisble naming conventions as well. Many companics have adopted a
simplified Hungarian netation scheme. The Hungarian notation was invented by Dr.
Charles Simonyi, chief software architect of Microsoft, years ago in order 1o help stan-
dardize variable naming conventions. Some argue thar such a naming convention is
unnecesary in 2 fype-safe language such as Co+ and creates more work when chang-
ing data types (since it requires changing the vardable prefix), bur others appreciate the
ease and speed with which data types are visually idenrified.

The basic premise of Hungarian notation is to preface the variable name with an
identifier describing the type of datz the variable represents. For instance, an integer
variable named Somevariable would insresd be named iSesevariable. In addition to
variable types, pointers can be represented. A pointer 1o some class Foo might be
called prooobj. Prefixes can abso be combined to provide more information than 2
single prefix can provide. For inscance, a pointer to an integer would be represenced
Bry the prefix ps, or a pointer to a pointer would be represented as pp.

Other types of scope information are often used in front of the type prefie, Mem-
ber variables are labeled with n_, 0 an integer member variable might be labeled
n_isomevar. Global variables (isk, you shouldn’t even really be using these) are repre-
seated as g_, and some variations represent static variables as 5, although this isn't
seen as often. Alchough the formal Hungarian notation can be somewhat complex,
many companies have adopred a simplified version of it. Table 1.1.1 presents an
example of a common variation on formal Hungarian notation. You ean find other
descriptions in books such as [Perzold96). or you can find Simonyi's eriginal paper on
the World Wide Web in various locations.

The most commenly uscd nottional types are listed in the wble. Objecs are gen-
crally not given any prefix, with the exceprion of 2 fow common elasses such as thase
representing 303 vectors and points. Your company mighe adopt conventions for rep-
resenting other commonly wsed urility classes as well, Note thar most of the descrip-
tive tags are quite logical and would not require you to look them up in a wble,

The exact syntax you adopt is not a5 impertant as the relarive consistency of
everyone who conforms o ir. If all company code looks similar, it will be easier for
programmers o work on code that they might not have writen.

One word of caution: Don't over-engineer a coding specification. A page or twe
should really be all that's required to describe the company style. If programmers have
to look up how a variable should be named, they'll be far less likely to use the san-
dard. I hesitate to recommend stricdy adhering to Simonyis original sysrem. Its far
too complex for day-ro-day operations, and since readability is now more imporant

Section 1 Progrmamming Techniques

Tabkle 1.1.1 An Ezample of Hungarian NMolation

Type Description

1 Integer

E Flaat

] Daable (flnar)

L Long, (inceger)

[Character

3] Boaolean

[ror Dauble ward

W Word

by or byt Byte

Sz Csople (null-rerminared) siring
Common Extensions Deacription

Str C4+ sring object

H Handks {user-definad type)
L Veotor I:us-::-:lclhu::_l'_-.'lm]
[Paint [u.'il:.l'—drl:ﬂ_lllsd elasg)
Fzb RGB wripler (user-defined struer or rype)
_I-In-dtﬁu' Description

Pointer to

1] Referencs 10

u Unsigned

4 OF ALY Array of

Scope Description

m_ Member vrmble

£ lhabal variable

Statie vartable

than type safery. there’s no reason to creare hard-ro-read code when a simplified ver-
sion will work jusr as well.

Class pames should also be designed for ease of maintenance and readabilicy. A
convention thart has gained some popularity among Windows programmers is the use
of class prefixes ro indicare general design intent. Classes beginning with the lemer ©
are designared as Comerete clzeres, or classes with a specific use and implementarion.
Classes beginning with the lester Fare futerface clasrer, or classes intended to be used as
design teinplates. These classes are not used directdy by applications; instcad, they
.:ll.uw I'.Ftl.'l.n' clﬂﬁﬁu tor Eﬂ df:ri.\':'d Fruq'“ F]'I:m-.

1.1 Object-Oriented Programming and Design Techniques 11

In zdditien 1o or instead of these dass prefixes, it can also be helpful o prefix
classes by funcrionality. For instance, all classes dealing wirh a user interface (UT) sys-
tem can be prefaced with LY. This is espedially helpful in programming environments
and tools thar sorr classes in a project alphabedcally.

Class Design

Ce+ classes offer an unlimited amount of design flexibility, which can be both a good
and a bad thing, There are no naming requirements, other than for your constructor
and your destructor. However, you might want 1o self-imposc a standardized class
naming convention. Here is a simple example:

class Sample

{
public:

Sampla() { Claar{}; }
—Ganplaf) { Deatroy()l; }

woid Glear(];

kool Greate():

void Update|);

vold Destray():
13

The first thing you'll notice about this class is the crivial constructor, Implement-
[fl-g classes this Wiy Is:lEp-l:l-d idea for a number of reasons, To starc with, the Cos con-
structor has no reourn value. Therefore, it's simply not a good idea to do anything that
migl:l fail, So instead, we E-in'.lpl}" call Clear (), 2 funcron that desrs out all the inter-
nal member variables. The benefit of clearing variables in a separate function is that it
allows you m clear the class variables at any dme. You'll see why this is espedally
important later.

Ar times, you won't want to “activate” a class the moment it is created. This often
happens for weapper classes that arc themselves members of another dass. Lasdy,
there is an efficiency issue, Divorcing the object’s actual creation point from the con-
structor allows you to dynamically create an object once but repeatedly call the cre-
ate() and Destroy() members to reuse the same object’s memory. Dynamically
allocating memory is expensive, so when possible, it's best to avoid doing so. As men-
tioned, the Create() and Bestroy() members do the work of actually creating and
destroying whatever it is the object represents. The create() function has a simple
bool value for indicaring success or failure. This value is both intuitive and easy 1o
implement. Another popular choice of rerurn ype is standardized error code rypes
(usually signed integers). Bools are easy o use but require additional error-querying
mechanisms if return codes are not provided. Exception handling, although theoreti-
'l:l-lll_:r‘ SUperior to ﬂ':mp|-:: return values, rends to be both f::pr_nsj'_\': 101 rn-rime]'-Iﬂf'[!l'r

i2 Section 1 Programming Techniques

mance and easy for programmers 1o overlook. In addition, cxception handling iz not
self-documenting, as error codes or return values are in header files,

There is alse an imporant caveat for the Destroy () funcrion. Since we wane hath
the convenience of automatic cleanup and the Aexibility of “destroy and recreate on
demand,” we need to make sure that the Destroy() funcion can be called multiple
times safely or withour the Create() function having been called. Be sure to el the
tlear() function at the end of your destroy function in order to reset all the object
variables back to their initial states.

Game programming often means programming a real-rime system instead of the
more comimon event-based programming model found in most commercial applica-
tons. We might want to recognize chis difference in owr class designs. The last por-
tion of the class is the Update() function. This is the “step” funcrion, or the function
that gees called once every feame., It's a big help to agree on 2 common name for this
function. Depending on the class, you mighr or might net want to implement the
Update() function with a bool return value to allow for checking of run-time ermors in
the step funetion,

Class Hierarchy Design

Knowing how to make the maost of class reuse through inheritance is a key facror in
chject-oriented programming. Although a complete discussion of relationships
berween objects and how to implement them is beyond the scope of this article, there
is a single design rule that is of such importance thar it bears brief mention.

There are two primary methods of extending classes to work with cch other:
inheritance and layering. fnberitance, of course, is deriving one dass from another.
Layering is when one object is conmined as 2 member of another object. Layering is
also known by such terms a5 composition, consainment, and embedsing.

The simple rule is chis; If an objecr has an f-a relationship to another objecr, use
public inheritance. If a Aus-a relationship describes the objects best, then e layering.
What exactly do the terms ii-a and hag-z mean? Pretty much exactly what they sound
like. If we use them in a sentence, the meaning becomes dearer:

Claes Corverte fi- type of class Car.
Clags Corvere fas-2 type class Radio.

When deciding how to relate classes to each other, it's often helpful o acrually
speak the two relationships out loud. More often than not, the correct answer simply
sounds correcr.

Design Patterns

When creating a solution o 2 common pregramming problem, most developers
unconsciously refer to a similar problem that they have salved previously and then

1.1 Object-Oriented Programming and Design Techniques i3

extrapolate the new solution from the old. Design parrerns are about formalizing
these general software solutions wo give 2 common frame of reference when discussing
cveryday engineering rasks. A number of design parterns are described more thor.
oughly in other books, but here we discuss parerns mose commonly used by and rel-
evant 1o game developers,

Tha Singleton Pattern

The singleton pastern is used when a single global object must be accessed across a
wide number of classes andfor modules. Simply creating a non-local static object
waorks, but there are many problems inherent with thar practice, not the least of which
is derermining when the object will actually be creared, compared with other objects
with the same global scope requirements. The singleton pattern solves this problem
by foreing access chrough a class, which stores 2 static object internally. Here's whar a
basic implementation might look like:

class Singletond
{
public:
Singletonld Instance()
{
static Singleton Obj;
réaturn QObj:
I
praivate:
Singletont () ;
¥

This simple code solves the problem quite elegantly. However, if you wanr to
derive new classes from this ane, youwll be hard pressed to come up with as elegant an
cxtension. By changing the design and requiring mare specific intervencion during
object creation and deletion, though, we can expand en the basic singleson concept
and allow extensibility to our original class:

class SingletonBase
{
public:
EingletonBase|)
{ cout <<= “"EingletonBase ereatedl® << gndl; }
virtual =SingletonSasel)
i eout <= "SinmgliotonBase destroyed!” =< gpndl; }
wirtual wvoid Ascossi)
{ cout << *SingletonBace accessed!® << endl; }
stetic SingletonBase* GetOhi()
{ return m pohj;)
static vold S&t0bj{SingletonBaza* plbj)
{ m_pObj = powj; }
protected:
static EingletonBases* a plbi;
i

14

Section 1 Programming Techniques

gingletonbaze* SinpleronBaset:m pooj;

inline SingletonSase® Base()

{
assertiEingletonBase: :GebObj{));
return SinglstonBase: :GetDbj{);

}

{f Create a derived singleton-type class
class SingletonDerived : public SingletosBase

i
public:
SingletonDarived()
{ cout =< °*Singletonberived creatad!® << endl; }
virtual -SingletonDerived(]
I cout =< *SingletonDerived destroyed® << endl; }
virtual woid Access()
{ cout << "Singletonbecived accessed!® << endl; }
protected:
i
inling Singletcnflerived® Derived()
1
asserti(Singletonparived: iGetdbi(ll;
return [Singletondarived*)Singletonberived: :GetOb] ();
}

ff Using the coda...

/1 The complex singleton requires more work 1o use, but is
ff morg Tlexible. IT also allows mord comtrol over object
{{ creation, which 1s sometimes desirable.
Singletonberived: ;Set0b] (naw SingletonDerived);

I Notice that the functipnality has been overridden by the new
{f class, even though accessing it through the original method.
Basa|)-=Accass]);

Darived()-=Accass();

I This wariation om 4 simgleton untortunately reguires both
[i explicit creation and deletian.
delete SingletonDerived::GatObf();

“This modified form of the singleron class is nor quite as simple in the construc-
rion and destrucrion phases, bur the plobal access, which is the primary point of the
singleron, remains as accessible as ever. Furthermore, with the addidon of inline
accessor funcrions, the code becomes quite easy to read from the user’s perspective.

Singleron pamerns are often used in situations in which you tadidonally might
think of using a global object or pointer to reference a single instance of a dass. An
example mighr be a2 manager-cype class, where only a single instance (thus, the name
of the parrern) is required. Classes thar manage an application’s sound, a user inter-
face, graphics, or even the game or applicadon iwself are all likely candidares ro
become singleton-type classes.

1.1 Object-Oriented Programming and Design Technigues 15

So, why go to all this bother instead of simply crearting a global object or pointer?
There are a few great reasons. First, if you were planning on creating global objects,
accessing an object through 2 single funcrion is easier than having o extern a global
object in all your fles. In addition, you gain the benefir of controlling exacely when
your object is infalized. Second, if you're using a pointer instead of an object, you
gain Ce+ conrrol over every access of the object, meaning thar you gain bencfits of
access control, in muen mening that you can do things such as monitor every time the
class is accessed. Finally, if you ceate your ﬁnglmn with derived classes in mind
using the techniques described, you can extend your base class while maintining
comparibility with the existing base class. Let’s examine how this mighe work.

In order to muake the most of this sort of extensibilicy, you can imagine a scenario
such as the following: Library A wtilizes a singleton class, as described previously.
Library B must use Library A in order to function, so it is dependent on those dlasses
and includes their beader files. Application C makes use of both Libraries A and B but
requires changes 1o be made to Library A for some game-specific items. Instead of
having o ercate a new version of the library {and lose any improvements made to the
original library by, sy, a concurrent project), Application C can simply derive a new
class (Class D) from Library A. IF, as part of our singleron convenrion, we require char
the application is responsible for allocating the objecr, we can substinze derived Class
D for Class A. By creating a new accessor funcrion with a new name rthar rerurns a
pointer to Class D instead of Class A, we can access all of D' new funcrions. How-
ever, Class B will continue to use the old accessor funcrion thar returns a pointer ro A
and so will expect the old functions to funcrion similarly o the way they did before.
More thar virmual functions’ behavior can be overridden, but you must ensure char the
new functionality is compatible with the old w preserve backward comparibiliry.

Iin this way, the singleton parern allows you o create a primitive library version-
ing scheme. You can see how a simple technique can evolve ino a powerful mecha-
nism for code organization and reuse. You can find in this book another variation of
the sing]cmn pattern in the article "An Auromaric Singleron Utiliny.” by Scon Bilas,
In this article he describes an clegant method of wsing 1emplares and public inheri-

tance to autemare the crearion of singleton classes.

Fagade Pattern

The singleton segues nicely into the nexr panern we'll investigate: the fapade parrern.
This pattern is penerally used as what is often referred 1o 33 2 manager cles. This is a
class that provides a single interface o a large collection of related classes, usually
same sort of subsystem. These classes are often designed as singletons because it usu-
ally makes sense o have only one manager gbject per type of subsystem, For example,
you need only a single ebject to manage access 1o your audio or graphical user inger-
face subsystems.

A facade or manager is necessary in order to keep interdependencies berween
classes, otherwise known as coupling, 10 2 minimum. One can imagine in a cheorerical

16

Saction 1 Programming Technigques

Subsyvitem|

FIEURE 1.1.1 An example of bad coupling.

worst-case scenanio that every class in a project "lkmows” abour and requires explicis
access o every other class, a5 illustrated in Figure 1.1.1. The maximum number of
interdependencics berween classes can be described as (n-1F, where 1 is the number of
classes in 4 project.

The problem with this sort of interdependency comes when an entire subsystem
needs to be heavily modified or even replaced. Objec-oriented programming protects
against implementation changes within single dasses, bur a new paradipm is needed
for protection against more sweeping changes. The fagade pattern solves the same sore
of problem thar object-oriented programming protects against, bur on 2 much larger
scale.

The general rule of thumb when implementing fagade classes is this: Whenever
possible, avoid exposing internal subsystem dasses o ourside systems. This is not
always possible to do entirely, bur with some clever coding and function wrapping,
you can reduce the exposure of these classes a grear deal, as illustrated in Figure 1.1.2.
Every class you hide means that there is less work to be done the next time that sub-
system has to be reimplemented.

State Pattern

Almost every game programmer has had to deal with the problem of keeping track of
constantly shifting game states in real time. Stares usually starr our as simple enumer-
ations, and behavior is implemented based on switching berween stares in a switch

. case strecture. Problems can develop, however, when the number of stares starts
growing larger and funcrionality must be shared in a greater number of these stares. A
cur-and-paste nightmare can quickly ensue, wherein the programmer tries to find all
the stares that share code and make sure thar any changes to one state occur in all of
them.

1.1 Object-Oriented Programming and Design Technigues 17

Subsysiem]

FIGURE 1.1.2. Using fagads classes to reduce interdependencies.

A more elegant object-oriented solution is to simply wse objects o represent logi-
cal stares. The advantages of using objects are that seares are better encapsulated, states
can logically share code in their base classes, and new stares can easily be desived from
existing ones using inhesitance. These advantages reduce the typical problem of hay-
ing ta cut and paste code between discrete states, as shown in Figure 1.1.3.

Although the pattern does not specify how stare mansitions are to be made, it can
often make sense to leave the wransitons of classes 1 a central manager. In this man-
ner, inter-abjecs dependencies can be aveided, leaving only the manager 1o worry
about having o know all the different stare objects. Better yet, the states can simply
be enumerated and created through the use of a factory object, which is exphined in
the next section,

The state pactern does not necessarily have to be used only w0 represent discreee
game states, It can alio be used in Al systems or even w represent different types of
game modes within a single game. By representing each game mode as 2 different
abject, for example, you gain the flexibility of allowing new behavior to be added after

- —— OsEnter(}
| StateManager HRaseState Update()
Dynamicallyswilches
betweenstats
objectsinreal-lime

FIGURE 1.1.3. Using the siare pamemn.

Section 1 Programming Techniques

the initial release through the wse of dynamic link libraries (DLLs) or ather means of
adding an object 1o existing code dynamically.

Factory Pattern

The factory parzern deals with ofganization in the creation of objects. A form of the
pattern is defined as 2 method for allowing ahsrract interface classes ta specify when o
create concrese, derived implementarion classes. This method is ofien regquired in
application framewerks and other similar class hierarchies. However, gamc program-
meers ofien deal with a specific subser of the factory partern—namely, the wse of fic-
tory objects with enumeraed object ereation located in a cenrral class, usually via 3
single-member function,

In Englich, this means that a single object is responsible for ereating a wide vari-
ety of other objects, usually related by 2 common hage class. This class often takes the
form of a class with a single method that accepes some sort of class 1D and returns an
allocated object. The advantages of clustering object allocation inte 3 single locadon
e especially noteworthy for game developers:

* Dynamic memory allocation is SXpCnsive, 50 you want o carefully monitor allo-
cations. Allocating all objecrs in a central ares makes it easier o monitor these
allocations.

* Often, common initialization or creation methods must be called for all abjecrs
within a class hicrarchy. If all object allocarion js put into a central area, it
becomes easy to perform any common eperations (such as inserting chem into 2
resource managerjon all objects,

* A facrory allows extensibility by allowing new objects to be derived from the
existing factory. By passing in a new dlass ID (which can easily be obrained from
data instead of code), you can provide run-time extensibility of new classes with-
out changing the existing base code.

The final paine stresses extensibiliy as 2 benefic of using the factory pattern. Far
this reason, creating simple funcrions or static classes should be avoided, since you
cinnot derive new classes from them:

BasgClags= classFactnr':.rr:Ercateﬂbjuct:f.nt ig)
{

BaseClass® pllass = o

switehiid)

{

casa 1:
PClass = néew Classi;
break;

casg 2:
pClass = new Clags?;
break;

cage 3:
pClase = new Class3;
braak;

1.1 l:l-hjauct-nrlurh_ud Programming and Design Techniques 19

defaults
assert(1"Errorl Invalid ¢lass ID passed to Tactary| =) ;

1;

/! perhaps perform gome comman initialization is needed
pClass-=Init();

réturn pGlass;
1

You can see thar there is technically nothing sophisticared about a factory creation
method. However, centralizing these object allocarions provides a powerful organiza-
ton and extensibility mechanism.

Factory pateerns are used whenever large numbers of diffcrent objects within an
object hierarchy must be dynamically ereated ar run time. This can include Al
objects, resources such a5 textures or sounds, or even more absract abjects such as

gAmE stares (as in the previous discussion).

Summary

Developing good object-oriented rechniques is not an end in iself. It should pervade
every aspect of your code, which will save you time and trouble in the long run. Well-
written object code is more flexible, more mainminable, and more extensible than
precedural code. Game programuners have not adopred a complex new language and
ceding paradigm for their personal enterzinment; there is a method to their madness.,

There are scveral references listed at the end of this artide. Do yourself a favar
and immediately pick them up if you don't yer own them. They arc indispensable
tools in learning the finer points of both objec-oriented programming and Ca++ lan-
Euage nsage n general.

References

[Gamma®4] Gamma, et. al., Design Patterns, Addison-Wesley Longman, Inc,, 1994,

[Meyers98] Meyers, Scor, Effective Cx +, second edition, Addison-Wesley Longman,
Inc., 1998,

[Meyers96] Meyers, Scor, More Effective Coa, Addison-Wesley Longman, Inc.,
19945,

[Perzold965] Perzold, Charles, Frogramniing Windsws 95, Microsoft Press, Inc., 1996,

1.2

Fast Math Using Template
Metaprogramming

Pete Isensee

When programmers think of C++ remplates, they usually think of things like the
STL, generic containers, and type-safe macros, Most programmers are unaware thar
templates can act a5 vinwal compilers, creating tremendously optimized code in terms
of both speed and size. This unforescen quality of wemplates was first noriced g
Erwin Unruh in 1994. He presented the C++ Standards committee with a template
program that didn’t compile but instead coerced the compiler into generaring a list of
prime numbess in its error messages [Veldhuizen99].

This discovery led a number of language expents 1o focus on the use of templares
as precompilers. Todd Veldhuizen and David Vandevoorde greatly expanded on chis
capability, showing thar virnelly any algorithm could be templarized, provided the
input parameters to the algorithm were known ar compile time [Veldhuizen95),
Given 2 good compiler, intermediate code can be complerely optimized away, result-
ing in extraordinary efficiency.

The best way to sec this in action is to consider a simple example.

Fibonaceci Numbers

The Fibonacsi sequence looks like this: 0,1, 1,2, 3,5, 8, 13, The general equation
for the sequence is Fib(n) = Fibin-1) + Fbin-2). A typical funcrion to recy reively gen-
erate Fibonacei numbers is as follows:

unzigned RecursiveFib(unsigned n)

1
if{ n==1)
return n;
return RecursiveFib(n-1) + RecursiveFib{ n-2 }:
}

Believe it or nor, this simple function runs in egonential dme. It's highly ineffi-
cient and should never be used in production code. The funcrion is simply a step-
ping-off point for generating a templatized version:

1.2 Fast Math Using Template Metaprogramming 21

template< unsigned N > struct Fib

{
i
{
[f Recersive definition
Wal = Fib= M-1 =;;¥Val + Fibs M-2 =::¥al
|

ff Specialization for base cases

fr o itermination conditions)

tenplate <= struct Fib< 0 = { emum { Wal = @)
template <> struct Fib< 1 = { enum { Wal = 1 }

ff Make Tha template appear like a fundtion
f#deTine FALT(m } Fib< n >:z:Val

An example “call” to the template via the Sdefine

FEEIoout =< FRbT{ 4 j; J/ Fib< 4 =::Val

Some important things to nore abour the templarized version are as follows:

* The template function is not really a funcron ar all—ir's an enumerated integer
called val, recursively desermined ar compile time. The notation val = Fib<h-
1>::val # Fib<N-g>::val is uncommon bur valid C++ synrae.

= Fib is defined as a struce o simplify the notation. Seroer dara is public by default,
which is exactly whar we want. Similar notarion is used for all the following code
listings.

* ‘The template pasameter W is used to specify the funcrion inpur. This is an uncom-
mon but perfecely accepiable use of remplare parameters. For example, std: :bit-
set<i> uses the numeric value H as its template parameter o define the number of
birs represented. This numeric parameter must be known ar compile dme. Call-
ing FibT(1i) when i i5 a non-const variable will generate a compiler error.

* loterminate the recursion, you must handle the base case properly. For Fibonacd
numbers, the base case is when N is zero or one. With iemplares, the way 1o han-
dle base cases is with templace specialization. The notation tenplate<> indicates
a specialization. When N is zero or one, Val = N

Nu:-w r:&:li.i.i.dr:r I'tl.'n-w - | c::-mpil.cr mig]':t mfuat: FibT{#):
= Fib<dx:val

Fib<k»!:yal 4 Fib-2>::yal

Fib<c2»: Vel & Fib<i=::¥al + Fib<i1=:z:Val + Fib<0=::v@l
&
1

Fib=<i>;:Val Fibofeez:Wal + 1 +1 + 0
1 & 0 + 1 & + i
3

r

22 Saction 1 Programming Techniques

Since all inputs are known at compile tme, a compiler can reduce FiBT(H) o 2
constant, In other words, the compiler can produce exaetly the somre code a3 though
you had written:

Stdiioout << 3; Jf Fib[d)

This is an amazing rool 1o have in your C++ tool kit. It’s not every day you can go
from eponential ror time to constent run tinee, With template metaprogramming, the
price you pay is additienal compile time instead of additional execution time. For
games, cxecution tme is usually more cincal than compile time, so this technique is
very appealing.

Factorial

Here’s another cxample of wming a standard function into 2 eemplatized version.
First, the standard C++ version for reference:

unsigned RecursiveFact(unsigned n)

{
}

return {{a == 1} ¥ 1 ; (n * RecursiveFact(n - 1}]);

And che remplate metaprogram version:
I Templatized factorialim)
template« unsigned W > atruest Fact
1

b

anum { Val = N * Fact< N - 1 =::¥al };

{/f Specialiration for base case
Template = struct Fact< 1 =
{

enum { Val = 1 };
hi

ff Make the template appear like a function
#defing FactT{ n) Fact< i >::val

As in the Fibonacci example, the compiler can reduce 2 “call” such as FaetT{4) 10
the conszane 24. We've gone from linear run time to constant run time. Thar’s 2 pow-
erful argument for using merzprogramming. There are two drawbacks: 2 compile-
tme pesaley, which is typically insignificant, and a code readability penalry, which
can usually be hidden by a well-defined macro such as FactTin).

Let's step back for 2 moment. Templare meraprogeam ming is compelling and
undeniably efficient, bur not many games require a Fibonace sequence or factorial
number generation. Even if they did, it’s not likely that the code will know the

1.2 Fast Math Using Template Mataprogramming 23

required inpur parameters ar compile time. Is this just 2 neat Ce+ party trick, or is this
something that’s actually useful?

Trigonometry

Time for 2 more complicated example. Let’s take on the sine function. Many games
use sine tables or 2 similar method for fast wig calculations. What if we could make
the compiler read something like x = sine(1.234) and generate 2 single move inseruc-
tion? Template metaprogramming to the rescue!

Generaring standard trig funcrions involves using a series expansion. For sines,
the expansion looks like chis:

sine(x) =x— (= F 30 + (ST SD—(F T 70+ BT — ...

where x is in radians, 0 < = x < 21 To compure the terms efficiently, we can rewrite

the expansion:

sine{x) = x * rerm{0)
where rerm{n) is compured recursively as:

term{a) = 1 —oF { (2w + 20/ (2w + 3) ™ rermiore1)
You can write this expansion without templaces as follows:

double Sine(double fHad §

{

const int iMaxTerms = 10;

return TRad * EineSeries| ¥Aad, 0, iMaxTerms);
}
double SineSeries| dowble fRad, int i, imt iMaxTerns }
{

if(41 = iMaxTerss |

raturn 1.0:
return 1.0 — [fRad * fRad / (2.0 * i + 2.0) / (2.0 * £ + 3.0)
* GingSaries(fAad, i + 1, iMaxTeras) }:

H

Increasing iWaxTerms improves accuracy at the expense of run-time speed. It's not
difficult to convert this 1o o templatized version. The solution is presented in Listing
1.2.1, The solution uses two templare objecrs: Sine<R> compures £ * ferm(1) and
Series<d, I> compures ferre(l) recursively out to the number of terms specified by
MaxTorms. With the remplate mesaprogramming version:

double x = SimaT(1.234 };

the compiler can theoretically generare the same code as though we had written:

double = = 0.5435102083T463360 ;

24 Section 1 Programming Techniques

The actual value of sin(1.234) is 0.94381820937463370..., so the templaze ver-
sion, which evaluares 10 terms, is accurate to approximately 15 decimal places! With-
out much cffort, we have a solution in which we can get sines for free (i.c., constant
time) by using the compiler as the workhorse. We don't have to compute a table ar
run time or embed a table in our exccunable, because the compiler can generare the
table entrics we nesd (and only the ones we need) ar compile time,

Compilers in the Real World

There's porentially a big problem with template memprogramming. Many compilers
available roday (circa 2000) can't reduce the recursion and mathemanies involved with
complex templare-based algorithms. In the sine example, evaluating the series expan-
sion to 10 terms requires the compiler to reduce approximarely 20 floating-poine
mu]tipiim:inns, 50 inreger multiplications, 20 FP divides, 10 FP subiractions, and 10
recursive calls down to one or two move instructions, Cewidd a compiler do tha? Of
course. Shorld a compiler do that? Probably, given ample resources (RAM and dme).
Wl a compiler do thar? It depends.

I tested the preceding examples using Microsoft Visual Ce+ 6.0. VCG did a splen-
did job with the Fib and facrorial templates, produdng single move instrections for
each. It had more difficulry on the sine template, peneraring code thar is infetior even
to the C run-rime sin(} function! By default, VC6 was able 1o unroll the recursion to
only eight levels, and it hardly optmized the arichmexic ar all. Using the VC&-specific
¥pragmas inline_depth(255) and inline_recuraion(on) allowed VO& to unmoll the
recursion completely and optimize away all the marh, so forrunarely, good resules are
still possible.

The moral of the story is thar all optimizations are guilty until proven innecent.
Examine the code produced by the compiler, and evaluare the performance before
and after templates are introduced s an optimization. You might need to rweak some
compiler flags to get the results you wante. In the fiure, expect compiler writers 1o
focus more heavily on template optimization and templare meraprogramming irself.
In the meantime, program softly and carry a big profiler.

Trigonometry Revisited

Given that C++ compiler technology is sll immarure when it comes to dealing wich
remplares, is there anything we can do to improve our chances of the compiler doing
the right thing? Liszing 1.2.2 shows another amempe at the sine funetion. The recur-
sion has been removed and the seris expansion is inline our to 10 rerms, We're down
to 12 multiplications, 21 divides, and 10 submractions. We've also eliminated the tem-
plare specializacion since its no longer needed.

1.2 Fast Math Using Template Metaprogramming 25

The resulting function is a bit casier 1o handle, from both a readability standpoint
a5 well as a compiler standpoint. Indeed, VIC6 has an easier dme wirh this version.
The special #prageas are no longer required for the compiler to generite a constant.

Ar this point can we clearly see the benefits and drawbacles of the rechnique. Tem.

plate metaprogramming can generate massive speed improvements—sometimes, but
not always.

Templates and Standard C++

Not many compilers are completely compliant with the Ct+ standard, especially
when it comes to tcemplares. Templates are so flexible and powerful, compiler wrirers
have a rough job getting them righe. In no place is this more apparent than Visual
Co+, which was slow to adopt templates in the first place and slower still to conform
to the standard. For example, VIC6 does not support partial specialization, making the
specialized versions for many of the templare funciions more complicated and less
generic than they need o be.

Much more important, however, is the support or non-supporr of fleating-point
template parameters. The sine cemplare functions in Listing 1.2.1 and Listing 1.2.2
use 3 foating-poine template parameter for the incoming radian walue. However,
according to the Co+ standard, “a non-type template-parameter shall not be declared
to have floating peint ... type.” In other words, on a conforming compiler,

template< double R = struct Sine // compiler error

gives an crror message. The solution is 1o use a reference parameter instead:

template< doublef R = struct Sine [/ O
Interestingly and unformunarely, Visual Cet 6.0 mipporrs floaring-poine types as
template parameters but does mas support references as parameters, Tt has things com-

plecely backward! To use the sine template code on conforming compilers, change
double A to doubled R.

Matrices

Where template metaprogramming really comes into its own is the handling of
marrix operations, Three-dimensional games heavily use matrices. Templatizing key
functions can generare noticeable speed improvements. In the following section, we
use templares vo improve initializing, transposing, and mulriplying matrices.

Saction 1 Programming Techriguas

ldentity Matrices

The fdensity matrix contains elements whose values are zero, with the exception of the

diagonal, which contains ones. We begin wirth a rypical implementation. Note the
embedded for loops:

matrixdds matrix33;iidentity()

for (unsigned ¢ = 0; © <= 3; o++)
for (unsigned r = 0; r < 3; res)
colf c Il r] =(¢==r})F1.0 : 0.0;
return *this;

}

‘The template mecaprogram version is shown in Listing 1.2.3. The parameters for
the template version indude the marrix utx, the size of the matrix H (3 square martrix
is assumed), the current row R and column €. Ar every iteration, we evaluate the nexe
element of the marrix.

The key thing to notice is the method by which we loop over the columns and
rows. At each step in the algorithm, we know I, which simply goes from 0 w &
squared. Given I, we can compute the current row by taking 1 modulus N. For exam-
ple, if ¥is 3, the row sequence would be: 0, 1, 2, 0, 1, 2.0, 1, 2, 0. The current col-
umn is I divided by N mod K. IF N i 3, the column sequence would be 0, 0, 0, 1, 1, 1,
2, 2, 1. 0. The templare specializarion terminates the algorithm when I reaches &
squared. Mow we can replace the original version with:

matrix33s matrixdd::identity()

{
IdentityMtxT(matrixdd, *this, 3):
return “*this;

}

The compiler can expand the new version ro:

matrix33& matrixdad:;identity()

i
eol[@ J[O] = 1.0;
eol[0 J[1] = 0.0;
ff .
eoll 2 J[1] = 0.0;
coll 2][2) = 1.0;
raturn *thi&;

1

In other words, the compiler can completely wnroll the fosp. OF course, we could
have unrolled the loop ourselves, bur the templare version is a general salution. It will
work for square marrices of any size (provided you include the specialization). For
example, the code for 4 % 4 matrices would look like:

matrixd4d matrixss;iddentity()

1.2 Fast Math Using Template Metaprogramming 27

i
IdentityWixT| matrixzdd, *this, 4 }:
retern *this;

}

Matriz Initialization

We can ereate templarized initialization code by using the same rechnique we used in
geocrating the idenrity marrix. In fact, the only line that needs to change in Listing
1.2.3 is the line thar determines each marrix element value:

mxl G JLR] =({C==A1)71.0: 0.0; /F identity matrix
which is replaced by:

mix[G I[R] = 0.0; /f zerg matrix
or more generally by:

mix[C JI B | = static _cast< F = Init); // init matrix

where F is the type of value stored in each element and Init is 2 numeric template
parameter thar defaults to zero. The general solution allows you o easily initialize
matrix elements 1o any constane value.

Matrix Tranaposition

Transposing a marix flips the matrix using the diagonal as the axis:

matrix33& matrix33: :transpose(}

{
for [unsigned c = 0; ¢ < 3; ces)
tor (whsigeed r=0c + 1) F < 3; rH+)
stdziswapl coll ¢ J[r], colf r I[c])3
raturn *this;
H

This algorithm cries out for oprimization because it does so little actual work. For
a3 » 3 marrix, there are only three swaps. For a 4 % 4 marrix, there are only six. List-
ing 1.2.4 shows the remplare implementation, We can now replace the original with:

matrixd3d matriwdd::tranapose()
TransltxT{ matrix3i, *this, 3);

return *this;

H
which the compiler will expand ro:

natrixd3s matrixdd:trensposqq]

Section 1 Programming Techniques

gtd: :awap(col[OQ][1], col[11000)i
gtd: iawap(col[0]l2], col[21001)i
gtd:tawap(col[1]i2], colf2][1])i
return *this;

t

The embedded for loops are optimired away, leaving only the swaps themselves.
Swap itself is an inline funcrion, so we're down o only nine move instuctions. Doesn
get much betrer than thar.

Matriz Multiplication

For our final look at metaprogramming, we templatize maeric maoltiplication. A rypi-
cal non-templatized implementation looks lilee this:

matrinddE matrixdd::operator *= (const metrixdlE m)

{
natrixad t;
for [unsigned r = O r < H; res)
{
for (unsignad ¢ = 0; & = 3; c4+s)
tlel[r] = 0.0;
for [unsigned k = 0; k < 3; kK#s)
tle]ir] += colik][r] * m[e][k];
¥
}
*this = t;
roturn *this;
;

The corresponding template metaprogram version is shown in Listing 1.2.5.
Marrix multiplication has an inner loop that becomes the additional wemplate para-
meter K Unlike the idml:il:.}r OF [Fnsprosition :Jg:_:u.'.iﬂm:ls, which ::-Lpznd 1 M :_.r.||.|.:|.‘-|:r.{
iterations, multiplication expands to N cubed iterations (note that the specializations
take “N cubed” as a parameter). Now we can replace the original version with:

matrizadd matrix3d: eperator *= (const matrizi3s m)
{

natrix33d t;

ZeroMixT(matrixdd, 1, 3);

WultMixT({ matrix33, t, *this, m, 3 };

*this = €}

return "this;
}

We initialize the resulting matrix to be empty (zeroed) so that the += operator in
the MultMtxIspl template will work properly. The compiler can expand the new mul-
tiplication operator to something like this

1.2 Fast Math Using Template Metaprogramming 29

matrix33s matricdd::operator *= [cOnSt matrix33sd nj
1

matrixdd t;

1 ZerolTeT
t(0jin] = 0.0;
s e
ti21[2] = 0.0;

£ MoltMixT

T[O][0] #= coll0)(0] = m[D]]
t[O][0] #= col[1fio] * mID]1]
i

t[3)[3] #= col[Z]|0] * m[O]]
tI3103] #= col{3][0] * m[d][

-

L= il
et

- o

“this = T
return “This;

}

The muldplication remplate is a general solution for any square macrix, The code
lor any arbitrary N x N marrix would be:

natrixNNg natrixMN::operator *= (const matrixNNE m)

{
natrixhi &;
ZeroMtxT(natrixhi, t, N)}
MUltitxT(matrizMM, €, =this, m, H J;
*this = §;
return *this:

}

Actual Matrix Performance

How efficient are the templatized matrix operations? The general-purposs answer is
thar your mileage will vary depending on the quality of the compiler and the compiler
options vou choose,

I tested the matrix operations using VIC6 with full aptimizations, opumizing for
speed, using the inline option “any suitable” and the #pragmas inlina depth(2ss)
and inline_recursion{on). I benchmarked cach operation 100 million rimes, with
the resules shown in Table 1.2.1. All times arc in milliseconds, The Unrolled column
indicares whether or not the compiler was able to unroll the recursion.

To sce relarive performance, [graphed these resulbs 1o show how much faster the
templatized versions operared compared with the non-templatized versions (see Fig-
ure 1.2.1).

With the exception of multiplying 4 * 4 matrices, the templatized versions were
all considerably faster. Not surprisingly, the marrix transposition operations showed
the best improvements. In the eases of the simpler algorithms, the compiler was able
to completely unroll the wemplate recursion. However, for multiplving 4 ¥ 4 matrices

30 Section 1 Programming Technigueas

Table 1.2.1 Matriz Operation Test Results
Non-Templatized Templatized

Oparation [in Millisecands) (in Millisecands) Unrolled
R3S et 33092 29,330 Complersly
marrinddsrero 36,063 30,292 Complerely
matrix33zidentiy 45,827 23,526 Complerely
matriddsidentiny 40,845 2095 Complerely
matrix3 3z transpose 35,338 29,955 Complerely
matrixddztranspose QG3E 30245 Partially
matrix33op "= 2.0 50,352 Parially
matrixidzop "= 326,80 792901 Parially

i1 b
spiroedd slenley

mereE] S imnspa se

i 10 2
& Eme rempared b pon- el peTion.

FIGURE 1.2.1. Relattve performance of remplate functions.

(4" operarions), the eompiler only partially unrolled the recursion, and the overhead
of the recursive function calls far outweighed any inlining improvements, so che
resulting funcrion was much slower than the original. These results simply show che
importance of profiling your “optimizatens.”

Summary

Templares can be a highly effective way of generating algorithms directly in the in-
struction stream. The abiliy wo reduce and unroll code in 2 generic way can be a very

1.2 Fast Math Using Template Metaprogramming a1

powerful programming technique. The notation for remplare metiprogramming is
unusual at first, but it’s not much more difficule than examining standard recursive
calls. Macros can be used 1o hide the notation from the calling code.

The metaprogramming technique can be exrended 1o 2 wide variety of functions,
including square-roor eleulations, greatest common divisors, matnx Inversions—
even sorting. Any alporithm for which ae least some of the inpur paramerers arc
known at compile time can benefir from templace MCrAProgamming.

Current compilers are still limited in dealing with templates, especially recursive
templates. Compiler remplare error messages can range from crypric 1o undecipher-
able, As with any optimizarion, there is often a time and space madeoff. In many cases,
template metaprogramming can generate the best of both worlds: very small and fast
code. In other cases, unrolled code can be much larger than the original version,
reducing or even eliminating the speed advantage, Nevertheless, expect to see tem-
plate metaprogramming play 2 significant role in Co+ librarics and games of the
furture.

Listing 1.2.1

fI Series expansion Tor gin{ A).
[l Fer canforming compilers, change double A fo doubles B
template< double R > struct Sine
1
enum { MaxTarms = 10 }; /) increaszs fer ACCUracy
static inline double sin()

{

¥
5

return R * Series< R, 0, MaxTerms =>::wval();

tesplate< dosble A, int I, int WaxTerns >
struct Saries
{
anum
1
fI Continue i3 true until we've evaluated M terns
Continua = I + 1 I= MaxTerms,
Nxtl = (I+ 1 }* Gontinue,
RetMaxTerns = MaxTerns * Comtinug
ki

/I Regursive definition called once per ters
statie dnline double walf)

{
return 1 - B * R f (2.0 * T + 2.0} f
(2.0 * 1 + 3.0) * Beries< R * Continue, Mxtl,
HetlaxTerms >::wval(];
¥

ks

f7 Speclalization to terminate the loop

az Section 1 Programming Techniques

template <= STrUSt Sefriage I:I-I:l, I:I-‘ Q>
1

static inline double wval() { return 1.07 }
i H

I Make the template appear like a function
#dafine SineT({ r) Sipe< ¢ >::sin()

Listing 1.2.2

Il Series expansion for sin(R J.
i Far conforming compilers, change doubls R to doublehk A
tediplate < double R = struct Sina

1

ff ALl wvalues knowm at compile time,

§f A decent compiler should be able to reduce

ff o a single constant.

static inliné dopble sim()

{

double ASQr = R * A3
return A * [1.0 - Rsgqr § 2.0 [3.0

= 1.0 - 'Aegr f 4.0 [5.0
* [1.0 - Regr J 6.0 [f 7.0
* { 1.0 - Regr §/ B.0 [5.0
*{ 1.0 - Regr ¢ 10.0 § 11.0
*"{ 1.0 - Regr Jf 12.0 [13.0
*{ 1.0 - Reqr J 14.0 f 15.0
® { 1.0 - Reqr f 16.0 [/ 17.0
*“{ 1.0 - Reqr F 18.0 f 19.0
“ [1.0 - Reqr § 20.0 [/ 21.0
|k B e B B B EY EEN

]

¥:

ff Make the template appear liks a funstion
fdefine SineT(r) Bime< r >::sin()

Listing 1.2.3

ff Templatized identity matrix; H is matrix size
Template< clagg MEx, wvnsigned N = struct IdMtx
i

static inline wvoid eval{ Mtx& mix)

i

}
¥

IgitxImpl< Mtx,; M, O; 0, @ >::evall mix);

{/ Assigns each element of the matrix

template< clase Mex, wnsigaed W, unsigned G, unsigned A,
unsigned I >

struct IddtxImpl

i

1.2 Fhﬂﬂ!hlit}llllﬁﬂﬂ'TElﬁﬁl.tl'!Iﬂtﬂﬂﬂﬂﬂgriﬂnnﬂhiﬂ

anus
{
Kxtl = I = 1, I Counter
Nuth = NxtI % N, fF Raw (dnner loop)
HutC = N2tT F N % W Ml Column [puter laap)
b
etatic inline void eval(Mix& ntx)
1

stx[C]J[R]=(C==R) ? 1.0 : 0.0;
IoMtxImpl< Mtx, N, NetC, MxtR, MxtI >::eval({ mtx ¥
}
}:

ff Speclalize for 3x3 and x4 matriw
template<> struct IditxImpl= matrix3s, 3 0, 0, 343 >
{
static inline woid eval{ matrix33k) {}
¥i
tesplate=> struct IdMtxInpl< matrix4s, 4, 0, 0, 4°4 >
{
static inline vold eval(matrixd4s) {}
i
{f Make the template sppear like 3 Tonctisa

#define IdentityMtxT(MExType, Mtx, N i
ToMte= MixType, M =:;oval(Wix)

Listing 1.2.4

fF Templatized transpose; W is matrix size
template< class Mix, unsigned N = stroct Transitx

{
static inline wold eval{ MHxd ntx J
{
TraneMtxInpl< Mix, N, @, 1, 0 >::evalf mtx]
1
ki

templete< class Mix, unsigned N, unsigned ©, unsigned A,
unsigned I =
atruct TransitxImpl

i
anum
{
NxtI =1 + 1,
Hxtl = NAtI /| M % N,
HxtA = [HetT % M } + Mxth + 1

|H
gtatic dinline void eval(Mitx& mtx)
1
ifif R=H)
Sto::awap| mix[G I[R], mtel RI[C])3
TransMtxImple Mtx, N, MxtC, NxtA, HNxtl =iievall mtx);
¥

34 Sgction 1 Programming Techniques

i

[/ Specialize Tor 3x3 and 4x4 matrix
template<> struct TrenaMixImpl< matrix33, 3, 0, 1, 3*3 =
{

gtatic inline woid avall metrix33& b {3
i H
templata<> struct TransMixInpl< matrixdd, 4, 0, 1, 44 >
i

|
ff Make the template appear like a function

Fdafine TransMtxT|[MexType, Mtx, N) |
TransWtx< MtxType, H =::evali Ntx)

static imline void eval{ matrixd4d) {}

Listing 1.2.5

Il Templatized multiplication; M iz matrix size
tesplate< class My, unsigned M > struct Multlcx
{
statio inline woid eval] Mtxd r, congt Mixd a, const MWixd b)

MultutxImpls Mtx, N, O, @, O, O =;:evall(r, &, b };
}
kb

tamplate< class Mtx, unsigned W, unsigned G, uvnsigned R,
unsigned K, unsigned I =
STruct MultiixIspl

1
fnum
{
UxtI =T +1, {{ Counter
Nxtk = MNutl % N, I Internal loop
MNxtC = Wxtl f N % N, 1 Golemn
MEtA = Hxtl / N/ W& N [/ Aow
HH
stetic inline vold eval(Mtxk r, const Mix& B, cCOnsT Mix& b)
FLCI[AR +=al KI[A] *b[CJ[K 1;
MultMexInpl< Mrx,N,HxEc, Roth, Motk et I =::ewal{ r,a,b):
H
3

/1 Specializa for 3x3 and 4x4 matrix
template<> struct MultMtxImpl< matrixad, 3, 0, 0, 0, 3*3+3 >
i

atatic inline vold aval{ matrixddhk, conet matricdds,

const matrix3as } {}

i H
template<> struct MultMNtxImpl< matrixdd, 4, 0, 0, 0, 4%4*4 >
i

ctatic inline vwoid eval| matrixd4k. const matrizddk

1.2 Fast Math Using Template Metapregramming 36

const matrixddd) {}
i

{7 Make the template appaar Iike a function
#define MultMexT(MtxTypa, r, a, b, N) i
Multuex< MtxType, N >::eval{ r, a, b }

References

[Veldhuizen99] Veldhuizen, Todd, “Techniques for Scientific Cs+." Available
www.exieme indiana edw/-eveldhuifpaperstechniques/, August 1999

[Veldhuizen98] Veldhuizen, Todd, et al., “Blitz++ Numerical Class Library.” Available
www.oonumencs.org/blite Augusc 1998,

[Veldhuizen96] Veldhuizen, Todd, and Kumaraswamy Ponnambalam, "Linear Alge-
bra with C++ Templare Metaprograms,” D Dobb Journal, August 1996,

[Veldhuizen%3] Veldhuizen, Todd, “Using C++ Templare Metaprograms,” C++ Report,
May 1995,

[Pescia97] Pescio, Carle, “Binary Constants Using Template Metaprogramming,”
CCe+ Ukers Journal, February 1997.

[Karmesin99] Karmesin, Steve, et al., “I’ETE, Porrable Extension Templare Engine,”
Available wwwacl lanl govipete/, February 1999,

1.3

An Automatic Singleton Utility

Scott Bilas

This article presents an casy and safe method to provide access o a Co+ dass single-
ten while retaining control over when it is instantiated and dessroyed.

Deafinition

A sizgleton is an object that has only one instance in 2 system ar any time. Some com-
mon cxamples of singletons in games are managers for texrure maps, files, or che wser
interface. Each is a subsystem that’s generally assumed 1o be available once the game
has started and will stay in existence uncil the game shuts down.

Some of these subsystems can be implemented using global functions and static
varables. An example would be 2 memory manager’s nalloe() and free() functions.
These types of subsystems are nor singletons in thar they don't have their functional-
ity encapsulated into a class and can’t be represenred using a single instance of that
class, There's no reason 2 memery manager such as this couldn’t be converred into a
class and used as a singleton, but this practice isn't common.

An example ofa singleton is a redure map manager. It could be called Texturengr
and have methods such as GetTextura() and vseTexture(). Its purpose would be o
find texture maps in the file store, converr them 1o system graphics objects, make
them available to the rasterizen(s), and own them uniil they are no longer needed, at
which point it deleres them. Only one instance of Texturelgr will be needed in the
system, 5o this class would narirally be wsed as 3 singleton.

Advantages

What's the point of singlevons? First, they provide conceprual clarity because labels are
very important. Calling a class a singleton and following 2 naming convention (such
as -Nqr, -Api, Globel-, erc.) relates imporanc details abour how we intend thar dass o
be used.

Singlerons also provide notational convenience. Every object in a Cs+ system
must be owned by something. The ownership pattern of these objecs depends on the

1.3 An Automatic Singleton Utility ay

game, but it often resembles 2 multilevel hierarchy, in which each higher level owns a
set of child chjects, each of which in tum can awn child objects. Each object pub-
lishes 2 ser of functions to access its children. For example, o get at the Texturemgr
instance, you might need o call a sequence of functions such as GetApp() -~GeTSar-
vices(|)-=GetGui()->GetTexturamgr(), where each function remurne 3 pointer m the
requested child object. This system is inconvenient and not exactly efficient, consid-
ering the multiple dereferences. Singlerons can solve this problem because they are
treared as global objects.

The Problem

Well, then why nor just use global objects? They are cermainly convenient: the Tox-
turelpr object could be accessed through a g_Testuremge object reference that has
been declared with extessal linkage at global scope (ar within a namespace) or per-
haps through a function that returns a reference to that object instead. However, the
construction and destruction order of global objects is implementation dependent
and generally impossible vo predice in a porrable manner.

There are workarounds to all these problems, bur whae we really wanr is 2 way to
have the convenience advantage of treating a singleton like a global object, withour
the inconvenience of losing control over when and where it geos constructed and
destroyed,

Traditional Solution

The rexibook solurion te managing a singleton usually looks something like this:

Texturelgrd GetTexturelgr| void)

{
gtatic T 5 Singleton;
raturn { & _Singleton):

}

There are many variations that use cemplates and macros for notational conve-
nience, but the effect is sill the same, This solution allows a singleton w only be
instantizted en demand—the first time chis function is called. Ir's convenient oo use,
but it leaves irs destruction up to the compiler and requires thar it be done only at
application shutdown time. We need more coneral than thar, Order of destruction i
Very important in @ game in thar some subsystems must be shur down and desroyed
before others. Furthermore, what if we want to shut dewn only part of the game while
it’s still running? Doing so is impossible wich this solurion.

a8 Section 1 Programming Technigues

A Better Way

All we're really after is the ability o track a singleron, and for thar whar we need is a

pointer o ir. Whar if we were to do something like this:

class Texturakgr

i
static TextureMpr® ms_Singleton;
public:
Textureligr{ woid) { ms_Singleton = this; [*...=J]}
~Textureligr{ woid } { ms_Singleton = 0O} fe..vf)
.
Texturelgrs GetBingleton| woid) { return | "=s Singleton }; }
}i

Add a few assertions for safety purposes, and this solurion would work! We can
now construct and destroy a TextureNgr whenever we lile, and acoessing the singleton
is as simple as calling Texturesigr: :0atSingleton(). However, this solution is sill a
lintle inconvenient, given that the same code (1o track the singleton pointer) needs o
be added to every singleron dass.

An Even Better Way

A more generic solution is o we emplates 1o automatically define the singleron
pointer and do the work of scuing ir, querying i, and dearing it. It can also check
{through assert()) o make sure thar we aren’t accidentally instantiating more than
one. Best of all, we can gee all this funcrionalicy for free just by deriving from this sim-
ple little class:

#includes <cassert>

teoplate <typename T= class Singleton

£

static T* ns_Singleton;
public:

Simgleton(wold]

1

aseert| !ms_Simpletan |;
int offset = (Emt){T*)1 = [(Int)({Singleton <T=*)}(T*)1:
ms_Singleton = (T*}{{int}this + offset);
1
=Gingletoni wold)
{ assert{ ms_Sinpleton }; ms_Singleton = 0; }
static TA GerSingleton] vodid)
{ aszsert(me_Singleton p; return [*ma_Singleton j:)
static T GetSingletonftr| woid)

1.3 An Automatic Singlaton Utility ag

{ return { ms Singleton) }
};

tenplate <typename T> T* Singleton <T=::ms Singleton = 0;

To convert any class inte 2 singleton, you only need 10 do these three easy steps;

:|.-’L|.]:I|.i.-l:|:|.r derive your class MyGlass from Singleton “MyCLages,

Make sure that you're constructing an instance of MyClass somewhere in the Sy
tem before using ir. How you instantiate it docsnt matter, You can let the com-
piler worry abour it by making it a global or local static, or you can worry about
it yourself via new and delete through an owner class, Regardless of how and
when you construct the instance, it will ger tracked and could be used s 2 single-
ton through a commeon interface by the rest of the system.

Call uyclass: :GetSingleton() to use the object from anywhere in the system. If
you're lazy like me, you can #define g_MyClass to be MyGClass: rGetSingleton()
and ereat it exactly like a global object for norarional convenience.

Here is a sample usage of the class:

clase Texturedgr : public Singleton <Texturslgrs

;I.:Il-lf.l“::
Texturg® GetTexture| const char® name };:
i e

ki

fdefine g_TewtureWgr Texturelgr; sGatsSinglaten)

valid SoméFunction| void)

i
Texture* stonel = TextureMgr: :GetSingleton (). GetTexture] "stonei” i
Texturg® woods = §_Texturelgr.GeiTexture| *woaodi® j;
R

¥

The singleton classs only purpese in life is to auromatically register and UNregis-

ter any instance of its desived (Wytlass) type as it is constructed and destroyed, We're
deriving MyClass from Singleton <WyClasss purely to inheric this convenient func-
tionality. This doeso't affect the size of the class in any ways it only adds some auco-
matic function calls.

S0 how does this work? All the imporrant work is done in the Singleton con-

sorucror, whers it Frgures our the relative address of the derived instance and stores the
resule in the singleton poinrer (as_Singleton). Note that the derived class eould be
desiving from more than jusc the gingleton, in which cse “this™ from wyelass might
be different from the s1ngleten “this.” The solution is to take a nonexistent object sit-
ting ar address 0x1 in memory, cast it to both types, and see the difference. This dif:

40 Section 1 Programming Technigues

ference will effectively be the distance berween Singleton <MyClass> and its derived
fype MyClass, which it can use to calculate the singleton poineer.

References

Mevers, Scott, More Efecrive Cs+, Addison-Wesley Publishing Cao., 1995,

Using the STL in Game
Programming

James Boer

In 1997, Cos was offically standardized, ending a ninc-year process thar not only
defined the official language specificarions but also gave Ce+ programmers 2 massive
new set of tools in the form of the standard Cov library. A large portion of this library
is the Standand Template Library, or STL. The STL is a collection of container (collec-
tions of daca) classes, ranging from vectors to balanced binary trees, In addition to the
basic containers, the STL provides 2 masive assorrment of algorithms char can oper-
are an those basic containers.

A commeon concern is whether using STL will slow down your code. The truth of
the matter is that the STL was designed with speed 25 a foremast priority. For
imtance, vectors do no bounds checking, and irerators are never validated before
ALLEM MINg o access A container. The net result is thae, for example, STL vectars can
produce code with performance equivalent to that of 2 simple dynamically allocated
arexy. Other coneainers fare just as well when put under the performance microscope.
The STL was designed for high-efficiency Ca+ applications. Don't lose sleep about

using them extensively in your code.

STL Types and Terminology

The STL is a large and somewhar complex portion of the Sandard Cas library. Using
the STL effectively requires the undesstanding of the basic components and how they
work together.

Containers

STL containers represent the dassic data abstracrions and organization schemes such
a& vectors, lists, queues, and maps. However, we should make 1 few distinctions
between certain types of containers and how they are implemented.

The STL containers’ vector, list. and deque (pronounced "deck™) are implicic dara
types that both describe an absteact data type and imply a specific method of imple-

a1

‘ i

Zection 1 Programming Technigues

mentation. A vecter is, of course, 2 dynamiclly resizable army. The fir is imple-
mented a5 3 double-linked list. A deguie, or double-ended queus, is implemented in a
manner that allows amortized constant time insertion or deletion of dements ar either
end of 2 randomly accessible array-type structure. Deques are also known 2s seaguence
eontainers because they store ordered sets of data, mezaning that the order in which you
insert the dasa affects the order in which they are stored.

Containers such as stack, queue, and priority_queue arc slightly higher-level
abstractions. They desaribe a conmainer’s behavior but allow for different types of
underlying implementarions. For example, a queue mighe be implemented usdng a
vector, list, or deque inrernally. These are known as comsainer adapters. Continer
adaprers, because they rely on sequence containers as their underlying daes, also fall
into thar caregory as well.

Other containers, such as a map, set, muldmap, or muldiser, are all implemented
internally as red-black mees (balanced binary orees) bur offer different contziner
behaviors. These are also known as aseciative contaimers because the dar inserted into
them is ordered based on a cerrain sorting criteria,

Herators

Jrerators can be thoughe of as pointers to elements in the contziners, and indeed the
STL even uses pointer notation for maversal and aceess te conminer data. For
instance, the ++ operator moves the frerator to the next dement in a container, much
the way a pointer to an element in an amay can be incremented. In addition, like
pointers, the actual dat can be accessed by dercferencing the iterator using the
OPEraroe.

Algorithma

Unlike whar you might expect, alporivhms designed 1o operate on STL classes do not
come in the form of member funcions of the conminer dlasses. Instead, they exist in
the form of stand-alone functions that operate on ircrators, Why did the designers of
STL choose this ssemingly and-OOP design paradigm?

By separating the data from the algorithms, the designers dramarically reduced
the number of combinations of specialized algorithms. Since each container has simi-
lar types of iterators, each algorithm had to be written only once instead of ance for
cach container, The downside is thar there are sometimes less than obvious side effects
or suboptimal solutions. In most cases, however, specialized member funcrions are all
yeu ficed to perform most basic operations on your containers,

STL Conceptis

A few basic concepts are impormant o working with the STL. Frst, it is importane 1o
understand the methods used ro determine ranges when working with a container.,
Tty methods common o all contziners bagini) and and(}, remurn the full range of

1.4 Using the STL in Game Frogramming 43

the container. As you can sec in Figure 1.4.1, begin() returns the first element in the
container, but end() remurns the position epond phe Lo palted element.

There are several advantages 1o organizing the ranges in this manner. Firs, spe-
cial-case coding for empry lists is eliminated. Second, irerating through containers has
a simple ending criteria: conrinue a3 long as end(} is not reached, The dissdvantages
of this system are that it is somewhar less intuitive, and reverse iteration requines spe-
ctal members and iterators.

It obviously becomes impartant to remember not 1o dereference an ireraror that
is pointing at end(). Such behavior is undefined.

When you use functions specifying a range, functions in STL usually take as
parameters two irerarors, one specifying the beginning element and one specifying the
end element. To pair effectively with beging) and end(}, these funcrions asume an
inclusion of che first element specified and exclusion of the last clement specified.
Mathematically, the following notation usually designates this sort of range:

range [begin..end)

There is another aspect of the STL design of which you should be aware, STL
containers pass information by value, not by reference. This means that when dealing
with small dawa types, it is acceptable o allow the container o make a copy of the
data, With larger data structures or dasses, it beenmes advantageous 1o pass in point-
ers to these objects or structs. Otherwise, every insertion or access results in a copy
constructor being called.

Vectors

STL peceors are essentially resizable arrays. Note that although the formal Ce+ stan-
dard does nor speeify what underlying dara structures are to be used for concainers,
the performance and interface requirements leave littde ambiguity as 1o how they will
be implemented in practice. Thus, all versions of $TL will likely be very similar, with
only minor variations in implemenmarion details.

Container
o
L] e
begin() end()
begini) points to end() poinits 1o position
first element beyond last element

FIGURE 1.4.1. ondi} points after che List valid clement,

Saction 1 Programming Technlgues

Vectors behave almost identically to sandard C armays, with one major exceprion:
they are dynamically resizmble. However, it is important 1o understand the nature of
this resizing,

Vecrors are implemented ag arrays that periodically need wo reallocate memory
and rransfer dara to a new array. This means two things for developers. First, a vector
can allocare more memory than it currently needs, due to the requirement thar ic
might be expecred 1o grow ar any time. Second, adding an clement to the end of 2
vector is described as comstans time—it is important to remember thar this means
amarized constant tme. In other wonds, some grow functions can require 2 substaneial
amount of resources as they allocare new memory, copy the existing array inte thi
new block, and delete the old memory, but they do not require these exera resourees
every time, Depending on implementation, a vecror can allocare twice its current allo-
cated memory when it runs out of buffer space.

It is also eritical that you understand when a vector reallocares memory, sinee
doing so invalidates any iterators currently pointing o clemens in the vecror. Ler's
examine the functions to help more precisely manage a vector’s internal memory, after
viewing the code:

Finglude <vectors
#inolude <iostrean-

using namgspace std;

1f Typedef tha comtminer amd iterator names Tor better
1 readability

typadef vector<int= IntVector;

typedef IntVector::iterator IntWectItor;

wodd main()

{
f{ Create a wector object of integars
Intvector o;
{f Beserve room for 10 integers
c.reserval10);

{f Fill the wector with 3 different elements
c.push_backi{3);

c.push_back (89} ;

c.push_back {42} ;

f/ Wow loop and print out all the alesent values
for(IntVectItor itor = c.begini); itor l= c.and(); +:itor)
gout == "alament welua = = =< (*itor] << gndl;

ff Since the elements have been created, we can access or
i E rEPLEﬂE them]:I.I‘Et like A normal ArTay.

clo] = 123

cl1] = 3

1.4 Using the 5TL in Game Programming 45

c[2] = 999;
Tor(int i = 0; 41 « g.giza|): i++)
cout << “elgment valug = " << g[i] << endl;

}

This example shows maost of the basie principles you need 10 know to stare wsing
SIL containers. Notice at the rop of the listing the inclusion of the appropriate
header files for this program. In addition, note the usage of namespace std. Like all
portions of the Crs library, the STL is part of the etg namespace and so requires you
to declare such in your program.

Next, we see typedefs for the type of conminer and iterator we wasnt to use in the
program. This is a very common practice; it nor only makes the code easier o read,
bur it becomes casier to change the underlying data structure, if desired, (We'll see
how casy that is next.)

The ncxt section of code creates the vecror container object v and proceeds o call
avector-only function char reserves 10 integers’ worth of memory. The code proceeds
to push_back() 3 integers onto the back of the vector. Since we have praallocated well
aver this amount of memory, no additionzl memory allocation is required.

There are a few rourines that you mighe find helpful when you want to closely
moniter and control the allocation of your vector's memory. As shown, vou can
reserve 2 buffer in the vecror by calling resarve() and passing a size parameter. This
value can be retrieved by calling capacity(). If capacity()==reserve() and another
element i inserved into the array, 2 memory allocation will mke place and all cuseent
irerarors will be invalidased, In order to determine the maximum amount of memary
that can be allocared for a single vector, wse the sax_size() function.

The push_froat(), push_back(), pop_frent(}, and pop_back() funcdons are
common to all basic ordered containers (vecror, list, and deque). These funcions
obviously add and remove elements from the front and back of the continer. Dus o
the implementation of a vector, you wanr o avoid push_front(}) or pep_front() on
these types of containers, if possible, due 1o the Ofn) performance, bur they are avail-
able for use if you absolurely need chem.

The final porton of sample code demonstrates one of the most commanly used
components of STL usage: che iteration loop. We use a for loop with an irerator
determining the current positon. The initzal position is st to begin), and the itera-
tor increments with the prefix ++ operator uniil the iterator equals enag), ar which
paint the exic condition of the loop is satisfied. Every conminer with an accesihle
iterator can be ||:I~|:|p|:1:|. rllnmgh in this manner,

Since the iteraror is the only item keeping track of the current position in the vee-
TOf, We must use it 1o extract any information we wanr. We can see thart in keeping
with the notion of a pointer, we simply dereference the irerator to access the data.

After the standard iteration loop, we see an example of a vector in use like 2 typi-
cal array. It is important to note that array subscripting cannor be used o insert ele-
ments into a lis—only w access extsting elements.

Saction 1 Programming Technigues

Lists

The STL fizr is pechaps the most widely used of the basic STL structures. It is imple-
mented as a doubly linked list, so any inserrion and deletion of elements is done in
trae constant time. The tradeoff for this capability is the loss of random access thar
the vector and deque allow,

Oine beaury of using STL containers is the consistent naming conventions and
methods used throughout the library. Once you leamn the basics of manipulating one
type of container, you csenally know how 1o use them all.

Using a list is cven simpler than using a vector. The push front(} and
push_back(} functons work exacily as you would expect. lterating through the lisc
also works exactly as we saw in the vector example. In chis code, we see many of the
same techniques used in the vecror class:

#include <list~
finclode <iostream

uEing mamespace s5td;

class Foo
{
public:
Foolint 1) { n_iData = i: }
void SetDatafint i) { n_iDara = i: }
int GetData() { return m_iData; }
private:
int m_iData;
i

i TypedeT the container and iterator names for better
/i readability

typedef list=<Foo*> Foalist;

typedef Foolist::iterator Foolistitor:

vioid main{)

i
f} Create a list container of intepers
Foolist c;

M/ Fill the list with 3 different plements
c.push_back(new Foo{i1])):
C.push_back (new Foo{2]);
C.push_back({new Foo{3d));

ff Iterator through the 1list
Tor|FoolistTtor itgr = ¢.beging); fter I= c.end(}:)

1f{[=itor}-=BetDatal] == 2}
I/ demonstrates proper method of removing an
[elenent from the middls of tha list,

dolete (*itor);

1.4 Using the STL in Game Programming 47

itor = c.arase(itor);:

}

elge
++itor;

¢

f/ Wake sure to delete 8ll the objects, since the 1iet
/f destructor will nmot do this avtomatically Tor you
Tor{Foolistitor itor2 = G.begin(}; itor2 |= c.end{];
++itorz]
deleta [*itor2);
¥

We see in this example the same basic type of conminer manipulation, bur we
have added the wrinkle of using user-defined objects instead of built-in dara ypes,
This is 2 much more common usage scenario, so we cxamine how it differs in pracice
from inserting data by value.

STL coniners do not operate on the data you pass inte them. Rather, they make
copies of the data they receive and distribute, In order to negate the cost of copying
lasge dam structures in memory, you'll want to pass pointers o larger, dynamically
allocated objects, Naturally, our objects are ridiculously small for example purposes,
bur they could conceivably be large enough o scriously affece performance if we
copied a large number of them.

There are 2 few things to remember when working with pointers to dynamically
allocated struces or objeess. First, and perbaps most obviously, is char you are respon-
sible for frecing any allecated memory when you are finished with the abjeces. Since
the container has no idea what type of data migh be used, there is no way for the con-
rainer to automatically deallocate memory for yow.

Second, and perhaps less obvious, is thar many operations appear 1o fail because
they are operating directly on the object or struct pointers instead of on the objects or
structs themselves. Take the list’s sort() funcrion, for example. T operates by wsing
the < operator to determine value and sort accordingly, Fven if a proper operator is
designed for class Foa, the list still sorts on the actual value of the pointer, not by the
value of the dara in the object.

It therefore becomes necessary to design your own compare operator that derefer-
ences the pointers before comparing them, See the sample code in the arricle
“Resource and Memory Management,” by James Boer, to sec how this comparison
can easily be done.

The third “gorcha” is appropriate o all pointer manipulation rourines but also
bears mentioning in the context of STL. When copying containers, remember thar
enly the pointers are being copied, not the objects. If you create duplicate pointers, i
could become extremely difficult to know which ebjects to delere. There are anly owo
sofutions to this problem: Use smart pointers with your objects or avoid $TL routines
and algorichms that copy elements from container to conrainer.

&

Section 1 Programming Technigues

Deques

You should abso be wary of removing an element from a list while ireraring
through the list. Since rmoving an element ro which you are currendy pointing
invalidates the iterator, you must be sure to make proper use of the erase(} funcrion’s
return value, which retrieves the next valid position in the eontainer. By assigning this
return value o the old ireraror, we essentially skip shead of the invalidated position.
However, this leaves us with another problem. Since we've already incremented the
iterator to the next position, we run into rouble when the for loop tries to increment
it zgain ar che end of the loop. To sobve this problem, we remove the increment oper-
ator from the body of the tor loop and place it conditionally inside the loop ielf,
incrementing only when an element is not erased.

It is often preferable to use algorithms to crase elements from a conrainer instead
of iterating through them manually. Algorithms such as remove_ir() perform the
same operation safely and efficiendy. Unfortunately, a compleic lisung and descrip-
tion of the provided algorichms (and how to create your own) could fill up an entire
book, so [recommend the resources listed ar the end of this article for further srudy.,

Degues, or double-ended queues, are designed for siruations in which insesting and
remaoving elements from either end of the container must be performed, but inserting
and removing elements from the middle of the container is not required (or doesn't
have o occur often). Like vecrors, deques can perform insertions and removals ar che
fronc and back of the conminer in amartized constant time, and inserting or deleting
elements from the middle is somewhat slow, Deques also allow random access, but
because of the slightly more complex nature of the internal dara of 3 deque, which is
arranged in a linked series of memory blocks, mandom access is noe quite as efficient as
with vectors. Unlike vectors, though, there is no mechanism in place for determining
exactly when additional memory allocations will take place.

#include <degues
#inglude <iostreans

using nanespace std;

/I TypedeT the container and iterator names for better
1l readability

Typadet degue<int> IntDeque;

Typedet Intlaque::reversa iterator IntDeguaRItor;

wopdd mainf(}

{
Ai Graate a deque container of integars
Intlagus ¢}

1) Fill the deque with 3 different elements
c.push_front(3d);
c.push_frant{2);

1.4 Using the STL in Game Programming 45

c.push_front{i);
@, push_back{3):
d.push_backi{2p:
¢.piesh_back(1);

{{ Cycle BACKRARD through the list - special iterators and

1 motation is necessary to do this.

for(IntDequeRltor ritor = c.rbegin(}; ritor I= e.rend{);
++ritar)
cout << "Valys = * << [*ritor) << endl;

£ remove the first and last elements
c.pop_Tront{):
C.pop_back(];

{1 Accessing elements directly - if nesded renenbor to
/! check to see the degua is ot enpty. Actessing non-
4! existent elongnts will lead to undeftined behaviar;
i/ probably an access violatian

if(dc.ampty(}]
{

cout =< "Front = " << ¢ . front(] << endl:
cout =< "Back = ° << ¢.back() =< emdl;
1
}

We sce in the preceding listing the familiar code of STL usage, but with a few
new rwists this time. First, let’s introduce the reverse iterator. You might norice thar all
our iterations up 1o this point have been in the positive direction. Although bidirec-
tional iterators do exist, it often is much Smpler to create 2 dedicated revere frensror
and utilize it as you use the standard irerator.

The reason we need a reverse irerator is that because of the bounding conditions
of 2 container (illusteated in Figure 1.4.1), we can’t simply iterate backward and
expect to be able 1o check for che same exit condidons [iter 1= tegini}}. This
would leave the first element in 2 container out of the fterarion loop. Instead, we usi-
lize a reverse irerator combined with the rbaging) and rend() funcrions. These func-
tions work exactly like their forward-looking cousins, but rbeping) actually accesses
the last element, whereas rend() points 1o a position in front of the firse valid entry.
This exactly mirrors the forward versions of these functions. Because the reverse iter-
ator travels backward when the increment operator is applied, you can use the exace
same synrax for looping through all elements in 2 container.

In this example, we also inmoduce the opposites of push_front() and push_back(),
pop_front() and pop back(}). These functions simply remove an element from the
fronz or back of a container, respectively. Note thar the value of the elemene is not
rerurned. You must use two more functions we introduce in this example 1o access the
front or back clements: front() and back(). These Functions retum the vilue of
the front or back element in the container. In the cxample, we check o ensure thar
the container is not empry using the enpty{) funetion before ying o access these

Section 1 Programming Technigues

elemenns. Accessing elements in an empty list resulis in “undefined behavior,” which
¥ou can expect to probably result in some sorr of access violation: pop_tront{) and
pop_back()smply are “no-ops” when performed on an empty container.

STL tnaps are perhaps the most complex (relatively speaking) of the basic conrainers o
wse and perhaps the most versatile. Here we examine maps instead of the other reee-
based structures: sets, multisers, and multimaps. Learning the fundamentals of maps
allowes you to easily use the other container types, so we leave that rescarch up o you,

The map is essenially a value-pairing conmainer. Two arbitrary types of dar are
paired as a keyfvalue srucrure and inserred inro the container. Looking up the value
via the key then can occur in 0(1og n) tme. Although not quite as efficient as a hash
table, the difference is often negligible and has the advantage of sorting the daw dur-
ing insertion. This process allows ireration of completely sarted data, which is 2 ben-
eficial consequence of the method of storage (a balanced binary tree, otherwise known
as a red-black tree).

Fpragma werning{disable:47E6]
#include <map»

#include <iosbream>

#include <string=

#include <slporithm=

US1ng namespace std;
ff This Tunction object allows us 16 compare map containers

tenplate =<clage F, class 5=
class valus eguals

{
private:
8 second;
public:
value egqualsiconst 98 5] @ second{s)
i}
boal gperator(} (pair<const F, 5= elem]
{ réturn elem.second == secand; }
| {7

/1 Typedef tha container and iterator names tor better
I readability

typedef map<int, string= SsMap;

typedef isMap::value_type isValType;

typedef iaMap::iterator isMapltor;

void main{)

{
isMap o;

1.4 Using the STL in Game Programming 51

M Ingert key ! value pairs
c.insert[i5ValType[100, “One Hundrad®));
c.insart(isValType(d, "Three*));
c.oinzert{isValType(150, "One Hundred Fifty*));
c.inzert{isvalType(99, “Hinety Hine®));

ff display all the keys and walues

Tor{izMepltor itor = c.bagin(}; itar != g.end(}; ++itor)
cout =< "May = ® =< (*iter).first =< °, Valuae = "
<4 |[*itor).second << andl;

ff You can also access the map like an associative array
cout << “Eey 3 displays valupe * << e[3].c_str() <= endl;

{f Or insert like this as well
c[123] = "One Hundred Twanty Three*;

/! Find and remove a specific element based on tha key
fgMapltor pos = c.find{123);
if(pos 1= ¢.end())
ff erasing an elepent invalidates any itarators
/i peinting to 1t. Callisg pos++ now would resuld in
i endafined behavior.
c.prasalpos]);

A0 Find and remove an element basad on the valus
pos = fand_if({c.begin{), c.end(), value_equals
<int, string=({"Minety Ning®}};
if(pos != c.emd(}}
C.8rase(pos) ;

{7 1f you nust remove elements while iteratimg through
ff the list...
for{isMapItor itr = c.begin{}; itr != c.and(};)

if{itr-Fsecond == “"Three')
c.arase(itres);

else
++itr;

}

We're inoduced o a new intermediare daea type in chis example, the nafue_sype,
which represents the key/data pair representing every element in the conminer. For
convenience, we've typedef ed this type along with the other usual Lypes.

[nserting combined key/data values uses the insert() function like any other
containgr, with the only difference being thar you must insert type nap: :value type.
The map sorts every enrry as it s inscrted, so at any given time the container is always
sarted by keys. We can see this as we iterate through the map and display all the keys
and their associated values.

Accessing keys and data through iterators means an additional strucrure o mavi-
gate through. Dereferencing the iterator rwurns the value_type strucmure, which has

Section 1 Progrmamming Technlgueas

rwo data members: first and second. Accessing first gives you the key value; accessing
second gives you the dara value,

In addition to access through iterators, maps also provide random access via their
key values. The map acts like an associative (or sparse) array. Elements can be accessed
or inserted using the indax{) operator. Caution must be used when using this opera-
tor, however. [F you attempt to access an element with an index that does not yer exist,
the element is created with a default constructor and is inserted into the map. This
might not be the intended behavior and so is something w0 waich out for.

Moving. on, we see a simple merhod of finding an element based on the key using
the tind() function. Since the keys are sorted, this funcion performs in 0(log n)
nme.

1F we want to find an clement based on the value, we must do a bit more work. fu
best, this work will be performed in lincar time, since the dara is sorted on the key
rather than the value, The solution to this problem gives us our first look at generic
STL algorithms. We use the find_if{() algorithm for this partcular problem. The
function requires three parameters: an iterator telling where w begin, an iterator
telling when to stop, and a function telling when the algorithm should return a rrue
value. The iterators are self-explanatory, but the fenction abject, or funcror, requires
some further elaboration.

Tn S5TL, classes with overloaded function operatoss {did you even know you could
do thar?) are used in place of functions. This replacement enables both encapsulated
and rype-safe solutions to generic programming problems. The funcrion object pro-
vided in this example simply compares the second value in a value_pair and resurns
the result. Initializing the object with the result we want to search against provides 2
clean and completely encapsulared solution. Note that for most solutions, 5TL pro-
vides ready-to-use funcrion objects that you can simply plug into your code. Sec 2
comprehensive STL book for a listing of different algorichms and function objects
available to use.

The previous paragraph deseribes the preferred merhod of searching for values in
a contzinet, but if you must irerate through and remove elements manually in a map,
we ilso show you the proper way to do that, Removing elements while iterating
through a map poses a special problem because for speed reasons, the designers of
STL neglected to have the erase() funcrion retum the value of the next valid posi-
tion, as other containers do. Unformunately, because of this failure, we cannot use the
simple method of removing elements, s shown in our second code snipper. Instead,
we have to resort to a bit of wickery to make sure we don't invalidare our iterator.

In this cxample, instead of incrementing the iterator inside the for loop, we do it
inside the body in a conditional manner, Notice that when an element must be
erased, we post-increment the itcrator when passng it as the parameter to erase().
bur if an element doesnt need o be erased, we perform the standard pre-increment
operator instead. Because of the order in which the operations eccur, this method
allows safe ireration without having o resort w using temporary iterators. Unfortu-

1.4 Using the STL in Game Programming B3

mately, the necessity of this sort of coding creares far more possibilicy of bugpy code
than if the designers had just sacrificed a bit of speed in the erase() function. With
any luck, the standards commitree will consider revising this funcrion in the furure to
avoid these types of Kludgy workarounds.

This might be a good time to answer a question you might wane to ask, namely,
“Why do you always use the pre-increment operator in your iteration loop:™

The answer is efficiency. The post-increment operator must reoem a copy of its
old value, so it might require the wse of 2 tremporary object. The two solutions work
the same way, bur unless there’s a specific reason 1o wse the post-increment (or posc-
decrement) operator, as in the previous example, you should prefer the pre-increment
and pre-decrement operators.

Stacks, Queues, and Priority Queues

We lump together stacks, quewes, and priority quenss because using them is simple
enough thar they sequire litde additional explanation. These containees are really
examples of container adaprers because they are implemented as resuicted interfaces
on top of existing containers.

Stacks

The STL stack class provides three primary members—push(}, pop(], and top(}—for
adding and removing elements from the container, These member functions respec-
tively push an element on the stack, pop it off the s@ack, or rewricve the top element.
To check the current stare of the stack, s1ze() and enpty(} are provided.

The stack is implemented a5 a deque by default, bue it allows you to change the
implementation in the construcror,

ff Implements a stack with deque aa the underlying
M cantainer type.
stack<int> g}

ff Implements a stack with a vector as the underlying
M oeontainer type.
stack=int, wector<int> = cg

Note that using a vector might net be a5 poor a cheice a3 it seems, becanse
pushi], pep(}, and top() actually map 1o push_back{}, pop_back(), and back(). Any
container that supports these functions can be used as the underlying implemencation
for the sack class, Norice that in the second line of code in the preceding example, we
make sure 0 put a space between the two greater-than operators, Otherwise, they
would be incorrectly parsed as 2 single stream operator, »».

It is important o also know that the stack dass, like many STL containers,
prefers speed to safery. Thus, the class assumes thae when you call pop() or top(), a
valid element acrually exises. It is therefore important o always remember 1o use

5 Section 1 Programming Technigues

size() of empty () to verify thar a stack is not empry before performing these opera-
Tons on it Chicuss and Pfjﬂl'.i-l'"r' quenes work in the same manmer, so the same warn-
ings apply to thess conminers as well,

Cuoues

The guene class works much like the stack class excepr that elements are pushed onto
the back and popped off the front. The following members are defined for the queue
class for element manipulaton: push(), pop(), front(1, back(). back() refers o the
location in which dlements are inserted, and frent () refers wo the Incation from which
elements are removed.

Like the stack class, the queue also defines size(} and espty() 1o manage the
size. As with the stack class, you cn specify a contziner other than the default deque
to be wsed as the underlying implementation. Unlike stack, 2 vecror used with a deque
makes 3 poor choice due o the bad performance when inserting demenrs ar the front
of 2 vecror. However, a list might make sense in some sinuations.

Prierity Queue

The prisrity quese works identically to a queue but differs in one important respecr:
all inserted dlements are immediarely sored in descending order based on a compari-
son using the < (less-than) operator. Because of the sorting functionality, an additonal
third paramerer is offered in the constructor, allowing you w override the defaulr =
operator with your own function. This zbility could come in especially handy if you
ire inserting pointers to ohjects instead of passing in the objects by value. Avoiding
sorting the queue based on the value of the pointers requires writing a funcror class
that calls the < operator after first dereferencing the pointers. There is an example of
this functor in the article “Resource and Memary Management.” with code sample
provided.

Summary

The STL is a powerful new wol available for C++ programmers. By understanding
both its strengths and its limitarions, you can make the most of the fearures now avail-
able withour compromising the speed or inteprity of your code.

Entire books have been written explaining how o use the STL. It is therefore
obwviously impossible to think thar this article could do justice to the broad function-
ality that exists in this library. If you want to fully udlize the power of STL, there is no
substitute for a good reference book. Several excellent rorials and references are
listed in the following References section.

1.4 Using the STL in Game Programming =L

References

[Nicolai99] Jesuctis, Nicolai M., The C++ Standard Library: A Titorial and Reference,

Addison Wesley Longman, Inc, 1999,

|Serouserupd7] Stroustrup, Bjame, The Cr+ Programming Language, third cdition,
Addison Wesley Longman, Inc., 1997,

[Breymann28] Breymann, Ulrich, Desigring Componenss with the Cs+ ST, Addison

Wesley Longman, Inc., 1998,

=S
A Generic Function-Binding
Interface
Scott Bilas
Sﬂip[illg :ngj:m&: and nerwork mﬁmghig Ila.'nr an impnmnr [.:quj_ﬂ_—jm;nt I O
mon: They must be able to interface with the game’s funcronality in 2 type-safe, effi-
cient, and convenient way. This article provides a method for exporting functions and
then binding to them dynamically ar run time. Tt does so without sacrificing run time
speed or convenience.

Requirements

The basic requirement for our scripting engine is thar we can call a function and pos-
sihly pass it parameters. For this rask, we need to know the function’s name, its loca-
tien in memory, and the paramerers it takes. The types for these parameters must be
types that we support direcdy in the scripting engine as part of the language. Lets
TEUINE We SUPPOIT bool, Tloat, int, string, and voio.

The basic requirement for our nerwork remote procedure calls (RPCs) is that we
can call 2 function on a remote machine and passibly pass it pasameters. Given that
our machines will probably be running the code ar different memary addresses, we
can't pass function pointers over the network and must instead convere them into a
token that both sides recognize. For this roken, we use 2 serial I thae can be con-
verted bacl and forth 1o an actual funcrion poincer very quickly. In addition, we need
o know how o recognize strings and memory pointers in the parameters so thar the
data they point to can be packed at the end of the RPC chunk for handoff wo the ner-
work transport.

For convenience, we should be able to simply call an RPC-capable funcrion with-
out having to do any explicit parameter packing from the caller’s code. If the call is
meant for another machine, the clled function should auromatically send its para-
meters and serial ID 1o the nerwork transport, then reourn immediately. If meanr for
local execution, it would just directly execute the code. The dispatcher on the remaore
machine would look up functions based on the serial 1D and then ll chem dircedly
after resolving to a function pointer.

1.5 A Generic Function-Binding Interface 57

Platform Concerns

I'his is a good place w point our thar the sample code provided with this article is very
specific to a particular plarform: Visual Ce+ 6.0 running on an x86 version of Win32,

In particular:

1. There's a lietle bic of assembly code in here that is obviously 86 specific.

2. The name mangling and unmangling and how calling conventions work is spe-
cific to Visual C++ 6.0.

3. I use the specific way that Win32 image (DLL/EXE) exports work.

At the very least, the concepis if not the implemenration are still portable to other
platforms. All the x86 assembly code can be converted o any other instruction ser,
although you need knowledge of the calling convendions of that platform for it o
work, Dynamic link librarics {(DLLs) are handly unique to Win32; all this amicle
needs is 2 table thar maps exported funciion names to memory addresses, Finally, vou
should be able o figure out how other compilers (especially open source compilers
such as GCC) mangle and unmangle names.,

Attempt #1

Ler’s get back to the task ar hand. We are trying o find 2 way to cxpore game func-
tionalicy in a generic way so tha it can be called from scripes or passed over the net-
work as RPCs. Here is a really simple solusion:

void Foo{ void);

vold Bar| woid);

M i

enue eFunotign

i
FUNCTION_FOO,
FUMETION_BAR,
e

HE

Gtrugt Function

{
typedet void [*Proc)(woid);
const char* m_Mame;
Proc B Proc;
eFunction = Function;

ki

Fusction o Functions[] =

1

{ *Foo*, Foo, FURCTION FOO, },
{ "Bar®", Bar, FURCTION B&R, },

Ba Section 1 Frngmmnﬁng Technigues

L
ki

"The aFunction enumeration provides a seeialized list of unigue IDs for all avail-
able functions. The Function structure maps 2 text name onto a funcion poinrer and
unigue I Finally, the g_Functions array is the set of all published funcrions in the
system. Our example function exports are, of course, Foa and Bar.

Onur imaginary scripting engine can search through the g_runctions array when
its compiling a script to resolve funcrion calls by name and rthen call the procedure
directly ance it is found. Hopefully, this lookup would be done through an index for
speed. Our imaginary network-messaging system could converr function calls ineo
their efunction IDs and use those IDs o resolve the RPC on the other machine. It's
casy and simple.

This solution would work faidy well but suffers from a cridical drawhack: all
functions must be the same—they must all rake 5o parameters and return void, We
could change the Funetion::Proc type so thar the functions could ar least return a
value and take some parameters. However, this is not an acceprable solution, because
it's highly unlikely thar all published funcrions will have identical signatures. Besides
that, it’s a very inconvenient limicarion, considering the large and varied function sets
required of modern games.

Omne way to work around this problem is to cast parameters back and forth from
their real rypes to the common types required by Function::Proc. We could, for
example, have cach function pass two or three unsigned integers and pack our real
parameters into them, This is a common and efficient technique used by application
programming interfaces (APIs) for callbacks such as window procedures. However, it's
unsate and can't be supported very well by a general-purpose scripring language. It
would also be impossible to figure out which of the generic paramerers are pointers, a
flaw thar makes passing the parameters over the network for RPCs very difficult.
Hacks are on the horizon. Lets uy something else.

Attempt #2

A common partial fix to the problems of Artempe #1 i o provide a package dass thar
stores the parameters in an internal buffer and provides add and extrace methods 1o
serialize data in and our of the object:

gtrugt Farameters

{
std:ivector <unsigned chars m_Data;
bool ExtractBosl (wold):
int ExtractInt (wold):
float ExtractFloat | wold J;

const char* ExtractString(wold):

1.5 A Generic Function-Binding Interface 58

vold AddBool | boal };

woid AddInt | dnmt };

vold AddFloat | flaat);

veld AddStringl const char® 3
b

void Foof Parametersh params |

i
int paraml = parafs_ExtractInt ()@
Tloat paran2 = perans.ExtractFloat{);
fI use parami, parang_ .,

}

void Bar| Perametersi parans 1j

et

enun gFunction

{
FUNGTION FOD,
FUNGCTION_BAR,

H

struct Function

{
typedef void (*Proc){ Parameterzi)
31'1::31‘.!‘:1:19 I:I._Hﬂ.‘l:ll:l';
Frac 8_Proc;
aFunction nhFun;tiun;
i

Function g_Functiens[] =

{ °"Foo", Foo, FUNGTION FOO, },
{ *Bar®, Bar, FUNCTION BAR, |,
e
}i

Now we can pass generic parameters to any function—a big improvement! This
method, however, has its own set of deawhacks, some of which it shares with the Srer
ATTEmpi.

First, this solution is inheremly nontype-safe and dangerous because of s
add/exrract functions, The Ce+ compiler cannot check the ypes ar compile time
because it docsnt know whars suppesed 1o go into a Paraneters object; by its very
definition, it can hold anything. The best we can do is provide some basic run-time
checking by storing a type cach dme an Add method is called and then checking those
types from the ealled function each time an Extract method is ealled. This isnt very
efficient and ean be error-prone. Furthermore, any time the fusction Paramerers
change, every call to that funcion must be searched for and updated to march. The
compiler can't detect changes like this, and the manual search-and-replace function is

&0 Section 1 Programming Techniques

another error-prone process, Missing one changed all by aecident could inroduce
larent and difficuli-to-find bugs.

Calling functions in this way is also tedious and incflicient. The add/exiract
process adds a lot of memory copying and verification overhead. Ir also has serious
engineering time overhead. A simple funetion can no longer be added o an export
list; it must now change its function signarure and have a prologue thar converts a
parameters object into local variables. Likewise, callers must construct the Parana-
ters object o begin with, although this requirement can be made a limle esier
through some clever remplare work. Siill, there must be a better way.

Half of the Solution

Let’s starr ar the end and work back to the beginning for the solution. Whatr we're
really looking for here is a function specification table that gives us everything we
need 1o know about how to cll a particular function in 2 completely genese way. We
need 1o be able o set up the stack with a chunk of memary (ie., push the parame-
ters), jump direcdy to the function for the call, and then retrieve the return value o
pass back ro the orginal caller. For this msk, we need to know the function'’s name,
locarion in memory, remurn ype, parameter types, and calling convention:

/I function specification
struct Funetion
{
/I simple variable spec
enun eVarTyps

VAR WOID, WAR BOOL, WAR_INT, WAR_FLOAT, VAR _STRING,
Hi

/7 possible calling conventions
gnum 2CRL1Type

CALL CDECL, CALL FASTCALL, CALL STOCALL, CALL THISCALL,
b:

typedef std::vector <eVarType» ParanVec;

std:istring m_Kane;

vold#* m_Prac;

unsigned int m_SeriallD;

eVarTyps m_ReturnType;

Paranies n_ParanTypes;

eCallType n_CellType;
B

typedef std::vecior <Function> Functlon¥ec;

/! the global set of specifications Tor exported functions
Functionves g_Functinng

1.5 A Generic Functien-Binding Interface 61

Assume for the moment that we have a way to fill §_Funetions with specifications

for all our exported functions (1'll explain how o do thar a litele later), Now, how can
we use this information to actually call funcrions? First we muss know how our plat-
form’s warious calling conventions wark,

Calling Conventions

You can check your compiler’s documentation w see how it calling conventions
work. On Visual C++ for x86 Win32, all function calls have cerrain things in com-
mon:

The stack grows downward, and all paramcters are pushed from right o left. In

cffect, parameters go from left to right on the swack for increasing memary
addresses.

- The stack pointer (esp) always paints to the lowest memory address of the stack,

which unforrunarely has the name of “top.” It must be dword (4-byte) alipned, so
cach parameter pushed must be likewise aligned 1o a dword. The push inscrection
decrements esp firse, then stores the data. The pop instruction loads data farst,
then increments esp.

- Parameters passed by valus are pushed on the stack in their entirery. Doubles (8-

byte) and user-defined sypes are just copied onco the stack. The memory
addresses contained by references and pointers are direetly pushed onto the stack.

- Simple non-floar retuen values such as integers and pointers are swored in the sax

register. Eight-byte structures are returned in edx and eax a5 g pair. Floats and
doubles are returned through the FPU in 570, Return values for user-defined

types have their addresses pushed onto the stack last, but they will also be
returned in eax.

Here are the two calling convendons that we'll be supporting:

_cdeel. The caller cleans up the stack, meaning that it is responsible for pop-
ping its own arguments off the stack after the call completes. This convention is
required for variable argument functions because the called funcrion doesnt nec-
essarily have the information it needs o pop the correct number of arguments,
This is the defaulr calling convention for static and global functions in C and
Ct+.

—atacall. The called function deans up the stack. This is the standard conven-
tion used for Win32 API clls, probably because it is mare efficient in terms of
client code size.

Support for the other three calling conventians (__fastcall and the rwo this.

call variants) is beyond the scope of this article, but it could be worth looking into
and supporting, depending on the application.

B2 Section 1 Programming Technlgues

Now we have enough informarion o do generic funciion calls with these owo
conventions. We also need a funcrion o retrieve a floating-poine value from the FPUs
570 register (a5 is convention) 1o be stored in a generic return value. Here are some

functions that do the diry worlk:
DWORD Call_cdecl| const woid* args, size T $2, OWORD func)
i
CWOAD re; ff Bere's our return valua. ..
__@sm
i
movw BCX, SI {f gat size of buffer
mov Bsi, args ff get buffer
Ul eEp, ecx [l allpcata stack space
mov edi, G¢sp {f start of destination stack Frame
ghr aox, 2 {f make 1t dworde
rép novsd {f copy params to real stack
£all [fienc] ff call the function
mov rc, &ax fi save the return walus
add esp, sz {/ restora the stack pointer
¥
return [Fe i
iy
DWORD Call stdoall{ const woid* arps, aize t sz, DWOAD funo)
{
DWORD ro; ff here's our return value, ..
s
i
mOv B, SZ ff get sire of buffer
mgv @sl, args ff get buffer
sub p5p, Bcx [f allpcate stack space
mov edi, @sp [f start of destination stack frame
shr gox, 2 [f make it dwords
rgp mowsd ff copy it
call [fung] {f call tha function
mgv rg, @ax ff =save tha return walug
}
return [rc };
}
__declspec [naked] DWORD GetSTo[woid)
{
owoao T ff témp var
__BEMm
1
fstp dword ptr [T] /! pap 5TQ into
mov egx, dward ptr [f] J/ copy into eax
ret !/ daone
H
1

Now, given a funcrion’s address and some paramerers stored in 3 memory buffer,
we can call a funcrion in an almost completely genenc way,

1.5 A Generic Function-Binding Interface 63

Calling the Function

Before making the acrual call, sur dient subsystem (scripting engine, network RPCs,
ctc) needs 1o do a lircle prelisminary work. First it looks up the instance of the Func.
tisn structure within g Functions that corresponds ro the funcrion it will be calling.
For the scripring engine, we want to verify thar the funcrion's specification marches
up with what we're expecting: Check and convere any parameters if NECESEAry, or give
an error if its a mismarch. This procedure could be cxpensive and should be done
during the seript compilation phase, and not in real time.

Looking up the Function instance for network RPCs is a linde more complicated.
A good way to set this up is to inrercept the call from within the funcrion thar is des-
tined o be called over the network. Look in g_Functions for the Function instance
with the highest n_Proc value thar is less than the corrent instruction pointer (eip) to
figure out which funcrion is currentdy being called. Here is an example:

_Oeelspec [naked } DWORAD GatEIR(wvoid)

1
_aﬁl:l
{
oo gax, dword pir [esp]
rat
1
¥

Ml sanpls APCable Tunstion
voad NetFaa{ bool gsand, imt 1)
{
£f FindFunction() should look in g_Functioms for highest ‘n_Froc'
£f 1less than “ip" and return it
static const Function* sFyupction = FindFunction| GetEIP(]} };
if (send
i
{f RouteFunctioa() should pack up the parametars and send the
{f request over the network.
RouteFunction{ sFunction, (BYTE*)&sand = 4 iz
return;

}

ff ... normal execution of MetFoo
primtf{ "i = %din®, 4);
}

The next step is to construct the parameter buffer o pass to the function. Fora
scripting engine based on 2 virtual machine, this is easy; all our parameers are already
on a dword-aligned virrual seack, We can simply take the address of the start of the
parameters and pass it along. For network RPCs, it will be a2 litde more difficult. We
cant pass pointers generically over the nerwork, bur we can make a special case for
strings, so analyze the n_P2ranTypes for VAR_STRING types and append the contents of
the sring to the end of the buffer thar gets senr o the network eransport. On the

64 Section 1 Programming Techniques

receiving end, resolve the pointers to point to the appended data, and then use the
start of the chunk as the beginning of the paramerer buffer.

Mow that we have the Function instance and our paramerer buffer, we call either
Call_cdeol() ot Call_stdcall{), depending on n_CallType, passing in the paramercr
buffer and m_Proe. Then we can either use the return value or call Get5T0() o ger ic if
m_ReturnType is 2 float or double. That's all there is to calling a funcrion generically!

Completing the Solution

Until now we've been assuming that the g_Functions armay has already been set up.
Let’s go back and fill in this hole now. There are several ways o fill out the g_Func-
tions array. Perhaps the easiest ro implement buc least safe 1o use is o apply macros
or 1 funcrion to set it up:

float Foof int, const char® }i
int Bar{ woid)i

wold SatwpFunctionExports]| woid)

{

{
Function function;
function.m_Name = "Foo” |
function.m Prog = Fid;
function.m Serdialid = g Functionz.sizail;
function.n_ReturnType = Function.eVerType::VAR_FLOAT;
function.m_ParasTypes . push_beck{ Functicn.eVarType::WAR INT };
functicn.n_FarasTypes . push_beck(Function.eVarType: VAR STRING };
function.m GallType = Function.eCallType: CALL CDECL;
@_Functions.push_back{ functlon j;

'

{
Function function;
funetion.m Nane = *Bar';
funotion.m Proc = Bar;
fynction.m SaripiIDd = g Functions. size();
function.m ReturnTyps = Function.eVarType: VAR _INT;
function.m_CallType = Function.eCallType: iCALL CDECL;
g_Finetions.push_back(functicn]}j

¥

1

This example is illuscrative but not exactly optimal. It could be improved with
some helper functions and macros to make it easicr to add new funcrions to the table.
However, it will abways be unsafe and inconvenient. Adding a new function to the rable

1.5 A Generic Function-Binding Interface a5

means that someone has v wiite some code thar specifies its types. name, and calling
conventon. Changing a funcrion {adding 2 parameter, for example) withour updating
the table could introduce some sty and hard-ro-debug problems. It is a lor of work to
keep the function specifications in sync with the actual fancdon prototypes.

We need 2 way to build dhis rable auromarically and safely climinate these prob-
lems. Formnately, the C++ compiler already has all the information we need. While
passing the function’s protorype. the compiler builds an internal representation of the
function—its return type, parameters, calling convention, and so on—exactly whar is
required o construce a funecrion specification! Unforounarely, we don't have access to
this information from within the code, and besides, all thar informarion gets thrown
away when the linker construess the final EXE. We could probably find a way to use
the PDB (debug symhals database) to query for whar we need, bur we can't ship
debug symbols with the game. Besides, we wouldn't have an easy way to tell which
functions are for exporr and which aren’.

Combining the expore table functionalicy of a Win32 image file with the Ce+
language’s name-mangling faciliey gives us the informadon we require. IF we tag a
function for export using the _ declspec{ dllexport) keywords, thar function’s
name and address will appear in the EXE (or DLL) export eable. In addition, because
this is a C++ application, those names will be mangled to support type safery and
overioaded name resolution, Mangled names are encoded with all the information we
require, so all we need is 1o decode the names inro a form we can understand and then
use that to build the Function entry o add to g_Functisns,

The name-mangling formar is complerely implementation specific and undocu-
mented, and it even changes from release to release of Viseal Cot, 5o attempting ro
reverse-engineer it s probably not 2 goed idea. Ifs also unnecessary; Microsoft
exported 2 name-unmangling function called UnDecorateSymbolNane() frem hoch
ImageHlp.dll and DbgHelp.dll that does exactly this. So if we were to take our Fool)
function from the last sample and DLL-cxport it, the eNIry FFooldYAMMPEDEZ would
appear in the EXE's export table. If we unmangle the name, here'’s whar we get back:
float _ edecl Foo{int,char const =). Now this is something we can casily parse
and convert 1o a Functien entry for addition to our g_Funetions able.

So now our procedure for building g_functions is:

1. Trerate over all entries in the EXE's cxpore tble, and retrieve each function’s
address and mangled name.

Unmangle each name o get a funcrion prototype in texr form.
Farse the function prototype to retrieve name, typs, and calling conventien infor-
mation.

4. Store the results in a new entry within g_Functions. Repeat for cach export.

w1

Irerating over the exports o ger the funciion addresses and mangled names
requires knowledge of the binary format of Win32 Portable Executable (PE) forssat
files. A specificarion for this format is available from the Microsoft Developer Net-

66 Saction 1 Programming Technigues

work Library (hup=i{msdn. microsoft.com). Search for the “.edsra” secrion wichin the
library entry for the Microsoft Portable Executable and Common Object File Formar

Specification 1o find the structure of a Win32 expor mble.

There's one final little detail. The entries in the expor rable point w a jump wable,
which in tum points to the actual functons, This detail isn't imporant if all you're
inzerested in is binding ro functions and calling them generically. However, if you
nieed to be able to do a reverse lookup and convers eip from within che called funcrion
to find its Function insance {required for RI'Cs, as described carlier), you need o get
the actual address of the funcien for comparison, not the address of the enery in dhe
jump table. This is easy enough: Dereference the address given by the DLL expon
eniry to find the jump mble entry. The first byre will be 0x£2 (jmp), followed by a 4-
byte offset to the zctual entry point of your funcrion. Take the address given by the
DLL export entry, add 5 for the full jmp instruction, add the 4-byte offser, and chis
will be the address of the enuy point of your funciion. This address can then be wsed
for reverse lookup to find the Function instance from within g_Functions.

Conclusion

We now have everything we need ro call funcrions in a completely gencric way. In
order to publish a funcrion in the system and allow other subsystems such as scripe-
ing and nerwork RPCs o bind to ir, we simply tag it with _declspec(dllexport)
(this verbose rag is best wrapped in a macro to reduce clutter). At run time, the
funcrion-binding publisher iterates over the Wind2 export table and extracts name,
rype, and calling convention information from cach entry, Other subsystems can
look up funcrions by memory address, name, or serial 1D and call them genercally
using Call_edecl() or Call stdeall(}.

This seems like quire a bit more work 1w implement than necessary, and for
smaller projects with small export sets, it probably . Larger projects, on the other
hand, will probably be changing constantly. The good news is that, once the basic
work is done, adding new functions to the systém is as simple as mgging them for
export, and they'll immediately be available. This process more than pays for isclf
and is a powerful ability to give any engineer on your team. When combined with a
general-purpose scripting engine, the process can be turned inro a useful debugging
tool as well 25 serving the conrent-specific needs for which it was originally wrinen.

In the interests of space and simplicty, we have left out many of this aricle’s fea-
rures, The generic function-binding concept can be mken much further in a variery of
ways. It ean easily be enhanced to include support for poinrers and references, variable
argument functions, and passing more than just strings over a neowork, User-defined
types could be supported for RPC packaging through a serialization interface char can
be detected and lled directly when post-processing RPC paramerer buffers for our-
bound network buffers. In addition, support for calling dass member funcrions is a
very uscful tool and can be casily added. Finally, one fearure thar might or might not

1.5 A Generic Function-Binding Interface . &7

be necessary is a tol chat will post-process an EXE, suipping off the exporrs table and
converting it into a native daca formar for direcr import into g_fFunctions. This tool
could be necessary either for security reasons {to prevent cheating, perhaps) or to
make it unnecessary to ship DbgHalp.all with the game.

References

Microsofr Developer Network Library, heps//msdn.microsoft.com.

1.6

A Generic Handle-Based
Resource Manager

Scott Bilas

All computer applications are databases. They spend most of their time juggling data
resources—creating, destroying, caching, modifying, querying, saving, and restoring
objects of various rypes. Games typically contain muldple rypes of databases, each of
which i= generally hard-coded for cach different case, w kecp things speedy. Some
examples of game databases arc file systems, wxture managers, font managers, and
game acror managess. On top of those, there is 2 wide variety of domain-specific dara-
bases thar completely depend on the game’s genre and conrent.

A resource database that's built into all Ce+ games is the fasic objess memary man-
ager. A programmer calls new to construct a new object and passes its pointer around
so that other objects can pass it messages. When the object is no longer needed, some-
body deletes it, and its resources are retumned 1o the system, This method works very
well in general, bur it breaks down when we have 1o worry about shared resources.
This is where we need 2 more specialized darabase.

Lets use a font abject for our example. Ar minimum, the font consists of a bit-
map and a set of specifications, such as che X, ¥{or UL V) locations of its characrer cells,
so the graphics system can render it to the screen. Such an object is fairly heavy ducy
in terms of memory usage and creation time. Different systems in the game, such as
the development console and a texr control within the GUI, want to use fone objects,
but we can't have cach system crearing its awn local copy of the fonr object. Obwvi-
ously, that would be slow and consume a2 lot of memory. To solve this problem, we
need o eome up with a way o share fone objects. Our solution is called the Fantugr
and features methods thar ger pointers o fones, loading them on the fly and caching
them unil they are no longer needed. The FontMgr is made available from a global
location (possibly s a singleton; see the article “An Automaric Singleton Uilicy™) and
is responsible for all che fone objects in the system.,

What we're really talking abour here is a specialized database. The Fontugre is
responsible for jugeling font resources and, now that it's considered an AP, suddenly
takes on additional responsibilitics as the central dearinghouse for fons. Whas if
someone tells the FontMgr wo delete a font to free up resources, bur some systems in

1.5 A Generic Handle-Based Resosurce Manager 69

the game still have pointers to it} How do we guaraniee safery of the system withour
sacrificing performance? Will we be copy-pasting chis code again (with slight tweaks)
when it comes time to build the Mouserointeriigr? This article presents a simple, safe,
generic, and cfficient way to manage controlled resource objects.

The Method

The job of a resource manager is to create resources on demand, hand them our ro
anyone who asks, and then eventually delete them. Handing our those resources as
simple pointers is cerainly easy and convenient, bur ir's not a very safe way to do ir.
Pointers can “dangle”; one part of the system can tell the resource manager to delete a
resource, which then immediately invalidares all orhes outstanding pointers. Theres
no good way to prevent the dangling pointer problem from happening, and the only
way we would find our that someone was attempeing to dereference a delered objecr is
when the game crashes. The problem is that, with pointers, there’s no way to kmaw
how many references are outstanding, given thar dients can copy the pointers as
many times as they like withour relling the manager aboue it

Another problem is that the underdying data organization can’t change with
pounters. Any reallocation of buffers immediately invalidates all outstanding pointers.
This becomes especially important when you are saving the game to disk. Pointers
can't be saved o disk, because the next time che game is loaded, system memary will
probably be configured differently or you could even be on 2 completely different
machine. The pointers must be converted into a form thar can be restored, which will
probably be an offset or 2 unigue identifier of some sort. Working around this prob-
lem isn't exacely orivial and can require a lot of work o support in client code.

30 it’s plainty not 2 good idea for a safe and flexible resource manager to be hand-
ing out poincers. Rather than using pointers or attempting to write some kind of
supes-intelligent, everly complicated “smar poinzer,” we can add one layer of abstrac-
tion and use handles instead, purting the burden an the manager elass. Handles are an
ancient programming concepr that APl have heen using with grear suceess for
decades. An example of 2 handle is the HANDLE type retumed by the GreateFile() call
in Win325s file system. A file handle, represchting an open file system abject, is cre-
ated through the GreateFile() call, passed to other funcrions such as ReadFila() and
SetFilePoLnter() for manipulation, and then finally closed off with closetandle ().
Anempiing to call those funcrions with an invalid or dosed handle does not cause 3
crash; instead, it returns an error code. This method is efficient, safe, and a5y 1o
understand.

Handles almast always fit into 2 single CPU register for efficient storage in col-
lections and passing as parameters to funcrions, They can be easily checked for valid-
ity and provide a level of indirection thar allows the underlying data organization to
change withour invalidating any outstanding handles. This bas significant advantages
over passing asound pointers. Handles can also be casily saved 1o disk, because the

TO Section 1 Progrmmming Techniques

dara sorucrures they refer ro can be reconstructed in the same order on a game restore,
This E‘hdlit}' allows the handles o be stosed d.il‘-:rll]_r, with no conversions NECESsATY,
because they are already natively in unigue identifier form.

The Handle Class

A fast and safe way to represent handles is to use an unsigned integer composed of two
bitfield components (this class appears in Listing 1.6.1). The first component
(=_Index) is 2 unique identifier for &st dereferencing into the handle manager’s dara-
bate, The handle manager can use this number however it likes, bur perhaps the most
efficient use is as a simple index into an std::vector. The sccond component
(=_Magic) is 2 “magic number” that can be used to validare the handle. Upon derefer-
encing, the handle manager can check to make sure that the magic number compo-
nent of the handle matches up with its corresponding entry in the database.

The Handle class is very simple and really doesnt do much except manage the
magic number. Upen clling Init(}, the handle is given the next magic number,
which automatically incements and wraps around, if necessary. Note dhat the magic
number is not intended to be a GUID. Iis purposc is to scrve as a very simple and fast
validity check, and it relies on the high improbability of a condition arising where ane
object happens to have the same index and magic number (via wrapping) as anocher.
The magic number of zero is reserved for the “null handle™ where the handle’s daa is
zeto, The defaulr Handle construcror sers itself to null, a stace char retuens true on an
Ishull() query. This is convenient to use for an error condirion; a function that cre-
ares an objecr and retums a handle to it can simply rerurn a null handle o indicate
that an error ocourmed.

In most ways, the Handle class acrs as a read-only unsigned inreges. Ir's no
intended to be modified after being creared, although it can safely be assigned back o
null to reset ir. Nodce that Handle is a paramererized class, raking a TAG ype o fully
define it. The template parameter Ta3 docsn't do anything excepr differentiate among
ypes of handles; an object of ype TAB is never used anywhere in the gystem. The
mativatdon here is rype safery. With Handle not parameterized, a handle meant for
one type of resource could be passed 1o a function expecting a handle o a different
type of resource, withour a complaing from the compiler. So w keep things safe, we
create 2 new handle rype, raking any unique symbol and using it for the parameter.
The TA8 type can really be anything so long as it is unique across Handle types, but it's
convenient o define an empry struct and use that in the typedef for a handle, like this
rexrure handle example:

struct tagTexturs { };
typedel Handle <tagTexture> HTexburs;

Now we need a handle manager that is responsible for acquiring, dereferencing,
and releasing objeces (via handles) for 2 higher-level owner.

1.6 A Generic Handle-Based Resource Manager . Fib |

The HandleMgr Class

The HandleMgr elas is 3 parameterized type composed of three main elements: a dara
store, a magic number store, and a free lisc (chis class appears in Listing 1.6.2). The
data store is simply 2 vector (or any other randomly accessible collection) of objects of
type DATA. The DATA type, the first rype paramerer for Handlelgr, sheuld be 2 very
simple class thar contains context informarion sbout the resource thar it controls. For
cxample, in 3 Handleugr thar manages files, the DATA type would probably have only
the file handle and the name of the file:

struct FileEntry
1

std:zstring m Filedlang;

HANDLE n_FileHandlie; 7Ff 05 file handle
1i

struct tagfile { 1
typedel Handle =tagFile» HFile;
typedef HandleMgr <Filefntry, HFila> FileMandlelgr:

This simple handle manager mainrains a set of context objects that correspond o
all the open files that it knows abour. The FileHandleuge class will probably not be
used directly by clients but will instead be ewned by another class {call ir Fe1eugr)
thar handles the absraction and knows about the problem domain (thar is, what para
s supposed to represent). This class might look something like this:

class FilaMgr
FileHandlaMgr n_lMgr;

public:
HFile DpenFile [const char* aame J;
bool ResdFile | WFile file, woid* out, gize £t bytes):
bool CleseFile| HFile file);

B
b

Upon calling any of these methods, Filengr asks its n_Wgr to dereference the han-
dle to ger at the actual Fileentry object. After verifying that the dereference suc-
ceeded (ir will fil on an invalid handle), it chen performs the operation.

For our Handlemgr class, cach handle references cxacily one element within the
object store, plus its corresponding element in the magic number store. Deselerencing
the handles 1o ger at the actual FilsEntry object is as simple as using the n_Indax
component of the handle as an index isnto the object store (2 very fast operation).

When dereferencing the handle, the code also checks the n_nagic cOmponent
against the same index in the magic number store to make sure the handle is valid. As
handles are freed and reacquired. corresponding entries in the magic number store are

Section 1 Programming Techriques

Sample

updated with the new handle magic numbers. This process nearly guarancees thar
“dangling” handles on released objects won't refer to unexpected objects when the
slots are filled by a later handle acquisition burt instead simply fail to work and return
an error eode. Obviously, the magic number store always has the same number of ele-
menes as the object store.

As objects are released, the handle manager adds the indices of the slors they
occupy to the free list. This saves i the wouble of needing o search through the
object store to find an open slor, which results in a sty oin) complexiry for new han-
dle acquisition. It's imporeant to note that the DATA type is not your rypical Crs class.
It shouldn't have construcrors and destrucrors thar do anything importane, such as
acquire and release local resources, Objects contained within the object store are con-
structed, destroyed, and copied as the vector class sees fir. Wote thae the std; ;string
used in the sample FileEntry is “simple” enough for our needs: ir’s reference-counted,
which minimizes the impact of its constmuctors and destructors and makes it neary
free for vector to copy.

When asked ro acquire an object from the store, we'll likely end up reusing an
object that has already been constructed but is no longer in wse, as indicated by its
entry in the free list. This object needs its members reinitialized before it can be used,
because it won't have had the constructor call to set it up. When an object is freed
from the store, it is not destroyed; instead, it has its index added to the free list and as
such needs irs resourees manually freed. These minor limitatons atse from che facr
that we're embedding our 0ATA type direcly in vecter, rather than using poinrers and
creating and destroying the objeces with new and delete for each handle acquisition
and release. The major advantage here is speed, in that the ohjects don't have 1o be
completely brought up and shut down cach ame. To make things more convenient,
the initalize/shurdown code can be moved into member functions for casy callback
by the HandleMgr owner.

The amount of handle validation necessary could depend on the application and
could even be chosen through an addirional templare parameter for Handlemgr. For
example, the rest for an invalid handle mighe be found ennecessary and could be
removed (although the debug assertion should always remain), For a more robust sys-
rem in which error handling is imporrant, the code could, upon desecting an invalid
handle, set an error condition and then sbort the function call.

Usage

Listing 1.6.3 provides a sample texture manager class. This class allows clients o ask
the manager for textures by name and conseructs them on demand. Tt auromarically
unloads the textures on deletion and provides a ser of query funcrions to use the tex-
tures, The textures are indexed by name for speedy lookup to make sure thar the same
texrure 5 not added o the store todce. Ir would be 2 simple cxercise 1o 3dd reference

1.6 A Generic Handle-Based Resource Manager 73

counting to this example 1o make it safer, replacing DeleteTextura() with Reloase-
Texture().

For another (larger) sample of file handle usage, see the sample code for my GDC

2000 walk, frr Sell Loading? Devigning an Efficient File System, available online at
www.aa.ner/-scoth/gdc/,

The Handlewgr class is very simple and is meant 1o illustrare some basic concepts, but

it can be expanded in 2 number of ways, cither with the existing Hanaleugr or separare
classes:

Create 2 Handlengr thar works better with larger 0ATA objects, holding them indi-
rectly through pointers. It should also allow hiding of the dara srucrure to
clients.

Add auromaric reference counting as standard functionality, rather than leaving it
the responsibility of the owner of the Handlamgr.

Add suppart for constant-time iteration over the potenrially sparse object stare by
embedding 2 linked lisc within its elements. Use STL-style irerarar maming and
operarion for consistency.

Many darabases, such as a font manager or texrure manager, likely require indexes
to access objects by name w retrieve handles. Build this requirement in as a stan-
dard feature or as a scparate (derivative) class.

The Handlomgr system is especially effecrive when combined with the singleton
pattcia (see the arode "An Awomatic Singlecan Utility” elsewhere in this boal).
Many of 2 game's databases are naturally singletons.

Take the singleton patcern a lirtde further and make the TAs type of Handle actu-
ally be the type that it corresponds o within the Handlewgr. Then the wandle
could have an oparator - thar dercferences itsclf into a Tag by directly aceessing
the singleton that manages i,

Save-game funcrionaliry should be fairy sy 10 add, but it is necessarily specific
10 your game’s architecrure. The handles can be saved out directy; just make sure
that the HandleMgr stores the indexss for its objects along with the object dara,
and on restore, all handles will remain valid.

Listing 1.6.1

fincluda =caszsert>

template <typenane TAG>
class Handls

{

union

{

Section 1 Programming Technigues

anum

/! sizes to use for bit fields
WAX_BITS INDEX = 18,
WAX_BITS MAGIC = 18,

/! sizes to compars ageinst for asserting derelerences
MAX TMDEX = ({ 1 << WAX BITS_INDEX) - 1,
MAX MAGIC = [1 << MAX BITS WAGIC) - 1,

i
strust
i
unsigaed m_Index @ MAX_BITS _INDEX; [/ index into rasource
array
unsigned m_Wagic MAY BITS WAGIG; ff magic number to check
}i
unsigned int m_Handle;
|
public:
{f Lifetime.
Handlof wold) : m_Hamdle(D) { 1
void Init{ unsigned int index);
[Query.
uvnsigned int Getindex { woid) const { return [m Index }; 1}
unsigned int Getéagic { woid) const { return [-®m Magic J3 }
ensigned int GetHandle{ void) const { return (@ Handle §; }
bool Ishull | voidd) const { retern [Inm Handle); }
cperator vnsigned int { void) const { return (m_Handle §; }

};

tenplate <typenana TAG
void Handle <TAG> 1: Init{ wnsigned int index)

1
assert| IsNull{) j; §f don't allow reassignment
assert| index <= MAN_INDEX J; /f werify range
static unsigned int & AutoMagic = 0;
Af [++5_AutcMagic > WAX MASIC)
1
5_AutoMagic = 1: Jf 0 i used for "Aull handle®
1
m_Index = imdex;
m_Mzpic = 8 AutoMagic;
1

tesplate <typanans TAS>

1.6 A Generic Handle-Based Resource Manager TE

inline bool operator != (Handle <TAD> 1, Handle <TAG> r)
1 return { l.GetHandle(] != r.GetHandle() }; }

template <typenane THE>

inline bogl operator == [Handle <TAG= 1, Handle <TAG> r i
{ raturm [l.GetHandle{) == r,GetHandla() }:]

Listing 1.6.2

fimclude <vpctors
Hinclude <cassart>

template <typaname DATA, typaname HAMDLE>
clazs Handlelgr

i
private:
{1 private types
typedef std::vector <DATA= Uzerioo;
typedef stdiivecter <unsigned int> MagicVec:
typedef stdiivecter <unsigned int> Freeveo;
/! private data
UserVer n U=erData; {f data we're going to get to
MagicVec n_Magickumbeors; // correspanding magie mumbers
FreeVec n_FreeSlots; {f Eeeps track of free slots in the db
public:

H Liferime.

HandlekWgr({ wvaid) { }
-HandleMgr({ vaid) { }

{{ Handle methads.

{1 acguisition
DATA* Acquire| HAMDLER handle);
vold Release| HAMOLE handle };

{1 gereferencing
DATA® Dereference| HANDLE handle);
const DATA® Dereference| HANDLE handle) const

{1 othar query
unsigred int GetUsedHandledount(wold |} const

{ return [m_MagicKumbers.size() - m_FreeSlots.size() }; }
baol HaslsedHandles| woid | const

{ return { |lGetUsedHandleCount() }; }

b

template <typename DATA, typenams HAMDLE>
DATA® HandleMgr <DATA, HAKDLE> :: Acguiref MANDLEE handle]

1 if free list iz empty, aod & Aew one gtherwise uge Flrst one Folind

TG

: Saction 1 Programming Technigues

unsigned int index;
it { n_FreeSlots_empty())

1
index = m_WapicMumbers.size():
handle ., Init(index);
0_UserData.push_back(DATA())
n_WagicKunbers. push_back{ handle.GetWsgic() };
}
el
1
index = = _Free3lots.back();
handle.Init{ index);
m_FreaSlots, pop baek();
m_Magichumbers[index] = handle_GatMagici):
}

raturn [n_UsarData.begin) + index);

}

tenplate <typenama DATA, typenase HAMDLE:>
vold Hendlelgr =DATA, HANDLE= :: Relsasei HAMDLE handle }
{

Ml owhich onp?

uRsigned int index = handle. GetIndexi);

!l make sure it"s valid
assert| index < m UserData.sizeld);
assart(m_Magichumbers| fndex | == handle.GatMegis() 1;

ff ook remove it - tag a5 uwnused and add to Tree list
m_Magichumbers| index]| = 0;
m_FrecBlots.push_back{ index);

}

template <typanane DATA, typenans HANDLE=
inline DATA® HandleMgr =<DATA, HANOLE=
iz Dereference| HAMDLE handle)
{
if { handle.IsMull{) } retwrn [O 13

/! check hamdle validity - § this check can be removed Tor speed
{17 you can assome all handle refersnces are always welid.
unzigned int index = handle.GelIndex();
it { { index >= m_UserData.size())

Il { m_Magickembers[index J I= handle_ GetMagici{) } }
i

ff no goodl isvalid handle == zlient progranning arror
agnart] O);
raturn [0);

}

return { m_UserData.begini() + index }:

¥

template <typenase DATA, Typeneme HANDLE=>

1.6 A Generic Handle-Based Resource Manager

inline const DATA* Handleligr <DATA, HANDLE>

:: Doreference{ HANDLE handle] const

{
ff this lazy cast is ok - non-const wersionm does not modify anything
typedeT HandleMgr <DATA, HAMDLE= ThisType;
return (const_cast <ThisType*> (this)->Dercference(hamdle)):

Listing 1.6.3

#include <vectors
#include <map>
#incleds <casserts

ff «.. [platform-specific surface handle type here |
typadef LPDIRECTORAWSUAFACET OsMandle;

struct tagTexture { §;
typadat Handle =tagTextures HTexture;

class Texturedpr
{

f Texturg gbject data and db.
struct Texturs

{
typesat std::ivector =0sHandle> HendleVec;

std::string m_Mams; ff Tor reconstruction
unsignad int m_Width; £ mip O width
unsignad imt m Haight; Ii mip 1 widéh
Handlavac n_Handles; /i handles to mip surfaces
OsHandle GetDsHandle| unsigned int mip |} const
{
assert(mip = a_Handles.sizal() 1;
return { &_Handles] mip]);
1]

ool Load | const std:istringd nase j;
vald Unlead{ woid };
b

typedat Handlelgr <Texture, HTaxture= HTextureMgr;
fF Index by name into db.

!/ case-insensitive string comparison predicate
struct istring less
{
bool aparater () (const sto:istringk 1, const std::stringd r)
const
{ return [[istricep(l.¢ str(}, r.c str{))} <0); }

Section 1 Programming Technigues

b

typade? stdizmap <s5td::string, HTexture, istring_less = ManeIndax;
typedef std:zpair <Maselndex::iterater, bool= ManeindexInsertfs;

Il Private data.

HTextureMgr m_Textures;
Hemelndex @ _Namalndex;

public:
M Lifeting.

TextureMgr{ woid 3 { J/* ... =f }
-Textureligr|{ woid j};

M Texture management.

HTexture GetTexture [const char* name);
wvald DeleteTexture| HTexture htex };

Il Texture guery.

const std::stringd GetMame| HTexture hiex) const
{ return { m_Texturos.Deroforance(htex)->m_Mane }: }
int GetWidth{ HTezture htex)} const
{ return | m Textures.Dereferance(htex)->m Width }; »
int GatHeipght| HTexture htex } const
{ return | m_Teéextures.Dareference| hiex j->a_Height j; 3
OpHandle GetTexture| HTexture htex, unsigned int mip = @) const
{ return | m Textures. Dereterancal htex)->GatlsHandle(nip) §:

¥
Texturedgr :: ~TextureMgr| woid)
{
A ralease Bl our remaining textures bafore we go
Hamalndex: iiteratar i, begin = m_Mamelndez.begin(), end =
m_MamaIndex.end();
Tor (1 = begin - 4 I= gnid 7 #41)
1
A Textures.Deraference(i-»=second)-=Unload(};
}
)

Hiaxture Texturellgr :: GetTextuwrs(const ehar* name)
i
§r ingert/¥find
NameIndexInserthe ro =
m_Hemalndex, insert(sid::neke_pair(nene, HTexture()) 1i
if [rc.zecomd)
1
f4 this is a new insartion
Téxture® tex = n_Textures.Acquire(re.first-»second ¥i

1.6 A Generic Handle-Besed Resource Manager ri)

if { itex-»Load(rc.first-=first })

DeleteTexture| ro.first->secend);
re.first->gecond = HTEXTUre();

¥
1
FETUrn [re.first->second)
i
void Texturadgr :: DeleteTexturs(HTexturs htex)
i
Texture* tex = m_Textures.Dereference(htex):
if [tex 1= 0 }
{
ff delete from fndax
m_Manelndex.erase(n_NaseIndex_find tex->a_MName } }:
ff delete from db
tox->Unload():
n_Textures.Release(htex):
}
¥
bool TextureMpr::Texture :: Load(const std::stringh name)
{
n_Kame = name;
{f w.. [load texture from file system, return false on failure |
return [tree /* or falze on arror *f J;
}

vold Texturelgr::Textura :: Unload| void §
i
m_Mane.srase();

Moo [free up nip surfaces |
m_Handles _ clear();

References

[BilasD0] Bilas, Scote, GIC 2000 Talk, Jr Seill Losding? Designing an Efficient File
Systern, available online at www.aa.net/ - scotth/pdc/.
Meyers. Scott, More Effersive C +, Addison-Wesley Longman, Inc, , 1995,

1.7

Resource and Memory
Management

James Boer

Computer and video games, more than any other type of software, often require han-
dling vast amounts of media resources such as geaphics, sound effects, music, video,
models, animation, and athes types of memory-hogging data. Dealing with this large
amount of data while mainszining a relatively reasonable memary footprine is not a
trivial task, In this article we examine the workings of a simple resource manager and
discuss how it might be both used and extended in real-world applictions.

First, lets clearly define our problem and how we expect to solve it. Within 2
given time in which it is not acceprable 1o display a loading sereen or break the action,
we expect to use more data in our game than we can hold in memory at one tme. Iy
is also assumed thar we have a medium from which we can dynamically load our dara
while the game is playing, On console systems, this would mast likely be a CD or
DVD type of device, whereas on the PC it is probably the hard drive.

Qur solution entails creating resource objeets that are able wo automatically load,
discard, and reload their data based on usage patterns. We will also crsate 2 manager
o coordinate the available resources and control access w the resoyree objects. This
will be accomplished through the use of handles, which are essentially just unique
identificadion numbers.

The Resource Class

To begin with, let’s examine the base resource class:

class Basefesourca

|
pablic:
anun PriarityType
|
RES LOW_FAIORITY = 0,
AES_MED_PRIORAITY,
RES HIGH PRIDARITY
¥:

1.7 Ressurce and Memory Management

BaseRespurce|) { Clear(); 1}
virtual -BageResource(} { Destrovi); }

{! Claarzs the class data
virtual wold Claar();

{1 Greate and destroy functions. Mote that the Create()

/1 function of the derived class does not have to exactly
ff match the base class. Ho assusptions are made regarding
Jf paramsters.

virtual baal Create() { retern false; }

virtual woid Destroy() {}

[f Dispose and recreate Must be able to discard and then

(f completely recrezte the datp contained in the class with
/i no additional parameters

virtual bool Recreate(} = 0;

virtual woid Ddspose(]) = 0;

/) GatSize(} must return the size of the data inside the
{f class, and [sDisposed(} lets the manager know if tha
S data exigts,

virtual size_t detSizef() = 0;

virtual bogl IsDispozed{) = O;

/f These functions set the parameters by which the sorting
{f operator determines in what order reseurces are
{f discarded
inline void SetPriority(PriorityType priority)
i 8 Priority = priority; }
Emlina PriorityType GetPriority()
{ returs m_PFriority; }

inline wvoid SstReferanceCount(UINT nGount)
{ mn_nRefCount = nCoumt; }
inlime UINT GstReferencelount()
{ return p_nRefCount; 1
inlire boal IsLocked()
{ retern (m_nRetCount > 0) 7 true : falge;)

inling void SetLastAccess(time t Lasthconss)
{ = _LastAccess = LastAccess) }

inling time_t GetLasthccess()
{ return m Lasthecess;)

!/ The less-than operator defines how resources get
!l sarted far digcarding.
virtual bool operater = (Easefesourcel container):

protected:
PriorityType m Priority;
UTINT n_nRefiount;
time t n_Lasthccess;

Section 1 Programming Techniques

The BaseRescurce class acts as a template from which other resource container
classes must be derived. Several member funcrions must be overridden by any base
elags and are critical to how the system works.

It is expecied that the inigal Greate() funcion will load some amount of
resource data from disk or even from another locaton in memery, Tt is critical for the
class to retain the necessary dara in order to repear this operation 25 many times as
nccessary inthe Recreata() function. This may mean, for example, storing the path
and file informarion of a bi [map to be loaded. The #p'iatiun must overnde the ol 5 =
pose () and Recreats () functions in order to allow the resource manager o swap the
resource in and our of memory as it sees fit. Keep in mind that only the most signifi-
cant portion of the resouree (e.g., the bitmap data, the sound buffer, and the like) |
not <l the cdass dara, must be swapped our.

Get3ize() and IsDisposed() are two more functions thar must be ovessideen
properly for the system to work, Getsiza() is fairly inmitive. The funcrion should
return the size of the dara that can currenty be swapped out. If the dara has already
been swapped our, the funcien should return a size of zero. Technically, you could
calculate the acrual size of the object by including all the other data members, bur in
all pracricality, this method is really not worth the effort. 1s0ispossd(} must reeurn
true if the dara has been discarded and false if it has not. The class makes so Assmp-
tions abour how you can determine this stare. It is up to the derived class o provide
any necessary data members to keep rrack of this seate, if needed. Often simply check-
ing to sec if 2 pointer is null works instead of adding a dama member

A number of ather dam access funcrions provide access o the daa members
n_Priority, m_nRefCount, and m_LastAccess. The first, m_Priority, is an enumera-
tion defining the general priority of a resource (high, medium, low). High-priority
stems tend to stay in memory longer, and low-priority items should be swapped out
first, The funcrion m_nfefGount indicares the number of times the resource has heen
locked. We cxamine this function a bic later. The n_LastAccess funchon is the time at
which the resource was last accessed.

The less-than operator (<) is what determines the priorty of sorring resources
for discarding. The defult funcrion looks like this

beal BaseResource::ioperater < (BaseRescurced containgr)
{
Af(GetFriority (] < container.GetPriority(})
roturn truaj
else if{GetPriority() > comtainer.GetPriority())
raturn false;
Elsa
i
if(m_LastAccess < containgr.GetlastAccess(l)
return true;
else if(=_LestAccess > containgr.GetlLesthccess())
return Talse;
else

i

1.7 Resource and Memory Management 83

if(GetSize() < container.GetSizel(})
return true;
alaa
return false;
¥
}

return false;

}

You can sec from this function thar resouress are sorted first by priority, then by
access time, and Ly, by size. Although a racher primitive algorithm, it works sUIpris-
ingly well for many situations. If you require 2 different or mose sophisticated algo-
rithm, you can cither modify the base code or supply a new softing operator in the
derived class.

The Resource Manager Class

The other half of the managed resource problem is supplying a manager thar can
organize all the stored resources, provide acces on demand, and handle the dynamic

disposal and reallocation of resources to sty within a memory budger, Ler’s examine
the Rasvanaper class to see how it worlws:

clase ResManager

{

public:
ResManager() { Clear(}; 1}
virtual —ResManager(} { Dostrov(l: 1}

vold Clear();

bool Create(UINT nMaxSize);
vold Destroy();

i i e i T e

i/ Resource map iteratien

{{ Access functions for gycling through each item. Giving
ff dirpct access o the map or iterater causes a stack
{f pointer fault if you access the map across a dll
{f Beundary, but it's safe through the wrappers.
inling void GotaBegin()
{ n_GurrentResource = m_ResourceMsp.begin{): }
inling BaseResource* GetCurrentAesource])
{ return [(*m_CurrentResource).secend: }
inling bopl GotoNext(]
{ = _CurrentResource++; return IsvValid(); }
inline beol IsValid()
{ return (m_CurrentAesource l= m_ResourceMap.end())
T true : false; }

Section 1 Frogramming Techniques

f S o e e e e e

A General resourcs access

A Allpws the resgurce manager to pre-reserve an ansunt of
Ml ménory 0 an insarted resaurce does not excesd the

Hf maxioum allowed mamory

bool Reservelemory(size t nben);

fr I you pass in the address of a resource hansdle, the
ff Respurce Wanager will provide a unfigue handle for youw.
bool InsartResource(RHANDLE® rhUniqueID,

Basefipsource= plesaurce];

bool InsertRescurce(RHANDLE rhUndquelD,

Basafigsource® pResaurce);

{1/ Ramaves &m object coampletely from the manager.
bool ResoveResource (BaseRescurce® pResaurce):
bool ResoveResource [RHANDLE rhuniquelD);

M Destroys an object and deallocates it's memory
kool Destroyfesource (BaseResource* pResourca);
bool DestroyAesource (RHANDLE rhUniquelD);

Il Using GetResourée tells the manager that you are about
/i to sccess the ebjoect. IT The rescurce has been

M) dizposad, £t will be recreated befare it has been

Hl oreturnead.

BaseResource® Geifesource [RHANDLE rhimiqueln);

ff Locking the resource ensures that the rosourca does now
ff get managed by the Respource Manager. You can use this
{1 to enaura that & surface does not get swapped gut, for
{f instance. The reésource containa a refersnce count

ff o ensure that aumerous locks can be safely made.
BaseResource® Lock|{RHANOLE rhUnigualD):

{{ Unlocking the object lets the resource sanager know

/i that you md longer nead exclusive ascess. When all

11 locks have been roleased (the reference count is 0), the
/f objest is considered safe for managenent again and can
/1 ba swapped out at the panager’s discretion., The object
/I can be referenced either by handle ar by the object's

/) pointer,

int Unlock (RHANOLE rhimiguell);

int Unleck(BaseResource® pResource)

fI Retrieve the stored handle bazed oa a ppinter to the
I resource. Mote that

ff regource. Hote that it's assusmed that there are no
ff duplicate poifters, as it will retorn the first match
7 Tound.

AHANDLE FindResgurceHandle (BaseResaurce® piesource);

1.7 Resource and Memary quemﬂﬂ B5

pretacied:

ff Internal functions

inling void AddMemary (UINT nllam})

{ m_nGwrrenttfoeddenory 4= nMam; }
inline vold Removelenory|UINT nMen)
{ m_nGurrentUseddencry -= nMem;)
UINT GetMextReaHandle()

{ return —m_rhMextResHandle; }

JJ Thig sust bé called when you wish the masaper to chack
A Tar disecardable resources. Resources will only be

i swapped out if the maximum allowable limfit has been

4 reached, and it will discard them from lewest

4 ta highest priority, determined by tha resource class's
A« aperater. Function will fail if requested menory

M4 cannat be freed.

bl CheckFordverallocation():

protected:
AHANDOLE m_rhlextAosHandle;
UINT m_nfurrenti/sedMencry ;
UINT m_nifaximumMeamory ;
fesMapItor m_CurrentAasource;
Aeslap m_ResourcaNap;

i

The hearr of the resource manager is the dara member m_ResourceMap. This is an
STL map, which means thar every unique rmource handle (which is simply an
unsigned int) is paired with a pointer to a resouree object.

Handles can either be pre-assigned (perhaps hard-coded or read from scripr files)
or dynamically assigned by the resource manager iteelf. Keep in mind that the current
implementarion is very primitive, It simply stares ar the maximum value for handles
and works down. Mixing thess two metheds works well if your user-defined 1D val-
ues start relarively low, This method gives you several billion handle values befare you
run our of room. If you plan to use that many resources, you'll want to implement a
maore sophisticited handle distribution scheme.

Onee the resource manager object has called the createq) funcrion and passed in
the target memory limit, the manager is ready to use. Simply call the Insertfa-
source() function to insert resources inta the manager. If you pass in the address of 2
handle instead of passing it by value, the function fills in the value for you. In the
example program. we created a factory class that automatically allocates, creates, and
then insests the resource objec into the manager,

It is important to understand one thing about the resource manager. When you
specify the memory targer, the InsertRessurcs () function allows the memary tanget
to be briefly exceeded by the amount of the current resource. The manager then
sWaps oul resources until the currently used memory is lower than the threshold spec-
ified. Although this method may be aceeptable if your resources are allocaring our of
i1 common memory pool or you arc working in an environment with troe virmal

BB Section 1 Programming Techniques

memory, it could create problems if you are working with fixed amounts of special-
ized memory, such as audio or texture memaory.

Requesting the manager to reserve an amount of memory for the resousee you are
about to load can :n::-l'wz the |:I'1'l:r]:l|l.'l'l'l. This ﬁ.ll'l.-l:l'.'iﬂll. mu:ﬂ Aeservelemary(}, L:l:::. a
standard size_sype parameter. The funcrion returns true if it can free up dhe requested
amount of memory. After this funchon successfully retums, you can then eall
InsertResource (). Most likely, the ReserveMenary () function would be called in the
resource class’s Greate () funcrion after loading some sort of resource header informa-
tion, which would probably inform how much memory needs o be allocated to hold
the entire resource. Onee the memory is reserved by the resource manager, the cre-
ate() function can finish the dara loading and insert the resource into the Mmanager.

In order to optimize this process, you might want to pre-load this information and
store it in a globally accessible table.

How Handles Work

This system uses handles in order o prevent clients from directdy manipulating
objects, which allows the manager the freedom to swap ourt sesourees as it sees fir. In
order 1o gain access 1o a resource, the client muse call a member function and pass in
the handle in order to ger back a pointer to the resource. Here's how it looks:

SongResaurce* pRes = [SomeRosourca* Jresnge . GetBesowrce (hRasHandle)
if(| pRes)
return Errar:

ff the rescurce can now be safely used before any other calls are
!/ made to the manager

It is imporrant 1o remember that the resource pointer must be considered valid
only until another call to the resource manager is made. Accessing another resource
could cause the resouree manager to swap out the resource you were previously access-
ing. You will most likely want to put asserts in your resource class’s code ro ensure thar
their member funcrions are not called if the resource has been disposed.

If for any reason you do want to ger and hold onte a pointer to a resouree, there
iz 2 mechanism in place to do so: the Lock() function, Locking a resource increments
the reference count on the object, which prevents the resource manager from dispos-
ing of the object until the resource has been unlocked with, of course, the function
Ualeck(]. It s important to remember o evenually unlock objects you've locked, or
the resource manager asumes that it is not allowed to dispose of the resource when
the program closes, and memory leaks could ensue. Since the resource manaper has
every resource indexed, it properly disposes of all resaurces automadcally when its
destrucror is called.

1.7 Resource and Memory Management ar

Possible Extensions and Modifications

The use of a resouree manager is extremely beneficial in managing large amounts of
resources effectively. Although there is a slight increase in difficulty when accessing
resoureces, this diffieuley is affset by the simplicty of automaric memory management.

IF your application’s entire data set is already indexed in the resource manager, a
pre-caching system could be implemented by using existing funcrionality. To load a
resource that has been determined a candidare for pre-caching, you should access che
resoyree using the GetResource() funcrion and raise the priority level. This method
forces any swapped data in these resources to be reloaded and made ready for direet
access a5 well as discourages furcher swrapping becanse of the heightened priority. For
a resource that is no longer needed, simply lower the priority level in the resource, and
it is automatically discarded when more memaory is needed for ather data.

In addition to these enhancements, dients might want to build in more compre-
hensive reporting funcrions, A feedback loop could be created to report on resources
thar are being discarded more than average, and the priority could be adjusted to min-
imize these sorts of problems. By effeciively sening priority levdls, perhaps even
dynamically, clients can dramatically improve the performance of the manager.

Other technigues you might want to try are fearured in a related articdle in this
book, A Generic Handle-Based Respuree Manager,” |:|-1. Scote Bilzs, Rather than
using the manager as a virtual memory system, this resource manager instead focuses
on techniques such as wsing remplates and more intelligent, cype-safe handles.

Conclusion

As the amount of dara concent thar modern games must manipulace grows, the tech-
niques for dealing with such vast quantities of data must also evolve. Creating an
effective and efficient resource manager can help streamline the development process
by allowing programmers ta worry less about memory constraints and memory leaks,
at the same time providing a pawerful tool for monitoring resource usage.

1.8

Fast Data Load Trick

John Olsen

Une of the consant challenges with game programming is to make things fast.
Whenever you leave someonce staring ar a screen waiting, you break the flow of infor-
mation and risk losing that player. One eritical clement is the time it takes 1o load
cara files into memory. With larger and larger game levels, you end up with longer
and longer load times. Here is a trick thar can be used to reduce your load times.

Preprocess Your Data

Omne of the most important things you can do to your level dara is to preprocess as much
as you possibly can. This can be done either with a stand-alone utilicy program, such as
a separate level editor used 1o edit your in-game darz, or within the game iself during
development by enabling custom dara-packing code for development builds. Pve used
both methods, even on different portions of the same game, with good results.

For the ultimare in fast dam load rimes, you need to preprocess your dat into the
final formar ir will take within the game. With a bit of planning, you can lay our your
C+ classes o C structures in a way that makes chem good candidares for high-speed
loading. Any data vo be saved must be a non-static member vasiable, and no poincers
should be saved in the daca file.

If you need pointers in your data, be sure to never wse them before serring them
up properly after loading, since the data saved our in the pointer member is almast
certain o contain bad dara when it is reloaded. Another possible option is to replace
pointers with a handle or index number of some sort. See the article “A Generic Han-
dle-Based Resource Manager,™ by Scoct Bilas, for derails.

Since Co+ uses virmual function tables, you should make sure to nor use any vir-
tual funcrions in your class, or it will end up clling inco seemingly random memaory
locations when you overwrite your table with stale dara. If you wanr to play it really
safe, you ean experiment with making all your accessor functions staric, guaranteeing
they won't show up in your dara.

1.8 Fast Dats Load Trick Be

Save Your Data

Unce your dara is all filled into structures, eicher in-game or in 2 stand-alone prepro-
cessing ol you can write that dam our to disk. For Ce+, you can use your this
pointer and sizeof () for the das. Far C, just use the structure pointer and sizeof ()
for the strucrure, Be sure not to use sizeof (this) or you will get the size of the pointer
rather than the size of the structure. This size is the size of the non-static member dara
for your elass, along with any padding builr into the class by the compiler,

Ideally, you have nested all your necessary dam into one parent block holding all
the athers, o you can load everything in one large read. You have 1o break things up
inte multiple saves and loads if you are using anything but ene continuous section of
Imcmory.

The following example code shows how this might be done in G, with the
game data class having member funcrions to perform the loading and saving, Please
forgive the odd mixture of Cs+ dlasses with C file handling. If you're enough of a
purist 1o be bathered by ir, I'm sure its easy for you 1o change to your preferred
method:

finglyde <stdin.h=

class GampData
{
public:

bopl Sawve(char =fileMams):

bopl Load[cher =TileMams):

bool Bufferedload{char =filedams];

/J Add access0rs o get to your game data.
private:

Mt Only open one Tile at a tima.

static FILE *fileDescriptor:

/) Game gata goes hare.

int data[100D]; !/ Aeplace this with your data format,
1;

bool GamaData::Sava{char *filehase)
{
TileDescriptor = fopen(fileHame, “wbh®});
ITirileDescriptor)
i
Twrite{this, sireof(GameData), 1, filedescriptor):
fclosa{fileDeseripter) ;
1} Repart success writing the file.

return THUE;

H

glso

{
/! Report an error writing the file.
return FALSE;

ki

80 Section 1 Programming Techniques

Load Your Data the Simple Way

Saving the dara as described previously makes it really essy 1o gert the data back into
your application later when you load the desired level. Just read the data back inm the
game, into the same structure or class you wrote it from:

kool GameDiata::Load({char *fileNane)
{
M Opan the Tile for reading.
fileDescriptor = fopen(fileMana, "rb*):
if[fileDescriptor)
{
fread{this, sizeof({GameDate), 1, TileDesoriptor);
felosa|filebescriptor);
ff Report succezs readimg the Tils.

return TRUE;

}

alse
{{ Report an error reading the tils.
raturn FALSE;

¥

}

Load Your Data More Safely

There is at least one really important thing to warch out for on certain consele gaming
hardware. Some systems always read out to the end of the current secror on 2 disk. For
cxample, the Sony FlayStation loads dara from CD-ROM in multiples of 2,048 bytes,
This means that if you read dara direcely into your strucrure, you stomp on whatever is
in memaory after thar scrucrure if it isn't some multiple of 2,048 bytes in length.

To avoid this memory stomp, you need to have 2 temporary buffer large enough
to hold the dara file padded out to a 2K boundary. Sheuld you be reading several files,
don't allocare and free a buffer cach time. Instead, get the largest buffer size, allocace
the buffer once, and reuse it for all reads. Free it after all the reads are eompleted.
Only the simpler single-read method is shown here.

If you are using a system with very dight memary, you might have already mapped
out your ennre memory usage and aveided dynamic memory all wogether, In char
case, you nesd to find 2 buffer somewhere in memory thar is not in wse at the tme
you need to read data files, Use thar as your temporary buffer instead of using the
dynamic memory allocation shown below:

I Check your hardware to see what sizg of blocks it reads,
Af Put that walue into this define.
FdaTing AEAD GRANULARITY 2048

ool GameData::Buffarsdloadichar *filglame)
i

1.8 Fast Data Load Trick a

{{ Make sure there 2% roaom in the rezd buffer.

{f This could be m2de smaller to match the

{f known resd size by making it a nultipls of the

[/ READ GRANULARITY, but this way 1s 2 bit faster.

char *tempBuffar = new char[sizeof (GensData) + READ GRAMULARITY]
if{icompSufier)

i

1! Could not ellacate the buffer.
! Return &n error code.
return FALSE:

}
TileDescriptor = fopen(fileMans, *rb");
if(rileDescriptor)
{
Tread(tempBuffor, sizeof(Gamelata), 1, fileDescriptor):
Tclose | filebDesoriptor) ;
memcpy (this, tempBuffer, sizeof|{Gamebata));
dalete tempBuffer;
f§ Aeport success reading the fils.
raturn TRUE;
}
alse
{
dalete teapBuffer;
{f Report an error reading the file,
return FALSE;
H

}

MNow you are well on your way to highly optimized level loads. By preprocessing
your data, you save the CPU dme used 1o convert data into a usable formar, and you
com press the amount of data to be read. The best optimizations are those win/win sit-
uations in which the result is both smaller and Gster

1.9

Frame-Based Memory
Allocation

Steven Ranck

This article presents a simple and extremely fast memory allocation system thae pre-
vents memory from becoming fragmented berween game levels. It can be used for a
wide range of game medules during level-loading time. In addition, the system is
extremcly fast ar both allocating and de-allocating memory and can be used on any
type of pladform, from console 1o PC 1o arcade,

The Challenges of Conventional
Memory Allocation

One problem with standard memory allocation systems thar inelude malloe() and
new is that memory can become fragmented and resulr in dereriorated game perfor-
mance and the possibility of insufficiendy large memory blocks availsble. When an
application requests a block of memory, sophisticared operating systems, such as
UNEIX and Microsoft Windows, employ advanced memory management systems thar
can logecally rearrange physical chunks of memory to create the requested contiguous
memory block, But this rearrangement eomes at the cost of CPU cycles that the game
could ordinarily have used. With game consoles, where the op<rating system is lirtle
more than a tiny set of slimmed-down library functions, there is no such sophisricared
MEMary manager.

Introduction to Frame-Based Memaory

Asolution to these challenges of conventional memory allocation is franne-based mem-
ary. Frame-based memory eliminates memory fragmentation and is very fast. How-
ever, it is not useful as a general-purpose memory allocation system like nalloc() and
new. Framc-based memory is best suited for game and level initialization modules.
As shown in Figure 1.9.1, frame-based memory works like a stack. At initializa-
tion time, the game allocares a single memory block fram the opsrating system, which

1.2 Frame-Based Memory Allocation 83

o T (igh zemery)

Elrcasd Tipe
5 .'lh.

L i

- T e Paime

¥

WJ Fres Haap

i

5 4 Loy Boep
Foime Prerier

b f—— Baze (low memery)

FIGURE 1.9.1. Frame-hased fHEmony ICprCsenmarion.

will be used and managed by the fame memory system. This memory block is allo-
cated only once throughout the lifeime of the game and is released back to the oper-
ating system just before the game terminates. In Figure 1.9.1, the entire black
denoted by Memory Block is used by the frame memory system. From the memory
blacks pointer, we compure the Base and Cap memory pointers, optienally aligning
them ro a memory boundary that fits the specific system the application was designed
te run on. The Base pointer poinss to the lowest aligned memory address in our
Memory Block, and the Cap pointer points tw the next higher-aligned memary
address just ourside the top of our Memory Block (as seen by the placement of the
ammow in Figure 1.9.1). The Memory Block, the Base pointer, and the Cap pointer
remain constant throughout the life of the game. Finally, the Lower Heap Frame and
Upper Heap Frame pointers are set equal to the Base and Cap poinrers, respectively.
We'll see Later how these two pointers change as allocations and de-allocations are
made during the course of the game. The following code initializes the frame memary
system:

typedef wunsigned char wd;
typadef unsigned int ufmt;

Fdefine ALIGMUP(nAddress, nBytes | ((((uint)nAddress) + %
(nBytes)-1] & (~([nBytes}-1}))

gtatic int _mESyteAlignment; M Memory alignment in bytes

static ud *_pMemoryBlock; A Value returned by mallsce|)
static uwd *_apBaceAndCapl2]; [/ [0)=Base pointer, [1]=Cap pointer
Static ud * apFrams[2]; A [0)=Lower Treee pointer, [1]=Upper

Hf frame pointer

Section 1 Programming Techniques

ff Must be egalled exactly once at game fnitialization tima.

I nByteAlignment nust be a powar-of-2.

I Returns 0 iT suceessful, or 1 if an error eccurred.

int InitFramaMemarySystem(int n3izelnBytes, int n8ytealigmment } {
M7 Make sure nSizeinBytes 15 a multiple of nByteAlignment:
nGizelndytes = ALTGNUPL nSizeInBytas, nbyrealignment)

! First allecate our Momory Elock:
_pMamoryBlock = (ul *jmalloc(nSirzaInBytes +
nAytealignonent §;

if{ pMenoryBlock == 0) {
ff kot enough memary. Retura error flag:
return 1;

}
_nBytealignment = nEyteAlignment:

! Set vp Base pointer:
_BpBasefndlap[0] = (uB *)ALIGNUR| _pMemarySlock,
niytedligrment §;

Ff 5et wp Gap pointar:
_apBagseindCap[1] = {ud *JALIGNUP[_pMemoryBlock +
nGizelnBytes, nByYteAlighnent);

ff Fipally, initizlize the Lower and Upper Trame pointers:
_apFrame(d] = _spBasefsdCap|d);
_apFrame(1] = _apBasefsdlap]1];

{1 SuccessTull
return 0;

}
T shut down the frame MEMOry System:

void ShutdownFraseMenorySysten| void) {
frea{ _pMenoryBlock };

Exactly once during game initialization, 2 call is made to InitFranevemorysys-
tem(}, passing in the toal number of bytes to be managed by the frame memory sys-
tem and the byte alignment. All allocations made through the frame memory system
maintain the byte alignment. Note that the ALIGNUR{} macro requires thar the nBytes
parameter be a power of 2.

At this point, the frame memory system is ready ro use. It maintzins two individ-
ual heaps: the Lower Heap allocates upward, and the Upper Heap allocares down-
ward, as shown in Figure 1.9.1. It is complerely up ro the game how it wants to wrilize
each heap. For example. the Upper Heap could be used o store 3D geometry dara
and the Lower Heap used for sound daa. In this example, independent allocations
made by the geomerry and sound modules would not fragment memory, because the
two heaps are physically separared.

1.8 Frame-Based Memary Allocation a5

Allocating and Releasing Memory

Frame memory allocation works like 3 stack. A call is made o the SYStem, requesting a
chunk of memory from one of the two heaps. If the lower heap is specified, the Lower
Heap Frame pointer is bumped up by the amount allocated, and ies value prior o the
medification is retusned. The Lower Heap Frame poincer always points to the next
available byte of memory. If, on the other hand, the upper heap is specified, the Upper
Heap Frame pointer is bumped dows by the amounr allocazed, and the new value is
remurned. This is because the Upper Heap Frame pointer always points wo the last allo-
cated byte of memory. If the two frame pointers cross each other, there isnlt enough
memory to satisfy the request. The following function performs the allocarion:

/! Returns a pointer 1o the baee of tha menory block,

AEoar returns 0 if there was insufficient MEenory.

A1 nHeapNym 15 the heap nupbar: O=lower, T=upper.

vold *AllacFranedemary(int nBytes, int nHzapHun) {
ul *phign;

ff First, align the reguested size:
nbytes = ALIGNUP[naytes, _n8yteslignment };

/! Check for available mamary:

if{ _apFrame[0]+nBytes > _apFrame[1] |
I Insufficient mamary:
return 0;

]

[Mow perfarm the memory allocation:

if{ nHeaplum) {
¢ Allseating from upper heap, down:

_BpFrame(1] -= nBytesz;
pen = _apFramefi]:

1 &lza {
ff Allogating fron lewer Reap, up:

pliem = _ppFrama]o) :
_apFrame 0] += nlytes;
I.

return {void *)pden:

}

This funcrion perfirms frame-based memery allocation very quickly. Since frame
memory is allocared like a stack, it must be de-allocated the same way. This is where
frames are inoroduced. A fame is a handle thar the game rerrieves from the memory
system and is used to free memory, Memory can be freed only by using a frame. A
frame acts 2s a bookmark within the pages of memory allocared by the syscem. When

Saction 1 Programming Technigquas

a frame is freed, all memory allocited since the frame was obined is freed. Figure
1.9.2 demonstrates the use of a frame.

In Figure 1.9.2, (b} and (c) show two individual memaory allocatons being made
via the AllocFraseiionory() function. In (d), the game obtains a frame from the
memory system, The frame is simply a handle thar the game will later use o free
memaory. [n () and (), the game allocates another two blocks of memory. In {g), the

e msTEEy 15 mea=ey 15t mempey
o — . — o e ——— — s —
eloCoece oflsnanie mm
— 00
Fres Hisig
Frox: i
Frea Hegp Free bisap
() Ireznd (B} Ferm (e Serond (0] Frame
B e TPy Iy ahexmed by
ampeE dfesilien =xie alo=ion rmce R
1 ey |8 ==y F L e
afnraiee el « alleEgs
e — e —
el ey I mEmiry Ind sy
afncaen Fratz alksafanm F= aEoathzn
———————] I RLT]
Ird meary Irdl memery
TR [)
ﬂm:_mu-
sl Fae=Eeap
o —
Free s
FresHep
{=) Thurd (£} Foerth [) Pz
Y METHTY [4-==
alocilizn el alaraten muads = n

FIGURE 1.9.2. Memory allocation and relesse.

1.9 an—ﬂmd_hlmy Allacation ar

game wants to release all memory allocared since the frame was obrained, The follow-
ing function obrains a frame for cither the upper or lower heap:

typodof struct |
UE *pFrame;
int nHoaphun;
} Frane_t;

ff Returns 2 Frane handle which can be used o
1 later release ngmory allocated henceforth.
! nHeapHum is the heap nusber: O0=lowsr, f=upper.
Frame_t GetFrame(int nHeaplum } {

Frame_t Frame;

Frase, pFrane = _apFrane|nHeaphum] ;
Frame , nMesphua = nHeaphun;

return Frane;

}

To the memory system, 2 frame is a copy of the specified heap number and ies
current frame pointer. But to the game, its simply a handle, Frame_t. To rclease
memory, we implement the following function:

vold ReleazeFrame| Frane t Frame) {
_apFrame]Frama,nHeaplun] = Erane.pFrame:
}

The game calls ReleaseFrane() to release all memory allocated since the time
that Frase was obtained by GetFrane(}. There is no limit 1o the number of simulta-
neous frames the game can allocate, provided thar the frames are released in the order
opposite of that in which chey were obmined. However, the memory system doesn’t
require thar frames be released. For example, if Frame 1, Frame 2, and Frame 3 are
obtained, ir & valid to rdease Frame 3 and then Frame 1, provided thar Feame 2 is
never released.

Having two independent heaps has several advantages. Consider owr previous
cxample of the upper heap being used to store 3D geometry; and the lewer heap being
used ta store sound dat. Suppose thar allocations becween the two heaps were made
as follows: 3D block allecared, sound block allocated, another 3D black allocared,
another sound block allocared. When the 3D memory is freed (both blocks), unused
memory hales are not creared and fragmentation is prevented. The largest chunk of
available memory is always equal ta the toral size of the frec heap. Likewise, the largest
chunk of available memory in the lower heap is always identical o the largest chunk
of available memory in the upper heap.,

EE_ Saction 1 Programming Technigues

Example

Consider the following application example:
#dofine _HEAPNIM 1 [/ Arbitrary. We'll use the upper heap [1].

extern int GetObjectSize| const char *psrObjectMame };
pxtarn int LoadFromDisk| const char =pszibjectiams,
void *ploadAddress):

static void * pObjecti; Jf Whers our Copfar object will be laaded.
static void *_pObject2; [/ Where cur RobberCar object will be loaded.
{1 Loads the CopCar and AobberCar objects from disk into
I _HEAPHUM.
{f Aetorns O if successfol, or 1 if not successful.
int LoadCardbjiects| vedd) {

Frama_t Frame:

/I Get a Trame handle:
Frame = GetFrame| _HEAPNUM)

{1 Attenpt te load the Coplar object:

_phbjestl = LoadiyDbject{ “CopCar®):

if{ pObjectl == 0) {
{f Object couldn't be lpaded. Release memory:
ReleaseFranef Frame);
return 1;

}

M Attempt to load the RobberCar object
_plbject2 = LoadiyObject| "RobberCar®)
if{ pObject2 ==0 } {

I Object couldn't be loaded. Relsase memory:

ReleaseFranef Frame);

return 1;

}

M Objects loaded ok. Eaap the menory around:
return O;

}

ff Allocates memory from MEAPNUM and loads the speciftisd objact
i from gisk into the allecated memory, Returns & polnter to the
ff object 1T successful, of O if not successful.
void *LopgMyObject{ const char *pszdbojectMame) 4

int ndbjectSiza;

vold *pObject;

nbbjectSize = GetDbjectSize| psiObjectMams);
if[nobjectSira == 0) {

{! Trouble petting object size;

return 0;

1.2 Frame-Based Memory Allocation a8

PObject = AllocFramoMemory | nObjectSize, HEAPRUM):
if(pObjact == @ § {

{f Insufficient memory:

réturn 0;
]

iT[LoadFronDisk(psz0bjectMame, pObject |
/1 Trouble leading object from disk:
riturn 0;

}

f7 Object loaded succesafully:
return pibject;
}

In the preceding example, the funcrion LoadCarObjectsi) pets a frame bur
releases it only if there was a problem while loading the objects. I both objects loaded
withour issue, the frame is not released and the function rerurmns with the memary
intact. Ir's possible char 2 higher-level function obrained its own frame encapsulating
all objecr-loading functiens in addition 1o LoadCarobjects(). When it comes rime to
free all ohject memery, the higher-level funcrion simply calls ReleassFrans() wich
the frame it had obeined.

Conclusion

Since frame-based memory wosks like a stack, it is imperative that frames are released
in the order opposite of that in which they were obuined: otherwise, memory cor-
ruption can occur. Detecting violations of this condition is simple. Comsider this
replacement funcrion for releasing 3 frame

void Releageframs| Frane t Frame) {
If Chack validity £f releasing in Lower heap [(0):
assert| Framp.nHeapbum==1 ||
[uint)Frame.pFrane<={uint) apframs[0] }:

{f Check validity if releasing in upper heap (1):
assert(Frans.nMeaplun==g ||
{wint}Frame. pFrames=={uint) _apFramne[1] j;

1 Releoase Trame:
_apFrane| Frame. nHeaghum] = Frana.pFrames

}

This code detects acempis to release frames in the incorrect order in debug builds
of the game. Further asserrions could be added o detecr additional validity problems
with the paramerers.

Oune final point worth noting is that for game platforms with multiple indepen-
dent types of memory (main, sound, texture, geometry, and so forth), a frame-based
memory system could easily be implemented for each memory tvpe and then linked

Sactlon 1 Programming Technigues

together to provide 2 master frame. Recall the preceding example. Suppose that Load -
FromDisk() leaded geometry, textures, and sound for the specified model. The prom-
ctry is to be placed in system memory, the textures into wexmre memaory, and sound
into sound memory. In this case, there would be three independent frame memory
systems linked opether by a masier frames

typedef struct {

Frams_t SyamenFrans; /) System memoey Frami
Frene_t TexmenFrane; [Texture mesary Frama
Freme t SsundnenFrame; i1 Saund semory Framg

} Masterframs +:

1.10

Simple, Fast Bit Arrays

Andrew Kirmse

We love bitwise operations because they are fast and they pack data efficiendy, but we
hate them because they are emor-prone and depend on the machine’s word size, What
we really want is an abstraction of bitwise operations char gives us all the benefits bur
hides the unpleasane degails,

Overview

The three Cet classes in this anicle implement arcays of birs. The base class, BitArray,
is a simple one-dimensional array of bits. Tts subclass BitArray2D is 2 two-dimensional
array of bits, and the TwoditArray subclass is an array of integer elements whase values
can range from 0 to 3. Each of the classes can be manipulated through English-
language methods or, alternarively, through Fumiliar opecrators, The classes feature clear
symcax, portability, range checking, eorrect use of const, and high performance.,

The Cs+ Standard Templare Library (STL) indudes 2 one-dimensional armay of
bits in the header bir set. Although feature-rich, many implementations are eryptic at
Best and difficult ro extend or medify (for 2 sample implementation, see [SGI98]).
Some STL implementations also depend on parts of the Ce+ standard such a5 mem.
ber templates and namespaces that are missing from some compilers. The implemen-
tations in this article are scraightforward and easy to integrare with existing code.
They also provide additional features thar are useful for game development.

Array of Bits

The base class Bitarray acts just like a normal Ca+ array of bools, although you are of
cousse free to interpret the birs as integers with values of 0 and 1. The bits are stored
in 2 buffer of longs in an endian-independent manner. Syntactically, you can meart a
Bitarray as similar to a regular Cos array, with the added benefic of dynamic array
bounds and additional operarors. For cxample, you can do the following:

EitArray bits(nun_bits), other bit s{nun_hitz);
bite.Clear();

101

102 Section 1 Programming Techniques

bits|10] = true;
if ((bits A& other_bits).AllBitsFalse()} {}

The class implements the ssandard birwise aperators &, |, -, &=, |=, *=, and - It
does not implement shift operations.

In the interest of high performance, 2 BitArray is not initialized with any particu-
lar value when it is created. The Clear() method sets all bits to Blie. As 2 further opti-
mization, small Bitarrays thar can fir inside a machine word do not allocate any
additional memory. This malees the class wseful for even small sets of flags. This syntax:

11ags|FLAG_TNDEX] = true:

is clearer than che mradinonal:

Tlags |= 1 << FLAG INDEX}

BitArray and the other claszes call assert when an array index is out of bounds.
In real-time games, this is generally preferable to throwing an exception, as the STL
does, due to the overhead associared with exceprions.

The array subscripr operaror in BitAreay is implemented with a useful C++ par-
term known a5 a prexy eles. (See [Meyens95] for more information abour proxy

classes.) The proxy class BitProxy represents a single bit in the BitArray. In the
CXPression:

ajid) = trus;

we assign 1o the BitPraxy /70 using operator=, while in the cxpression:

bool yal = afio):;

we merely read the value of a bir via the bool operator, The BitProxy class allows us
to delay evaleation of the expression &/10/ until we know the conrext in which it is
wsed (reading or writing). This is a very handy trick thar is also used in the orher bie
array classes.

Mote tha the gitProxy object must be reurned by value, so it might incur the
et of instantiating and deleting a emporary object. In normal circumstances, where
the bit value is immediarely read or assigned 1o, the compiler is sble 1o aptimize away
this temporary object.

Other Arrays

BitArray20 is a two-dimensional analog of BitArrey. For the most parr, it behaves
just like any other two-dimensional array:

BEitArray2D bdts(10, 20);
bits[5ll4] = true;

1.10 Simple, Fast Bit Arrays 103

Mote that the armsy subseript operator for BitArray2n rerurns an ArrayFroxy, which
isa proxy class representing a single row of the array. ArrayProxy iself has a subseript
operator thar returns a proxy for a particular bir in the array. These mechanics are nec-
sssary o allow the familiar Co+ double-subscripting synas.

BitArray2D intenuonally does not trear s subscripted elements as one-
dimensional BitArrays:

b1Te24[5] = bit array; f 11legal)
bit=2d[5].FlipAllBits(); [/ 1llegal}

Although it’s cerrainly possible to allow zuch operations, it would complicate che
ArrayProuy class considerably, and these uses are compasatively rare.

BitarrayeD is implemented asa single Bisarray that contains as many bits 35 the
two-dimensional array. Because Bitarray2d docs not have the same public interface
A% BitArray, it inherits from BitArray via private, Like Bitarray, all of i functions
are short and inlined.

The final class, TwoBitarray, provides an array of two-bir values, (Arrays with
more bits per element are easy extensions o this dass.) The implementation is an
almost trivial use of a BitArray with twice as many elemenms as the Tweaitarray.
Although extremely simple, this class is 2 convenient way to pack stare information
into 4 minimum of space.,

Application

Even such tradirional low-level C construets as bir arrays can benelit from implemen-
tation in Cr+. The Cr+ code is easier to read and understand for a performance cost
that is almost always negligible. For games, this means less time spent developing and
debugging code that is necessary for many applications,

If you use these classes in major dara structures in a game (e.g., state bits attached
to each cell in a rwe-dimensional array of riles), ic might be useful to add operators o
read and write the array w a stream. IF you do, be careful mo pay attention to endian-
ncss when dealing with the array’s contents, if portabilicy is important.

The sample code includes a test program thar illustrares usage of these bir areay
classes,

References

[SGI2R] SGI, "STL header bit ser.” availabie online ar wwewsgi.com/ Technology/
5TL/biwer, 1998,
[Meyers95] Meyers, Scorr, Mere LEffecsive Cr+, Addison-Wesley Longman, Inc., 1995,

1.11

A Network Protocol for Online
Games

Andrew Kirmse

Most encryprion schemes assume that a trusted sender and a trusted recipient want 1o
communicate over an untrusted channel. It seems absurd to sugges: thar the sender
could deliberately ry o fool the recipient, yet this is cxacdy the problem facing
designers of online games. Some players cannot be trusted, and worse, chey have com-
plete access 1o the encryption algorithm and all communicarions via the client exe-
curable. Under such circumstances we cannot hope to provide completely seeure
communications, but we can make the artacker’s job more rrouble than its warth.
This amicle presents some practical rechniques for building an application-level com-
munications protocel for online games.

Definitions

104

Protocol design is most interesting in client/server pames, where one or more untrusted
clients communicare with 3 trusted central server. (Chearing is cemainly also a problem
in peer-to-peer games, but because no entity is ousted in such games, the situation is
hopeless) The consequences of cheating in a clienyserver game is high because the
server, 25 the only trusted entity, maintains the game state and verifies all dient com-
mands. When the game state is persistent, a single successful chear can destabilize a
game involving thousands of players.

We consider protocol security fearures in a client/server system. The clienc and
server communicate by sending packets over a nerwork channel, which mighe be reli-
able {typically TCP) or unreliable (UDP). Although dients can also communicate
directly with each other, perhaps for char or voice, we assume that any data that need
to be secured are sent only berween a dienc and the server.

Each packet contains two pars: the beader, conmaining administrative informa-
tion, and the payplozd, containing the acrual dara we want to communicate. The goal
of the netwerk protocol s to deliver the sender’s original paylead to the recipient. Any
modifications to the sender’s sequence of payleads should be derected. We deal only

1.11 & Network Protocal for Online Games 105

with delivery of the payload, leaving the derils of packer ordering and reliability to

lower levels in the prorocol stack,

Packet Tampering

Maost protocol hackers are casual: they change bytes in a packet and see what hap-
pens. The first line of defense againse such arcacks is a simple checksum. A checksum
15 2 shorr number produced by combining every byte of the packer, The sender com-
putes the checksum of the packet and sends both the packet and the checksum o the
recipient. The recipient takes the packer and recomputes its checksum; if the com-
puted checksum doesnt match the checksum from the sender, the packer is comupt
and should be rejected. Tt’s impormane o incdude the entire packer, including the
header, in che checksum compurarion, so thar the recipient can decect changes o the
header as well as the payload.

A perfear checksum computation would produce a different value if any byre of
the packer were changed to any other value. A perfect checksum would be oo long to
be useful, of course, but hash functions have the same design goal and make excellent
checksums. Particularly useful are one-way hash functions, which scramble their
input o the extent that reconstructing any part of the inpur from the hash valuc is
impossible for practical purposes. The MD35 algorithm is well tested, publicly zvail-
able, and fast enough for use in games. A public domain implementation is available
online [Plumb93],

There are two weaknesses in this simple checksum mechanism. First, because the
client executable contains the checksum computation code, an artacker can reverse
engineer the checksum algorithm, and then compute valid checksums for any mes-
sage. Second, an attacker can caprure valid packets and resend them later, an attack

known as packer replay,

Packet Replay

In a packet relay arack, 2 malicious user capiures a packer from the eliene (eypically
using a packer sniffer), and then sends it multiple fimes. A common tactic is to use
packet replay to perform commands faster than the game allows, even if there are im-
ing checks in the client. For cxample, a client might use a imer 1o send a cermain com-
mand to the server at most onee per second, no marrer how frequently the player
issues the command. Using packer replay. a single user might issue the sme com-
mand hundreds of tmes per second.

A system designer might ry 1o stop this particular ateack by putting a similar
once-per-second timer check on the server as well. In the face ﬂd_w[.:'d}r vanable net-
woek latency, however, this defense is impractical. Alchough it detects most packer
replay avtacks, varying nerwork delays can make packess bunch together by the tme

Section 1 Propgramming Twhnh!:.uj

they reach the server, causing legal command sequences o be rejocied. We cerainly
do not want our securiry scheme 1o mark law-abiding players as chearess.

To guard against packer replay, each packet should contain some state informa-
ﬁl.'.lll'l, &0 '[hH'I: Lo |]:I:I.::[{tLi 'l.'n.'[&'l. ir]l:rll!ir_'al]::l.}ﬂ;:qu ['u_'..'r_ d_iE:n:nL |_'H'|_ P:]_[[tnu_ S.;;.rn.g.
thing as simple as a number that inceements with each sent packer would do, although
that scheme is too casy for an artacker wo figure out. A bewer answer is 1o use a stare
machine to produce successive identifying numbers for successive packers. A fast and
reasonably complicared method is a linear congruendal random number generator of
the rype ypically found in system libraries. Such generarors operate as follows:

State = (State # a] * b

where @ and & are earchally chosen integers. (For a discussion of this generator, see
[Knuth98].)

The sender and recipient cach keep a linear congruential random number gener-
ator for their conncetions. When sending a packer, the sender produces 2 random
number and 2dds iv to the packer, simultaneousdy stepping its random number gener-
ator: The receiver checks the mndom number in the incoming packet against its gen-
erator; if the numbers dont mamch, the packer has been rampered with. If the
numbers do march. the meceiver steps its random number generator to prepare for the
next packer.

There are two complications witch this scheme. The first is how the sender and
receiver initially synchronize their state machines. They could each stare their stre
machines with the same fixed seed, bur then the initial stream of packers would
always have the same bir patterns and thus weuld be vulnerable to analysis. Instead,
the server can initialize its stare machine with randomly generated seed values and
send these to the dient in its first message.

The second complication is how to keep the state machines synchronized during
communication, On a reliable connection, packets are never lost, so synchronization
is guaranteed. When packers are dropped or reordered, however, the siruation
becomes more complicated. 1f 2 message is lost, the sender’s state machine will have
advanced one more step than the receiver’s; subsequent packers will be rejecred. even
though they are legitimare. A simple solution is to rely on a orue sequence number
sent with cach packer (most games include this number with messages anyway, to
provide a relizble connecrion over an unreliable eranspore). Given a sequence number,
the receiver can determine how many times to step its state machine to catch up to the
current packet. If the applicarion allows out-of-erder delivery, the old state of the szate
machine will have to be stored for use when an out-of-order packer arrives Later.

The rand funcrion provided with most run-time libraries is inappropriate for use
as 4 state machine because of its low precision {many implementations have anly 15
bits) and its obvious choice as a souree of andom numbers. A fst, high-guality ran-
dom number implemencarion is given in [Booth97].

1.11 A Netwark Protocol for Online Games 107

Additional Techniques

Ideally, two packers with identical payloads should show as lirde correlation in their
bit parterns as possible, to frustrate analysis of the payload. An easy way to remove all
correlation between two sees of data is to combine them with a sequence of random
bits, using the exclusive-or (XOR) operaror. Assuming the previously described
packer replay defense, the sender and receiver already have synchronized random
number gencrators. Thus, the sender can generate a sequence of mndom numbers for
cach packet and XOR these into the packer payload; the reeciver gencraces the same
sequence of numbers and retrieves the original payload in the same way,

Even the face that rwo packers have the same length can give an arracker 2 clue
thar the packets encode similar daca. To further frustraze aracks, each packer can con-
win a variable amount of random “junk” data, meant only 1o vary the length of the
packer. The length of the junk dara is determined by yer another synchronized state
machine. The sender checks its stare machine to determine how much junk o gener-
ate and insents thar number of random bytes into an ourgoing packer. The receiver
simply ignores the junk data, Increasing the amount of junk data helps to further hide
the payload bur costs additional bandwidth, In typical applications in which band-
width is limired, the average lenpth of junk data should be made small compared to
the average payload size.

Reverse Engineering

The hardest problem to address, and ultimately the dewnfall of any scheme o stop
protocol tampering, is that the client contains the entire encrypdon algorithm and
thus can always be reverse engincered. Some steps you can take to make reverse engi-
neering harder are as follows:

* Remove all symbols and debugging information from any code released o the
public,

* Dont isolate buffer encryption and decryption in their own functions: instead,
combine these with some other nerwork code, This is ane area in which it can be
worthwhile to rrade maininability for security:

* Compute "magic numbers” {such as initialization seeds) at run dme instead of
placing their values directly in the executable.

* Include a good encryption scheme in every version of the dient, cven carly betas.
If any client version kacks encryprion, 2 user can record 2 stream of unencrypted
packess from one elient and then use knowledge of the packet payload 1o help
break the encryption in a lacer version.

* Remember thar your goal is to make cheating prohibirively expensive, not impaos-
sible.

108 Section 1 I‘-‘rnrunrrﬁng Technlgues

Implementation

The implementation included with this arricle includes a Co+ dass SecureTransport
thar uses all the previously described techniques . A SecureTranspar: object encapsu-
lates a two-way connection between a sender and a recipient. For cach direetion, the
object maintins four linear congruential andom number gencrators a5 prococol stare
machines, These are initialized to static values, with the understanding that the server
would send randem seeds in its first messape to the client. The class uses the stare

machines as follows:

1. It XORs the length field ae the start of the header. (This is unnecessary if the
underlying protocol provides a packet length as in UDE)

2. A message sequence number is used to prevent packet replay:

3. It determincs the length of junk data in each packer.

4. Ir generates random bits to XOR the payload.

A separate random number gencraror is used to generate the actual junk dara.
Druring debugging, ir is useful to set che junk data w0 a known constant value.

References

[Booth97] Booth, Rick, fnner Loops, Addison-Wesloy Developers Press, 1997,

[Knuth98] Knuth, Donald, The Arr of Computer Programming, Volume 2: Semsissi-
merical Algorithams, third edition. Addison-Wesley Longman, Tnc., 1998,

[Plumb®3] Flumb, Colin, "md5.c."available online ar hp://sre openresources.com/
debian/sre/admin/HTML/S/rpm_2.4.12 origh620rpm-2.4. 1 2%201ib%20md5.
c.heml, 1993,

1.12

Squeezing More Out of Assert

Steve Rabin

Almost everybody wses assert, bur not everybody is gerving the most out of ic. This
article contains seven ool litde tricks char can be used 1o squeeze more functionaliry
out of assert. If you're already familiar with assert, skip down o "Assert Trick £1."
Otherwise, read an ...

The Basics of Assert

Every programmer should religiously use the assert macro. The assert macro is 2
simple. painless way co double-check your assumptions, and it will save you every
ome. By giving the assert macro a condition tw evaluate, you're asserting thar this
condirion should be TRUE. If the condition evaluares to FALSE, assert brings up 2
dialog box telling you thar a problem has occurred. You can then choose to ignore the
assert and continue executing your code, abort the program, or hreak directly into
the code where the assert failed.

The assert macro lets you program defensively. If you know a pointer should be
NULL, you should assert thar ic is NULL. By making assert 2 habit in your cede,
you'll carch mistakes before they have a chance to bire you.

Vector normalization is an example of an imporrant place to use asserts. In the
following function, three assumprions must be mer for the code to execure withour
wreaking havoc. The e and dt vector pointers must both be valid, and the length of
the ¢ vector must not be zera.

#inclwde <pssart.h=
void Vectorormalize| Veg® src, Yec*® dst |

i
flozt length;

assert(src 1= 0 }: 1 Check that the sre veotor is not MULL
assert(o5t I= 0 }; [/ Check that the dst vector 15 not MULL

longth = sgrt{ (aré->x"sro-sx) + [arc-»y*src.ay) +
(Sro-=z*grc->z)

109

110 Section 1 Programming Technigues

assert| length != 0); /! Check thet the length is not zero
M (eo avoid dividing by zera)

det->%x = §ig=>x | langth;
det->y = grg->y | langth:
det->z = src=>z [langth;

}

Since the Vectorformalize function needs to be blazinply fase, we can't afford ro
waste time checking the assumptions in release builds, However, while the game is in
development, we need to be aware of any problems that come up. Thars where
assert makes a lot of sense. The assert macro doesn’t get compiled in release bailds,
s0 assumptions can be tested during development and automancally removed when
compiled in release. This allows you ro sprinkle asserts throughour your code with-
out worrying about removing them before your game ships,

Since the assert macro is not compiled under release builds, its incredibly
imporeant that you don’t change the stare of your program within the assert. As a
rule, don't call functions or alrer any variables inside ir. The result would be behavior
that differs between your debug and release versions, which could be disaswrous.

Why not just pur permanent error checking inside the Vectorfiornalize func-
tion? This function is so low level that it doesn't have a clue how to remedy any prob-
lems. Hopefully (cross your fingers), cvery piecs of code dhar calls vectorNormalize
checks for these assumprions because it can directly deal with problems. Ifa piece of
code fails to check those assumptions, the assert will be trigpered inside vestortior-
malize, and a programmer can then know to fix the actual code thar caused the esror.

Assert Trick #1: Embed More Information

One of the drawbacks of che rraditional assert macro is thar it doesn’t rell you much
information. If assert(sre !~ 0) fils, it brings up the sming “re f= 07 in the assert
dialog box. Unformnarely, this doesnt grve you much to go on. Unless you're running
the game from your debugges, it's not very clear whar the problem is. One rechnique
15 1o embed more information inside your condition. Consider the following vec-
tordornalize [unction:
#include <assert.hs
vold VectorMormalize{ Vec® src, Vec* dst)
1

float length:

assertf sré 1= 0 8% “Vectorhgrmalize: src vector poimger 45 HULL® J;
agsert(dst != 0 8% *VectorWormalize: dst wecter poinmter £ WULL®);

length = aqrt((Src->x®sre-=x) + [(Sro-=y*arc->y) * (Src-=z%sro-=z) |;

aseert{ length != 0 &8 “VectorMormalize: see vector is zero length®)

1.12 Sgueezing More Out of Assert 111

det->x = gre->x ! length;

det->y = &ré-3y [langth;

d6t-»Z = sre¢.>z | langth;
}

When the first assert fails in this code, the assert box displays the SIring *src
!= 0 && “VectarNormalize: src vestor pointar iz NULL®® . Even if your resters are
running the game, they can rell you the function name where the assert failed, along
with the reason.

Assert Trick £#2: Embed Even More Information

Sometimes programmiess simply type assert(0) if the program execution reaches an
¢, You can pull the same trick of insering a descriptive string sim Iy by negar-
s i P g & umpl) cgat
ing the string to make it false. For example:

azgert] :*VectarMorfalize: The code should neear get here® 1;

This line accomplishes the same thing as assert (0} while also giving you some
grear debugging informarion.

Assert Trick £3: Make It Less Awkward

The first two wicks can be combined in seconds by writing a simple macro. This
macro takes two arguments, the first being the condition to evaluate and the second
being the descriprive string. This mimies the first two wicks bt makes it easier 1o
type and read:

¥define Apegert{a,b} assert(& & b)

The E}ﬂm‘hlg ewo lines use the new macro:

assert{ src = 0, “VectorNormalize: src vector poimter is MULL®);
assert{ 0, *VectorMormalize: The code should never get here® 13

Assert Trick #4: Write Your Own

Eventually everyone should use an assert macro thar'’s been truly customized. The
idea is wo write your own assert dialog box code so that you can have more control
over adding feanures,

A very annoying problem of the standard C sssert is thae it breaks into the
debugger in the file asserr.c—nor the line in your progeam where the assert appears,
By writing your own assart macto, the debugger breaks directly to the assert line
that you cyped. This avoids the needless step of backiracking up the stack o get o the
spot you're actually interested in. The following is an example of a custom assart
macro:

112 Section 1 Programming Techniques

#it defined[DEBUG)
gxtarn bool CustomAssertFunction beol, char+, int, char®* j;

#dafine Assert({ exp, desoription) 1
if(CustomAssertFunction((int}(exp), description, _ LIME_ ,\
FILE__ } b \
{ _@sm { int 3 } } //this will causa the debugger to broak hers

#olse
#daTine Assert| exp, description)
Fandif

The above macro calls CustonassertFunction, which you have to write yourself,
CustomAssertFunction should bring up a dialog box stating the assert information
and allow the user 1o either continue or break. IF the wser chooses o break, Custom-
assartFunction should returmn TRUE, and the debupper will brezk on the Assers
line {thar's whar the int 3 instruction does on the PC). Otherwise, the funcrion
should return FALSE, and the program will continue executing.

Assert Trick #5: This One ls Priceless

Once you have a custom assert macro, you can add an “Tgnore Always” aption to
your assert dialog box, This is an amazing fearure that less you ignore an assert once
and have it remember to never bother you again. Tr's particularly useful when an
assert is failing every frame, bur you s:ill want to run your game without clicking
through a million asserts. To implement this fearure, each assert keeps track of
whether it should be ignored and purposely suppresses itself if it should fail in the
furure.

Practically, the way to implemenc “Ignore Always” is to place a static boolean
within the assert macro. This boolean then remembers whether the assert is 1o be
ignored. Initially, the boolean is set to FALSE. When the code execures, it checks this
boolean before it even evaluares the assert condition. If the boolean is FALSE, it calls
the CustomAssertFunction with the pointer 1o the boolean as an argument. If the
assert condition fils and the wser selects “Ignore Always” in the assert dialog box,
it then sees the boolean w TRUE. The following is the code for the macro:

#if defined{ _DESUGE)
extern bool CustomAssertFusction{ bool, char*®, int, char®, bool*);

fdefine Assert| exp, deascriptiea) 4
{ static bool ignorefdways = false; \
if(lignoreAlways) { \
if(CustomAssartFunction((int]iexp), deseription, 1\
_LINE ., _FILE , AdipnoreAlways J J J %
{ _asm { int 3 } } \
| B
I

1.12 Squeezing More Out of Assart 113

felse
#dafine Assert(exp, description)
#ondif

Assert Trick #6: Only i You're Totally Hard-Core

There's 2 nagging problem with assart that shows up clearly in the vectortiormalize
sample function. The problem i thar the source of the error is not inside vestartor-
malize. The true emor is in the funcrion that called vectorNornalize, which narrows
it down 0 only several hundred routines! If this type of assert fails without the
debugger running, the assert is virnally wseless, Surprisingly, this is a common situ-
ation, since testers rarely rui games from the debugger.

The simple solution is to provide stack infarmarion inside the assert dialog box!
John Robbins, a writer for Microsoff Systems Josurnal, coined the name superaseert to
describe this implementation. In his column “BugSlayer,” he worked our 2 Windows-
specific example, complete with source, which can be used 2s a reference [Rob-

bins99].

Assert Trick #7: Make It Easier—Copy and Paste

Ir’s really cool when a simple trick males work a loc easier. This trick falls into dhar
category. I the assert provides tons of great debupging informarion such as the staclk,
whiy not make it really easy for testers to pass it along?

In the Windows environment, you can have a burron on the assert dialog box
that copies the informarion to the dipboard! Wich a few simple mouse clicks, anyone
can easily copy and paste the assert into an e-mail or bug repost. This simple, pow-
erful idea will help your testers convey aceurate, meaningful informarion back to pro-

ers.

The following code eapies an arbitrary string into the lipboard. You'll want o
alter ic slightly and put it inside your Customassertrunction,

1 OpenGlipboard] NULL } }
{

HELOBAL hllam
char szAssert|256];
char *plen;

sprimif({ srAs=ert, *Put aasert info here® ¥;
hllem = GlobalAlloc| GHND|GMEM_DDESHARE, strlen(szAssert J+1 ;

£f(hatam) {
pMan = [cherT)Globallock| hilam J;
stropyl pMen, szAssert)
Globaltnlock(hkam):

114 : Section 1 Programming Techniquas

EmpryCLipbaard):
SatClipboardlatal CF_TEXT, hMem);

H

Closedlipboard();
}

Referances

[McConnell93] McCaonnell, Steve, Conde Complere, Microsoft Press, 1993,

[Robbins00] Robbins, John, Debugging Applications, Microsoft Pross, 2000.

[Robbins99] Robbins, John, Micossft Sevems Jorurnal BugSlayer, avzilable online ar
www.microsoft.com/msj/defaulttop.asp? page=/msj/0299/bugslayer/bugslayer029
Srop.hrm (code available at www.microsoft.com/msj029% code/Feb99BugSlayer
zip), February 1999.

[Saltzman®9] Saleman, Marc. Game Design: Secrets of the Sages, Brady Publishing,
1999,

1.13

Stats: Real-Time Statistics
and In-Game Debugging

John Olsen

Everyone spends more time debugging than they would really like to. This huge ime
sink has led to the development of 2 system 1 call Seass, 2 real-time debugging and
dara-cditing system. This system can make life for you, the programmer, easier
through simplified debugging and data tracking in a live system 23 it execures on the
target platform. This technology has been used on commeseial products for bath PCs
and consoles. The name is desived from the word starisies hecausc the original inspi-
ration for the idea was the display of numeric staristics from within a game soldy for
the purpose of debugping,

The tool set described here is fairly simple to implement, highly extensible, and
highly applicable to many facets of game software design and testing. This means dhat
it is easy for you 0 customize to your particular needs, which often vary from one
project to the nexr.

Why: A Need-Driven Technology

Bath PC and consale systems have problems with debugging full-screen, real-time
applications. On the PC, you must resort o nerwork-hased debupging, mulriscreen
systems, of the ability o pop berween windowed and full-screen mode during the
debugging scssion. Sometimes the debugging environment does not allow access to
some of all of the data while the system is running, and hitting a breakpaint at the
wrong point in a real-time loop can lock up your system. In the case of video game
consales (referred 1o simply as consoles hereafier), you have no keyboard, so samething
like a drop-down window for a command-line interface, such as is often used by firse-
person shooters, is prerry much out as a debugging tool. We are trying o fix the short-
comings of debugging environments, bur it would also be nice o have 3 way to
reduce the ediv'compilefrun loop a bi.

E‘l."tl']-" programiees wha has worked with a real-time quP 15 sure o have war sto-
rics of the nasty bug that rook forever 1o find. Sometimes the code runs differently

115

116

Section 1 Programming Techniques

when you single-step through it. Sometimes you need ro debug a live nerwork game
10 reproduce 3 problem, or better yer, debug both ends of 2 neswork game ar once.

Cansoles have the added difficulty of having a limired path back to mass storage,
if the path exists at all. On some console development systems, it is possible to access
the development PC file system 1o read and write files, bur once you go to CD or car-
widge, the data path back wo the PC prows very resricred. About the only option left
is to store data onto memory cards, then read the memaory eards on a development
system that has access 1o a PC file system.

Console game systems, and embedded systems in general, have some problems
the PC crowd may not run into, The debuggers for console systems have been pELling
better over time, bur there is still 2 great deal of room for improvement. Furthermare,
not i lot of debugging can be done once you buen your game onto 2 CD.

At some point, almost every project has pur a frame-rate counter on the screen or
displayed some other sort of data from a live system. Other commeon irems thar are
hard 1o get at with a debugger but are easy to wack in 2 live system are the polygon
count, culling efficiency, and general execution times based on the content of the
viewpart. It makes you want to build a system for displaying arhitmary lisss of num-
bers. It cerinly gor under my skin, and evenmally I did something abour ic.

The idea of an in-game display can be expanded to include editing of the data,
which can help in 2 number of ways. First, debuggers don’t oypically lec you read and
write data files. Second, with an i.l.'l.-ga.r.nc editor, whether kevboard or controller
based, you can edit the acoual game dara as you run the game. Third, the edited daa
can be loaded and saved on a PPC or console development system.

How: An Evolutionary Process

The code included in this chapter evolved over the years from a simple displayed list
of numbers thar could not be edited to a list of vext labels and read-only numbers,
ultimately ro the current version, which includes multiple pages of dara that can be
edited while the game i runaing. The texr-based display is simply an overlay dis-
played on top of the game inzlf,

For many profects, it has worked our to be a lot easicr to use an editable version
of Stars rather than chear codes. Stats can be used to toggle pamicular features on and
off, and a set of related features can all be displayed together on a single page. With
chis setup, you can get to some really deniled dara on system behavior while the sys-
tem 15 still running.

Consoles, with their debugging drawbacks, can bencfit particulasly well from an
additional method of debugging thar does not rely on the tool set provided by the

cﬂ"ﬁﬂ]k‘ manufacrurer,

1.13 Stats: Real-Time Statistics and In-Game Debugging 117

What: A C++ Class-based System

To star, the full code for cach class and its member funcrions ean be found on the
book’s accompanying CD-ROM. You might want to refer mo it s you go through the
following material.

A dmilar implementation of this Stazs system took less than 2 week to desipn as a
Cs+ class using u common Star base class and derived types for cach displayed dara
type. The system consists of a base Stat class, which is the container for everything,
and separate pages, which each contain a number of entries.

There is a tradeoff with the way you end up printing Stats to the screen. If oL
pur your printing code in the derived Stat class, ic is less portable, buc you can do
inreresting things such as having a Stat that is rendered a5 a bar graph. If you simply
have the Stats fill in a swring to be dumped to the display device, as in the provided
sample, you have a highly poseable implementarion that can be used mare casily for
cross-platform development.

The base of the system is 2 class that holds a linked list of pages and some other
information that needs 1o be global to the Stacs system. An Initialize() funcmion
takes the place of the constructor because it is a fully static class that may nor have an
instance created, resulting in no call to 2 construcror. The base system has 2 Pring ()
function that calls the Print () function for the current page.

The Windows-based sample code also has keyboard input processing, which
takes an array of boalean key states as inpur. The array is built by tracking wi_KEYDoWN
and Wu_KEYUR messages from Windows in the event-processing loop of the program.
Uk a console, you pass in an array containing the controller state. With each pass
threugh the real-time loop, bath the GheckInput (} and Print() funciens need 1o be
called. Pages are added awtomaticslly by having their constructor call the base
AddPage(), since it is simpler 1o not make the programmer remember o do it for each
page he or she adds.

The initialization is seeded simply o guarantee that the base isnt poinring ar ran-
dom data thar would be interpreted as a page. It also sets up the limits for how many
lines belong on a full scrcen,

Each page in the linked list owned by the base class contains zero or more entries,
One of these pages is always the currenr page. whether ir is displayed or hidden.
Entries are added o pages using the common entry parent class. The construcrors for
entries automarically call the AsgEntry () function, similary to the way the page con-
structor calls Addpags ().

Each page contains a linked list of enrries. The entry constructor is used to set up
the initial state of the Stat, induding the page on which it appears, a text label, and
the relative priority of the entry (which can be thought of a5 a line number). Derived
types also have an inirial value, should the derived type need to be inialized with o
particular value. The vinual functions of the defaule class cstatentry are 1o be over-

118

Section 1 Programming Technigues

ridden in cach derived class so that the parent system can access each Stat type
through 2 common inresface.

Adding a new class is done by copying one of the dasses derived from cStatentry
0 3 new class name, renaming it, and adding an appropriare variable 1o hold the
value. Once that is done, you need o rewrite parts of the member functions o match
the new data type.

The actual dat stored ina Stat varics based on the Star type and is included in the
derived Stat classes. Fach data type has its own Print{) funcion o replace the base
class virtual funcrion. This funceion is very uscful because the base elass can then go
through a list of generic Stat pointers and tell cach to print withour having to worry
about whar type it is. Navigation is also simplified by basing 2ll Stats on 3 common
parent class. Using the parent type as a generic Star pointer helps keep things arga-
nized and under control. With multiple pages and each page having a current item to
keep track of, it can get 2 bit confusing otherwise,

Une typical use for Stats is converting fixed-point staristics to printable fAoating-
point equivalent values. Stats can be a bit of a processor pig on large pages, but it can
save a great deal of development dme. The value 1.73 is casier to read than 56 and
having to mentally divide by 32 to ger the floating-point equivalent of a certain six-hir
fixed-point number,

Adding Stars to an application requires three things:

1. Call cstatBase:: Initialize() at staroup.

Call cstatBase: :CheckInput() cach pass through the real-time loop to update

the Stats keyboard state or the concroller srare on a console.

3. Call cstatBase: :Print() afier rendering the screen to display the Seats on top of
your rezl-time image.

Pl
'

Implementation time for a new Sear type varies depending on complexiry, burt a
simple numeric type can be added in under 10 minutes. A rype using cnumerarions,
VeCtors, matnices, ar something more complex tkes longer but is precry smraightfos-
ward as well.

A derived Stat type in the sample code called a cetatIntPtr deserves a licele bit of
exrra explaining because of s slightdy different interface and the interesting things
you cxn do with it. The value stored in the Star is a pointer to an integer. When it is
printed, the value of the integer being pointed ar is shown. This fearure allows you to
declare a Star and have it asromarically updare the displayed value as it changes
instead of having to scr the value of the Star in each frame. It also allows yOu to
directly edit the value of the number being pointed ta, onc of the more powerful
advaneages of this system. You have direcr access to 2 variable within your running
code by adding just one line of debug code to declare an instance of 2 Star.

Lypical execution rime for running 2 similarly designed implementation of Stats
on a sony PlayStation has been wnder 2 milliscconds per frame, with enough Stats
being displayed to cover the entire screen. For reference, one frame ar 30 frames per

1.13 Stats: Real-Time Statistics and In-Game Debugging _ 119

second takes 33.3ms, so Stats uses less than 6% of the processor whea showing a full
page of dara. Since you obviously want to compile withour Stars for your reease build,
this time is given back to the rest of the program when development nears completion.
The percentage of processing time used on a PC rite should be quite a bt smaller.

Orne word of warning on this implementation of Stats, It isn't designed 10 work
with pages and entries appearing and vanishing. All page and entry instances should
be declared static. It isnt too hard to change it over to allow for dynamic creation and
deletion of Stats, bur having static Stats has always been sufficient, so the extra effor
wits never put info it. You can change the elases to enforce this current behavior by
Building destrucrors into each funcrion with an assert that halts the program when it
discovers a Stat being destroyed due to its going out of scope.

Where: Applicability

One readily apparent use of Stats is for user interface protoryping, where you want to
set up your screen flow without having real screens available yer. A rypical menu can
be set up in 2 few minutes, allowing you ro bypass unfinished user intesface code. You
have much less 1o design, since the rext-based interface is already implemented in
Stats. Sumply write your bypass Srars, and you arc off and running again instead of
waiting for someone else to finish some eritical chunk of code.

You could incorporate Stats into 2 racing title for in-pame editing of direcrion
and path indicitors. Stars can be set up to trigger loading, moving, and saving che
direction markers while the game is running, Ir's also been used previously to edit Al
capabilities and to load and save several kinds of dar filss, including the barch pro-
cessing of script files into memory dumps of a class. (See the aricle “Fast Data Load
Trick” for deails.) It can also be used 1o erigger the export of frame calocularion ime
based on world pesition to build charts that indicate high load areas.

Stars also give a convenient way to jump to arbirary levels within a game. There
are any number of things you might want to override or tum on and off while the
game is running! Some cxamples are highlighting collisions. tweaking camera behaviar,
indicating player speed, setting environmental lighring, and so on. Tt greatly simplifies
the life of the moddler if it is possible to edic che camera offsets and field of view in the
application as well. Then those numbers can be easily plugged into modeling software
once instead of looping through the build-rese-build-test sequence a dozen times,

Summary

On the projects [have worked an in which we have wsed the Stats system, it has saved
a great deal of cime, not only for the software desipners bur also for arr and level
designers. Stats is an casy way to add a debug interface 1o an applicarion, whether for
PC or console. It's even pretsy easy to retrofic Stars into an existing application, should
you be halfway through development when you find thar brick-wall bug chat stops

¥ou in your mwacks.

1.14

Real-Time In-Game Profiling

Steve Rabin

Profiling code is 2 routine step in most software development, bur irs an even more
crucial step in games. Since games are constantly pushing the envelope, they need
be frequently monitored for hot spots or stupid mistakes that can bog down the frame
rare. When the frame rate turns south, the source of the problem could be anyoncs
guess uncil 2 real measurement is taken. Was it the Al code thar was tweaked last
night, or was it the collision detection code that was altered this morning? Or even
worse, it could be an area of code that hasn't been rouched for weeks that's now incer-
acting badly with some new data. The only way to know is to profile it.

This article shows you how o add profiling code directly inside your game. Mot
only will you be able to quickly find the hot spats in your ende, but in addition, any-
one— other programmers, producers, designers, artists, and testers—can pop this
information on screen. This information makes profiling an accessible tool char ulti-
mately helps fine-tune your code and find bugs. For example, if the frame race ranks
every time a big fire-fight occurs, is it the complexity of the graphics or the collision
logic thar's responsiblet When profiling is at your fingertips, a simple press of a burton
can tell you the answer.

Some people are adamant about not profiling their code uil they’re dose w
being finished with a module. *Why should I worry abour speed when I'm still rrying
to make it work!” they reason. Although there is some truth to this thoughs, irs
invaluzble to be able to see how your code is actually performing. Many times I've
profiled a module in the middle of development only 1o discover thar the funetian 1
thought was being called all the time never gor called or gor called rwice as much.
Obviously, this is 2 tool that ean help debugging ar any point in development.

Getting Down to Specifics

120

This real-time profiler allows you to monitor any spot or scgment of code you're inter-
ested in. It works by calling a funetion at the beginning and at the end of the area you
want 1o profile, Each sample, consisting of a Profilesegin and a Profileend, is iden-
tified with a unique name that you choose. Using the supplied code, you wrap Pro-
fileBegin{ “InsertSasplelangHars®) and Pra fileEnd(*InsartSampleMsneHers®]

1.14 Real-Time In-Game Profiling 121

around the code you want to look ar. Ir's impertant to note that the siTing names
need to match exacely (assorts carch any cases where they don').

The Overhead of Profiling

Overall, the profiler takes a negligible amount of time to keep mack of your samples,
especially since you're going 1o warch only a handful of spors at 2 rime. Unfortunately,
displaying the resules on screen probably hurs your frame rate a linde, depending on
how it is implemented and how much text is displayed. If your on-screen tex is badly
implemented {or not implemented at all), you could always represent it graphically
on screen or let the datz accumulare and dump it o 2 texx file. Furthermore, as with
any debugging code, you can always weap it so that it doesn’ compile when building
a release version. However, unil you ger close wo shipping, you definirely want 1o be
able to acrivate the profiler in your eprimized builds.

Since the monitoring does rake some amount of time, dont monitor very small,
simple snippets of cadc, especially if they are executed hundreds of times 3 frame. The
monitoning takes more time than the code fragment and canses it to look worse than
it really is. An example is monitoring a funcion such as VectarNormalize{) thar is
called hundreds of times a frame. The profiler accurately rells you how many times it
is called, bur the timing information is useless. In this case, resort to using a profes-
sional profiler.

It’s important to note char this real-time profiler shouldn’t replace a radirional
profiler. A real profiler can give you benefits that can't be duplicated using this ech-
nique. Rather, this real-time profiles should augment the profiling thar you'd nor-
mally do. Think of this profiler as a quick-and-diny way to find our wseful
information. When you're ready for very accurate measurements, switch 1 a profes-
sional profiler.

What Will the Profiler Tell You?

This profiler gives you the following information ar the end of each frame. You'll mast
likely want 1o have chis informatien printed to the screen or some other output
device. This article won't help you render the on-screen text (refer to the arsicle “The
Texr Utiliey Library,” by Dante Treglia 11, in this boak), but it gives the following
imporeant dat;

1. Unique same of the sample poine

2. Average, minimum, and maximum percentages of frame time spent on that

sample
3. Number of times the sample was called per frame
4. Relarionship of this sample point 1o other sample poines (parent/child)

The profiler tries to be smart about samples and keep track of parent/child rela-
tionships. For example, if you sample the main loop of your game and the graphics
draw routine thar's inside the main loop, the parent/child relaionship is taken into
consideration. The resulrs shown in Table 1.14.1 are displayed.

Section 1 Pregramming Techniques

Table 1.14.1 Sample Resulis |

Ave | Min | Max | # | Profile Mame

14.3 | 11.8 | 34.8 [1 | Main Game Loop
B5.7 | &5.1 | 881 1 | Graphics Draw Routine

Here are some oheervations about the results shown in Table 1,14.1;

1. The Graphics Draw Routine accounts for 85.7% of the frame rare.

2. Everything other than the Graphics Draw Routine accounts for 14.3% of the
frame rate.

3. The Graphics Draw Routine i called inside the Main Game Loop (noted by the
indentation).

4. The Main Game Loop should rake 100% of the frame time, bur sinee the Graph-
ies Diraw Routine is being profiled inside of the Main Game Loop, ic's subtmacted.

5. The Main Game Loop spikes with 34,99, whereas its average is a low 14.3%,
indicating chat some code within the Main Game Loop is periodically hogging
the frame time. Perhaps ir's the Al code or physics code; add maore samples to the
profiler to find our.

6. The Main Game Loop and the Graphics Draw Routine are both called onee per
frame {noted under the # column),

After adding more profiler samples o berter identify the spiking problem, the
results shown in Table 1.14.2 might resule.

Table 1.14.2 Sample Results Il
Ave | Mim | Max | L | Frofils Mase
2.4 | 1.8 | 2.8 | 1 | Main Gane Loop
22| 1.8 23| 1| tane Object Update
TOE | B av.A | os2) AL Update
152710 0.8 | 1.3 | 1 | Gollision Detecticn
1.0 | 0.8 | 1.1 | 1 Physics
BE.7 | 65.1 | @88.1 | 1 | @Graphics Draw Routine

From the results shown in Table 1.14.2, we can see thar there are 32 alls to the
Al Update sample {probably 32 game objects thar require Al). The Al Update is
clearly the sample thar’s spiking, with 27.4% on some frames. There must be some
code inside the Al Update thar is periodically called. Perhaps the work thar the eode
does can be spread over several frames so that the frame rate doesnt hiccup anymore.
Continue 10 add profile samples unril the exact sepment of code is idenrified, Track-
ing down problems with the profiler is thar easy.

1.14 Real-Time In-Game Prafiling 123

Adding Profiler Calls

As mentioned earlier, you must wrap the code you want profile with ProfileSegin
and Profilegnd. You should slways wrap the main loop of your program and then call
FrofilebumplutputTouffer as the last thing in your game loop. ProfilsbuspOutput -
ToBuffer formats the profile information into a text buffer so that you can display it
1o the screen somewhere inside the main loop. The following is an example of 2 prop-
erly wrapped game loop:

void main {
Mindtializetion Code Hepe
ProfileInit(); //¥ou must call this bafore the main loap

while(!ExitSane) {
FrofileBegin(*Main Loop®);

ReadInput(];
UpdateGaneLlogici);

ProfileBegin{ “Graphics Draw Routime= }:

AendarScens|) ;

RandarProfileTextBulfer|); fi0utput profile Text fram last
1 Trams

FrofileEnd{ “Graphics Draw Rowting®);

ProfileEnd{ *Main Loop® };

ProfilaDumpQutput ToBuffer() ; fiBuffer will be drawn next
I frane

Profiler Implementation

On 2 given frame, each profile sample needs the following information:

typada? struct {

bool bBvalid; JiWhather this data is wvalid

uint iProfilelnstances; /I8 of times FrorileBegin called

int ifpenFrofilaes; J/# of timgs ProfileBegin wio
FroTileEnd

char sxNane|256] ; fiMame of sample

Tloat fEtartTine; {IThe current cpen profile start time

Tloat fAccumulator; {fAl1l samples this frame added
togathar

Tloat fChildrenSamplaTise; {iTima taken by all children

uilnt iHunFarents; JJ/Numbar of profile parents

} ProfileSanple;

Urver many frames, we need to keep history information on samples mken. The
following information will be stored over the long rerm;

124 Section 1 Programming Techniques

typedef struct {

bool bvalid; ! Whether the data is walid

char szMame[256]; //Mane of the sempla

Tloat TAwe; Hidwarage time per frame [percentage)
Tloat THEn; Hiinimmm time per frame [percentage)
Tloat Thax; fiMaxinum time per frame |[percentage]

} ProfileSampleHiztory:

For simplicicy and speed, pre-allocare an amray of ProfileSanple(s) and Profile-
Sanpledistory(s). Pre-allocating the dara makes it so we don't take 2 hit on allocaring
and destroying memory every time a sample is taken, Before any samples are aken,
call Profilelnit o initialize both arrays and record the ssart time.,

Two funcrions are used for referring o dme: GetTine and GetElapaedTine. Get-
Time should return system time in seconds (ar the exace time its called). GetElapsed-

Time should return the amount of time passed since the last frame (caloulared by
1/current_frame ratel.

#Fdatine NUM PROFILE SAMPLES 50

ProTileSample g samples|HUM PROFILE SANPLES] :
FrofileZampleHistory g _history[NUM_PROFILE SAMPLES);
float g_startPrefile = D.0F;

float g_end®rofile = 0.0T:

void Profilelnit(wvodd }
i

uint 4i;

for{ i=0; i<W PROFILE_SANPLES: is+) {
g samples|i] .bValid = Talse;
g _histery|i].bvalid = falss;

1

g_startProfile = GetTims();

Details on ProfileBegin

We're now ready to record a sample, so les look at the funcrion ProfileBegin in List-
ing 1.14.1. When this function is called, it first needs to check whether or not 2 am-
ple by the same name exists. If it finds one, it means thar this sample has been clled
before on this frame. In that case, we want 1o increment i0penProfiles, increment
iProTilalnstances, and mark the 1StartTime.

"The variable i0penrrofiles is incremented by Profilegegin and decremented
by ProfileEnd. In effect, it keeps track of how many profile samples have begun and
not ended. Note thae this implementation does not deal properdy with recursive ells

(2 sample begun more than once before being ended). For thar reason, there is an
aggart thar carchest this condidon.

1.14 Real-Time In-Game Profiling 125

The variable iProfileInstances is incremented by ProfileZegin in order to
count how many times the sample has been called on a frame. As you might remem-
ber, this is one of the key pieces of information thar is displayed in the ourpur. IF che
sample has never been called this frame, the code finds 2 sample in the armay that isn'
being used and initializes it.

Details on ProfileEnd

Although Prefileagin is faiely straighrforward, the real work is done in Profileend.
This is the function that tallies the results and properly accounts for parent/child rela-
tionships.

The first step in Profilegnd is to find the sample in the array, Once the sample is
found, the end time is recorded and the variable i0penProfiles is decremented. Then
the code loops chrough all samples, counting how many open samples currently exist
(parents) and remembering the index of the most recendy opened one (the immedi-
are parenth. The number of parents is then recarded in shunParents. TF there was a
parent, the mmple time is noted in the immediate parents struetire (ro be suliscted
from its sample time larer).

Since this sample might be opened 2gain on this frame, this sample time is saved
in the TAccusulator so that anather sample can use tStartTine. Listing 1.14.2 shows
the ProfileEnd funcrion.

Details on Processing the Profiling Data

Further

All thar’s left is to process, format, and dump the dam into a text buffer. This is done
at the very end of the main game loop in the functon Frof ileDumpOutput TaButfer.
Listing 1.14.3 shows this function. Nore that two funciions, tlearTextBuffer and
PutTextBuffer, are used for ourpurting the text to the buffer. You have o supply these
functions. PutTextButfer puts the rext string you give it imto a verrically scrolling
buffer so that each successive call inserts the new texr string at the end of the last one.
ClearTextBuffor simply clears the vertical scrolling buffer.

"[wo other funcrions, StereProfilelnHistory and GetProtileFronHistory, are
also referenced. Both are outined in Listing 1.14.4. Thess funcrions help keep wrack
of the average, minimuss:, and maximum frame rare percentages for each sample. By
calling StorefrofileIndistory, ¥ou are averaging the current measurement with
every sample taken in the past. Then GetProfileFromHistory memeves the new aver-
ages for you to display.

Enhancements

As you probably realized, this profiler is written completely in C (exezpt for the Ci+
commenting style). By converting it to Ce+, ir's posible wo eliminate the need for the

126

Section 1 Programming Techniques

ProfileEnd funcoon. The rick is 1o exploit Class constructors and destrucrors. Care-
fully examine the following code, which profiles the for loop:

{

Profileinstance profile_instancef “Ti=ming the For Loop™):

forl int i=0; i<i0000; v+ };
¥

In the code, a Profilelnstance abject 5 declared and initialized with a descrip-
tive string. When its constructor is called, the string is recorded along with the gpstem
time. This informarion is then saved to global dara structure much like the Profile-
Bagin funcrion.

Since the ohjece profile_instance is within the curly brackers, it is destroyed
when program exeeution leaves that scope, Therefore, the destructor is called imme-
diately after the for loop. The destructor records the system rime and saves the infor-
mation to the global dara strueture, exactly as the Profi1send foncrion does.

Since the profiling line is now a litde more awloward, we can screamline it by writ-
ing a simple macro:

fdefine Profile(a) ProfileInstence profile instance(a)
The prafiling example with the macro looks like this:

{
Praofile(*Timing tha For Loop®);

for{ int i=0; 1=10000; 1++)3
}

The beaury of this enhancement is that the profiling code now occupies a single
line. Even better, it dossnt requirc a rerminating starement containing a perfectly
matching string. Profiling has never been so easy!

Putting It All Together

Amazingly enough, it docsn't take much to put together a faidy competent profiler.
Simply realizing it is pracrical is the hardest part, On the CD thar accompanies this
book, you'll find the completely implemented profiler. In no dme, this linde profiler
will become one of your most important debugging tools.

Listing 1.14.1: ProfileBegin

void ProfileSegin(char* nane)
vint 1 = O

while{ i < KUM PROFILE SAMPLES A4 g_samples[i].bW¥alid == true) {

1.14 Real-Time In-Game Profiling 127

if{ stromp(g_samples[i].szMame, namg § =< O } {
frround the sampls
g_samples[i] ilpanProfilagss:
o_samples[i].ifrofilelnatances++;
O_samgles[i] . fitartTime = O2GetTine();
BE5art{ g_senples[i].iOpenProfiles == 1); f/max 1 cpen at once
return;

i++;

H

Af(i »= NUM_PAOFILE_SAMPLES) {
asgart| ["Exceeded Max Available Protils Samples® §;
ratura;

H

stropyl @ _samples[i].szMane, name §;
gQ_sanples(i].bV¥alid = TRUE;
q_sanples[i]. f0penfrofiles = 1;
g_samples[i].iProfilelnstances = 1;
g_samples[i].fAccumulator = 0.0F;
g_samples[i] . f&tartTinme = GetTine();
0_semples[i] . fithildrenSempleTinge = 0.07;

Listing 1.14.2: ProfileEnd

void ProfilgSnd(char® name)
1

uint i = f;

uint nunPargnts = 0;

while(i < NUM_PROFILE_SAMPLES B& g_sasples[i].bValid == true)
{
if(stremp(g_samples[i].szName, name } == 0 }
i J[fi/Found tha sample
vint dnner = 0;
int parent = -1}
float TEndTime = GotTima(]:
g_samples[i] . i0penProfilas—;

//Count 211 parants and find the inpediate parent
whila{ g samples|inner].bValid = trus] {
if{ g _samples[inner].iOpenProfiles = 0)
i1 [/Found a parent (any open profiles are parents)
nuEParentss:;
if{ parent =< Q)
i [/Replace invalid parent |index)
parent = inner;

elsa if[g_sanples[infer). fStartTime ==

g_sanples[parent].fStartTine)

{ {/Replace with mare immediate parent
parent = 1nner:

128 Section 1 Programming Technigues

¥
¥
inner++;

}

fFRemember the current numbar of parente of the sample
g_samples[i] . iNusPfarents = nunParants;

iT[parent >= 0 }
{ J/Recard this time in fChildrenSampleTime (add it in)
g_sanples[parent] .TChildrenSanpleTine += fEndTime —
g_samplas[i].rEtartTine;

¥

{fSave sanple time in accumulater
g_samples[i].fAccunulataor += FEndTine =
g samples{i] . fStartTime;
FEIUF;
1
j_‘ir'll;

}

Listing 1.14.3: ProfileDumpOutputToBuffer

virid ProfilelumplutputToBufter| woid |

{
uint i = 0;
g_endProfile = GetTinei);
ClearTextBuffer|];
PutTextBuffer(° Awe : Mim @ Max : & : Proflle Namein"):
PULTeHtBUffRr] “--ccccccm e eee e saaas=0®)]

while{ i < NUM_PROFILE_SAMPLES && g_sasples[i].bValid == TAUE) {
wint indent = 0;
float sampleTims, percentTime, aveTime, minTima, maxTime:
char line[256], name[286], indentediama[256]:
char ave[16], min[16], max[i6], num[16]:

iT{ g samplexs[i] . iDpenProfiles < 0) {
aasert(!°"Prafilefnd() called without & PrafileBegin{)® };
1
else if{ g_samplesi].i0penfrofiles > 0 § {
assart(|"ProfileBegin() ¢alled without a ProfileEnd{}® };
}

sampleTime = g samples[i].fAccenulator —
g_zamples[i].fChildrentanplaTine;

parcentTime = [sampleTime [(g_endProfile - g etartProfile))
* 00,07 ;

aveTime = minTime = maxTime = percentTims:

1.14 Real-Time In-Game Profiling

I /Add new measurensnt into the hiztory and get ave, min, and nax
storeProfilelndistory| g_samplas[i].szHana, percentTime);
GetProTilef romtlstory | g_sanples[i].szMane, kaveTime,

EninTim¢, SmaxTine);

{{Format the data

sprantf{ ave, *%3.17", aveTims 1

sprintf{ adin, *33.17", @inTine };

sprintfy =ax, *%3.1F", maxTinme):

sprintfy mem, "%3d", g_sanples[i].iProftilelnstances i

Eircpy(indantedName, g_samplez[i].szMans iz

for{ fndent=03 indent<g_samples[i].iNumParents; indentss ' q
sprimtf| name, * A5, indentediame ¥
Stropy(indenteddanc, name §;

sprintf{line, "%58 : %8s : NEE & &A= : %5iN", ave, nin, max,
nun, indenteddame);

FutTextBuffar({ Line j; Ii%end the 1ine to text buffer
1++;
}
{ //Reset samples for next Trams
unit i;
for(i=0; L<HUM_PROFILE_SAMPLES; i#+ } i
g_sanples[i].bWalid = FALSE;
f_startProfile = GetTime():
1

Listing 1.14.4: StoreProfilelnHistory and
GetProfileFromHistory

vold StorgProtilelnHistory(cher* namg, 132 percent)
1
uint i = 0;
float pldAatio;
float newRatio = Q.87 = GetElapsedTime();
if{ newRatio = 1.0f) {
newfatio = 1.0F;

oldfatio = 1.0F - newFraction;

while(1 < NUM PROFILE_SAMPLES A& g_history[i].bvalid == TRUE | I |
if(strcmp{ g_history[i].szMame, nase) == 0)
{ Ji/Found the sample
g_history[i].fave = 19_history[i].fave*oloRatiao) +
[pereent *newRatia) :
if{ percent < g_historyi].fdin {
g_history[i].TWin = parcent ;
H

130] Saction 1 Programming Technigues

elza {
g history[i] . fiin = (p_history[i].fMin*oldAatio) +
{percent*newRatio) ;
}

if| percent > g history[i].féax § {
g_histary[i] .-fMax = percent;
}

elze |
g_history[i].fMax = [(p_history|l).fHax"oldfatio) +
{percent®newfatio);
}

return;

:I'.H;
}
ifg i < MUW_FROF ILE_SAMPLES)
{ #i%gd to history
stropyl g hlstory[i].s5zMane, nama)
g_history[i] .bValid = TRUE;

g_history[i] . fAve = g_history[i].THLn = g history[i].filax =
percent;
}

else |
assert(["Exceeded Max Available Profile Samples!®);
H
1

vold GatProfTileFromHistory(char> name, £32% awveo, 132* min, 732* max)

uint 1 = 0O;
whila({ i < NUM_PROFILE_SAMPLES &% g history[i].bvalid == TAUE) {
if(strocmpl g _history[i].szHame, nane } == 0)
{ {/Found the sanple
*awa = g_history[i] . fave:
*min = g_history[i] . fuin;
“max = g history[i].fiax:
rETUrn;
¥
Ltti
¥
ave = *nin = *max = Q.0f;

}

References

[Abrash97] Abrash, Michael, Michae! Abrashs Graphics Programming Black Book. The
Coriolis Group, 1997.

[McConnell93] McConnell, Steve, Code Complere, Microsoft Press, 1993,

[Meyers35] Meyers, Scotr, More Effecmive Co+, Addison-Wesley Longman, Inc.,
1996,

2.0

Predictable Random Numbers

Guy W. Lecky-Thompson

A large proportion of the success of a game in today's marketplace depends on a suffi-
ciently detailed backdrop against which the game action can ke place. Mot only
that, bur the backdrop could also take an active ole in the interaction berween player
and game. In search of this elusive mix, the maditional approach has been o simply
hand-crafy level daa and store it in a relatively comples and space-consuming level
file, to be replayed in real rime.

Occasionally, however, the depth of some games falls below the expectations of
the audience. This disappointment is caused by the fact thar the pame is somerimes
simply not big enough: ence the batdes have been fought and the blood spilled, the
player is left with something of an antidimax.

Even with huge resources at their disposal, game designers often run out of the
space needed to distribute a large and complex game, especially when the images used
for rendering are photorealistic and the sound awesome, with thumping music and
sampled explosions. These are important ingredients, but designers might often feel,
righely, that they are saerificing something in return, This is cspecially evident in
resource-limited environments such as we find in the handheld and console marker.

One example of 2 huge and complex game is Elite. This pame was originally writ-
tens by Diavid Braben and Ian Bell for the BBC Model B computer in 1980. It has
since been pored o all home compurer formars and is still as widely played now 25 in
its heyday. The original game ran on a machine with 32KB of memory {16KB ROM
and 16KB RAM), bur it still boasted a depth of play that has yer to be marched: near-
infinite planers, each with names and individual characrerisrics.

This arricle is 2 study of a technique that cin be used wo provide the depth of play
that the audience deserves, even in limited-resource environments, such as thar faced
by the original Elite, without sacrificing any of the other vieal ingredients thar make
up the perfecr game.

Predictable Random Numbers

The underlying principle of this technique is that, to provide the illusion of infinity in
3 game universe, we need to satisfy two conditions of resolution, These we can term

133

Section 2 Mathematics

mdere-infinite and micro-infiwite, The first relates to the size of the universe in ques-
tion, or the number of discrete entities. The second condidion indicates the level of
dezail that cach object supports, We shall sce in the course of this anicle how both of
these conditions can be achicved using the same underlying technique.

To avoid the storape of vast quantities of level dara thar will never satisfy the reso-
lution requirements we have identified, we need to be able to generate the universe in
real time, from the point of view of the player. Mot only that, bur this universe must
also have the same appearance cach time the game is restarted or played on a different
platform or machine,

In order wo simplify the isue slightly, we can assume thar each objecr in the uni-
VETSE is rxprr.:ssr:d by its placement within the universe and a ser of properties that
indicate how it is o appear to the player. Each objecr can alzo interact with the player,
which we discuss later in the armicle.

By way of example, ler us consider as game universe a simplified model of our
own. That is we have a conminer objecr, the Galaooy, which conrains a numbser of
atars. At game time, we would like o populare cthe Galaxy wich Srars in a fashion thar
is both repearable (it always “looks™ the same from the player’s perspective) and can-
tains enough planets ro provide a reasonable illusion of infinity.

To achieve this goal, we construce a series of Star objects and sct the placement
artribures of each one such thar they exist ar given points within the Galaxy. Consider
that the placement anributes consist of an x and a y coordinate, and it is obvious that
we need to generate values to place in these holders, This is where the predictable ran-
dom number sequences are used; we can use a series of generated random numbers to
provide us with coordinares for cach of the Stars.

The simplest approach is provided by the ANSI C specifications and gives us the
following two funcrions:

srand [seed)
randi(}

E‘.'ﬁ‘.l!j," time we need 2 ACMLCnCT af numl‘.-l:m, WE nl:'n:d. A twoe-stags I:L];Ii:ntil:u:l_. The
first seeds the genesator with 2 given value, which is used to propagate the sequence.
The same scquence is generated every time we seed with the same value. Thus the
sequence is repeatable, but we do not need to store it anywhere, because it can be cre-
ated on the fly. Thus we can generate a near-infinire Fl:u;}r entirely in game time,
reducing our static storage requirements beyond measure.

The following is very simple pseudocode showing this concept in action for a
given Galaxy of limited size, Assuming a possible grid of 100 > 100, we have 10,000
possible spaces into which we can place Stars. Notice that the seeding is performed
once and once only per sequence of numbers; in the following case, we are seeding on

galaxy number 1:

srand (1)
for galaxy x = 1 to 100

2.0 Predictable Random Mumbers 136

for galazy v = 1 to 100
probapility = rand{] % 100
if probability = 70 them
universe {(galaxy »,.galaxy y) = star
alsa
universe (galaxy x, galaxy v} = no_star

Otbservane readers might have noticed a possible drawback- we sill nesd 1o store
the location of each Star somewhere, which requires abour 10,000 bytes of space in
Tﬂl I.EI-TL:. Th.f_'l'- Eill.". “"I.'I-IJII." e [1.3'1.'-]:' ﬂ[il:'L'.il'JE' a m]_,r_hjn: “'i.[]l IE]:I:_B ,;F R..'lI.M- 1.'_.‘.':.'.'
if it could, it is not scalable, cven by a factor of 10,

Therefore, we should refine the technique a livde. From the preceding example,
we see that there is 2 70% chance of a Star existing at a given point x . The number
thar determines this pereentage is created from a seeded sequence based on the simple
seed 1. Given thar we would like 2 near-infinite popularion, it makes more sense to
perform this caleulation on an as-needed basis, as in the following code:

int 5tarAt [(int nGalaxy, int n¥, int nY)
L int x, ¥, nReturn;

Erand (nEalaxy);
Tar (¥ = &5 ¥ == 0¥ ye+)
1

far (x = 0; % < mf; x++)

{
¥
ki

return aBeturn;

ndeturn = rand(j % MAXIMUEL VALLE;

Alternative Algorithms

Many and varied chaotic and semi-chaotic algorithms give rise 1o the kind of behav-
ior thar we wse here. This is not a mathemarics paper, and some of the advanced algo-
rithme that could be used require more procesing power than s available,
considering all the other operations that are being performed during game play, so we
shall restricr ourselves to the discussion of a simple approach.

This approach can be represented by the following pseudocode:

Choose two large integers, Gend and SenZ, such that ane
is douwble the ather

Choose a seed value that is between 1 and the =maller
of the lerge integers

Choose a velue Max that represents the highest number
that is to be returned

138 Section 2 Mathematles

For each iteration,

Multiply Genl by the seed, and add Gen2

The new seéd is remainder of this value diwvided by Max
Return seed as the randam value

This code works by first taking a repeatable sequence of numbers, which follow a
patrern with a given starting poine (a multiplication and addition) and then breaks
the pattern by taking the remainder of 2 division, This result & then used to begin a
new soquence with the same base equation. In this way, a faidy random sequence is
built up. The source code for this ssquence follows. This is raken from the Pseudoran-
dom class, whose source code is provided on the accompanying CD.

FseudoAandomizer: iPsevdofandonizer (unsigned long uldent,
unzigned long ul3esd,
unsigned long ulMax)

1
this-=ulGanl = ulGani;
this-=ulGeng = ulGanl = 2Z;
this-=ulSesd = ulseed;
this-=ulMax = ulMax;

H

unsigned long PssudoRzandonizer: :PeeudaRzndosn|)
{
unsigned long ulNswSeed;
ulliewsSeed = (this->ulEen] * this->ulSeed) + this->ulGenz;

MF Uge sadule aperator to easure < ullax
ulliew3eed = wlMewsSepd & thiz->ullax;

this-=ulieed = ulMawSesd;
return this-»ulSesd;

There is one final limitation. The largest number thar can be generated using this
system is 4.294,967.295. It follows from the previous algorithmic description that the
sequence beging 1o repeat iself after the 4,294,967.295th iterstion. This is a limita-
tion of the dara rype used, a 32-bit unsgned integer. If greater numbers are required,
it is necessary o move o a different representation.

Algorithms for Infinite Universes

So far, we have seen how we can decide an the existence of a ERMC feature at a Eivm
lecarion. We have sarisfied half owr bricf: that of mzcro-infinite resolution, Now it is
time 1o (urn our attention to the wse of pseudo-random numbers on the featurss and
detail of the game objects: micro-infinite resolution.

20 Predictable Random Mumbers 137

In essence. micro-infinire resolution is all about zooming in on a point and secing
what we find there. To take our current example, we mighr say that cach Swr is
orbited by zero or more Planets. These Planets orbit at 2 cermain distance from the
Star, They have other characteristics we cxamine laters specifying their locaton is
enough for now:

In order 1o specify these iteme, we mighr choose to add an attribute o our Star
class which gives the number of Planets, and caleulate this. The following code extract
shows how we can calculare an attribure of our Star clase, the sumber of Planers

f* Taken from hesder filg =)

clags star {
private :

int x_positicen, y_position;
int number_of_planets;

publie
Yaid SettunberOfPlanets(];

fanm

| H
/* Taken Trom implemontation file =)

vodd star::SetNunborotPLlanstsd) {
peeudorandom->geed{This->x_position + (this->x_positisn
* this->y position));
thiz->nunber of planets = pseudorandos-=generatel) % T

}

We have skipped into a slightly higher gear with this code, some of which bears
cxplaining. First, we are seeding on 2 unigue value for che Star, based on the position
given by the xand y coondinate propertics of the Star object. This means that for each
Star, we can generate values that are seeded for that particular object. Thus we reduce
the probability of kaving two identical Star objects in circulasion.

A second point to note is that we have taken the modulo of the generated num-
ber in order to limit the number of planets char may orhic this Swae. To introduce more
realism (and hence, a larger micro-infinite resolution), this code could be adapted
based on other attsibutes of the Star, such as size, intensi ty; Or proximity.

Armed with this information, we can now consider how we might use a similar
technique thar will enable us to generate a distance value for a given planet. As noted,
the important starting point is the seed thar is used to determine the features of the
object. Bearing in mind thar the seed should be unique to cach possible planer, we
raust somehow incorporate the position of the parent Star 2s well 25 that of the Planet.
The following code extracs shows a possible approach:

I* Taken from header file =7

Section 2 Mathematics

class plamet f
private :

int distance from star;
public :
void SetDictanceFronStar(int planat_number,
int star_x_position, int star_y position);

};
1* Taken from implementation fils *f

void planet::SetDistanceFronStar (int planet sumber
int star % pesition,
int star y pasitism) {

psevdorandon->seediplanet_mmber + (star_x_position +
{star_x_position * this-»star_ y_position))):
this->distance_from_star = pseudorandon-=genarate() % 20;

}

So, we have cffectvely “zoomed in" from Univesse wo Sear o Planet, as far as spec-
ifying positions is concerned. To complete the backdrop (and our discussion of
micro-infinite resolution), we should stare to add properties using more sequences of
predictable random numbers.

The key to this next stage is the abiliry to isolate for a given object in the universe
a set of actributes that describe the object. After we have done thag, it is necessary 10
decide on the representation of these anribures, given thar a constant stream of ran-
dom numbers is available.

Each of these attributes may in itsclf be an object (a5 Planet is to Galaxy is to
Universe), with propertics of irs own thar can be set in a similar way, by seedingon a
unigue reference. For the next example, we shall assume that we require a map of the
Planet object and thar this map is represented by a simple grid into which we can
place other objects. The whole code for the Universe, Galaxy; Planer, and Map
objects is contained on the CD thas accompanics this book. The pseudocode mighe
look like chis:

ff Define the map Size (side x sida)
map->prid side = pseudorandon-=generate() % 100

[Place an object on the map for a given position X,y
pseudorandom->seed | (map.>grid side * y) + x)
map-=grid sguare(x,y) = pseudorandom-=generate() % 2

(The modulo value 2 could be mken to mean that 0 is warer and 1 is land, for

example.)

2.0 Predictable Randam Mumbers. 138

In the preceding examples, the seeding has been omirted, As can be seen from the
sl.lpl:llil.‘d code Eﬂmp]cs, the seed is generated on ﬂ.liﬂbjfﬂf-l!}'-ijhjm basis ar instand-
ation of the object. In fact, the supplied code also siores a number of acribures wsed
o generate the seed. which have been omitted here for the sake of brevity.

It can be proven from watching the ANSI srand and rand funcrions working
together char there is more ro choosing the seed than first meets the eye. Earlier, we
proposed:

grand (x_position + (x_dimension * y_position))

where the generator is sceded on the unique reference generated for the point (x, y)
based on the dimension of the target conminer. However, repeated runs using srang
and rand show thar this method produces a result that is far from chaotic. (See the
article “Real-Time Realistic Terrain Generaton.” which contains a figure shawing a
patrern that is a result of using this technique with the ANSI generaror.)

The CD that accompanies this book contains the entire code for the Preudaran-
dom class, but the following algorithm, which can be used for seeding the generator
properly using just the ANSI functions or used along with the Pseudorandom class
irzelf, is worth repearing here:

srand [y_position)
¥ = ¢ positien
while x = 0O
rand(}
X=N -1

The next call wo rand yields the required number, which can be considered the
first in the ensuing sequence,

Conclusion and Future Developments

In this article, we have seen how we can use macro- and micro-infinite resolution
techniques, propagated by sequences of pseudo-random numbers, seeded on a unique
object reference. These techniques enable us o creare near-infinite game universes
within the consteaints of a limited-resource environment, by run-time gencration.

Dievelopers may choose t use this informaron "as ™ or enhance it furcher. For
example, events can also be approached in the same way, seeded on the play hiscory, or
in real nme. This technique would ensure that if a fire occurred at a @vern ara given
point in ume (possibly in connecrion with actions made by a player), we could pre-
dict when it would happen and thus ensure thar it took place at the same time in each
EAIMme ssssion.

The key 1o successful use of predictable random numbers lies in the judicious use
of the seed in parallel with the object propertics and play state,

140 Section 2 Mathematics

References

Lecky-Thompson, Guy W, “Algorithms for an [nfinite Universe,” Gamarstr, avail-
able anline ag www.gamasutra.com/fearures1 999091 7/infinite_01.hrm, Sepren-
ber 17, 1999 containg a demmiled discussion of the effects that can be achieved
using this rechnique.

interpolation Methods

John Olsen

Have you ever wanted 1o have your program move something from one lacation o
another gradually over time? There are dozens of ways to do thar, with varying
degrees of flexbility and varying CPU requirements. Four of these methods are dis
cussed in this article, giving derils on how each method behaves:

* Frame-rate-dependent ease-out using floating-point march
* Frame-rate-dependent ease-out using integer math

* Frame-rate-independent linear interpolation

* Frame-rate-independent case-in and case-out

All these methods share some common ground. You start az a specific painr, you
want to be at some other point, and you might or might not have a time limir in mind
for how long it should rake to ger there. The source and destination could be any
numeric value or combinarion of values. For instance, they could be a temperanse,
altitude, 30 position, a direcrion or velocity vector, or any number of things. The
mnterpolation is meant simply to ke you from one value to another along 2 smooth
path of some sorr.

Should you want to perform these interpolation methods on a vecror, for instance,
you apply the algorithm to each component of the vector separarely.

Frame-Rate-Dependent Ease-Out Using Floating-
Point Math

This methoad behaves in 2 frame-rate-dependent manner, so it behaves differently if
called at 10 frames per second thin it does ar, for instance, 20 frames per second. This
means that you want to wse this method only if accuracy is not your prime concern,

The concept behind this method is that you want to compute a weighted average
of the current value and the desired value, with a heavier weight on the current value.
This can be done with Equation 2.1.1. The new x valuc equals x,, the original value,
multiplied by a weighting factor, added to the final destinarion x value, The sum i
divided by the total weights to properdy preserve the scale. The resulting x s used as x,
for the next pass through the equartion.

141

Section 2 Matheamaties

x = (x, * (weight — 1) + x,) | weight (21.1)

The weight must be a value greater than one o get the expected behavior from
this equarion. Higher weights make it take longer to reach the desired posidon. This
generates a smooth curve, as shown in Figure 2.1.1, which shows how the value
changes rapidly ar first, then sertles roward the destination value as it approaches,
which is called are-ozer.

The sample Cov class thar can be used for floating-poine ease-our interpolation is
named EEaseOutbividelnterpolation and can be found in Lisring 2.1.1. You call
Setupi) when you are beginning an interpoladon, passing in your starting and ending
values and a scale factor that controls how quickly the interpolation occurs. With each
pass through your real-time loop, you call Interpolate() o do the work, then cll
GetWalue() to retrieve the current interpolated value. Interpolare remirns TRUE when
the interpolated value is no lenger changing, indicating you are as close as you are
going to get to the @rget. With this floatng-point cede, it could ke a very long time
to reach a steady stare.

Frame-Rate-Dependent Ease-Out Using Integer Math

This method is very CPU friendly becanse it uses no division. This method is more
important on console systems or older hardware with limited foating-point support,
It works fast but has some restrictions on Aexibility, even compared with the previous
method.

O E -

keraions

FIBURE 2.1.1. Floating-point sxss-our.

2.1 Interpolation Methods 143

The process of building a weighted average using integer math has some interest-
ing side effects. The rate of change tends o stick at specific levels during the interpo-
lation, and you are likely to never quite reach the destination peint due to round-off
errors. Equarion 2.1.2 shows the modifications used. The values for (2= 1) and mare
things you want to hard code for speed, which gives a form similar o Equation 2.1.3,
where “>=" represents a shift operaror, as in the C language. The computations have
some difficultics with round-off, as shown in Figure 2.1.2, which is much less smooth
compared with Figure 2.1.1 and the floaring-point method.

x=(x "2 =-1)= Xp) 2> m (2.1.2)

x=lx,*7+ xf) == 3 (2.1.3)

Even with the less-than-smooth curve, this method is very useful for larger values.
Tt rends e work well with fixed-point math, where some pumber of bits in vour inte-
ges value is defined to be the fractional portion. For instance, 2 32-bit number may be
thought of as 20 bits for the integer poreion and 12 bits for the fractional pottion. To
convert from the integer represenration to the fived-poine representation in thar case,
you divide by 4,096, Increasing the scale in thar way allows for much smoother
behavior, resulting in a curve more similar to the one shown in Figure 2.1.1.

Listing 2.1.2 contains a sample Ces class called CEaseoutsShiftInterpolation
that can be used for integer-based ease-out interpolation. You call s2tup() when you

O B =@ e

FIGURE 2.1.2. Tntcger eass-our

Section 2 Mathematics

are beginning an incerpolation, pawing in your starting and ending values and a shif
tactor that controls how quickly the interpolation accurs. With cach pass through
your real-time loop, you call Interpolate(} o do the work, then call Getvalue() to
rerricve the current interpolared value, Interpolate(} remrns TEUE when the interpo-
lated walue is no longer changing, indicating you are as dose as you are going to ger o
the target. With the integér-based code, this will likely happen before you actually
reach the desired rarget.

Frame-Rate-Independent Linear Interpolation

In the case of a linear interpolation, you want 1o compute an ideal velocity ar the
beginning of the move and simply apply thar velocity each frame. This method gives
a straight line when charted, as shown in Figure 2.1.3. A bit of cnmry-level physics
shows how o ger that veloeity in Equation 2.1.4. If you are messuring x in feer and
in seconds, that gives you a velocity in feet per second.

v=(x—x)l¢ (2.1.4)

Next you need ro apply thar velociry 1o each frame. To do this properdy so thar it
s frame-rate independent, you need to know how long the frame ok, Once you
have thar time per frame, you can calculate the change in position, using the already
computed velocity, and add it ro the original value, as shown in Equation 2.1.5. Ifyou
take a shoreeut and calculare the velacity as distance per frame instead of distance per
second, you loge the frame-rare-independent fearure but can gain a livde dme by
avoiding the multiply in Equarion 2.1.5.

.x‘=x,+.rj.-‘:-' [2.1.5]

"The sample C++ class thar can be used for linear interpolation in Listing 2.1.3 is
called eLinearInterpolation. You call s2tup() when you are beginning an interpola-
uen, pasing in the starting and ending values and how long you wane it 1o take to et
there, With each pass through your real-time loop, you call Interpelate() with the
length of time you want to process, then call Getvalue() to remieve the current inter-
polated value. Interpolate returns TAUE when the specified rime has expired and you
are at the desired rasget point.

Frame-Rate-Independent Ease-In and Ease-Out

Now we're getting to the point where a lirde mare background in physics comes in
handy. In order to produce a proper ease-in and ease-out, we need o begin with a zero
velocity, speed up ar a constant acceleration ro some maximum velocity at the halfway
point, then slow back down to be ar a zero velocity as we arrive at the destinarion
point. This process is shown in Figure 2.1 4,

24

Interpolation Methods 145

-I'I-El—m.q:

ltemations
FIGURE 2.1.3. Linear interpolation,

The firse step is to caloulare the aceeleration required. The acocleration is simply
inverted for the second half of the trip. Any physics rexr should give you the necessary
math, shown in Equation 2.1.6. We need to solve this equation for accelerarion. We
WAL to start at zero velocity, with x representing the average of the st and end
points rather than the final destination, which gives Equation 21,7,

x=x,+nl,r+é-¢r1 (2.1.6)

e 1[1’: .'I!'E] [11_?]
r

Cince the aceeleration is known, you need to apply chat aceeleration to cach
frame. This method is similar to the way it was donc in the linear interpolation in thar
you must take the time per frame ino account. To start, the velocity is zero. At each
frame, it is derermined whether you are in the first or second half of the trip so you
know whether o accelerate or decelerare. The velocity is incremented or decremented
by some amount using Equation 2.1.8, then the velocity is applied to the position, as
shown in Equation 2.1.5, the same as in the linear interpolation version but with a
velocity thar changes each frame. This velecity should be very near zero by the dme
you expect to be ar the destinarion poine, but it might not be an exact march due 1o
round-off errors.

r=p +ar (2.1.8)

146 Section 2 Mathematics

B e —E e

Herations
FIBURE 2.1.4. Eass-in and eass-our

The final sample C++ class for this article is in Listing 2.1.4 and is one that can be
used for case-in and ease-our interpolation, named CEaseInOutinterpolation. The
interface is identical o the linear interpolation class, which makes it convenient to
swap one our for the other when resting. You eall Setup() when you are begjnning an
interpolation, passing in the starving and ending values and how long you want it to
take to gee there. With each pass through vour real-time loop, you cll Interpolate()
witch the length of rime you want o process, then cll GetValue() to retreve the cur-
rent interpolared value.

Danger Zone

There are some things that you need to be very careful with as you apply interpolarion
in various portions of your software. Angles are problemaric, since the naive version of
the algorithm would 1ell you that the angle halfway berween an angle of 1%and 359°
is 180% when the proper answer might be 0%, depending on how you wane the inter-
polation ro behave. You need to be carchul 1o assure thar your numbers are in the
proper ranges before interpolating angles, quaternions, or any values for which there
are multiple ways to show the same valuc.

Furthermare, when referring o the sample code, you will likely want to take the
ideas shown in the code and optimize them to meet your specific needs rather than

use the code as it is.

2.1 Interpolation Methods 147

Listing 2.1.1: CEaseOQutDividelnterpolation
Definition

clase CEaselutDividelnterpalation : CEazedutthiftInterpalation

{

pblic:
bool Setup(float from, Tleat to, float divisor)
I

if{diviser <= 0)
{

}

_walue = from:
_target = to;
_divigor = divisar;
return true;

return false:

}
bool Interpolate() [/ Hote: Mot time dependent.
i
Tlocat eldValee = walug;
1t (_divisor = 0]
i
_valus = | walus = [_diviear-1.0f) +
_target))/ _diviser;
}
f7 Mot likely to be true very often.
réturn [_value == gldvalue);
¥
TloAat GetWYalua()
{
return _walue;
1
private:

float _wvalug;
float target;
tloat divisor;

Listing 2.1.2: CEaseOutShiftinterpolation
Definition

clags CEaspOutShiftInterpolation

i
pubilic:

beol Setup(int from, int to, int shift)

if(shitt <= 0)
{

}

_value = from;
_target = to;
_shift = shift;

return falge;

148 Section 2

Mathematics

return true;

}
boxl Interpolate() // Mote: Mot time dependent.
i
int oldvalue = _wvalus;
iT{_shift > 0}
1
_walug = [_walugs * ({1 =< shift) = 1) +
_target) == _shift;
¥
Al lots more likely to be trug than with Tloat version,
return [_value == gldValue);
1
int GetValue()
{
return _value;
1
private:

int wvalug;
int _tarpet;
int _shift;

Listing 2.1.3: CLinearinterpolation Definition

clage ClinearInterpolation

i
public:
baol Setup(float from, fleat to, flpat tima)
{
1f{ting = 0)
{
return falsa;
H
_remainingTime = tipme;
_value = from;
_step = (to-from)/time; [/ Calculate distance per second.
return trus;
}
Il Return TRUE when the target has been reached or passed.
boal Imterpolate(flost deltaTime)
{
_remainingTine -= deltaTine;
_valya += _step*deltaTing;
return {_remainingTime <= 0);
¥
Tloat Getvalue()
{
riturn _value;
[
private:

fleat waluse;
float _step;
float _remainingTine;

21 Interpalation Methods

Listing 2.1.4: CEaselnOutinterpolation Definition

class CEaselnfutinterpolation

{
public:
beol Setupifloat from, float to, Tloat time)
i
if(tima <= 0}
i
return Talsge;
}
_valua = from;
_target = to;
_speed = O.0F;
£ derived from x=x0 + wh*t = aegst/2
_acceleration = [to-Trom)/{tine*tima/4):
~remaliningTime = _totalTime = timg;
return true;
bool Imterpolate{float deltaTims)
{
_remainingTine -= deltaTime;
1T [_remrainingTine < _totalTimg/2)
i
I Degeleration
_Bpeed -= acceleration * deltaTime;
1
alsze
{f Acceleraticn
_Speed 4= _goccelaration * deltaTims;
H
_wBlue 4= spead*deltaTine;
return {_remainingTime <= 0);
}
float GatWalue()
{
return _value;
)
private:
Tloat walug;

Tloat target:

Tloat _rempiningTime;
Tloat _totalTima;
Tloat _spied;

Tloat _acceleration;

Integrating the Equations of
Rigid Body Motion

Miguel Gomez

This article is intended a5 a mutedal on the theary and practice of simulating ngid
Body mation. The Newron-Euler equations of motion are derived, and some simple
numerical integration methods are given, The reader is assumed o have raken col-
lege-level introducrory courses in classical mechanics, linear alaebra, caleulus, vecror
analysis, and differential equation theory.

Kinematics: Translation and Rotation

150

In order to derive the differential equarions that describe the motion of 2 rigid body,
we need to lay some groundwork. Firse off, let’s give ourselves a fixed coordinare frame
with respect to which all eur dynamic variables can be specified. By a foved coondinare
Jrarne, we mean three linearly independent veetors (the basis) and a reference position
(the origin) that is nor translating or rotaring (an inertial frame). Lev's be easy on our-
sclves and use munually orthogonal unit vectors for our basis (an arthonormal basir).
Wee call this fived frame the world frame, or world space. Any point in space can be
specified with respect 1o this coordinare frame by three numbers, as shown in Figure
22.1.

An independent picce of marter the volume of which is negligible is called a par-
ricte. When the volume of a piece of matter becomes significant, it is called a bady.
The amount of matter in a particle or a body is its mas, and the amount of mass per
unit volume is its denstry. In general, 3 body can have any shape and even deform aver
time. If the mattes inside a body is distributed unevenly, it has mom-uniform density.
Mo marrer how 2 body’s mass is distributed, at any instant in time there is 2 point in
space that is the center of miaw of the body, ... The position of the center of mass is
calculared with a weighted sum of every mass element, m, in the body:

Sra E'.—'m;

r = |

Y m M

1

22

Integrating the Equations of Rigld Body Motien 151

Z A

X
FIGURE 2.2.1. Thevector r exrends from che arigin, O, w the poing P
When mass is continuously dicrribured chroughour it volume, this sum becomes
the integral:
[wotryav [eptriav
= [eoav . M

In this case, cach mass element is caleulated by multiplying a volume dement &1
by a three-dimensional density function priyk

m, = pirhdlV.

It is helpful ro associare a local coordinate frame with a body, For our purposes,
the best choice for the origin is r, which we can rake 0 mean the position of the
body. Our orthonormal basis R = {R?, R', R?] corresponds to the local X, ¥and & axes
of the body (Figuse 2.2.2).

Z A R-

Cem |

Hﬂ

g
X
FIGURE 2.2.2. The vectors RY, R!, R define the x, y, and = axes of the local body frame.

182

Section 2 Mathematics

It is also convenient oo think of B®, RE, and B2 as the calumng of 2 mareix B, so
rhar:

B, B K
R=|R R E
E R K

This makes it easy to transform a vecror from a body’s local space to world space, and
viCe Versa:

Voou =By and v, = Rrv“r_h. {since RT = R for an

orthonormal basis)

Transforming a poinr is just as easy:
Gt = Ry + 10, and gy = R (g0 — 1)

If at time #; a body’s position is ry, and at time =, its position is ry (Figure 2.2.3),
then its aeengge relocity between # and #; was:

h—§ Ar
v, = ——=—,
[Ar

As we sample the tajectory at smaller and smaller time intervals, we approximare
the insantancons velocity of the particle, which is the true velocity of the particle at
any time, ¢, and is equal to the defvative of its position with respect o time:

JAr U A
v= lim —=
ar—0 Ar gy

Similarly, if its velodity changes from one instant to another, it is said to be accel-
erating, given by:
. Av
a= lim—=—,
A8 Ar gt
In addition to translation, a body can undergo rosarson, The amount of rotation
the body experiences per unit time is called its angudar pelsciey (also called retesional
welpcity), given by

where d8 is 2 very small roration (in radians) and @ is the angular velocity about the
center of mas.

2.2 Imtegrating the Equations of Rigid Body Motion 163

X
FIGBURE 2.2.3. A body moves from ¢y 10 ¢y overa time Ar= ¢, — 1,

Representing 2 finite rotation wich a vector is kind of 2 chear, Serictly speaking,
finite roations, no marter how small, cannat be considered vectors because they are
not commutarive. This means thar if 2 body were rotated abour the first axis by the
first angle, then rotated abour the secand axis by the sccond angle, it would not seces-
sarily achieve the saime orientarion as if the operations had been reversed. Oa the
other hand, infinitesfmal rotations (if you believe in them) are not order dependent,
so they can be considered vectors. This is why angular velocity can be thoughe of as 2
vecoor [Chowa5].

If a vecror £ is rotating at 2 constant angular velociry, then its time derivative with
respect to the fixed world frame is:

dr dr

— = — i MmEr

de dr
IF the length of r is nor changing, chen the derivative simplifies o

Aar
—— =M Xr.
o

Llsing this relationship, the dme derivative of R is;
it
dr

where the antisymmerric marsis-

i B,

0. =,
w=|low 0 -o
—@ g D

164 Section 2 Mathematics

takes the place of the cross product [Baraff972).

Dynamics: Forces and Torgues

Newton's first law of motion states that a body remains stationary or mainesins 2 con-
stant velocity unless acted on by an external force. This i also known as the law of
conservision of linear momenrure, The linear momentum vecror, p, of a body is cal-
culated by multiplying its velocity, v, by its mass, m:

P = wv.

The ratc of change of momentum with respect to time is equal to the sum of all
the forces (the mer force) on this body:

- WE T
F. 2 F Tl = ma

When a body is moving relative o a point of reference and it morien is not
directly woward or away from thar point, it is said 1o have angular momentum with
respect to thar point. The angular momentum vector, L, is defined as the eross prod-
uct of the position vector r and the lincar momentem vector p. The vecrar L is there-
fore orthogenal to both rand p (sec Figure 2.2.4).

When 1 force aces to change angular momentum, it is said 1o cause a fongue, The
time derivative of the angular momentum is equal 1o the net rorque on the body:

o
HE=EN,=f=IEﬂJ=rHF

L=rxp
Z A
p=myv

x

¥

X

FIEURE 2.2.4. Angular momentum, L, i orthogonal to boch rand P

2.2 Integrating the Equations of Rigid Body Motion 155

Special Properties of Rigid Bodies

If every element of marrer in 2 body is unable to tanshite or rotate with respect to
every other element of marter within that body, this object is called (oddly enough) a
rigid dody. (True rigid bodies don't exist in nature; every body, no marrer how siff,
deforms somewhae when disturbed or when rotating. Deformation rediscribures mass
and changes the incrtia tensor, complicating motion even firther)

Rigid bodics have a couple properties thar make their motion easier te deal with,
one of which is thar their center of mass is fixed. When a rigid body is TOLRLINE, EVEry
lirde picce of mass, m;, within it has angular momentum with respect to the center of
nass, £ The bodys wonl angular momentum (in world space) about its center of
mass is the sum of all chese infinitesimal pares:

L. = Et‘r- =P =_Z,l, ® (v),

where r; (also in world space) is the vecror from r, to mr. Since the velocity of m; is

given by:
V=4 X,
WE SN WTITe

L_= zn,rrq ®{@xr)= —E:W,r, Xir x @)= —Eﬂ-’.'.-f;"ﬂ-'-

where:
i —r Ty
By LF 0 =z
—r r 0

Substicuting and multiplying through gives:

¥ 2
m.l{n + J'-':::I T ?|_|- LT
Lgrq' — E “illrfrr._r ; {rér + ?;.::I FHJP'::'?‘::
2 !
T —mnr, mln + T)

e
>l + 1) —mrr, > -,]
3T,
= z —mr. Z i, + 1) E—m,.r*rﬁ ;
Z I Z —m=r;1rq E .l'i':l‘r- fr::- + rﬂ:}

This symmetric marrix of sums is called the fmernia renor, 1, where:

158

Bection 2 Mathamatlcs

F i
L=lir =t
B T]E

The diagonal elements are called the memenis of inertia, and the off-diagonal ele-
ments are called the produces of inerria. For rigid bodics with continuously distributed
mass, the sums can be converted o the intug,m]s:

I_ = lim E my s +12) = _[[rj + r)plndV,

m;—+1

f_ = lim —mrT, = —‘[r 3%
T Z Tl iy
and 5o on. The angular momentum about the center of mass can now be given in
terms of the inerria tensor;

L =la.

The facr that to this point, the vector £ has been specified with respect 1o world
eoordinares implies that the inertia tensor depends on the body's orientation and mist
be recalculated every time the body rotates. However, we can avoid having to resvalu-
ate the integrals after every rotation by disgeaalizing the inertia ensor. Diagonalization
of a marrix involves changing to a basis in which all the off-dizgonal elements become
zer, This basis is unique and consists of the sigenvectors of the marrix. The dizgonal
elemments with respect to this basis are called the sipenvaluer of the mamix,

In general, the eigenvaluss and eigenvectors of 2 matrix are not necessarily unique
or even real. Formnately, the eipenvalucs and cigenveciors of a symmetric matrix are
always real and mutually orthogonal [Lang87]. The normalized cigenvectors of the
inertia tensor are called the principal aver of the rigid body, and the eigenvalues arc
called the principal moments of inertia. With respect o a body’s principal axes, the

incitia tensor redoces to

I. o0
I =10 Sreeatl
[R 1

and the inregrals simplify to:
I = [[[7 + 2)pte. y. ddsadydz
I, = j” (x* # 2*)plx, y, Z)dedydz
ILi= mfr + ¥ dplx, 3, 2advdyedz

2.2 Integrating the Equations of Rigid Body Motion _ 157

where x, 3 and = are in the body's local frame. For rigid bodies, these incegrals need to
be calculated only once, and the inertia tensor in world space is given by:

1= F‘.IPRT [Baraff97al.

The inverse of I is simphy:

yhinl T
I —R];R..
where:
ki
i,
I.ﬁl= 0 .I_ 0
Iy
T
fﬂ_

Lt is often accurate enough to approximare the principal moments of inertia for a
rigid body with those of a recrangular box of constant density. Lucldly, the principal
axes of 2 box are parallel to its edpes, so the principal moments of inertia wm our 1o

b

M e M g M s o
Ji = (d, +d) 1 S (d, +d) and = (d; + d}),
where @,), and 4 are the box dimensions in x, y, and 2, respectively [Baraff97a). Far
a more complete discussion on calculating inertia tensors of irregularly shaped bodies,
see [Mirtch9a].

In crder o calculate the rotational modon of a rigid body, we need to know how
angular velociry changes with respect to time. Differentiating the original relationship
of angular velocity and angular momenmum, we ger:

- Al o e
Ne.=—=—(lg)l=—@+]—= 1 ==
i &f&ﬂ L IJ; @ % (lw) + = [Baraff97h]
which ulimarely gives:
dﬂ:t"[ﬂ,ﬁ,—mxﬂm}}
dr

We can now stare the differential equations thar describe the rranslational and
rotarional motion of a rigid body, The tanslatonal motion of the center of mass fal-
lows the relationships:

158

Section 2 Mathematics

= lFnl'.l

and rhe rotational moton is described by:

—=@'R
e

%ﬂ = I"[N,_, — ¥ ﬂm}].

Together, these equations are known as the Meacton-Enler equarions of rigid body
motion. Mow that we have thess equations, ler’s explore some simple methods for inte-

grating them.

Integrating the Equations of Motion

Given an initial position, ry, the next position of the body, r,, can be approximared
through the relation:

£ —r
I|‘r=—:r-|-l_"-:'_
e Ar

Salving for r; gives:
= By AL

This method, known as Exler fntegrarion, is the simplest method for integrating
solutions to initial value problems. The same technigue can be used to integrare the
remiining dynamic variables:

vy =v,+ iFmﬁr

R, =R, +a'RAr
@, =, + I"[TM_ - x {I-:uj]m

Unformnarely, integrating orientation in this way inroduces error, and R must
be re-orthogonalized every frame. Furthermaore, for high anpular velocities, this inte-
pration is very inaccurate, A berter way to integrate edentation is w find a romtion
“vector” by multiplying the angular velocity by the time swep:

2.2 Integrating the Equations of Rigid Body Mation 168

A8 = @ Ar.
The angle chrough which to rosce the basis is:
6 = g,

and the axis abour which to rotate the basis is-

A8
=
"The basis R can then be rotated by multiplying it by the marrix:

n=

1-2(y" +#2") 2ay— sz 2oz + 2y
M = 2xy 4 dm 1= 2(x* + z°) 2yz = Dox
2xz — 2oy 2+ 2o 1-2x" +37)

where 5 = cos(3), and (x, v, 2) = & .'u'n{%]. 50 that R, = M R, [Warr 2000],

If oricntation is stored as 2 unit quaternion, q, then:

dq 1
a7 il

where @ is the pure quaternion @.i + @j + @) The orentation can now be inre-

grated with the formula:

1
91 = 9p 'l'E'ﬂ:;‘:I:"-‘l'-"r

It is important to normalize g after each step to prevent “drift” in the solution
|Baraffi7a).

Alihough the Euler methed is the simplest way to integrate differential equatians,
it is also the least accurate and least stable. If the angular velocity gets too high, the
angular velocity grows exponentially to infiniry. A simple hack to keep the solution
fram exploding is to muldiply the angular velocity by 2 scale factor nor much less than
1 {maybe 0.999) every frame. This method works, but it has the unforunare effecs of
slowing the rotation to a stop. For discussions of maore advanced integration rech-
niques, see [Derrick97], [Gerald99), and [Hairer?3].

References

[Baraft97a] Baraff, Dravid, "An Introduction w Physically Based Modeling: Rigid
Body Simulation I—Unconstrained Rigid Body Dynamics,” available anline at
www.cs.cmuLeduf -basaffipbm//pbm_himl, 1997,

Section 2 Mathematies

[Baraff97h] Baraff, David, "An Inrroduction to Physically Based Modeling: Rigid
Body Simulation II—Nonpenetmarion Constraints,” available online ar
www,cs.cmiLedu/~barafifpbm/pbm heml, 1997,

[Chow95] Chow, Tai L., Clawical Mechansics, John Wiley & Sons, Inc., 1995,

[Derrick?7] Derrick, William B, and Grossman, Stanley L, 4 Fint Conre in Differ-
erstial Eguations with Applicarions, third edition, West Publishing Company,
1987.

[Gerald99] Gerald, Curis E, and Wheatley, Patrick O., Applied Numerical Analyeis,
sixth edition, Addison Wesley Longman, Inc., 1999.

[Hairer93] Hairer, E., Norser, S. B, and Wanner, G., Selving Ordimary Differential
Egquarions I: Noneiff Problems, second edition, Springer-Verlag, 1993

[Lang87] Lang, Serge, Linear Algebra, third edition, Springer-Verlag, 1987,

[Mircich®6] Mirich. Brian, “Fast and Accurate Compuration of Polyhedral Mass
Properties,” fournal of Graphics Taolks (vol. 1, no. 2): pp. 31-50, 1996,

[Warr2000) Warr, Alan, 30 Compater Graphics, third edition, Addison-Wesley, 2000.

Polynomial Approximations to
Trigonometric Functions

Eddie Edwards

The way we approach specific prollems changes as hardware evolves. Take, for exar.
ple, the trigonometric funcrions sine, cosine, and arctangent. It used to be thar we
would never even dream of caleulating these on the fly; we would use 2 rable lookup.
Using a table has its drawbacks—quantization errors being the main problem—but it
is very fast. Or ar least, it used o be.

These days, CPU speed seems to be increasing much Faster than RAM speed.
True randam access is particulacly slow, since many types of RAM are optimized for
cache line refills rather than individual word accesses (RORAM being a ease in point).
Meanwhile, the time it rakes a CPU to do a floating-point multiply has gone down
from more than 10 cycles o just 1 cycle in some architecrures, Now thar the CPU s
so much fster than the RAM. it makes sense to reassess ous assumprions abour mmble
lookups. We ean generally do 2 lot of calculation in the time it takes to aceess 2 single
memory location, and these caleulations do not suffer from quantization errors o
anything near the same degree. Maybe we should consider calculating values for sine
and cosine rather than just looking them up in a table.

This proposal raises the very intesesting question, “Hew?” The ubiquitous solu-
tion to caleulating complex functions is through polynomial approximation; we find
a polynomial thar approximates the function we want. We then stuff our value of x
into this palynomial and out pops an approximare value for the function, Since mul-
tiplies are so cheap these days, this looks like a very fst way 1o cvaluate the funcrion,
In the first part of this article, 1 describe in some detil how pelynamial approxima-
tions work and how wo manipulate polynomials to yous own ends.

The problem of caleulating the function is now ransformed into the problem of
finding 2 good polynomial to use as an approximatien. This s 2 search for a ser of
“magic” aumbers—he polynomial coefficients—char give good resulis.

The best-known method for obtaining these numbers is o look at the Taylor
series for the function, The Taplor serier is an infinit polynomial that is equivalent o
the function (for some range of x). IF we truncae the Taylor series, we get a finite

181

182 Saction 2 Mathematics

polynomial, which we assume to be a good approximation to the funcrion. Larer in
this article we demonstrate how Taylor series work and diseuss their imirarions.

There are alternatives to the Taylor series method that are nor so well known, The
main thrust of this article is to explain one technique, the Lagrange series, which has
some very specific advantages over the Taylor series. The Lagrange series is capable of
entirely removing certain errors in the approximation and on average gives results thar
are many Cmes MeOre ACCurile.

Paolynomials

A polynanial is simply a sum of powers of 4 variable (x), cach multiplied by a coeffi-
cient. The standard way to write 2 polynomial is as follows:

af0f « afl1["x + af2]%" + 23" "% + .. ald]“porric.d)

The numbers 4} are called the coefficienss of the polynomial. The number o'is the
degree of the polynomial. We can demonstrate these elements in Cr+:

float Poly::Evaluate(float x}
{

float powx = 1;
float s5um = O}

for (dnt n = 0; n <= d: n++)
i

sum += afin] * powx;

PO 4= X

}

retuern sus;

)

This is the most abvious and straightforward way to evalisate the polynomial with
a program, although many alternative methods exist. These alternatives rely on fac-
torizing the polynomial in seme way. I do not recommend the alternative methads,
for two reasons:

1. Factorizing often leads 1o a divide per factor, which means your coefficients are
susceptible to rounding errors (espedially in single-precision floating point).

2. Calculating using facroring has a eritical path containing all the multipliss. Caleu-
laring the simple way has a critical path conmining just one multiply and one add,
50 the simple method pipelines much better on CPUs where this is important.

For instance, one alternative method thar requires no divides is this factorization:
ol + xMallf + xNal2] + 2%23] ...}
This method is evaluated in C++ code like this:

23 Polynomial Approxdimations to Trigonemetric Functions 163

Tloat Poly::Evaluate(float)

{
float sum = afd];

for (int m=d - 1; 0 >= 0; A--)

1

Sm = sum * ¥ & afn];
}
refurn sum;

}

Note thar each iteration mulriplies against the results of the previous iteration, so
the laop cannot be broken down and pipelined. This method docs have the advanrtage
that only one accumulator register is required, so it might be 2 good choice for the
%86 architecmure’s sealar FPU,

and Range

The domain of a function is the arex over which it can be called, The range is the
range of values it returns, over its domain. You might think thar the domain of ene of
these polynomials is infinite. Not so!

When we look at the evaluation of the polynomial, we see it is the sum of terms
of the form:

afn "pewn)

Each of these reems must itself be 2 floating-poine number, so cach one must be in the
range of a floar, which is approximately 0 w 24127 (ignoring sign, and assuming
IEEE single-precision formar).

If we rake the base-2 logarithm of this palynomial, we gel:

fog2(afn] * powfen)) = log2fafnl) + n bog2ix) < 127

which gives us a series of inequalitics char lop2(x) must obey. Cuire dearly, this is not
infinite! For instance, if the degrec of the polynomial is 10 and the value of all the
coctlicients is 1, we have:

logdi) < 12,7

giving an effective domain on x of —6000 o 46000,

The range of a funcrion is often well known. For instance, the range of sine is
~1.0 to +1.0. The range of other functions is infinite; for instance, tangent gets larger
and larger as its argument approaches 90 deprees.

We now come to a dassic numerical aceuracy problem. Suppose we want to cal-
culare sin(GO00.0) with 2 10th degree palynomial From the domain analysis, we
lnow that the Hoaring-point terms will become very large—up 1o just under
22127 —but we know that the final result s berween 1,0 and +1.0. The Sinal resule

164

Section 2 Mathematics

comes from the final sequence of additions, and since cach number added is very
Large, they must all jrsr cancel out to give the small numbers expeceed.

Unformmarely, the single-precision floating-point format stores only 23 bits of
precision, which means thar for numbers as large as 24127, there is no precision at all
in the range 0.0 1o 1.0. In faex, the lowest bit has value 20104! 5o we can expect to
bave emrors of the order of 24100 in a value thar is of the order 1.0, which is as good
as saying we have no idea whar the answer is (In fact, it is like saying, “Although [
know my keyboard is on my desk, my calculations tell me it is acmally on a small
planer somewhere in the vidinity of Berelgeuse.™)

It rurns out that this is not a problem for sine and cosine, since they are periodic
functions. [f you need to know sin{6000.0), you can subtract 2°p4 repeatedly unil it is
in a better range (—pf o +p7) and then apply the polynomial. A fast way 1o do this is

% Fl:‘:-”mr.-.';

Muluply the value of x by 63336/27p4.

Cast x to an integern

Shift it left 16 birs (on a 32-bir processor).

Shift ir righr 16 birs, arichmerically (o extend rhe sign).
Cast x back ro floar.

Mulriply che value of x by 2*pila5536.

o by I P

This method gives the correa vales of x berween —pf and +pé, with 16 bits of resolu-
ton.

You may wane o work exclusively in the number system obrained after Step 3,
where all the significant bits are ar the top of 2 machine word. This formar is a fixed-
point formar representng the number of mums, with 32 bits of fraction and 0 bits of
integer, s0 if you add owo angles wpether you ger the expecred resulr withour any
modulus operation (in effect, the finite word lengrh of the compurer does the modu-
lus operation for you).

This unit of measure is called a rearion, although in my experience every com-
pany gives the unit a different name, chosen as the most confusing term posible!
Since the number is the number of roations, stored as an unsigned 32-bit fraction in
fxed point, the name rofation scems to be the most suitable.

It is usually most efficient to convert between radians and rotations only when
you need 1o use radians and 1o use rotations the rest of the time.

Changing the Damain

The P-chfdiﬂ.g Eﬂlnlp-!t shows how we can du:ngll: the units nF Ly E.j.ni;l.']un. For
instance, the sine funcrion takes radians, but by pre-multiplying by 2%p865536, we
can make it take rorarions as a signed 16-bit fmction (5,15, 1:0:15).

We can, in facr, change the units of our function intrinsically by changing the
pelynomial coelficients. Suppase we have a function that takes radians, but we want
it 1o take degrees. We could just do the following:

23 Polynomial Approximatisns te Trigonometric Functions 1685

Tioat sult = (2.0 * pd) | 360.0:
return Sinefoly::Evaluate(x * pult);

Or we could rewrite Evaluate:

float Poly::Evaluate(float x)
i
flaat mult = (2.0 = pi) | SJED.0;
float powx = 1;
float pownult = 1;
float sum = 0;

for (Int n = 0; n <= d; m+)
i
EuR += &[n] * powx * pownuli;
powy *= %}
powmult *= mult;
X
}

Mow here’s che wrick: We replace each afn/ with afn/ * powwmnlt according o chis
code, and then we ean use the original code to evaluare the function with the new
units, 5o we do the following:

vold Poly::Changelnits(fleat old_unita, float new_unite)
i

Tleat ault = old_umits [new uwnits;

float powmult = 13

far (ERt n = 03 m <= d; mt+}
i
afn] *= powmult;
pommult *= pult;
i
H

This methad, of course, works only if mew_units is not zero.

Be very careful using this technique. If the new range is too high (and 360 prob-
ably is), we get the same exponent problems we looked at in the last section. This
method cannot be used 1o create a polynomial that directly takes signed 16-bir frac-
tional retation values, since the evaluation will averflow: Howeewer, it can be used 1o
change 2 polynomial’s range slighely. by a factor of up o around 4.0, depending on
the polynomials degree.

We can abo add an offser into the domain, bur this process is much more
invelved. It involves substituring che value (x + off) into the pelynomizl in place of =,

For instance, substimuring (x + 2) for x in the polynomial (7 + =) gives (1 +
(=2} 5x+2)), which simplifies to (7 + 4% + x™x). Therefore, the valus of poly ar x =
{is 10, which is the value of the old poly arx = I + 2 = 3, This replacement is redious
it done by hand; the methed 0ffsettonain(} on the CD thar accompanies this book
can be used vo do it mechanically.

Sectlon 2 Mathematics

If you do want to change the domain, we recommend you simply do it to x by
hand before inveking the polynomial evaluation method. This method adds ane or
two cycles 1o the ovaluation, but it is highly robust and very easy.

Changing the Range

Comparcd with the domain, the range is cosy to deal with, and the resulrs are jus
what you expect. To change the ourpur units of a polynomial, simply multiply each
coefficient by the factor, as follows:

woid Poly::ChangeOutputUnits({float old_units, Tloat new_units)
fleat nult = new units / ald units;
for {dnt n = 0 n <= d; nes)
: a[n] *= mult;
}
This solution works, since:
msds (O + alll%% v af2[%% +) = el *af0] + mesdeal 1% = okt 220 %" + ...
To offset the outpur, simply add the offset o &0}, since:
affier + afl] + afl]% + ... = {offiet + afO]) + all[*% + ...

So, you can change the range of a polynomial incrinsically and at zero cost w the
final evaluation procedure.

Even and Odd Polynomials

When you come ro manipulating polynomials on the computer, you will find thar
many coefficients become very small—c.g., 1.546 * 2A-80. You may well ask, “Is this
the comect coefficient, or should the cocfficient acrually be zero?” The answer ro this
question comes from the analysis of even and odd polynomials.

An even function is one where:

J==) = fix)
Thar is, ies graph is symmetric abour che line x = 0. An odd function is onc where:
f=x) = (%)

That is, its graph is anti-symmetric. In rigonometsy, sine is an odd funerion, and
cosine Is an even funerion,
Mo all functions are either even or odd. For instance, (% + 1) is neither.

23 Polynomial Approximations to Trigonometric Functions 167

A polynomial is made up of sums of the functions 1, x, ¥, ™", ctc. Each one
of these basic functions is either odd or even.

=1 &EVEN
x = —{—x) & ODD
2% - (=x"x) ir EVEN

x0T =~ =) e DD
T
xhm is EVEN if n is EVEN, and ODD if'n i QDD

It should be reasonably dear thar if 2 polynomial conmins all even powers of =,
the polynomial itsclf is even, and dyat if it contains all odd powers of ¥, the polyno-
mial iwself is odd. (This is where the terms even and sdd come from in the Grst place.)
If 2 polynomial contains some odd powers and some even powers, it is neither even
nor odd.

Now the important poine: If a polynomial approximazes an even funcrion, the
polynomial itself should be even. Its no use if your polynomizl says that sinfi) doe
not eqpual —sin(—x), because it does!

[f you can tell by analysis that a coefficient should be zero (oven ifa program rells
you the coefficient is 1.546 * 24-80), you should st it to zero. This is the correct
value, and the bogus non-zero cocfficient is the raule of floating-point rounding
crroes. Leaving the incorrect value in could lead to unexpected resulis.

This implies that if the funetion is oven, 4/ is zero whenever = is odd: if the
funcrion is odd, &R/ i= zero whenever # 35 even, If you have a supposed polynomial

approximation o sinfx) that has 22/, not zero, you know the approximarion is
wrong.

Taylor Series

The Taylor series has its roots in a very simple procedure we can use 1o eopy polyno-
mials, which is based on the simple marhemarical operations of evaluation and differ-
cotiation. We have seen evaluation already; now we must look ar differentiation.
Fortunately, differentiarion of pelynomials is quite staightforward.

When we differentiate a polynomial, we ger:

afI] + af2]*2% + af3]*3%% + afd]™% %% + ... + ald]*d powix. d-1)

Each coctficienr is multiplied by its power, and then the power is reduced by one.
This process can be deseribed a5 3 method:

vold Moly: :Differentiataq)

188 Section 2 Mathematics

for {(int A = 1; n <= d; n&+)
a[n-1] = a[n] * n;

¥

afd] = @;

£f (d > 0) d--3
1

Note that the derivative of the polynomial 20/ (degree zero) &5 0 (also degree
zero), which explains the “spedal case” lines of code in the preceding example.
Let’s differentiate again, which gives:

af2]*2 + af3]"3%2% + a4 4" 3% + ...

Each time we differentiare, the degree of the polynomial goes down by onc. Mow
look ar a/w//0f at each stage. (Here, the first array subscript denotes the number of

differentiations, starting with zero differentiations):

a0 = af0]
alljfd] = af1]
af2][0] = 2%a[2]
af3][0] = 3°2%a{3]
af4jfa] = 4732 af4]
afnj{0] = n! * afn]

Each coefficient is rorared in murn inco 20, and mulriplied by =",

We can obtain af0 from the polynomial object by calling Evaluate(0); by clling
Differentiate(), we can roware cach coefficient inro 2/@. So, by calling both fune-
tions, we can take the polynomial apare:

wold Poly::CopyPoly[Poly* p)
i
float nfact = 1;

d = 0;
aj0] = p-*Evaluate(d);
p->Differantiste|):

while (ip->IsZsrof}]
é++1
nface *= d:
a[d] = p->Evaluate(0) / nfact;
p->Differentistel);
1
}

I=sZero() is the funcrion that tells us if the polynomial is zero everywhere (i.e.,
Evaluate(x) = (L for all x):

23 Polynomial Approximations to Trigonometric Functions 184

bool Poly;::@sZerof)

{
return ({d == 0) & [a]D] == 0));

¥

The important thing to note here is that we created the new polynomial from the
old polynomial only through its operations IsZero(), Evaluate(), and pitferenti-
ate().We never dincctly asked for cither the polynomial’s degree or for any of its coef-
ficients.

This point is interesting because in mathemarics rhese three operations make
sense for a vastly wider class of objects than just polynomials. This wider class is rech-
nically known as mfinirely differensiable fincrions and includes all the funcrions with
which you are most likely o be familiar. In fact, only strange functions such as true
fracrals and the Dirac delm function (which conrains an infinity at x={J) give prob-
lems in practice. The other cliss of funcrions thar give problems are those with
discontinuities or sharp corners (which are equivalent ro discontinuities in the dliffer-
entiated function), but we look ar some ways to deal with these functions later,

In tl‘::lj&l.‘.lﬂurilfn‘[fd :cnninnlng}r. the class Poly s irself 2 subcless of Biffarentizbla-
Function, wiich has virmual methods IsZero(), Evaluate(), and Differentistal).

This is how Taylor series are calculated—or racher, lhow the sulbsst of Taylor series
ﬁl |ﬂ'|l "Ta].r|-::|r SCTICS ﬂp]ﬂdfd il'h:,:ll.rl; x = (1" 15 caloulared. Thg ruuu“li_ng funcricn cal-
culares Taylor series in their Rl glory:

vold Poly::MakeTaylorferies(DifferentiableFunctign® T, Tloat pt)

1
float nfact = 1;

d = 0
af] = f-=Evaluate(pt);
fo=0ifferentiate(};

mhile [IT-=I&aZera(]]
i
dee g
nfact *= d;
afd] = f->Evaluate(pt} [/ nfact;
F->Differentiatal];
¥

Of FeetDamain(pt);
}

This tuncrion caleulates the series for % — pe) and then offses the domain to
match. You may ask why you would use valucs of pr other than 0. The answer is that
some functions have no well-defined value at x = @ (e.g.. Lix is not defined there), so
we move away frem that specific poine w prevent problems wich infinities.

170 : Soction 2 Mathematics

Ezample: Sine and Cosine

The derivarive of sine is cosine, and the derivative of cosine iz —sine, o we can use
function poineers wo define the class Trigrunction thar behaves like these two:

class TrigFunction © public Differentiablefunction

1
punlic:
TrigFunction(} { fptr = sin; =ign = 1; }

Baal Isfero() { return falsa; }
float Evaluptei{float ®x) { return sign * float{fptridoubla(x)il; }
float Differentiate()

if (fptr == sin)

fpir = cos;

}

alea

{
fpr = 5in;
sign Gign;

}

}

private:

double {*fptr)(double); ff stdlib sath function sin or coe
float sign; {f sign of function —1 or +1

i

Unfortunarely, although the MakeTaylorserios function accepis an object of this
class, it never recurns, because the derivative nover becomes zero. Houston, we have a
problem!

There are several ways around this dilermma;

1. Specify the maximum degree of the polynomial thar MakeTaylorSeries will
FETLLrm.

2. Specify the minimum coefficient value. Since the cocfficients are “probably”
going 1o ger smaller and smaller, since #/ gets larger and larger, we can terminare
the routine once the last coefficient i too small,

The first way is guaranteed 1o work; the second way might seill Gil. Why? Because
the coefficients might ser ger smaller and smaller. The mathematical analysis of this
concept is beyond the scope of this article, bur you can rest assured thas mast functions
you will deal with wilf kave coefficients thar ger smaller and smaller. Nevertheless, you
should always set a large limir an the degree, just in case.

2.3 Polynomial Approximations to Trigonometric Functions i71

Truncated Taylor Series

The Taylor series for sine was a polynomial of infinite degree. Which is a shame,
because we can only evaluare (or even store) a polynoemial of finite degree. In fac, for
1 garne. a small degree is quire desirable,

When we truncare the series, an ermor is introduced {over and above the wsual
Roarting-point error) because the terms we ignore do make 2 contriburion o the fnal
ressilt. It can be shown thae the crmor increases a5 increases, which is anether good
reason o limir the domain of your polynomial.

You can analyze the error mathemavically. if you like, bur we won't go into the
details here. The best thing to do in reality is practical experiments:

1. Sample the ermors in your estimare, using the double-precision sin(} and cos()
functions to compare. Ger the average and maximum absolute ermors. As a rule of
thumb, get the error below I /. where p is the number of pixels dizgonally across
the screen. For console games ar 640 = 480, £ is around 800; for PC games ac
1,280 x 1,024 or above, p can be more than 1,600.

2. Serup alarge, slowly rotating sprite thac fills the screen. Use your sine funcrion ro
rotate it. Wasch for asifaces such as jerkiness or expanding and shrinking in size,
Ignare the harsh jibing of those who say, "Ooh, you can rotare a sprite in 2 sar-
CASLIC tone.

For single-precision floar and for a range -2 to +pil2, aking the first five coef-
ficients of zin and cos works well. This method is also quite fast on current hard-
ware—indeed, ane current vecror FPU chip actually implements this series on-chip in
microcode. However, it is something of 2 pain to use this range, since it requires some
rather tedions manipulations of the angle before the series can be wsed—a facr thar
the designers of the hardware seem o have missed,

If you extend the five-coefficient series for sine and cosine to —pf and +pi, you get
an error of around | part in 300. The unfortunate thing is that you get the following

wvalues:
sirfd) = 0.0
sinfpi) = 0.003

sinf—pi) = —0.003 {obriously since sine i odd)

This problem shows up in the rotating-sprite test a5 a “jerk” when the angle passes
From +pd to —pd, The erroris 1 parr in 300, bur this is doubled across the boundary, so
the roration vector jumps from y = —0.003 ro y = +0.003—a jump of 0.006. It is cer-
tainly noticeable at 640 x 480

With the Taylor series, there is nothing we can da 10 fix this problem excepe
increase the degree of the palynamial. However, there is more to polynomial approx-
imarion than just the Taylor series,

1 f!a Sepetion 2 Mathematics

Lagrange Series

The Lagrange series is my name for 2 type of approximation series derived wsing
Lagrange's formula. Unlike the Taylor scries, there is not one single Lagrange series for
a given function. There is instead a whole family of seres, from which we choase
based on which results we want to be exactly correct and which resules we allow 1o
wander from the correct value.

For instance, we can say that we require sin to be exacily correcr for the well-

known poinis:

sinf—pi) = 000000
sin(=pif2) = —1.00000
snf0) = 000000
sinfpd2) = 100000
sinfpi) = 0.00000

If our approximarion were exacily correct for these points, we would kaow that:

1. The size of the object would not grow when it was rotared 90, 180, or 270
degrees. It would exactly march the original size.

The sin function would pass through 0 as it crossed the 360-degree boundary,
would therefore remain concinuous ar that point, and would therefore exhibit no
jerkiness.

=

A theorem proved by Lagrange states thar for any given /N points there is a unique
(N—I}th degree polynomial that passes exacely chrough all the poines. If we calculate
this polynomial, we have an approximation thar has the properies lissed,

Suppose we want 1o find a 9th-degree polynomial for sine. We need this polyno-
mial to be unique, so we must choose 10 poins at which sine musr be exactly cormect.
This 15 unformunate, since we want to have a symmerrical point distribution abour x =
0. With one peint ar ¥ = &, we must have an odd number of points to achieve the
goal. If we pur an extra paint on one side, we couldn’t guaraneee that it would be
matched on the other side,

To get an add number of points, we use a 10th-degres polynomial. Fertunarely,
we know that sinc is odd, so we know thar «70] = 0, so the 10th-degree polynomial
is the same as the %th-degree one.

There are many choices of poine (infinitly many!), so we choose points ar well-
known values. You could instead choose poines that are evenly distribused. The only
critical points arc at =180 and +180 degrecs, since these points ensure continuiry over
the boundary and hence no jerkiness.

Maotice that by choosing points, we assume no prior knowledge of our funcrion.
We don't assume, for instance, that it can be differentiated. This can be a useful fea-
ture if, for instance, we want o approximare a sampled waveform using a polyno-
mial—but it can alse be a big problem, since we can miss impormane “fearures™ of the

23 Polynomial Approximations to Trigonometrie Functions 173

function graph. The message here is, make sure you know whar your funcrion looks
like (in other words, graph it} before you choose your data poinms.

Calculating the Lagrange Serles

The Lagrange series is obtained as 2 sum of polynomials—a different polynomial for
each point.In this exposition, our dam points are 20, 5/, and the desired func-
ton values ar these points are 30, .., y/d].

Firsz, cansider the simple polynomials:

{o = xfmf)

Each polynomial is first degree. and there are (s f) of them in eotal, The mh polyne-
mial is zero when x = x/nj and non-zero for all ocher values of <.

If we multiply all these polynomials together, we ger a polynomial of degree
(= 1). This polynomial evaluares to zero at every data point, since one of its fucrors is
zero at thar point. For instance, it is zero at «/2) because one ofits Bctors is fic — xf20)

Now, if we instead multiply aif bur one of the polynomials tegether, we get a poly-
nomial of degree of that evaluares to zero ar each dara point exzepe for the one we mized
out. This is because it does mar have a factor (x — xfm)) for the data point xfm]. The
value ar that data poine is given by substituting xfw/] for x in the product polynomial;

cfm] = (xfm] — {0 xfmf — x[T])._ (efr] — xfm—F 1 cfm] — xfm+ 1) (el — xfdl)

The next step is to multiply the product polynomial by yfmlic/m/, 2 process called
sarmalizazion. The result is 2 new polynomial thar is equal to yimf ar dara point xfm/
but is equal to 0 at every other data point. (More thar multiplying the polynomial by
ylmiefm] is equivalent 1o changing the outpur unics by that factor, as discussed car-
lies)

This concept g.i\'ﬁ us the hlliHLﬂ]_f, block for the I_z.grang: series. Lo gt the
Lagrange series itself, we need w penerace all (= 1) of these polynomials and then add
them all together. Ar each data point x/n), all bur one of the polynomials evaluares 1o
zero, whereas the other one evaluates to _an‘lr “We have therefore consmmucted Y l;u_1[_l|r..
nomial that is equal to /] at each point x/n/, as desired.

For example, suppose we have the simple three-point case:

xfif = =f
_}',I'-ﬂf = o
x=1]=0
¥if=2
.wfjj = T
w2 =4

‘The simple polynomials are (x—x/00), (x—x/1J). and (x - x/2{), which are equal to (x
+ Ly (x—), and (x = J). Lets look at dara point x/0). We mulriply all the simple
polynomials excepr {x — 2]} togecher, which gives:

174

Section 2 Mathematics

=0 "fe—I)=x%—x
We evaluate this at x/0f, which gives:
.'.'j-ﬂ'j =—J=F_(fi=2

We want #/0f to be 4, so we muliiply this pelynomial by 4/2 = 2 (changing the
output units), giving;

P e
Nowr we insere 200, %1}, and =2 1o check this our:

a0 = =] 2N=D)N=L) = 2N=0) = 4
¥l =0:2'00-2"0=0
22 = I:2*1"1-3"1 =0

%o we do indeed have zero at all the data poinms excepr the first, where the value is 4,
as expecned.

Completing the work for the other two poines gives the following polynomials
for each dara point:

0] ; 2o = 2%
] :2=2"%"x
2 2 e 2

You can check thar each polynomial is equal to yfn/ at its own data peint, and zero art
the others.
Finally, we add these three polynomials together, which gives:

PN =2 e P s DN+ P =P 2

You can quickly check that this polynomial marches the data ar every point

The member funcion MakeLagrangeSeries() on the CL thar accompanics this
book does the hard work, so you don't have to. It can be very tedious constructing a
9th-order Lagrange series by hand!

Mot that there are ereors in the results from WakeLagrangeSeries(j—normal float-
ing-point emors, a3 you would expect. The calculations are very complex and chey irer-
ate, 5o errors build up. If you are making a Lagrange series that must be cither even or
odd, make sure you ignoee the values of any odd or even cocfficients that have o be
zero. You can do this by calling the member functions Force0dd() or ForceEven().

Comparizon with Taylor Serles

For a 9th-order sine and 10ch-order cosine, we have already seen the conrinuiry prob-
lem at the 360-degree boundary. The Lagrange series does not have this problem. In
general, the Lagmnge scries gives you much finer conmmol over the fearures of your
approximation, such as continuity and specific values thar must be correcr.

2.3 Palynamial Approximations to Trigonometric Functions 175

The program on the CD (main.cpp) does 2 comparison of average and maximum
absolute errors over the range —pi 1w +pi. The difference is quite pronounced. The
Taylor series exhibits a maximum error of 1 part in 150, with an averape error of 1
part in 1,500. Compare that with the Lagrange series, which has 3 maximum error of
1 parr in 11,000 and an average emmor of only 1 pare in 77000, (Moze thar these efrors
were measured in double-precision foating point.)

The Taylor series is an exace march for a function, provided you take infinitely
many terms. Lhe Lagrange series is intrinsically limiced by the number of data points
taken, This fact scems o imply thar the Taylor series is the berer approximation, but
these data prove otherwise. In this case, the Lagrange series has a ntaxtmum error one-
seventh the size of the Taylor series” 2venzge ermor!

A Note on Humbers

When you are dealing with exact numbers in floating-point norarion, the outpur of
printf() quite often dossn't cut it it only prints a few decimal places, and flaasing-
peint numbers are not decimal-based {which means thar a decimal rendition is ar best
an approximation vo the floaring-poin value). In the Print () member function of the
Poly class, you can print our the coefficients as hexadecimal values. This ensures that,
when you move the numbers into your own code, they are exactly what they were
ur]gina]!j-". Ir can be somewhar rhiil-'l'ﬁll w do this in Ces, bue one trick Lu_y'nlving
unions in Print{} can be wsed the other way around 1o get the floating-peint num-
bers from rhe hexadecimal form.,

Moze also thar to get the best our of this code, you should define the nesber dass
to be double, even if you are going to use single precision in your game. You can sim-
ply convere to floar when you print the cosflicients.

Dealing with Discontinuities

Discontinuities arise in practice fairdy often, and neither Taylor nor Lagrange series
handle them very well. Polynomials are always smoath, 20 the discontinuities become
smoothed our, which may not be desirable. Foreunately, it is usually quite casy to
work around these problems.

Ome familiar discontinuous funcrion is the tangent function. Ar +/— 90 depress,
the ramgent function EOELS T infi I'Ijl.'}." and then jI.LI.'I.'IP5 to mgadv: inﬁ.nir.}'. This dis-
continuiry can be dealt with in owo fundamental ways. First, you can simply caleulare
rzngent a3 sine divided by cosine. This method avaids the problem entirely (as long as
you do a divide-by-zero check!). Second, you can restrice the range of your rangent
funcrion to be just the mnge over which it is continuous—ie., from —90 o +90
degrecs. For the Lagrange series, this means eaking points only from inside this range.

Ifyou have a function thar has a step-like discontinuity, you can often remaove the
discontinuity by subtracting a step function. This gives a continuous funcrion, which

c2n be approximated using Taylor or Lagrange methods. You then add the step func-

1ie

Section 2 Mathoematics

rion back in 1o get back to the original funcdon. If instead your funcrion has a sharp
peak, it will be smoothed ous by the polynomial, but you can often suberact 3 wian-
gular funcrion before approximating, to again yicld 2 smooth funcrion.

These heuristics are all based on simple adjustments of the basic algorithm 10 deal
with special cases. This isan area in which you can exercise your creativiry to deal with
whatever comes your way.

Conclusion

I this article, we have taken a quick rour of some quite basic mathematics and
s¢en some very important results, We have seen how polynomials can be manipulated
in various ways and how they can be copied without direct aceess to the coefficients.
From these methods, we discovered Taylor scries. We then found Taylor series to be
somewhat inadequate for many applications and saw a powerful alternative in
Lagrange series.

Meither the Taylor series nor the Lagrange series are all things o all people, If you
use these numerical recipes in your own code, [urge you 1o do the experiments and
lak at the results, Make sure your code always works as you expect, and warch out for
discontinuitics in the orginal funcrion.

With that caveat, you now have the machinery to approximate a wide range of
functions. Use it wisely!

2.4

Using Implicit Euler
Integration for Numerical
Stability

Miguel Gomez

Choosing a method of integrating initial value problems is an imporant pare of writ-
ing an interactive application. Due to its ase of implementation, explicit Euler inte-
gration seems to be the integration method of choice. Unformunately, this method
suffers from the problem of fmstabilizy in which errors build exponentdally and the
solution quickly becomes infinite. This amicle describes the fmplicit Fuler method, an
efficient and highly stable integrator. Towo examples are used to illustrate this tech-
nique: exponential decay and the damped spring equation, Finally, difficultes in
deriving implicit solutions are discussed. We assume the reader is familiar with calou-
lus, classical mechanies, and differential equartion theory.

Integrating Initial Value Problems and Stability

Initial value problems are simply differcntial equations with initial conditions. For
some equations, an analytic solution can be found and wsed 1o calculate the rajectory
of a body. In most cases, however, no analyric form exists. and the solution must be
integrated numerically.

There are many different approaches o numerical integration, and the mechod of
choice depends on the requirements of the application. In some systems and under
certain conditions, errors in the solution propagate exponendally and the solution
approaches infinity. This situation is called insabiling and the method of integration
is said o have become wnmable under these conditions. For example, you might
model the suspension system of a car as damped springs attached to a rigid body. If
the springs are made too stiff for the fime step, the integrated solution becomes unsta-
ble and quickly becomes infinite.

One way to improve stability is to subdivide the time step. A better way w
improve stability is to use a Runge-Kutra method, or something similar, withour sub-
dividing the time step; however, even these methods become unstable ar some paint.

17T

178 Sei::'lian_ﬂ Matheamatlcs

This is why we seck a simple, efficient method thar guarantees stabilicy regardless of

the equation parameters or the time-step size,

The Explicit Euler Method
As a first example, lets ke the inirial value problem:

dr
'c{ﬂj N
The analyric salution is;

x{r] = .f,,.-:'*'-

Evaluating the exponential function for every dara poine is simple and exact, bur it
is extremely inefficdent. Most CPUs rake sbour 30 cpcles to evaluate elementary func-
tions in hardware. If the CPU must emulate this process in software, you're out of luck!

Fortunately, there are more efficient ways to evaluare the solution. We can use a
finite difference approximarion of the first derivacive:

X=X
e A

where x; is the solution after 2 dme step Ar. Solving for x, we ger:
."l.'] = .:‘:',“ = E ﬂ:a
dt
If the desivative is evaluared ar x;, we ge:

x, = x, — ke A = x (1 = kA,

This approach is known as the explicit Fuler fmtegrasion method. With only one
subtraction and cwo muldplics, even a fixed-point processor could handle this method.

Although the explicit Euler method is very efficient, it is not very stable. We can
demonstrate this inseabilicy with the following argumene: Sinee the solution is an
expanential function, it must decay to zero aver time, implying that

x5 X
Substituting and solving gives the relationship:
kAr = 2,

Soif k=1 and Ar=2, then x; = —%, and the solurion is stable, although not very accu-
rate, If chis condition is not mer, x quickly becomes infinite, and the object whaose

2.4 Using Implicit Euler Integration for Numerical Stability 178

mation you're simulating disappears. As mentioned, the Euler method can be made
maore stable by simply decreasing che rime step, requiring the caleulation of more dara
points. Hlowever, if & is made wo large, subdivision of the time step may become pro-
hibitively cxpensive.

The Implicit Euler Method

The method described is an explicit method because it relies solely on previous values
of the solurion to cloulare the desivative. The implicic Euler method, on the other
hand, evaluates the derivarive ar x; instead of %, (Figure 2.4.1), giving:

X = x, + (=kx JAr
Salving for x; gives:
= BLcrphive
{1 + kA7)
Substituting this into the stability condition pgives:
0 = kAe.

Gl

This is significant. We've found a simple, efficient method thart is stabile, no mar-
ter how karge & or Ar get! [Hairer93]

(a) (b)

X X1

An Xo

FIGURE 2.4.1. The explich Euler method evaliires the desivative pg xp (a}, whereas the
imp“-ti"‘ Euler method evaliates the desivarive ar x; {b).

Let’s look at a more complicated example. Imagine a mass m is arrached to 2 fixed
anchor by a spring char gives & Newtons per merer push or pull when the mass is not
ar its equilibium position. Let’s also assume there is some force thar is negatively pro-
portional to its velocity by some constant &, causing the system o lose energy. If we
set the equilibrium position 1o be at the origin (x,, = 8, then the differential equation
that describes this motion is:

dx S g EJ
art e

L

Sgoction 2 Mathematics

subject to the ininal conditons:

+0) = =,
x(0) = s{0] = 0.

Solving for the second derivative, we gret:

I'-I"::;' = =) x — ElE,l = i
o ar 2m

|
where we've substmred @ = £ and A = % for simplicity. If the condition o =
A* is met, the solution is: \

xle) = xr “m;{m] [Chow?3].

This second-order differential equation can be rewritten as a systeem of owo first-
order differential exuations, giving:

3

—
ar
E - —E.la.?:-' = .11-'.
Evaluaring the derivarives ar x; and v, gives:
x = xp + oA
T A
Finally, solving for v, gives:
oy — m?.t',}d.t
=
1+ AAr + {m.r]

¥=

which is stable for all positive values of £, & and Az (sec Figure 2.4.2).

ey, e

e

FIGURE 2.4.2. A mass m is amached 1o 2 spring with a constant & The damping is negartively
proparonal o velocry,

24 Using Implicit Euler Integration for Mumerical Stability 181

Inaccuracy

The implicit Euler method is not as accurare as its explicit counterpart. Even without
damping, the solution dowly loses all its energy. In most applications, we are more
concerned with the effect than its accuracy, so this is usually not a problem, bur it is
something to keep in mind,

Finding Implicit Solutions

Finding an implicit evaluaror for x; is not always easy. For instance, if the spring force
is proportional to x; instead of x, we get 2 quadratic rlatonship for x;. For systems in
which it is impossible to solve for x,, numerical root finding such as Newron's methad
may be required [Gerald99]. Such cases make an implicit incegraror impractieal for
treal-time applications.

Conclusion

The implicit Euler method is definitely something to keep in mind when stability
becomes an issue. There are many other types of implicic methods that could suit dif-
ferent needs. For a more in-depth discussions, see [Gerald99), [Hairer96], and
[Hairer93).

References

[Chowd3] Chow, Tai L., Clasical Mechanics, John Wiley & Sons, Inc., 1995,
[Derrickd97] Derrick, William R., and Grossman, Sanley L, A Firre Cowerze in Differ-
ential Equations with Applicasions, third edition, West Publishing Co., 1987,
[Gerald99] Gerald, Curtis E, and Wheatley, Parrick O, Applied Niunserical Analysis,
sixth edition, Addison Weley Longman, Inc., 1999.

[Hairer93] Hairer, E., Norser, 5. B, and Wanner, G., Safring Ordinary Differential
Eguarians I! Nowtiff Problems, second edition, Springes-Verlag, 1993,

[Hairer%6] Hairer, E., and Wanner, G., Salving Ordinary Differential Equations 1I:
Suiff and Differential-Algebraic Problems, second edition, Springer-Verlag, 1996.

2.5

Wavelets: Theory and
Compression

Loic Le Chevalier

We generally associate wavelets with a compression method. But the word soapelers
covers at once 3 mathematical theory, a compression methed, and 2 data analysis wal.
This is a powerful paradigm thar has many applications.

The Principle

182

Wharever the waveler application (compression, analysis, erc.), the point of departure
is a group of & values: scalar or vector. From these N values, we build a ee such a5
the one shown in Figure 2.5.1, At each level of the tree, we calculate the average of
twa values, which becomes the value of the nexr level, The tree obrzined s a binary
tree with NN+ 112 nodes, corresponding to the respective averages. Cinee buile, this
rree can be wsed to factor che initial values, Nore thar factoring is not compresing,
Facroring enables us vo keep all the informarion in reduced form, whereas compres-
sion causes a loss of informarion. The basic principle of wavelets is thus 2 reversible
principle: At any tme, we can go back ro the initial values without losing informa-
tHon.

To the tree thar we've built, we add new values on the branches corresponding to
the difference berween the two extremitics of the branch—i.e., the distances that sep-
arate two values, linked by one branch and differing by one level. As shown in Figure
2.3.2, the magnirudes leaving from a mede are opposite, because the average value is
equidiztant from the two values, (For example, the average of 2 and 8 is 5, which is at
a distance of -3 from 2 and of +3 from 8.)

For the moment, there is no factoring. On the contrary, the scrucrure has grown
from one vecoor of WV values to a tree of N/ 1)2 values for the nodes, plus
N{N+ IN2 —I values for the branches! The nexr step thus consists of choosing 2 tree
level—i.c., a facroring level, p. between 1 and LN, A level is thus compoded of node
values and the lower branches that grow from i (see Figure 2.5.3).

Once the factoring level, p, has been chosen, we obmin the level p compressed
values, with O<pelog, N, by sequentially ealeulating levels 1 through p, inclusive (sec

2.5 Wavelets: Theory and Compression 183
1
&
T,
ﬁf____,, [n:r;+£r:]'l."'1 ,____1
P rant]
M wnlues - a= Ez"f
- Fi1
|
i -
r T (g _y d_.‘.-::ll."ll
iy
fag, N levels 3
FIBURE 2.5.1. Building the wee.

*[n'-,'r-n W2

I:.r +a, 2 g *a
\\-r{: u#,‘.'_.'ll \-H-'r ok
"l-..___ ol
& Hay —ay)2 + 1{ M
N-1 - -
Pt _.,--"'-[d.\'q*dr.l]l'lz + .

+{¢-.'-| =y :'."II

FIBURE 2.5.2. Calcularing disrances.

3

&y = lmy) 252, —a)2

&= +.1:_!],I"21-l:.21 -.ll}l.'lz. |

i

a, = [, +a,)/2—d |

ay =+,)25, | amd
dy, ={4‘3'-‘|}.I'I:l’-

—————

dog , NV
-d.
2 _“H‘:.l
N =10 T
&= .
+dly =g R
Wl B
r _‘.-""" H= E‘gﬁ'ﬁ
d'_-.;__]“h _iil,.rl"_l e 37 o
o #_::I{dﬂ_l a1y, }fz .
+dy peq
Lewel 2

FIGURE 2.5.3. Choasing factoning level

184

Section 2 Mathematics

lkﬂil S,:_lg
meffident Enr

il

| 2 e et
(ta, +a,)/2.4,,)
&y
Camprecion —r Caramprrririn
r — -
Iy
- ['[‘Tr-'—| 1'”.5'}}'[2:'“[.5'.!-'-1]
o J
Leved 1 Lewe| 2
{Inirial values) (Camprmsed values)

FIEURE 2.5.4. Compresssd values,

Figure 2.5.4). We thus have a principle that doer nor lose infarmation, the Enear core of
which is a function of N

Once factored, we restore the inirial values by reversing the operation. This resi-
rution operation has, itself, a Fnear st in A, It is imporrant o note that to restore the
initial values from a level p, we must maintain this level’s scale facrors as well as all the
derail eoefficients from levels 1 through p, inclusive.

An Example

Imagine, for example, a linearly coded image having, to simplify, a resolution of £ pix-
els by 4 pixels in 16 shades of gray. The initial values are thus a sealar vector of 16 val-
ues berween 0 and 15. Figure 2.5.5 shows the mee associared with this image.

Thus, if we choose factoring level 3, we keep the couple of scale factors (6, 10)
and all the detail coefficients from levels 3, 2, 1, and 0. Note that level 0 never has
scale coefficienes: They are all implicitly null.

[f we now want to return to the 16 initial values, we calculare the level 2 scale fac-
rars by adding or subtracting level 3 cocfficients, and so on, untl we remrn o the
level O factors, which are the inidal values.

Applications

The preceding construction prineiple is exactly the one that is used by image pyra-
mids for mipmaps, which, in fact, represent the waveler compression method. These
wavelets are also called Hlrar savedess. They are very well suited for treating discrete

|
|
|

7 Seale (B0 Py it coefficiem

1

h |\ /

; 1 ° 3'_!-_|

SRl

I I —

o pler DT - oy
— +
e 9 | 1 | 8 | =1 10 | +2
Tj_r—- 7 |-2 12 |:.‘rd|_I

5 12 7 _|

= | 2] et

12 [— r Level 1 Level 2 Level 3 Level 4
12

12 -

FIGURE 2.5.5. An euample cree.

values, such as scalar vectors abour which we, theoretically, know nothing. Bur many
other kinds of wavelets are uscful for oreating continuous or other funcrions. The the-
ory behind these other wavelers closely follows the previously described principle.

Wavelets have many applications. The first and most well known is fmage com-
pression. Compression and decompression by wavelets requires an additional phase,
however, compared with the above principle. The preceding principle is lossless; in
other werds, the entire image can be recomposed precisely from any level. Bue this is
of no interest to us in compression, so we can sacrifice values to lose the least informa-
tion possible. By thus minimizing error, we obtain very impressive resules. For exam-
ple, an image of a few hundred kilobyres can be compressed 1o only 2 few klobytes
with very litle percepuble loss. Simply put, areas of linde demil are highly com-
pressed, while thoss of greater decails are less compressed. Visually, then, the loss of
information is barely perceprible. Figure 2.5.6 is an cxample of 2 compression rate of
116: The original image is 6.25MB, compared with 53KB for the compressed image,

Another well-known applicacion of wavelets is dets analyis, an altemnative 1o
Fourier transforms for aperiodic funcrions. We can also cite multiresolucion produe-
don of images or 30 models enabling one to adjust the level of derails of an image
(infinite zoom, etc.) or a 3D model (LOD, subdivision, e1c.).

FIE“HE 2.5-5- .|'"|:I'l EI].I'I'JPLE nF:im:E-" n,',:_lrnpr.i:-g'.sian_

References

An [ntroduction o Wareelers, Institute of Electrical and Electronics Engineers, available
online at www.amara.com/IEEEwave/IEEEwavelet himl.
The Waveles Organization meta-site, available online at www.wavelet.org,

Interactive Simulation of
Water Surfaces

Miguel Gomez

With ever-increasing computing power, simulating realistic ourdoor environments in
real time is finally becoming possible. Dynamic water is one thing that can add
tremendous aesthetic appeal to any ourdoor game scene, This aricle describes 2 sim-
ple, efficient approach for simularing realistic wave motion over water surfaces. Using
2 central difference approsimarion of the two-dimensional wave equation, you can
simulate che horizontal morion of water with only a few arithmetic operations per
point. Brief discussions of other approaches are given as well. Physically based models
for buoyancy and drag are also deseribed. Finally, implementation and optimizadon
ideas for the rendering process are discussed,

The Wave Equation in Two Dimensions

A water surface can be thoughe of as a tightly stresched elastic membrane in which
gravity can be ignored. As infinitesimal sections are displaced, their direct neighbors
cxere linear “spring” forces (surfice tendon) o minimize the space between them.
Since horizontal forces are equalized, particles move in only the z-direction. The ver-
tical pesition with respect o time and space can be described with the partial dffer-

entizl equation:
et i a_r: 1

where ¢ is the speed at which waves travel across the surface. If the boundary condi-
tions are homogeneon (ic., the edges don't move up and down) and the initial z-veloc-
ity of the surface is zero, the general solution for a square L % I section of warer is:

187

188

Section z Mathematics

2% 1) = % Sy A nn[%] sin{ %]ms[rmr:],

w== 1'I'(m}* +(m)

The cocfficients A, are found by evaluating the integrals:

A %_[: EI{IJ};i.;%m%MyF

where fix, y) is the initial shape of the water surface [Trim90). If the surface is mod-
eled as an evenly spaced grid of z-values (2 fright fela), as in Figure 2.6.1, the preced-
ing integrals become discreie and can be evaluared with the Fart Fourier Trangorm
(FFT) algorithm [Press92).

FIGURE 2.B.1. An Lx I heighr field with N points along each side is used 10 approximase
the water surlface.

We could approximare a solution by evaluating only the significanc rerms of the
series, but even though this approach is straightforward and smble, it is sery ineffi-
cient. On most CPUs, a single evaluation of a trigonometric funcrion wakes around 30
cyeles. Dropping all but the first theee modes along x and y requires evaluating nine
sinusoidal functions per point per time step, which is prohibitively expensive for large
grids in interactive applicadons. This major drawback should motivate us to find a
more cfficient numerical solution.

Using central differsnces wo approximare the partial derivarives gives:

v " L=l : & " 5] L L
II:-'._I = 1:.r'.r' + 't:r'.;i o r:_'- ".!'-r-i-:l._f +* z-—l..: e 'EJ'._J_-l + ':J'._II = 'iﬁ-r_.r
As’ &=

The value 27, is the height of the 7, fth grid position ar time 5. The values 2% and
el

2% are the heights at dmes ¢, = 5 — Arand 1, = # + A, respectively. Solving for z3}
plves:

26 Interactive Simulation of Water Surfaces 188

D —

A 14,2
o= e A n = n = "'E!-'m i T
= !=—.{z +tEn ot T }+[1— = T

W f ,|f-,-3 4L e =1 (S iy f

This relationship simply says that the motion = is influenced only by its nearest
neighbors (Figure 2.6.2). Since the grid spacing is constant, the reciprocal of # can be
pre-caleulated, leaving only multiplics, adds, and subtracts. Furthermore, if ¢ does not
vary berween cells, all cocfficients can be pre-caleulared, and successive z-values can be
alculated with only two multiplies and five adds! (And if you're realky cheap, you ean
make & = 2EAF, climinating the middle term. This approach reserices either £ o 5,
depending on the application.)

Ar first ghince. it might seem necessary 1o store three separace grids for the z-
values ar times 7y, 5, and #;; however, if 27/ is replaced with 2/ in place, only two
grids are necessary. Ar the end of the pass, the memory pointers to the 2** and =* val-
ues are swapped. Ar the next iteration, che z* has become 2, and 2 has become 27,
This code snipper shows how this space-saving rrick can be implemented:

flpreceleulste coefficients

const flaat A = (¢*dtfh}*(c*dt/h);
const float B = 2 — gu8;

long 1, j;

fredpges are unchanged
Tar(i=1 ; i<N-1 ; 14+)

{
for] j=1 ; J=N-1 ; 14+)
[lintegrate, replecing Z[n-1] with z{n+1] in place
21[4][5) = A*(Z[L-1]010 + ZQ4410041 + Z[100)-1] * z[E][j+0])
+ B*z[L]0]) — 21[£][1];
{fapply damping coefficisnts
Z1[A[i] == d[d]1iT:
¥
}

I i=wap polnters
Ewap(z.phata, zi.pData });

Zij+l
Zi-] ot SiHI
-1

FIGURE 2.8.2. The horizonral mavement of the point =, s influenced aaly by its nearcst
Hetgh bots.

180 Seclion 2 Mathematics

Boundary Conditions: Islands and Shorelines

In nature, bodies of warter are usually not square. Rivers, lakes, and oceans have ITeg-
ular shorelines of varying slope, and islands might exist within these bodies of water as
well, 1f the bank is very steep or even vertical, waves reflect off the shoreline with very
lirtle energy loss, whereas if the bank is gently sloped, a wave might have a very weak
reflection or none ar all. IF the waves do not come in straight, they reflect off ar an
angle.

These effects ean be simulated by scaling the 2™ value by a local damping cocffi-
cient, ;; (see the preceding code snipper). A coefficient of 1 allows free movemnent of
the heighr value without any energy loss, whereas a cocfficient of 0 restrices all move-
ment of the warer at that location. If these coefficients are distributed and scaled
according to the termin features, waves react to the shoreline more natrally. For
cxample, if the bank is sieep, the damping coefficients should make 2 quick transition
from 1 (water) to 0 {land). On the other hand, if the bank is pently sloped, the damp-
ing coefficients should make a gradual mransition from 1 o 0. In practice, it is usually
better to use damping coefficients thar are slightly less than 1 in wet cells to produce
a litde energy loss. Otherwise, wave motion continues indefiniecly.

Implementation Issues

Instability

The previously described inregration method is called an explicit method because it
uses only previous and current values of z;; to evaluare =7 I the condirion:

is not met, the integration method becomes wnirable and successive z-values ETow
exponentially.

An fmplicie method, on the other hand, can be used to guarantee seability,
Unforeunately, finding a solution implicidy involves solving sets of simultancous
equations for z**". For more in-depth discussions of implicit integration methods,
seg [(Gerald99], [Hairer93], and [Hairer9a].

Parallel Processing

Although some processors have single-instrucrion, multiple-dara (SIMD) instructions
that evaluare several floating-point values in parallel, memory alignment requirements
can decrease the efficiency {or even prohibir the use) of these instruetions for inte-
grating a solution. Processors that can operare on four single-precision floating-point
numbers in parallel usually require 16-hyte alignment, so rows muse be padded if Nis
not a power of 2. Repandless, some memory accesses are unaligned {Figure 2.6.3).
Even if the CPU allows unaligned memory accesses, 2 penaley is usually incurred.

2.6

Interactive Simulstion of Water Surfaces 181

-
57 TT A

e/

o

el |'||¢11-|'|LIl

FIGURE 2.8.3. Even though the rows of the grid are padded ro ensure 16-byte alignment,
some dara accesies are not aligned.

Interacting with the Surface

Splashes

Splashes can be creared by instantaneously displacing one or several z-values at 2 par-
ricular location. As the solution progresses, waves radiate from this location. This con-
cept illestrates another advantage over explicitly evaluating the general solution: If
any discontinuity in 2{r} eccurs, new values for A, must be computed with a discrete
Fourier transform.

Buoyant Objects

Whar good is warer if chings can't float on top if ic? Objects floar because their overall
densicy is less than thar of the surrounding warer. The force of buoyancy on an object
is equal to the weight of the water displaced by thar object. This force is actually in the
direction of the pressure gradient, but in mosr cases, the direction normal to the water
surface is appropriate.

I€ the shape of the hull is approximared as a st of discrere points, normals, and
arca patches (Figure 3.6.4), the force of buoyancy can be calculated by performing a
volume integral over the submerged portion. The volume of warer displiced by a sec-
ton of the hull is:

AV = M&l{‘w.w o PJE.r]ﬁI-.t'

where =, is the bilincarly interpolated warter height at p,. (Bilinear interpolation is
recommended, since other methods might produce primary or first order discontinu-
ities. It is also probably the most efficient interpolation method for 2 regular grid.)
The buoyant force ar this posidon is:

Saction 2 Mathematics

F& =m“ﬁmF
and the torque is simply:
M, =g ®EF,

where r is the vector from the cenrer of mass o py. The rotal force and torque are cal-
culared by summing the contributions from each hull vertex. Remember also that
only the sufmerged portions contribute to the buoyancy.

/UL

e

FIEURE 2.6.4. The shape of the buoyane ebject is approximared with a sex of poins, p,
destribaned “evenly™ over its surface, Abso stored are the unit suface normals, fi;, and the
local area parches, Ad,.

The number of points needed depends on the shape of the object and the level of
accuracy desired. A cube might need around 20 or 30 points, whereas a tree with
branches might need hundreds of points ro behave realistically.

A vector normal o any parametcrized, rghr-hand-oriented, chree-dimensional
surface can be calculated with the formula:

L aS{H.L‘} 3 35[#.1-'}1 sy
d

1 Hn'

If we think of x and ¥ as our parametess, the water surface can be deseribed by the
Ly]

Sf2) =[5l

Approximaring the first derivatives with central differences gives:

aﬁ "Eu-l._ll + 'E:J—L_l
T 1: ﬂ': T e
dx 2k

B _oq B F B)
dy 2h

2.6 Interactive Simulation of Water Surfaces 183

The |11,:|m'|3|| at I;]]i: J:,JI!TJ:I. gl'i.l:l. !l:li:':.’.l rion if.“ l:ilﬂ:l'l:

| _Ba—F Ee T &g
n, ;= |-= = it
25 25

Scaling this vector by 2h does not change its direction, so an egually valid normal is:

n ;= [zl._] ~ Fjn Ejoy T Zjars 11':],

which must then be nocmalized.
To keep the object from sliding over the surface like a surfboard, a drag force can
also be calculared by summing contributions from each vertex:

F,.. = E—éﬂr*.m- = z :‘.'[vﬂ,ﬂ_ - [vm +@_ X]].
The velocity term vy s the vlocity of the hull refative to the warer at rp. Soif, in

addition 1o height values, a three-dimensional velocity i associared with every grid
location (a wecror field), the current carries floaring objects.

Rendering

All ehis theory is grear, bur if you can't see it, what’s the point The following are some
ideas on implementing and optimizing the rendering process.

Envirenment Mapping

When drawing water, you can use afphe Sending 1o give the appearance of wans-
parency. In onder o draw alpha-blended triangles properly, however, you must draw
the ones farthest from the viewer first, without the help of the Z-buffer. Furthermore,
double blending occurs whenever a triangle is visible through another.

In reality, lighe dossnlt pass stighe through water, It bends as it poes from one
index of refraction to anether. Water also reflects light from it su rroundings, These
effects can be achieved with environment mapping. Environment mapping a water sur-
face involves reflecting and refracting rays of light from the eye and intersecting them
with an environment map surface to caloulare 2 texrure coordinate [Figure 2.6.5).
Each triangle is then texrure mapped with chese coordinares.

I cannot emphasize how incredible refraction mapping looks if done well; you
hawe to see it o believe it With reflection only, warer appears too mesllic, like liquid
mercury. See [War2000] for more environment-mapping rechniques and related for-
mulas.

Although environment mapping gives stunning visual results, using it on a large
scale may not be feasible without hardware support due 10 computation requirements.
The resules are impressive enough, however, wo justify a scaled-down software imple-

meEnTarion,

184 Section 2 Mathematics

fexlure space

eye, houon

1 1

FIGURE 2.6.5. Bouncing rays from the eye (camera) position 1o the environmen: map
Eenerares 3 texiuse eoordinate (w o for each vermex,

Lewvel of Detail Management

Rendering distant pordons of the heighr field at lower resolurions can give memen-
dous speed increases withour significantdy decreasing visual qualite Care must be
taken, however, to ensure thar vertex normals along LOD transitions march. Odher-
wise, discontinuities are visible in environment mapping and lighting. For an clegant
adaptive quadtree approach o rerrain LOD management, see [Ulrich2000].

Rafarences

[Davisd1] Davis, Harry E, and Snider, Archur David, Inrroducrion to Vecor Analysis,
sixth cditon. William C. Brown Publishers, 1991.

[Gerald99] Gerald, Curtis E, and Wheatley, Patrick O., Applied Numerical Analyris,
sixth edition. Addison Wesley Longman, Inc., 1999,

[Hairer93] Hairer, E., Morsen, 5. B, and Wanner, G., Salving Ordinary Differensial
Eguations I: Norustiff Problems, second edidon, Springer-Verlag, 1993.

[Hairer96] Haires, E., and Wanner, G., Selving Ordinary Differential Equations IT:
Stiff and Differensial-Aleebraic Probiems, second edition, Springes-Verlag, 1996,

[Press92] Press, William H., Teukolsky, Saul A., Vererling, William T., and Flannery,
Brian B, Numerical Recipes in C, second edition, The Press Syndicate of the Uni-
vemsity of Cambridge, 1992,

[Trim®0] Trim, D. W, Applied Parsial Differensial Equarions, PWS-Kent, 1990,

[Ulrich2000] Ulrich, Thazcher, “Continuoas LOD Terrain Meshing Using Adapeive Chuad-
trees,” (nemasra, available online at wenwgamasuees com/fratures 20000228/
ulrich_ 01 htrm, 2000,

[Ware2000] Watt, Alan, 3D Compaier Graphics, thind edition Addison-Wesley, 2000,

2.7

Quaternions for Game
Programming

Jan Svarovsky

Quasernions are usctul for representing and processing 3D rotations of points, Appli-
cations include skeletal animation, inverse kinematics, and, generally, any 3D plsics
and graphics engine. This article is organized by first explaining enough about quater-
nions for you to be able w use them in your 3D game. It then gradually reaches
deeper into their mathematical basis.

Treat Quaternions as Matrix Replacements

You can use quarernions in a game as a straight drop-in replacement for rorion
matrices. They can describe any roration around any axis in 3D space. They take less
space, four numbers rather than nine, and many operations such as multiplication are
cheaper. Some operations such as interpolation berween quaternions are also more
visually pleasing. Ar points when you need a matrix (such as to rorare 1 vecsar), Fou
can casily convert quarernions to roation matrixes and back AgRin.

ff a black-box quaternion type that can replace 3x3 matrices
class Quaternion
{
privata:

Tloat =, ¥, z, wi // These will be explained latar
public:

Quaternion Inwersze|)] const;
bi

Quaternion guaternion from matrix{Matrix3a &mat };
Matrixdd matrix_fron_gquaternion|Ouaternion Sguat):
Guaternion interpolate(Quaternion &, Quaternion &b, fleat b amt);
Quaternion eperator *({Quaternion A&, Quaternipn 3b):

Some other functions exist thar would be more difficult to produce for matrices:

Vectord Quaternion: iAxisOffotation[] econst;
Tloat Cuaternion::AngledfRotation{] const;
fF rotation that will get you Trom vO to vl
Cuzternion RotationArc(Vectors w0, Vectord wi):

188

196 p Section 2 Mathematics

A rypical use of quaternions is o store all your matrices (such as orientations of
bones for an animating character) as quarternions. All the matrix multiplications are
replaced with quarernion calculations, and only ac the end of the pipeline, where vec-
tors must be rotared into world space or onro the screen, do you turn the quaternions
into marrices.

Three-by-chree rotation matrices can be represented direaly by quaternions. A
quatcrnion and a translation vector can represent £ % 4 matrices that encode a rowa-
rion and cranslation,

Why Not Just Use Euler Angles?

CQuaternions do not suffer from gimbal lock. With a three-angle (roll, picch, yaw) sys-
tem, there are always certain orientations in which there is no simple change 1o the
three values to represent a simple local rotation. You often sce chis rotation having
“pirched up® 90 degrees when you are trying o specify a local yaw left or right.

What Do X, ¥, Z, and W Represent?

The four numbers in the quaternion, ofien denoted (x, ¥» %, w), have some physical
significance. If we consider all rowation marrixes (o represent 4 rotation of an angle 8
about an axis A (X, ¥, Z), shown in Figure 2.7.1, the quaternion Q will be:

FIGURE 2.7.1. Rotation of ::1.3].: B :||.1|:|u; Axis A,

LT Quaternions for Game Programming 187

Q=0Xp1 Ve 12, ¢

F=ain (872}
c=cor (B 7 2)

This leads to two things: It is casy 10 extract the angle of romdion (see the method
mentioned previously) s being cwice the inverse cosine of the w term, It i similarly
easy to extract the axis of rotation.

Note that owo quaternions represent each roration marrix. If a general rotation is
defined by an axis and an angle, each romrion will have an equivalent with the oppo-
site angle and the opposite axis of rotation. In quaternion werms, you can make the @s
of the two quatcrnions different by 21t (or 360 degress). Since the terms arein (8/ 2),
this adds 1t inside the sin and cos terms:

150 (0 + TT) = —gin (i)
coF (0 + i) = cor (i)

This can lead 1o problems in interpolation, where two quire numerically different
quaternions represent very similas rotations. The fixes for this “gorcha” can be seen as
SXIra tests inside the implementation of any quaternion library.

From What Math Is This Derlved?

The quaternions we use here are a subser of general quaternions. General quarernions
are an exeension of complex numbers. Complex numbers are defined in terms of 7, the
square root of —1 (which cannot be represented by 2 “conventional” number);

=1

Although i is different from “real” numbers, we can include it in expressions like
any other variable, with the magic properry being thar its square is —1. Any multiple
of fand a real number must be left in terms of &, making a “complex” number (2 + &4)
for some & and . For example, multiplication of wo complex numbers:

(@ +0i) "+ di) =% + 2% + b » bivdi

=ac—b" 4 (% + b)) §

Quarernions cxrend the concepe of a square roor of =1 to have three SQUATE rools
of -1, being £ f. and &
-I
-7
=—f

1E
5 1)
k -
Mulsiplication of pairs of these elements wogether behaves much like the cross

products of the usual three axes in 3D space:

EYj=—f"i=k
j“'ﬁ';"l{'.j:"—

Sectlon 2 Mathematies

krim—itk=j

Whar rthis all means is that quaternions are defined, similarly 1w complex num-
bers, in terms of a real number and an & f, and k term. Becauwse £, §, and & behave so
much like axes, quaternions are sometimes written as a vecror (here r) and a scalar (1)
or as a vecror of their four rerms.

gews+xi+yjrck
g=frof where s = wand ¢ - fxy 2]
g=Ixyzwf note scalar "1 at the end

Addition and multplication of quaternions are defined in the obvious way, Much
like muliplication of “normal” complex numbers, the result of mulriplication is
another quaternion:

Frdz=le; +x, ¢ s yrf+z R e+ x0 8 tyaf k)
= (e ca— X0 — 11 Y2 — 2, 52) +
(ss—yiz v opxp v xa) i v
(Zyxa—zp 2z + 0y g 4 Syl +
(% Yo=Xy Yo+ £y Zp + £ 52) b
A lot of symmetry can be seen in this example, which is made more obvious in
the condensed notation:

gr gz = (5 + ¥l (12 + 03

where @« & is the dot product and & b is the cross product.
A few other definitions are useful. The norm of 2 quaternion is:

Nig)=2 + @ v 2+ u?
The conjugare of a quaternion can be thought of in two ways:

§" =[xy —zuwf
g" = fr-of

The multiplicative inverse of the quaternion:
.Iruqu B E‘J‘I.I?I'l'll:rg.ll

The subset of quaternions we use for representing rorations is the ser of unit
quaternions, where |g] = 1, or x? 4 37 + 2@ + 0@ = I°, These have the properry that
their inverse is equal to their conjugate.

How Do Quaternions Represent Rotations?

The routon of a vector P [x y 2] by the unit quaternion g is done by creating the
“pure” quaternion p and the conjugate of g

2.7 Guaternions for Game Programming 188

p=xisyirzhk pure means no scalar erm, w =0
R.:':!fﬂ] =g pq"

There is some derivation to do to see thar this works. Rather than bulldozing
through it here, we summarize: You consider roearing the vector P by an angle 8 about
an axis A. Using geometry, you ean work through dhe math. expanding everything out
until eventually some verms in co”(8) and sin'(®) wen up. These can be rurned into
cos(28) and sin(20) terms, and very soon you end up with a formula thar looks 2 lat
like the quaternion multiplication worked through previously [Glassnes90].

This representation of rotations can be used to converr the quaternion into a rota-
tion matrix. A ratarion matrix can be seen as the rotation of the unic mareix by 2 quater-
nion, where the unit 3 3 matrix is the three vectors (1, 0, 0), (0, 1, 0), and (0, 0, 17,
A 4 4 romdon marrix i equivalent to the 3 % 3 case bur with an cxtra row and col-

umn appended where the extra terms are 0, except for the bottom righs, which is 1.

Referencas

|Glassner90] Glassner et al, Graphics Gems, Academic Press, 1990,
[Downs] Downs, Laura, “Using Quaternions to Represent Rotation,” Awvailable
online ar huep://hetp.cs.berkeley edu/-laurafes 1 84/quar/quareenion html.

2.8

Matrix-Quaternion
Conversions

Jason Shankel

Cluaternions are convenient for representing 30 rotations, Quaternion muliiplica-
tion is faster than matnix multiplication, and quaternion interpolation generates
smooth animartions. But matrices have their uses, oo, In particular, marrices are
preferable 1o quarernions for performing vertex rransformarion. In addition, maost 30
APLs szore their rotations in marrix form.

This article demonsmares quarernion-to-matrix and Mane-ro-guatermnion con-
versions. We use both four-dimensional veetor and vecrorfscalar nomenclamre (o rep-
resent quaternions. Thar is:

g = [epaw] = [av]

where v = [x,rz) is a three-dimensional vector and w is a scalar.
We alzo use g, g7 and g7 1o designate quaternions. g’ and g are distinet from g
and should net be confused with the first- and second-order derivarives of g.

Quaternion Rotations

Let g = [wov] = [cos{8),usin{B)] be a quaternion where u is 2 unir vector, Let g=[w'v]
be a quaternion (nor necessarily unir) representing a point in three-dimensional
homogeneous space.

The operation g4 rotates " about axis u by 20. Proof is provided by [Shoe-
miake 4]

Quaternion-to-Matrix Conversion

To convert the quaternion g into an equivalent romtion marrix, we must express
g g™ 25 3 matrix operaton.

2.8 Matriz-Quaternion Conversions

Quarernion multiplication takes the form:
"= Lrnv] ('] = [me'— v, v@v v v+ wv]
where @ is the vector cross product and » is the vecror dot product.
This expands to [x7y 2w such thar:
X myz =g+ uw + xne’
¥y —xz' s o’
z" =.h_"_|.'r—_}:l."'+ e’z
w" = Hlﬂr’— HP—HFFM.'

This expansion can be expressed as 2 matrix multiplication:

o, = iy X

x w. —x A ;
=3y
=F x w sl& il

—x —y -—r wiw

The multiplication ¢” = g7 expands ro:
' =yE—zy ke x'w
P =rx—xz+wyryw
T =xy—yh+wk ez
W= ww—xx—yy-zkt

L b -F X x
—= w_x iyl :
= K
¥y =x w x|z o
—% —F ==
For a |.]_|.1.=.I!|:min:r.| q= [i.r-'-,‘i"L |:i|".I = [Id-,—\']."ﬂq'q.:l.
M) = o'+ 457 +2" = 1 for unit quaternions, so g7 = [u—v].
Substituting g = 4" in K, yields:
W o= oy = 1
5 w —x —Ji =1
=¥ X it =z

x ¥ = r

202 Section 2 Mathematics

=

The matrix equivalent of the eperation g7~ can be found by concatenating fi.
amd R"":

M=LR;-
W-Ey X wo—Z y—x
5 w-xy z w x|
v xwz | | x w-—x
x—y—zw | |x ¥y zw
whix®yiz® 20g-uz) 2wy 1]
2eyrmz) wixleyi-z? pz-ux) 0
xz—un) 20zena) wixiptes? n
0 0 0 wiexdipleg®

¥y tretenwtal, o M simplifies 1o

I-2{y*+z®) 2{o—we) 2(mysaz)
ayruz) 1-207487) 2m—un)
2czwy) pzemn) 1-2(x*+y?)

1] 0 |

Ll — 0 — N —

Matrix-to-Quaternion Conversion

The relationship between a rotation marrix and the componenss of its correspanding
quatermion is given as Min the previous staremen s,
From M, we can derive the following six relarions:

Lo Mys o+ My = Ay
2 My My =dyz
3. My My, =des
4. Moy =M, = d
3. My — My s = duy
6. Ml_l—M_'-J:'iﬂ-'E

From these relations, it is clear that if you know one COMPONEnt, you can com-
pute the other three by division. Since any but not all of the components can be zero,
we want [0 determine which compenent has the greatest absolute value and use it to
calculare the other componenss. The largest component of a wnit quaternion has an

abzolure value of ar least V4.
Solving for W

The trace of a marrix is the sum of the diagonal components. To determine |uf, we
start by calculating the mace of the matrix M. For the marrix M., the trace is:

2.8 Matrix-Quaternion Conversions 203

Tr=4-— 4I:.t'=f_;r zi'.E:J - 'i“ = |:l_1+_}'11'f:_:|}

Recall thar a unic quarernion g = [wv] = [oos(8),v'sin(@)] where v'= (x}y.2) isa
unit vector, We can therefore express the trace of M as:

Tr = 4(1 — (x"+y+=)sin?(0))

Sinee (x.y.z] is 2 unit vector, x%+y%ez? = |,
The trace of M reduces to:

Tr = 4(1 — sin*(0)) = 4cos™(0) = 4u”

or:
|u-i = Tr’”.f:-:
o, if Trz 1, we plug 4w = +2Te'"* into equations 4, 5, and 6 and solve for x. ».
and &

xm (M 3 — M2
¥=, - Mt,g}"'lT']'la
z= (M), — M, V2T

Nete that it doesn't mawer whether we use the positive or negative root of Tr as
the basis for @, since and —g represent identical rotations.

Salving for X, ¥ or T

If |e] < %, we can derermine which of the remaining components is the largest by
examining the first three values along the diagonal of M. Suppose M, . = M, . This
expands to:

1-2x%—2g7 = 1-2p?-2g2
Simplifying, we gee:

2w 5 2yt
o

I <]

Similar arithmeric applies o ather comparisons berween the diagonals. So, the
largest component of the vector (M ;, M, M5 3) corresponds to the largest value of
the vector {(xx2).

Onece we have the largea component of (M |, M, ;. M,), we subtract the ocher
two elements, and the equation reduces to a single term. For example, asume M., is
the largest term:

'IH:.E-JHJE_Ml.'l =] —hl—laz—:l -1_5"1—12:3—{1 —lfi—z_}"_} = "j'}:—l

204 Section 2 Mathemalics

=My, — M, =M, £ 1)'72
In general,
vi= (Mo — M, — My o 1)V2 where v=(x02)

As with w, it doesn't marter which root we use. Onee we have a suitable v, we can
solve for v, v, and w by substitution:

v; = (Mo M dv)

v, = (Mg + M) {dv)

w = (Mg - M) (4v)

For the calculation of w from equation 4, 5, or 6, 47, and & must be in sequential
order, Tharis, f = 1 + (63) and & = 1=(263).

References

[Shomake94] Shoemake, K., Quarermions, available anline at fipe//frp.cis.upenn.eduf
pub/graphics/shoemake/quarur.ps. Z, May 1994,

|Eberly99] Eberly, David, Qearernion Algebra and Calouler, available online ar www,
magic-software. comfsro/graphics/ quar/quae pdf, July 1999,

2.9

Interpolating Quaternions

Jason Shankel

Quarernions are four-dimensional extensions of complex numbers. (See “Cluater-
nions for Game Programming” in this book for a discussion of quaternions and
quaternion mathemarics.) This article presents four techniques (Lerp, slerp, squad,
and spline) for interpolaring between pairs or sequences of quarernions. The actual
desivations of each of these techniques are derailed ar the end of the arricle.

Quaternion Calculus

Before gerting into quarernion interpolation, we need 1o define some ealoulus func-
tions of quaternions.

Let g = cos(B) + vsin(8) be a unit quarernion (v is a three-dimensional unit
VECTOr).

Euler’s identity for complex numbers applies 1o quarernions:
g = cos(8) + vsin(@)) = exp(vl)

From this identity, we can define the power funcrion for quaternions:
o = [cos(8) + vsin(B)]° = exp(veB) = cos(el) + vsin(:0)

We can also express the logarithm of a quarernion using this identity:
loglg) = loglexpivE)) = vO

We can express the derivarive of g° as:
(4" = 7log(a)

Applying the chain rule, we can express the derivarive of ¢
(1) = £ (e} log(q)

Applying the chain rule for functions of owe independent variables, we can
express the derivative of g{2/" (¢ amiteed for clarity):

206 Section 2 Mathematics

{g7)' = fqlloglg) + qfq ™!

Quaternion Interpolation

Since quaternions can be used to represent 3D rotatons, we can use four-dimensional
vector interpalation techniques to gencrate smooth 30 animarions.

Let g, and gy be quarernions. The general formula for interpolation between g,
and g, is given as:

gie) = folday + fildg, (0= 1)
where fi{¢) and f(s) are scalar funetions such that:

S0y = 1
S} =0
S0y =0
iy =1

Linear Interpolation
Linear interpalation is given as:

lerp(fiqouq) = (1 — gy + 5y = tlgy — o) +

Linear interpolation does not preserve magnitude, so it is imporant o normalize
the resule il you're using it as a rotation.

Linear interpolation is fast, but it does not generate smooth animation. This
means thar the animation speeds up and slows down over the wurse of the interpola-
tion, even if you vary t ar a constant rate. Although this variation in speed might be
acceprable for some applications, it is not ideal. To achieve smooth animation between
quarernions, we must use spherical linear interpolation.

Spherical Linear Interpolation

Just as three-dimensional unit vectors define poins on a aphr.rc. unit quarernions

define points on a four-dimensional h}’p:mph:r: Smooth animarion is achicved by

interpolating values along the grear arc mnnmmg the two poinis (see Figure 2.9.1).
Spherical linear interpolation (slezp) is given as

slerplfigaegy) = [esin(@(1 — 0))+q,sin{00)]/sin(8)
where B is the angle berween g, and ;.

We can find 8 by weating 4, and q; a5 four-dimensional vecrors and calcularing

the dot product:
Foy = Xyky + Yoy + B + wry = cosl)

FIGURE 2.9.1. Spherical lincar interpolation.

Unlike lezp, slerp prescrves mapnitude, so there is no need to nomalize the
resule

If gy=qy < 0, then @ > n/2. Since 4 and —g represent the same rotation, it is best o
Invert g, or g, in this case, minimizing the angular distance the interpoladon has to
followe. This inversion reduces unnecessary spinning over the course of the inrerpola-
rion.

IF |gy=a| is elose 10 1, we Rl back to lerp, since sin{B) approaches 0 as |g%q|
approaches 1.

See Derivation 2.9.1 for a derivation of slerp.

Spherical linear interpolation can also be expresied 35 2 power funciion of g,
and 4,

slerplfigeq) = qulgs ' .
From this, we can express the derivative {slerp') as:

sleep(r2qi.qy) = qulan™ aa) loglqn ' q;)

The power form of slerp and its derivative are used in derving spline interpola-
tion, See Derivation 2.9.2 for a derivation of the power form of slerp.

Spherical Cubic Interpolation

slerp produces smooth animations, but it always follows a great arc connecting owo
quaternions. Just like usng straight lines w0 connect a serics of poins, using slerp w
interpolate through a serics of quaternions produces a jagged path. In practice, this
means that your animations change directions abrupdy at the control poins. To
smoothly interpolate through a senies of quarernions, wse splines {see Figure 2.9.2),

208 Section 2 Mathematics

Linear Interpolation
........... -« -~ ----- Spline Interpolaticn

FIGURE 2.9.2. Lincar ve spline inrerpolacion.

The basis for spline interpolation is spherical cubic interpolation, or squad:
squadiz:p.q.ab) = slerp(241 — dhislerplrp.q) slerplaa, &)

The animation from p 10 g does not follow the great arc connecting p and g but
curves toward the arc connecting 2 and b.

It is common for slerp implementations tw invert ane of the input quaternions
when the angle berween the two cuceeds 90 degrees. Although it is true that g and
—q mpresent the same rotation, slerp(sp.g) does not produce the same resule as
slerp(t:p.—4). Since the control points 4 and & are chosen o work with p and 4, not —p
of =g, it is best not to invert the input quarernions in the version of slerp used with

squad.
Spline Interpolation

Let [t binl toua—nsy be sequences of IV quaternions.

l'ﬂ S_‘_{!} = ﬂ“id'[' ;q.lrl'?.h !-':Iul El.. :}
To generate a sequence of smooth interpolations, {4,.6,} is given as:

a, = b, = g.expl{loglg. g,) + loglg,q,,,))/4]
ez Derivarion 2.9.3 for a derivation of spline interpolation.

Sample Code

The sample code on the CD that accompanies this book provides implementarions of
lerp, slerp, squad, and spline interpolation as well as quarernion exponential and log-
arithm funcrions,

28 Interpolating Quaternions ETh |

Derivation 2.9.1: Deriving Slerp

slerp preserves magnirude, so slerping between unit quaternions always produces a
unit quaternion. Given the basic interpolation funcion:

qlil=folidqs + g,
we want to show thar if we constrain q{:} so that Ngla)) = 1, we ger:

Jin) = sin{8(1 = &)/sin(8)
[fi(#) = sin(84)/5in(8)

To clarify the notation, the time-dependent varizble has been amitted in che fol-
lowing (g = g{s), f3= £(5, ecc).

Let g = [xf + 37 + ok + w] = figs = fig, = slerp(tig.q,)
Let g = cos”Hgorq)

Since g is 2 unir quarernion, #*+¥+£ = 1. Expanding », ¥, 2 and o gives:

o= 'r-.lﬁ'lxﬂ "'.l'II;"""I.:lI - '[_,Fu-’i'n]i + -"-"-'_l"-q,l'l;-"fllxl + m-f]]"!
¥ = oo + fund® = (fape)® + 2fifirary + (fin)?
2 = [z + 12107 = (fo=a)? = 2fizE + (fi5)?
- [.I'E'""n *ﬁ“’tjz = (fotwo)® + 2fyfiwgeey + (fiomy)*

Adding these equations together gives:
Fot e 2fufi o+ yor + 2308 vy) + 72 = fol+ 2 filgo-gi)+t = 1

We can express this o & matrix multiplication:

AL

where £ = gy*q, = cos(8).
The matsix M can be expanded ro:

202y _aliEfa lec 0 20y aliirs
M=|qnp 2p || o 1 ”_zt-'ﬂ.rz 24332

Leru = CY2RE

w= | {1+ 0 2z 28000 £
0 |:1_|:..]I|': _Er-‘zlrz 2].'1}“2 ﬁ

= fFTMf =1

| = RTCR

Mulriplying this out gives us:
u = [[A+E1(2+2 "2 (f - £)2 - 28%212]

From here on, we need to show the time-dependent variable. u(#) is a two-dimen-
sional unit vector, so it can be written as:

210 Section 2 Mathematics

uls) = [cos(md, sinfee)]
where:

cos(tod) = (A0 + HlA2 « 29122
sinfes) = (£ — A2 - 21272

Let A=(2 +2'32, B (2 -2"32
Multiplying cos{ws) by BIAB and sinfue) by AIAR yields:

£08) + £ = Beos(a) /AR
F8) —) = Asin(eae)/AB

Solving for f and £ yiclds:

#il0) = [Boos(ime) — Asin(w)]/24B
i) = [Boos(on) + Asin(m:))/24R

2AR = (1 — A" = (1 — cos*(B))1"? = sin(@)
A48 = 1, 50 A = cos(y) and B = sin(y) for some phase angle y.

There are cwo values of y thar satisfy A4 and B, yr, and W, Given this, we can
rewrite f, and f:

Saled = [sin{yr beos(omd — cosiyrsinee)] /sinB)
Siled = [sinyrbeos(med + cosiyr Jsin(ee)] /sinf@)
Recall the wrigonometric idenuiies:

sinfa)cos(£) + sin{flcos(a) = sinfz+£)
sinfa)cos(&) = sin(foos(a) = sinfz=F)

So, we have:

JolA) = sin(yr, — w#)/sin(@)
Filn) = sinfy, + cof)/sin(@)
Given the boundary constrain on ff and £, we can solve for Yy W, and

ol = dn{yWsin(@) = 1 — y, = 6
F1(0) = sin{yr, sin(@) = 0 — gy, = 0
Jul1) = sin{y, — a)fsin{B) - 0 — @ =1y, =8

S0, we can rewrite £ and fj again:

Ja0) = sin(B(1 — A)/sin(8)
[il#) = sin(Ba)/sin(8)

Derivation 2.9.2: Deriving the Power Form of Slerp

Starr with the definition of slerp:

29 Il'd&rppliﬂng Quatarnions 211

slerplesgeg) = [o5in{B(1 — &) + g,5in(0 #1/5in(0)
g 1S 2 Uit quaternion (as is g,), 50

fode ' = 1

From this, we can rewrite g, as:

1 * Gofo

Lers expand g,

o1 = [5as1 + ¥o¥o —v@v; + 5wy — 5wy

Motice that the scalar parr of g;7'g; = 54, = vy*v;. This is the same as the vector
dot product of g, and g;, which is the same as the cosine of the angle between g, and
g,.. H

Since g5"g, is 2 unit quaternion and we know thar its scalar part is cos{8), we can
TEWTiTe gy~ gy A4

o gy = cos(B) + usin(8)

where u is 2 unit vector,
Olay, so now we have;

iy = fplcos(8)+usin(8))
If we plug this into the slerp formula above, we ger:
slerpleigpag) = [qusin{B(1 = &) + golcos(B) + usin{B))sin(B)] sin(8)
From the triponometric identny, we know thar:
Fosin(8(1 — 1) = qy(sin(@)eos(Br) - cos(8)sin(B)
Substirating this into slerp and simplifying gives us-
slerpl#:guq;) = gy{cosiBrisusin(B)
From the power function for quaternions, we can rewrite this as:
slerp{rige.q,) = aylcos(B) susin(8))*
Ah, but cos(8) + usin(@) = g,7g,, s0 one more rewrite yiclds:

slerpleigoagy) = qulgan)’

Derivation 2.9.3: Deriving Spline Interpolation

Let {2,.6.} be a sequence of quarernions.

Let 5,(#) = squad{zg,.4,.1.4,.8,.1) -

212 _ Section 2 Mathematics

To derive spline interpalation, we want to find {a, &) such that the derivarives of
5.{¢) ar the conerol points (s=0 and =1} are continuous. In other words, 5.'(0) =
S.1'(1) for all .

i deo this, we first have 1o express the desivative of squad.

Lee U = slerplespg), V= slerpleaa, &), W= 17V
Given the power form of slerp, we can rewrite squad:
squadis;p.gab) = L{L- V200 _ [rggei-o

The derivacives of I, Vand Ware:

U= plp-'g)log(pq) = Ulog(p-'q)

¥ = a{a &) logla'b) = Viegia b}

W= UMY - POV

Applying the product rule, we can express the derivative of squad:
squad (p.g.2.5) « DTWHH]" 4 L] ot

where [WE]" = (24 Wo-op(TF) + 24(1—¢) WP
Whew. Luckily for us, we anly need to calculate squad’ for #=0 and ¢=1:

o) = p
ViD) = =
WI0) = p~'a

Lr0) = plog(p'4)

[W=0-41"(0) = 2log(p-ta)

squad’(0;p. q.2.8) = pllog(p-q) + 2log(s~1a)]
U1y - g

1) = &

Wil) = g4

(1) = glogle~"4)

{uﬂjil—u:l]',[” = —EIUEEIT:E]

squad'(L;p, g,2.5) - gllog(p~'q) - 20og(g~'8)]

Plugging in 57_;(1) = 5,(0) gives:
Falloglg. 1 'q.) = 2loglg. ' 8,)] = g,[log(g."¢,.,) + 2loglg, " a,)]

This gives us one equation and two unknowns (2, and 4. The only constraint
we have so far s that this funceion must pass theough all the control points and have
a continuous derivative. We must select the value of the derivarive at the conrral
points ourselves, A reasonable value wo select for the derivative ar a control point is the
average of the tangent values of the two funcrions:

3 earll) = 4, T, = 57,(0) where

2.5 Interpolating Quaternions

213

T, = lloglg, ' q...) + loglg. g J1/2

5o now we have two equations:

falloglg.'q.) - 2oglg. b)) = g, [loglg.g,1) + loglg, 9,12
‘f;l.lﬂ‘g[ﬂi';!ﬂi,.]} * Eluﬁt'?n-:ﬂn]] — '?-r['lql:g;l'fﬂil} pr l"i'Ei['EHJEJ]ﬂ

Solving for a, and &,
I'=|1 — I!!Iln - *fnfrF[ﬂ":'Ef'!j‘.-f]"f-} . I“E{?-_1 ?.1. []}lr"i]
For 2 unit quaternion g = [5v]:

q =q" = [5-]
(pgh* = q°p"
loglg™} = Joglg)

From these rules, we can say:

loglg, g} = —logllg. g = ~loglg, g,)

Plugging this into the cquarion for {a_.8,} yiclds:
a, = b, = guexpl-lloglg,"q.,) + loglg, " g...))/4]

2.10

The Shortest Arc Quaternion

Stan Melax

This article shows a shorr routine clled RotationAre(). Given owo vectors sy and o,
this function retumns a quatesnion g where g*vy==v,. The implementation is fairly
optimal and avoids a common numerical instabilicy picfall.

Motivation

You might be wondering where you would ever want 1o use such a funcrion. Comsider
a guided missile in your video game. This is an object that wses orientation (3DOF),
cven though it is only the forward direction (2DOF) of this radial-symmetric object
that is importane for its AL As is the case for all rigid bodies, quaternion 4 is needed
to reonent this object from its current direction 145 to the direction we want it to be
going v;. Although we can chaose from an infinite number of axes of rotation, it is
best 1o choose the obvious axis of rmsation thar minimizes the {arc) angle of reorienta-
von—rthat is, the obvious axis that is perpendicular pa bath vectors. This rourine is
also useful for implemenring a “virtual trackball” for spinning objects with the mouse
(as in a VRML viewer). The SpinLogo demo program included on the CD that
accompanies this book uses Rotationarc() o implement this feamure.

Numerical Instability

This algorithm could easily be done by taking the normalized cross product to EEL an
axis of rotaten and then taking the acas() of the dot product o get the angle
between the vectors. This axis and angle would be fed into the constructor of 2
quatemion. However, that is not a good solution, because as the vectors 1, and #, get
close together, the cross product (being propertional to the sin of the angle between
the two vectors) becomes small and potenrially unstable when we try to normalize it
(see Figure 2.10.1). Deriving the angle can alss cause grick. It is possible that aking
the dot product of two unit length vecrors that are parallel can resulr in a small over-
flow (greater than 1). This can be problematic when deriving the angle, Try execuring
acos (1.00000001). In these cases, using the standard quaternion constructor char

210 The Shortest Arc Quaternion 215

x Wi
Ak *—-ﬂu"

FIGURE 2.10.1. Cross produet shrinks as vecrors converge.

accepts an axis and an angle is not appropriate. The solution is to generate the quater-
nion in a2 more direct manner.

This problem first hit us during the development of the puided missiles for the
video game MIYK2 [Bioware00]. This is nor an ohscure problem that showed up only
in our development. It has been noticed by many others and could happen to you.
Real-Time Rendering [Mollesr99] briefly mentions the subject. This aricle provides a
more thorough explanation and provides code 1o add w the Game Programming Gens
math library {or to your own quatemion library). If you want o avoid inoducing a
nasty bug, you should use the code provided in this article for generaring a1 quaternion
from rwo direction vectors,

Derivation of Stable Formula

For this discussion, let ¢ = [¢..r,.] = cross{sy.0). and the quaternion g we are teying to
derive has the elements g,.4,.4.4.. The angle (unknown) between the two veetors (3,
and #) is £, Let o be the dot produce: 4 = dot{e e);

The 4,.9,4, components of a quaternion g have a length that is sin of half the

angle (#/2). As mentioned, the cross produet’s lengrh is che sin of dhe anple £, There-
fore:

sinlz [2)

sin(t)

[d0edy0g.] = les 16,06,

50 now we have to determine a stable formula for che sfrfe2Meoin(e) term. Recall
the half-angle formula:

sinfe § 2) =

_|1 coslt)
V. .2

and the circle identiey:

|]
sm+oos =1

218

Bection 2 Mathematics

Then:

sin[:ll"ll} - ﬂl = n:-s[:}],-"-z

sin(t) 11 — cos*(r)

4

We know corf#) to be the dot product (#) of the two veetors. Therefore, we replace
it in the formula and continue the simplificarion:

Ye=aiz_[a-a
-4 V20+D0-D Lo+
Sul‘mil:ul:ing back im:
leae il
["?:"?J-"?e]= ™ rr .

Y21 + &)

Deeriving the g, component (angle) of the quaternion is fairly straightforwand
using the halﬁmg!-: formula for cont/2k

o

o micosts | 1]'=‘|£|l+m£{r} i Jl;.ﬂ'

In erder to opumize owr C+4 function to use only one call to sgrt (), we multi-
ply the inner square root term of our g, formula by 2/2. As a result, the rerm within
the square root is now the same as for the other quaternion elements. In other words,
.15 dezived using the equivalent formula:

2L+)
et 2

These new formulas for our quarernion elements remain stable as o, spproaches

vy and as the dot product o approaches 1.

Remaining Instability Condition

Note that this function still becomes numerically unstable as #, approaches —»,. This
is not surprising, becauss when 1, equals —, there is not a unigue solution; any axis
of rotation on the plane perpendicular to 1, will do. Remember that 1, and #; are
directions, not arientations. A check could be added to the funcrion in order to detect
this case and avoid the possibility of dividing by zero. However, we did not do this,
because it is so unlikely thar one would be clling this funcrion in thar case. The
objective of wsing a function such as this one is to orient an objeet toward 2 Targer.

240 The Shartest Arc Guaternion 217

Conscquenty, v, rarely approaches -, but instead converges ro », after repeated mis-
sile-tracking AT updates.

Source Code

gquaternion Aotationfre|vectord v, vectord wi) {
quaternion gq;
vi.normalize(); ff Skip if known to be unit lesgth.
vi.normalize(}; [/ Do only if needed.
weCTord ¢ = CrossProduct(wD,vi):
Tloat O = DotProductivl,vwi);
Tloat a8 = (float)aqre((1+d)=2);
q.% = c.¥ f o8

qQ.¥ = c.¥ [f &
Q.Z = C.Z § &5
q.w = g [2.0f;
return q;

Virtual TrackBall

As a bonus, this amicle includes code for implementing a victual trackball funcdon.
Although such funcrionality might not be necessary in the user interface of your fin-
ished game, it is very handy during development to be able to grab any of your game
objects and spin them around with the mouse.

An easy way of implementing object spinning is to romte the object abour the ¥-
axis when the mouse is moved parallel to the X direction and about the Xeaxis based
on vertical {F) mouse movement. This method doesa’t allow for rotation about the -
axis (normal to window), and it simply doesn't feel “intuitive.”

There are a variety of ather user interface methods for spinning objects. This arti-
cle explains one simple approach. The old and new mouse positions (2D [X, ¥]) are
converted into rays (30) that point from the viewpoint into the window. Next, we
determine where these rays would intersect a sphere around the object the wser is
manipulating. Ifa ray does not intersect the sphere, the closest point on the silhouerre
of the sphere is used. The sphere is rotated so thar the point of intersection from the
old mouse ray coincides with the point of intersecrion from the new mouse ray. This
is achieved by passing these two points (using the center of the sphere as the origin of
the coondinate system) as input to Rotationarc() . This returns the quatcrnion thar is
used to adjust the object’s arientation. The source code for the virtual mrackball func-
tion and extracung the direction vectors from mouse inpur are available in the Spinl-
ogo source code on the CD that accompanies this book.

218 Section 2 Mathematics

References

| Bioware00] Bieware, Shiny, and Interplay Productions, MDEZ, 2000.

[Maller99] Moller, Tomas, and Haines, Eric, Re/- Time Rendering, A. K. Peters Led,,
159434,

3.0

Designing a General Robust
Al Engine

Steve Rabin

Creating a multimillion-dollar pame thar spang several years of development is a
pretty big undertaking. The wnderdying strucure of your Al engine will have huge
implications in terms of what your game can and can't do. Therefore, rather than let
an engine simply evolve, it is best 1o build in generality and safery precaurions from
the start. The generality allows you to make your Al characters do anything you can
dream up. The safery precautions both prevent bugs and help you track them down.
After all, the only thing standing berween you and the ship pary is a couple thowsand
bugs.

E‘5-.|.-J:Ii}: ideal AT l‘ﬂgil'l'é !'H:l]'lﬁ solve a ton nfpmh]:m.'s for YOILL, The fa]jm\l[ng list eon-
tains just a few:

1. Easly allow communicarion berween game objects

2. Offer a general and readable solution to implementing Al behavior

3. Pacilirare keeping debug records of every event (you want o catch all those bugs,
righe?)

This article consists of several parts. Any one part by itself might scem obvious,
omdinary, or insanc, but put together, these ideas create a very powerful system. So, as
you read through the article, y to keep in mind the big picrure and how each con-
cept interaces with the others. In addition, realize thar the Al engine presented is
implemented in C as opposed 1o Ci+. C was chosen on purpese to show that this
engine docen't rely on any objecr-oriented code to work and & generlly applicable,

even to console development.

Event-Driven vs. Polling Objects

After working on several games, you'll start to see some premy big parterns in Al
engines. The fiest is that you need each of your game objects to updare its logic every
tck or s0. The second is that thess objects need to communicare with esch other.
There are basically two ways for game objects to react in the world: by actively warch-
ing the world (poliing) or by sinting back and waiting for news (everrt driven).

ey Section 3 Artificial Imtelligence

Since games usually have hundreds of game objects in them, the only reasonable
solution is to maks the objects as cvent driven as possible. Imagine for a moment chat
a missile explodes, Gusing area damage thar affects 13 or so unis. Each unir could
poll for nearby explosions every tick as though they were acrually aware of dheir envi-
ronment, or the exploding missile could simply tell each unic thar it was hir and how
hard. Although its more cool o think thar each game object could sense its environ-
ment and react appropriately, the fact is thar the end resulr is the same either way.

With that quick-and-dirty analogy out of the way, you'll probably agree thar

event-driven communication is the way to go!

The Message Concept

Since the goal is to have event-driven behavior, we need to design a robust communi-
cation system for making that happen. For now, let’s look at the concepr of messages.
For our PUTPOSES, & FREEE 15 a0 nl:il:u:l that has fve felds: a dﬂﬂip[]\'t mame, the
name of the sender, the name of the recciver, the tme at which i should be delivered,
and any relevant data. If 1 was handed a mesage, [should have all the informarion
necessary to pass it to the correct game object at the right time. The receiver of the
message gers the message along with all of the goodies inside it, such as who snc it
and any exra dama.
Here's an cxample of 2 message:

nane:damaged, Trom:dragen, to:knight, deliver_at_tima:245,34, data:i0
[anount of damaga)

In effect, messages become an electronic paper trail of what's happening in our
game. This is a powerful concept that gives us all kinds of benefits. One of the inered-
ible uses of this concepr is that we can recond every message that is sent and dumgp it
10 a file. That way, if there’s 2 bug, we can look at the file and cxamine what triggered
cerrain actions, This ability becomes imvaluable when the problem invalves the inter-
actions of rens of game objecs over a fraction of a second.

Anather grear use of this concept is thar any pame object can “listen” to any other
game object’s medages. Since messages have the intended receiver buile in, it's easy to
differentiate who the message was meant for. Call it snooping, sniffing, or just peck-
ing, but this ahility gives you the power o solve some tricky logic problems. Imagine
a manager game object thar owns several other game objecrs. The manager can then
snoop its children’s messages 1o lisren for key events, such as members being amacked
O {I.:m:g::l.‘l_

The messages [am describing also have a field for delivery tme. By sending mes-
wagres that should be delivered ar a furure time, we wrap a really cool dmer system into
the mexsage concepl. In the real world, people and creatures usually have reaction
times. By delivering messapes slightly into the fumre, depending on the event, reac-
ton times can be simulated. After all, don't you hate it when you're playing a game

3.0 Dﬁigﬂhgaﬁmmlﬂuhumﬂl_ingim 223

and things tend to happen in lock-step, all ac once? Even within a single game object,
it can send a message w irself, to be delivered at 2 future time, in order w STagper
behavier changes. You could even generate 2 random dme within some window in
order wo add some much-needed chaos.

State Machines

Astate machine is a simple Al concept thar delivers a lor of pawer with very litle com-
plexity. The basic idea is that 2 gamc object has a different state for cach main segment
of behavior it exhibies. The goal is to break down a game object’s behavior into these
logical stares. In a basehall game, for example, the pitcher mipght have the sates
Rﬂd}fﬁ'ﬂ"ﬁlﬂdupq Windup, WaitForHir, [neerceprBall, CoverBase, and so on. Imag-
ine how useful it would be if ar any rime during your baschall game you could simply
display on-screen the current and pase states of all nine players on the field, Alterna-
tively, if you came across a bug, you could dump to a file all the past state information
along with what caused each state transition. For cample, if your righe fielder never
responded 1o the ball being hit, you can see why he wasnt in the nght scare o listen
for that event. So, stare machines not only break behavior into manageable bite-sized
chunks, but they also give you instant access to the mindset or thoughes of your Al
objects.,

An Event-Driven State Machine Using Messages

Pusting these three major concepts together, we now have a powerfil foundation for
an Al engine. Individual behaviors are built using state machines, whereas all com-
munication and event notifications are accomplished with messages. Note that sach
game object running 3 state machine doem’t preclude it fom using furzy logic, neural
fets, or any other exotic Al technique. The stare machines simply provide a standard-
ized generic interface thar can be exploired any way you like.

Although state machines are a simple concept, let's review some important quali-
tics that would make a stare machine more elegant and more robust, Below is 2 check-
list of fearures we need:

The state machine can have an arbitrary number of sztes,

States can be caily defined and ser.

When a state i entered, we should be able o cxecure any initializarion code.
When a stare is exited, we should be able to cxecure any clean-up code.

We can casily listen for messages and execute any code in response.

We can casily liszen for the updare tick and execute any code in response.

We can wransparentdy record which messages have been received and whesher
thers was a response.

We can transparently record state changes and the message thar rriggered them.
We can listen for 2 message within only cerain states or globally over all states.

TR P R

=

224

Sectlon 3 Artificial Intelligence

Table 3.0.1 Paeudocode for State Machines

Peaudocoos Keypaord Description

BeginStateldachine Srarns e stare machine d=finigon

EndStateMachine Terminates the state machine definition

Srare{Name(OState) Designates the beginning of a particular stare

OnEnter Hesponds (o a state being entered; allows for initialization code
OnFExit Besponds to a ssate being exited; allows for chean-up cods
Oollpdate Fesponds to the updare pame oick

OnMsg{NameOfbessage) Responds to any defined message

SeSae(MomeOf S tare) Changes stares; sends OinExit 10 ald state and OnEncer to new state
SendMsz() Sends messape to any pame objoce

SendDelayedMsg() Sends a delayed messape 10 any gamc objece

10. We can send messages to any game object, including ourselves,
11. We can send messages with a delay built in so thar the message is delivered ar 2
hurure time.

1L The overhead for running the smte machine should be minimal.

Chur state machine needs 1o suppare all these features. Table 3.0.1 is preudocods
for all the construcs we'll need.

In order to make this concept concrete, lers look ar an example of a sentry robor
bent on killing. Lers also use the preudocode from Table 3.0.1 o represent our scage
machine, Our state machine has two states: Pacrol and Amack. However, the stare
machine starts out in none of these states, Instead, a global section ar the top of the stare
machine is abways active, regardless of the current state. When the state machine muns
for the first time, the OnEnter response is triggered. Inside this response, the first stare is
set with 2 SatState command. In this example, it sets the smarring stare to Patral,

BeginStateMachine

S IGlobal Respanses
OnEnter {
SarState(STATE_Patrol)
1
OnMegl WSE Dead)
fiDestray this game object
1

State| STATE Patrol)

omEnter {

!12et initial goal point for patrol
}
OnUpdata {

if[/*see the eneay")]

SgtState(STATE Attack)
else if{ /*goal point reached*/)

3.0 Designing a General Robust Al Engine 225

{/set next patrol paint as goal
|
}

Stete| STATE_Attack) {
nEnter {
ff5et poal to be enamy

}
OnUpdate {
if(f*enemy dead*f)
EntState| STATE_PATROL)
else if(/*ensmy within weapon range®/ }
fishoot enamy
}

}

EndStateMaching

Since chis state machine is event driven, the only way it cxecutes is by gerding a
message. It can get 2 message when a state is first encered (onEnter), when 3 stare is
exired (OnExit), when a game tick occurs (0nUpdate), or on any other defined message
(onbsg{1).

When looking at the state machine, envision a message being delivered to in. The
message first goes to the currenr srace, If there is a response for that miessage, the mes-
sage is consumed and che response is executed. If there is no response for the messape
in that seate, the message is resent to the global responses at the wp of the stre
machine. This behavior creares a powerful stare machine concept: the idea thar indi-
vidual states can have message responses or thar you can have a plobal response to a
message, regardless of the current state. Even more powerful, you can have a glabal
response [0 3 message while sometimes overriding thar response within cerain stares.

Because there are these global mesage responses, a stare change might happen
from outside the current state. For this reason, the 0nExit message response is crucial.
If a global message response changes the current state, you can rely on gering the
OnExit message in the current state to clean up anything before the stare is acnually

changed.

Confession Time

MNow I have a very big confession o make. The peeudocode you just examined dper
compile with a normal C eompiler! (Thar is, it does so provided some comments are
wrned inte real code.) All you need o do is use these macro definitions and place the
state machine within rhe following functon:

Fdefine BeginStateMachine 1f(STATE Glebal == state) {

#define Statela) ir{d) {return{ tree J; 1 } 1\
else if[a == state } { if(o} {
#gefine OnEnter returnl troe); b else if(4

MEG_RESERVED Enter == nzg->name § {

226 Section 3 Artificial Intelligence

#define OnExit return{ true); } &lse if| 4
WSGE_RESEAVED Exit == msg->na=se |} {
#define Onlpdate return{ True }i } L else if(%
MSG_RSSERYED pdate == msg-=mame §} £)
#define Onlzg(a) retern{ true }; } 1\
else 1f| == mag->mame § |
#definge SatStatela) Setitateindamelbject(ga, (intla J;

#define EndStateMachine retern] true }; } } A else { aseert()
t"Invalid State® j;
returny false ;) return false):

bexl ProcessStateMachine(Gamelbject® go, unsigned int state,
KsgObject® may)
{

f! Put state machine inside this funetion!
1

Cestyle macros are a funny thing, Normally you'd want to stay away from them
because they can be misused and lead o bugs. In this case, we can exploit macro def-
INitions to CONSIIUCE & Bew state machine language! We certainly don't have to use the
macros 1o make the state machine work; it simply makes the coding more error free,
simpler to read, and faster to write. Now thar’s a good use for macros!

You might have noticed thar 2 bunch of return starements are embedded in the
macros. Conveniently, these return statements report whether a message was handled
or whether it fell through withour being consumed. This informarion is critical for
knowing whether a message thar wasn't handled in a local stace needs to be sent to the
global responses, The return value also helps log whether or not a pasticular message
was handled by the state machine.

Another Small Confession

I have another small confession. The macros are construced so thar you don't need to
use all those curly braces! The bracss are there to make the state machine more Celike,
but they arcn't needed ar all. By not using the cury braces, you can make the stare
machine more elegant and perhaps more readable. The following is an example stare
machine without the curly braces:

BeginStateMachine

gnEnter
fiInitialization Gode here
Onisg(MSG SomeMessage |
JiResponse code hore

State(STATE_Roan |
Onlpdate

JiUpdate code hars
OnExit

2.0 I:I-Hrg_ning a General Robust Al Engine 227

{iCleanup code herg

EndStataMachine

State Machine Building Blocks

These C macros wers constructed very carcfully in ender to make something cool hap-
pen. Think of them as building blocks thar can be stacked however you like. Because
of this stacking ability, the minimum you need i the Following:

BeglnStatelachine

EndStatelachine

From chis minimum, you ean add stares and listen for any messages within those
states. Since ir's not required to have suares ar all, you could simply have message
responses!

The stare names and message names are sirnply enumerated types—in effect,
unsigned integers. Since simple ifelse srazements replace the macros, the processing
required is quite minimal.

State Machine Message Routing

Of course, theres a bit more support code to roure messages and make this stare
machine work properly. Figure 3.0.1 shows an overview of the structure.

The only outside source of messages to the game abjects comes from the player
input and the game tick updare loop. Other than those, messages are spawned by the
state machines themselves. When 2 mesage is sent, it always goes o the message
router. The router then sends it through the game object and on to the state machine

Player
T st
t: Message Kouter
Updaie -
G ame I 1 * * 1 ; Jr
Uhjects Game Game Game CGiame

Ohbject Object Ohbject Ohject

| : : B

Simie Machine Lrate Machine State Machine

FIBURE 3.0.1. Owverview of message routing.

Saction 3 Artificial lntelligence

that the game object owns. In case a message should be delivered ar some time in the
future, the router hangs on to it unil the delivery time has passed.

Note that in Figure 3.0.1, two different game objects point 1o the same state
machire. Obviousy, if you have two or more objects thar should behave the same,
they should execure the same exacr code. Thesefore, it’s imporant o recogniee that
all varizbles and state informanion are stored inside the game object and not e state
machine. Multiple game objects use the same ssate machine, so you should always be
conscious of thac fact,

In erder to explain the message router and stace changes, we need 1o know more
about some variables inside each game object and message object. The following is the
bare minimum definidon of each:

typedat struct

{
unsigned int unigue id;

Mi5tate machine imfe
StateMachineID state machine id;

ensigned int state; {/the current state

unsigned 1nt next state; ffthe next state

kel Torce state change; ffhas B gtate change begn
ffreguested

J/PUt other game object info im hara
} Ganedbject;

typedef stroct
.1
Msghlane mans; {inema of message
unsigned int sender id;
unsigned 1Nt receiver id;
Tloat delivery time: Sildeliver message at this tima

frHote that the sendor_id and receiver id are not pointers to
{/gane objects. Singd messagas cam be delayed, the sendar or
fireceiver may get removed Trom the game and a pointer would
{fpecome dangerously invalid.

fifeu can add right hers any data you want o0 be passad
{falong with every message — sometimes it's helpful to let
{imegsnpes comvey more info by using extra data,

ffFar exasple, a damaged message eould carry with it the
ffamount of damage.

} MsgDbject:

The following is the code that is called when a state change is requesred. Nore
thar the state change is asked for and doesn't occur uniil the current message is done
being handled. 1n addition, realize thar this funcrion is called by the SatState macro.

void BetStatelnGamaCbject| Gamedbject® go, unsigned int state)

20 Deslgning a General Robust Al Engine 229

go->next_state = state:
ga->foree_state_change = true;

b

The router takes a formulated mesmge that'’s ready o be sent and makes sure it
gets sent 1o the right states. Ir also deals with changing states if a request has been
made. You can see the code for the router in Listing 3.0.1. Since the router needs 1o

deal with delayed messages (2 concept thar is explained Later in this article), the fune-
tions it references are in Listing 3.0.2,

Sending Messages

In order to send 3 message from inside a stare machine, it would help if there wese 2
simple function to call. The following is an example of a send message interface:

vaid SendMsg(Msgame name, unsigned int sender, wnsigned int

receiver)

{
Mzglibject mag;
MEQ. Name = nRane; {{The nana of the nessage
med.sender = sender; f{The sender
msg.raceiver = recalver; {{The receiver

meg.delivery_tine = GatCurTime(); //Send the message NOW

RouteMessage| &msg 13
}

MNote thar when o message is sent, the state machine immedizrely roures it to the
intended receiver. This is a great feature for debugging because a breakpoint inside a

state machine lets you see the stack and, consequently, who sent the message,

Sending Delayed Messages

As mentioned before, messages can be given a furure time to be delivered. The roucer
deals with this command by storing delayed messages for future routing, Somewhere
in the main game loop, the funcrion SendbelayedMessapes needs to be called so thar

the messages are eventually sent ar the correct time. The following is the interface
funcrion for sending a delayed message:

vold SendDelaypaMsg(MagMane nase, float dalay, unsigned int sendar,
unsigned int recedver)

i
Meglbject msg;
Mey. Name = namg; fIThe nema of the nessage
MEg. sender = sander; fiThe sendar
MEQ. FECEIVET = receiver; {iThe recaiver

nEg.delivery time = GetCurTime() + delay;[/Send a future mesEage

230 : Saction 3 Artificial Intelligence

RowteMessage] &msg)
1

Mote that all messages contain the sender and receiver as unique IDs, nor as
pointers. Since messages can be delayed, ics possible thar the sender or receiver has
been semoved from the game. Since a pointer has no way of knowing this, it's not safe
to reference the game objects by a pointer only. Instead, the receiver of the message is
looked up wsing its unique ID. This method ensures that messages are sent only o
valid game objects.

Delayed mesmges are an incredibly useful tool for the smare machine. Consider
the following stare machine for a hear-seeking rocker, The rocket is fired, and if it
doesn't contact anything within five seconds, it should auromarically explode. This
task is accomplished by sending a delayed message (M56_SslfDestruct) when the stare
machine is initialized. After five seconds, the message is delivered to the stare machine
and consumed in the global responses. At that time, the state is set v Explode, and
the rocket will soon be history

BeginsStateMachine

{ /Global RAesponses
OnEnter f{Triggered when State machine Tirst starts up
sandielayedMeg(MSG Self0estruct, 5.0, go->unique id,
pr->Unique id)i
SetState| STATE Armed 1;

Onlsg{ M55 Selflestruct)
Satitate| STATE Explode);

Stata{ STATE_Armed)
OnMsg(MSE_Collision)
setState{ STATE_Explode };

Onllpdate
ffldentify closest visible enemy and steer toward

State{ STATE Explode)
nEnter
f[Explede rocket - cause Brea damage
fibelete game object

EndStatalaching

Deleting a Game Object

Deelering a game object from wichin the stare machine takes a lietle thought. Since the
game object owns the state machine, we cant delete it while we're executing code
inside the state machine. The solution is to ser a flag identifying that the game object
should be deleted. When the execution steps outside the state machine, it's then lepal
tos delete it.

3.0 Designing a General Robust Al Engine 231

Enhancement: Defining the Scope of a Message

A problem that creeps up is that sometimes a message is valid only inside a particular
suace. Unfortunately, the porensial exists for a delayed mesage 1o be consumed by the
wreng state. Consider the following code:

BeginstateMaching

{ fGlobal Responses
OnEntar
Fetdtate| STATE Alive);

State| STATE Aliwve)
nEnter
Sendlelayedidsg| MS0_Tinedut, 3.0, go-=unigue id,
Qo->unigque_id);

OrMsp(N3G _Timedut)
fIFlay & sSouwnd

OnMsg(WSE Dead)
SetState| STATE Dead);

State{ STATE Dead)
DnEnter
SendDelayedisg(MEG_TimeQut, 50.0, go-=unique_id,
go->unique_1d };

Dnblzg MSG TineDut
SetState| STATE_Alive);

EnditateMachine

The problem is thar both states send and respond wo M8 Tineout. If the Alive
stale gets a USG Dead before it gets back the m86_Tineout, the Dead state then incor-
rectly gees the MSE_TimeOut spawned by the Alive staie. This was elearly nor intended.

The solution is to mark 3 message as valid only within o particular sare. If the
state is no longer active at the dme of delivery, the message should be thrown away. In
effect, the message now has a scope and is valid only within dhat scope.

This enhancement can easly be added with an extra vasiable called “stare” inside
each message object. When the message is delivered, it first checks whether the mes-
sage “stare’ marches the current state of the game object. Only then is the Mmessage
delivered. However, most of the tme you want messages 1o be delivered regardless of
the current state, so messages should default 10 not performing this checle.

Since only delayed messages sent 1o yourself should ever be marked with a stare,
we can create 2 new helper funcrion for sending thar particular kind, The following is
an example of the code. (If this enhancement s made, the other send message fanc-
tions need to mark the message sare as invalid.)

232 Saction 3 Artificial Intelligonce

void SendDelayedisgTofurrentState| Msghase nane, Tloat delay,
Ganelbject go)
i
Meplbject nsp;
MEQ.NAME = [Aang; HThe name of the message
MeQ.state = go->s5tate; f{The state in which the msg is walid
mef.2ander = go->unigqee_id; {1The sender
mef.raceiver = go->unigua id; 1iThe receiver
meg.dalivery_time = GetCurTime(} + delay; //Send a Tuturs Aessage

Routelessage(Ansg)|

Enhancement: Logging All Message Activity and
State Transitions

With the current structure, it's wivial to snoop the current stare of each game object
and perhaps display it on screen. You could even watch all the message eraffic that
comes through the message router and display that on screen. Bur for real hard-core
debugging, the ideal siruation is 1o individually track each pame object, logging all
message activity and stare cransitions along with a ime stamp. Surprisingly, this task
iz easy to do.

The trick is to modify the stare machine macros. When we insert some simple
function calls into the macros, the task of monitoring every state machine becomes
transparent. The following macros log message responses and state transitions:

#fdefine OnEmter return] trues J3 o+ o\
else if{ MSG_RESEAVED Enter == msg->name J { \
Loglessage(go, meg, GSetCurTime());

#defing OnExit return true J; } O\
else if{ M33 RESERVED Exit == nsg-~nama } { \
LogWessage(go, =msg, SetCurTima())3

#oefine OnUpdate returni true J; }
else iT{ M3G_RESERVED Update == meg-»>mame] { 1
LogWezzage(go, =s5g, GetCurTime(})

Foatfing Oniag(a) réturn(trua J; } A\
alge Iif{ a = msg-=nama } { Y
Logessage| go, &5g, GetCurTims() }:

#lefine SetStatefa) SetStateInCamsObject(go, (intha)3 %
Leg3tateChange(go, state, (int)a, GetCurTimel)):

The funcrions Laglessage and LogStateChange can store the informarion in
whatever way you'd like. One suggestion is to keep a circular buffer of history dara for
each game objecr. You ean then either browse the history on sereen or dump it ro a
file when something interesting happens. Since each event is time stamped, you could
compare the logs of different game objects to see how they interacted. As menrioned
before, this feature is incredibly helpful if there are three or more game objects all

4.0 Designing a General Robust Al Engine 233

interacting over 2 fraction of a second. Very complex interactions are now casy 1o
debug,

Enhancement: Swapping State Machines

Within complex characrees, it’s very hard to design one stre machine thar serves all
purpotes. The solution is to make bite-sized state machines thar are more manageable
and more specialized, Wich this funetionality, a characrer can choose to run the state
machine thar bese fits the situation. This function aveids overly complex state
machines char become unmanageable,

Enhancement: Multiple State Machines

There is no rule that 2 game object can run only one state machine at a tme. In fact.
irs quite useful for an Al charcrer 1o run several state machines simulancoushy.
Imagine that each character has one state machine that serves as the brain and one
that serves to keep mrack of the movement goals (not the movement execurion). The
brain could even control the movement state machine by sending it commands in the
form of messages.

Since not all rypes of movement are the same, you can apply the idea of swapping
state machines. The brain can then run the appropriate movement stare machine thar
fits each given situarion.

Enhancement: A Queue of State Machines

The dedicared movement state machine brings up an interesting enhancement. It
would be incredibly powerful o be able to quene up scveral movement state
machines. In this scenario, only the rop one on the queve would be active; the athers
would be tempararily disshled.

The idea is that maybe a player has direcred an Al character to go o three sepa-
rate places in succession (think RTS), For each spat, A scparate MOVEment sate
machine would be thrown onro the movement queue. As the first state machine
reaches its goal, it destroys itself, and the next state machine on the queue becomes
active. This approach acrually solves a large number of command issues in RTS
EAmes.

Consider the act of parrolling. Patrolling is going to a sequence of places and re-
peating that pattern over and over. By employing the state machine movement queue,
tach parrol spot can be placed an the queue. However, when a stare machine reaches
its goal, it needs to pur iself on the back end of the queue in order to maintzin the
cycle,

234 Section 3 Artificial Intelligence

Scripting Behavior Qutside the Code

The Al engine described in this article is clearly nor scripted from outside the code.
However, that fact doesnT exclude a programmer from cleverly influencing the behav-
ior through the use of ourside dara. If we create variables hat impact decision making,
a state machine can be customized for a particular character. 1n fact, many characrers
should be able to use the same state machine yer have wildly Ji fering behavior due ro
attributes such as aggressivencss or fear,

Interestingly, the original implemenmtion of this Al engine supporred srare

machines scripted salely eutside the code. Puring the logic outside the code creared a
debugging nightmare for everyone involved. The original intentions were admirable,
bur the result was 2 frustrating programming environment that wasted many people's
time,
The lesson o learn was that logic should be inside the code and dara should be
outside. Unless the design poal is to ler users write theis ewn Al there isn’t a com-
pelling enough reason te support arbitrary scripring of Al behavior. (For a more
detailed discussion of data and seripting, look ar the artice “The Magic of Daa-Dri-
ven Design™ in this book.)

Conclusion

Even if you never use chis exacr implementation of an Al engine, many of the Ereat
ideas presented here can be applied o any AT engine or stare machine. Some of the
more notable ideas are as follows:

Standardized communication with messages
Standardized dmers through the use of messages
Using event-driven methods as opposed o polling
Tracking communicarion and state changes over all Al objects
Using global responses in state machines thar are always active, regardless of the
CUITENE sTafe
Allowring a global response in a state machine to be overridden by the current
sCate
Allowing an Al to swap state machines
Allowing an Al to simultancously run muliiple state machines
Allowing an Al to gueue up several stare machines
- Keep complicated logic inside the code as opposed to scripring it from ourside

W

=

o oo

The Al enginc as presented here is a powerful tool for enforcing a standard struc-
ture on Al objects, Because of the macro state machine pseudolanguage, its incredibly
quick and easy to protorype new behaviors. It's so easy in facr, thar there is a real ten-
dency to put too much code inside the stare machine. The challenge comes in deciding,
where to draw the line. As a general rule, probably only high level decision-making

2.0 Designing a General Robust Al Engine 235

should be held within the siate machine. Other systems of an AT charseter, such as

movement execution and animation. should cerainly exist elsewhere.

Listing 3.0.1: Message Router

vold Aoutelessage(MSG_0bject* asg)

{
GamsObject® go = GetGOFremID(cur_mag->receiver ad }; /fFurction not
{ fsupplied

if{ !go)

{ [i/Rccelver doesa't exist anynore - discard the megsage
return;

}

if [msg-=delivery_time = GetCurTims())

{ /IThis message needs to be stored until its time to send it
StoreDalayedileszzage| nsg)
r|=1.'urr.|,'

}

if{ RouteMassageHelper| go, go-=state, nsg } == false]

{ {ICurrent state didn‘t handle msg, try Global state (0)
RouteMezzageHelper go, 0, nsg);

}

/) Chack for a state changa

while{ go->force_state_change)

{ #fMote: eircular legic (state changes causing state changes)
flcould cavse an infinite loop here - protect against this
fiCreate a general msg for initializing and cleaning up the state
ffehanga
KsgObject tempnsg;
tempmeg.recelver = go->unique id;

Tempms]. sendar = Qo -=unlgue id:
go->force_state_change = Talge;
fflet the last state clean-up
tespmeg.nane = W3G RESERAVED Exit;
RoutelMessapoHalper(go, go-=state, Atempesg);
I18at the new state
go->state = go-=naxt_state:
fiLet the new state imitialize
Tempmag.nams = W30 _RAESERVED Enter;
AouteMessagedelper(go, go->state, Etempnag):
H
I3

tool RouteMessagetialper(GameObject* go, unsigned int state, MagObjeote
msg)
I

236 Section 3 Artificial Intelligance

ffLeok up correct state machine for this Game Object
flend send message to that particular ope

finot inplemgnted hera - thie always calls the same one)
return| ProcessStateMachinail po, state, msg));

Listing 3.0.2: Functions to Deal with Delayad

Messages

void StoreDelayedMaszage(MagObject™ nsg)

i
[i5tore this message (in some data structurs) Tor later routing
FIA priority queus would be the ideal data structurs (but not required)
fito store the delayed messages - Check out Mark Melson's article
[AI"Priority Queues and the STL® in the Janwary 1996 Dr. Dabbs® Jowrnal
Fihttp: [/www.dopna.nat/narkn/articles/pg_stl/priority.his
ffMote: In main game loop call SenpdDelayedMessagesi) every pame
i tick to chack LT its time to send the stored messages

}

void SendDelavedMessages| woid)
{ f/This function 15 called every game tick

whila(/*loop through 2ll delayed messages®/ |
if{ cur_msg-=delivery_tine <= GetCurTime(])
{
RouteMessags(cur msg §;
Aemowebalayediessage| cur_msg);
}
}
}
void RemoveDelayadMassage| Meszagedbject® msg)
/IRemove this meszage from the delayed messages data structure

}

References

[LaMothe®5] LaMothe, Andre, “Building Brains into Your Games,” Ganee Deeveloper,
also available online ar www.gamasutra.com/featuses/programming 061997/
build_brains_into_games htm, August 1995,

[Nelson96] Nelson, Mark, “Priority Queues and the STL,” Dr. Dobbi fournal, avail-
able online ar www.dogma.net/markn/articles/pq_stlipriority.htm, January 1996.

[Woodcodk99] Woodeock, Steve, “Game Al: The Seate of the Industry” Garme
Develgper, also available online ar www.gamasutra.com/Teatures 19990820/
game_ai_01 hem, August 1999,

A Finite-State Machine Class

Eric Dybsand

This article defines a generic finite-state machine (FSM) C+ class. FSM: are com-
puter science and mathemarical abstractions that have been useful for many yeirs in a
variery of ways. This article is not a discussion of the theory behined the FSM: instead,
It 15 a simple presentation of a basie building-black tool, the FSMclas, which YOu can
use to help develop your own complex amificially intelligent decision-making
processes in your computer game,

The first thing you should know abour FSMs is thar they are simple machines
that consist of 3 finitc number of sares (obvious, don't you think?). A srere is really
only a condition, For instance, consider 2 door; its states ean be apen or clared and
docked or unlocked.

The next aspect one should know abaut FSMs is that there {5 an friput to the
FSM, which affeces a sare eransition from one state to another. An FSM can have a
simple (or complex) stare transition function that determines whar state will hecome
the cirrens seaze,

The new current stare is called the ongpu state of the state transition of the FSM,
or the stare 10 which the FSM has transitioned based on the input., If chis concepr is
confusing, again think of a door as an example FSM. When the door is in 2 dosed
state and a locked stare, pechaps the inpur of e hey will cawse the door to transition
to the unlocked state (the ontpus stare of the stare mansition and the new currene e
of the door). Then the input of ue Aond will cuse the door to wansition 1o the open
state. When the door is in the open state, the input of nee hand will transition the
door back to the closed state, When the door is in the elosed state, the input of e key
will eransition the door back to the locked state. While the door is in the locked stare,
the input of se band would fail o mansition the door m the open stare, and the doar
would remain in the locked stare. Furthermore, onee the door was in the open stare,
the input of use key would fail to rransitien the door to the locked stare.

So, in summary, an FSM is a machine that has a finite number of states, one of
which is 2 current smare. The FSM can aceepe ermpat thar will result in a sare taennision
from the current staze 10 an owsput state, based on some sraze eransition funceion, and
the sutpur state then becomes the new corment state.

Now, how does this concepr apply to Al in computer games?

Section 3 Artificial Intelligence

The answer o that question is that the possibilities are really endless! FSMs can
form the basis for managing the pame woeld, simularing the emation of 2 nen-player
character {INPC), I!'I:'I.:!il:t:fning the stare of the game, parsing input from the human
player, or managing the condition of an object.

Consider the artitude of an NPC monster in an adventure game, for cxample,
Ler's say that the monster can have the following states: berserk, rage, mad, annoyed,
and uncaring. Furthermore, let’s say thar you have Al game code thar does different
things based on the state of the monster’s aritude. We can use an FSM o manage the
monsters aritude and the way it rransitions from once state o another based on mpuc
from the game itself. Let’s further say that inpurs arc player seem, player antacks, player
gone, moniter burs, and monser healed, Then the state diagram shown in Figure 3.1.1
can be drawn.

Using these inputs and stares, we can set up 2 seate transition marrix that looks
something like the one shown in Table 3.1.1.

Table 3.1.1 A 5tate Transiion Matrix for the Monster Qame

Cusren Stata [t Cutput Stats
WnEAring player seen annoyed
uncaring player amacks mad 3
mad enonster har rage

s monster healed unearing
rage maonster st berserk
mage monscer healed annayed
berserk mmonster huer berse
bemserk monster healed rape
anmoved player gone WCasing
annoved player artacks rage
annoyed monster healed unearing

Flayer &ifacks
Y

Me=ter Haclad
¥

&

Bt e Haulad mrar
¥ Tari
&
Pliges Ablacks

FIEDRE 3.1.1. A sample finite-state machine.

.1 A Finite-State Machine Class 230

So, depending on the current state of the monster’s anitude and the inpur wo the
FSM, the atitude of the monster will change. Game code that performs behavior
based on the attitude of the monster will then cause the monster to zce differendy.

Obviously, we could add more state transitions, based on more states and Inputs.
Doing so would affect how our monster’s attitude is evaluated and determined, and
thar is how we create the Al thar uses this monster’s artitude.

The FSMclass and FSMstate

Now how do we pur this idea to work? That is whar the FSMdass and its subordinare
FiMstate class will show in the following implementation, as illustrared in Figure
3

The FSMclass provides structure for any number of states thar are provided by
the FSMstate class. These owo clases work with each other to provide the funcrional-
ity For 2 gemere finite-state machine. A generic FSM implics that these ohjocts are gen-
eralized, able to support a variety of types of swares, a variety of types of stare
rransitions, and any number of state transitions, as well as any number of states within
the FSM. With such variery and peneralization as a design goal, these classes and their
members were selecred a5 you see in the following discusdon,

Defining the FSMstate

Here is the class definition we use to represent a state for our FSM:
clazss FEMstate

|
unsigned n_usMumberOfTransitions; ff maximes number of states
{f supportad
int *m_pilnputs; £ dmput array for transitions
int =m_pilutputState; {f output state array
int m_iStatelD; ff the unigue ID of this state
public:

M oeonstructor accepts an ID for this state amd the number of
M transitions to support

Fillstate| int iStatelD, unsigned usTransitions);

M odestructor cleans up allocated aErrays

-FSMstatal]);

f acoess the stete ID

FEhisipte
FEhclags — Any mimber of FEhfslalss
T

FIGURE 3.1.2. The FSMdass can use any number of FSMszares.

240

Section 3 Artificial Intelligence

int GetID(} { return ®_iStatelD: ¥
#f add a state transition to the Brray
void AddTransition{ imt ilmput, int i0utputID };
fI remove a state trangition from the array
vold DeleteTransition{ int i0utputID j;
fi get the output state and effact & transition
int GetOutpui(int ilnput);

|

See Listing 3.1.1 for the F5Mstate class constructor and desrructor implemenea-
HOnE.

The member variables and functions of the FSMstare class are as follows.

The Fsustate::n usMusber0ofTransitisns controls the number of state rransi-
tions that this stare is able to support. Sewing this value also determines the size of the
input and ourput arrays. Since we are creating a “finite” state machine, this value sets
the finite-state transition limit for chis sare.

The Foustate: im_pilmputs is an array of m_usNunberl¥Transitions size thar
contains the input values o be used during stare transition. The input armay is used by
the state transition evaluation function o compare to the input teceived and deter-
mine the corresponding output state.

The Fsustate::n_piOutputState is an amay of m_usNusberGfTransitions size
that contains a corresponding outpur stare identifier that indicates the new transition
state during a state cransition.

The Fsustate: :n_iStatelD is 2 unique identifier used 1o idenafy this instance of
an F3Mstate and is the value thar would be outpue by any transition to chis state fom
another stare,

The Fsustate: :GetID(} provides public access o the unique identfier of this
wnstance of the FSMstate class, See class declaration for this implementation.

The FEwstate: :AdoTransition]) provides 2 means o add new inpur values and
OULpUL state arrays o this insance of the FSMstate. See Listing 3.1.2 for this imple-
MEnanon,

The Fsustate::DeletoTransition() provides a means 1o delete an existing input
and its corresponding output state identifier. Sec Listing 3.1.3 for this implementa-
tion.

The Fsustate: :GetOutput() provides the stare transition funcrion dhar uses the
input value to determine the transition outpur stare identifier and return it See List
ing 3.1.4 for this implementaton.

Defining the FSMclass

Now we need the actual FSMclass implementation. The FSMclass works by main-
rining a collection of FSMstate objecrs.
tlass FoMclass

i
SBtate Map n_map; {f map containing all states of this F=M

2.1 A Finite-5tate Machine Class 2491

int m_iCurrentState; J4 the m_istateID of the current state

public:
Foliclass{ imt iStatelD); ff set initisl state of the F5H
—-FSMolass|); [clean up memnpry usage

fF return the current state ID

int GetCurrentStatal) { return m_iCurrentState; }

fI set current state

void SetCurrentStata| imt iStatelID } { m_ECurrentState = iStatelD; }

{f return the FSMstate object pointer

Fo¥state *getState| int L3tatelID };

/I add a F3Mstate abject pointer to the map
vold Add3tate(FSMatate *pState);

/F delete 4 FSMstate object pointer from the map
vold DelateStatel int iStetell |;

Jf perform state transition based on input & current State
int StateTransitdon{ imt LfInput };
|

Sce Listing 3.1.5 for the FSMdlass dass constructor and dsstructor lmpltmn:nta-
tion,

The member variables and funcrions of the F5Melass elas are as follows.,

The FsMclass: :m_map is the collection of FSMstate objects (pointers to FSMstace
objects, in this case) and is implemented from an 5TL <map>:

typedef map< int, FEMstate=; less<int= = State Map;

A discussion of the specifics of 5TL and <map> collections in general is beyond
the scope of this article. For information abour STL, please see the Gem “Using the
STL in Game Programming,” The above funcrion declares State_Map to be an STL
<map> with an int for a key; the map conrains pointers 1o FSMstate objects, and the
comparison function to use during access is the les<> operator for ints,

The FSMclass::n_iCurrentState is the state identifier for the FSMstate object
thar is considered o be dhe current state of the FSM.

The FMclass: :GetCurrentState() provides public access o the unique idend-
fer of the stare of the current FSMstate object. See class declaration for this imple-
mentanon.

The FsMclass: iSetCurrentState() provides public access to set the unique iden-
tifier of the state of a new current FSMsrare abject for the FSM. See class declasdon
for this implementation.

The Fsuclass: :Getstate() provides a method to abtain a pointer to any FSM-
sare object contained within the FSM. See Lisring 3.1.6 for this implementation.

The FEMclass: tAdostate() provides a method for adding FSMobject pointers to
the <maps contained within the FSM. This is the method that one uses to record the

242 Section 3 Artificial Intelligence

state relationships within the FSM that are defined by FSMstate abjocts. See Listing
3.1.7 for this implemenuarion.

The FSMclass: :DeleteState () provides a method for deleting FSMobject point-
ers from the <map> connined within the FSM. This is the method one uses o
dynamically remove scate relationships from within the FSM. Mote: When you want
to delete the current state from the <maps, be sure to ser a new current stace using
FSllclass: :SetCurrentState() before deleting the old current state, See Listing 3.1.8
for this implementartion.

The Fskclass::StateTransition{) provides the method for initiating a state
trznsition, using the inpur value received and rerurning the outpur state idenrifier. See
Listing 3.1.9 for this implementation,

Creating States for the F5M

To use our FSMdass and FSMstate classes in a game, we first build che FSMsrate
objecrs:

FiMstate *pFSMBlate = WULL;

/I create the STATE_ID UNCARING

try

{
f{ FSlstate{ int iStateID, unaigmed usTransitions)
pr3state = new FoMstate(STATE_ID URCARING, 2);

)
catohl ... }
i

throw;
}

/f now add state transitions o this state
pFiMstate-=AddTransition(INFUT_ID PLAYER_SEEN, STATE ID _ANNODYED);
pFSMstate->AddTransition(INPUT_ID_PLAYER_ATTACKS, STATE ID MAD |;

And then create an FSMclass object

fI creste the FSiclass object
try
1
M FSMolass(int iStatsID)
m_pFSWclass = now FAMClass (STATE ID UNGARTNG)

}
catch{ .. }
i
thirow;
;

Now add the FSMstate object o the ESMclass object

Ml now add this state to the F2U
m_pFskelass-=addState| pFSMstate);

3.1 A Finite-State Machine Class 243

Repeat the process of creating FSMstate objects and adding them to the FSMclass
object for all the stares you want to have in your FSM.

Using the FSM

To use our F3Mclass, we need only o pass it an input value (which is game depen-
dent) and receive an ourpur stare (also game dependent), then act on the output state,
5o in your game code, you would have something like this:

ff something happens in the game that causes an imput
iTnputID = INPUT_ID PLAYER ATTACKS;

fif heve the F5M do the transition to an output state
B LfutputState = m_pfiMeolass-=StateTransition{ilnputID);

ff some Qame AT eade tests for the output state
if[m_iOutputSiate == STATE_ID MAD)
1

}

Ml =mome ecode for the monster to zct mad

Its usage is that simple!

In conclusion, this FSMclass is not an end-all solution tw your computer game Al
needs. I is 2 starting point, or a building block, for you to use to create your own
FSMs thar are specific to your game needs. FSMclass objects could even be placed in
lists or maps and wsed to form networks of FSMs dhar are interrelated,

This FSMzclass could be expanded to suppon different inpur type data or stare
identificarion data types. A state or input-specific wansition function could be easily
added so thar, based on the type of input received or the current starte, the transition
o the ourpur state could be determined uniquely.

Have fun with this concept, and you will gain a powerful tool for making com-
plex computer game Al

Listing 3.1.1

FSMztate; (FSMstate| int 1%5tatelld, unsignsd usTransitions)
i
M den't allow O transitions
if{ lusTransitions)
m_ushunhardfTransitions = 1;
elza
m_uvsHushertfTransitions = usTransitions;

M save off id and number of transitiens
n_iStateld = iStateIl;

244 Section 3 Artificial Intelligence

ff now allocate each array

try

i
m_pilnputs = mew Int[m_usHusber0fTransitions];
tfor{ int i=0; i<n_usMunberOfTransitions; ++1)

m_pilnputs|i] = 0:

1

catchi ...)

i

}

try
i

throw;

m_pifutputState = mew int[m_usHusberDfTransitions];
for(int i=0; i<n_usNusberQfTransitions; ++& }
6_pilwtputState[i] = 0;
1
cateh| ...)
i
deleta [] m_pilnputs;
threw;
¥
¥
FElatate: --FEMstatal)
i
delete [] m_pilnputs;
delete [m_piOutputState;

Listing 3.1.2

vold FEMatate: AodTransition| int ilnput, int fQutputID)
i
fI the 8 pilnputs[] and m piQutputitate[] are not sortad
/I 80 Tind the first non-zero offsot in m_piOutputStatel]
/Il and wsg that offeet to store the input and OutputlD
I within the n_piInputs[] and s_piDutputState(]
for{ int i=0; i<m_usHunberOfTransitions; +&i)
{
if{ !m_pilutputState[i])
break;
}
!l ooAly a valid offset is used
if(i = s_usMumberdfTransitions)
1
n_piflutputState[i] = L0utputlD;
m_pilnputs[i] = ilmput;

3.1 A Finite-5State Machine Class

Listing 3.1.3

woid FEMstate::DeleteTransition] int ilutputID)

{

fF the m_piInputsl] and m piOutputStatel] are not sorted
ff so find the offset of the output state ID to ramove
for(int i=0; i<m usNusherdfTransitions: ++4)
{

ifi m_piutputState[i] == ilutputiD }

break;

1
fF Test to b2 sure the offset is walid
if{ 1 == n_uskumberO0fTransitions)

rETUrn

ff remove this ocutput I0 amd its input transition wvalue
n_plInputs[i] = O:
n_pidutputState[i] = 0;

/! since the m_pilnputs[] and m piQutputState[] are not
{f sorted, then we need to shift the remaining caontents
Tor{ i i<(n_usMumberOfTransitions-1); ++1)
1
ir{ Im_pifutputStatef(d])
break;

m_pilnputs[i] = m_pilnpute[is1];
fi_pilutputState|i] = n_plOutputState[isi];
¥
Hfoand elear the last offset In both arrays
n_pilnputs[i] = 0O;
n_pidutputState[i] = o;

Listing 3.1.4

int FEMatate::Getlutput| int 1Input }

{

Int i0utputld = m_i5tatell; ¥ output state to be returned

M for gach possible transitian

fer{ int i=0; i=n_uskumber0fTranzitions; ++i)

{
1 zerced ouiput state IDs indicate the end of the array
if{ Im_piQutputftate[d])

Break:
{f state transition functiom: look for & match with the input
fi walue
if{ ilmput == m_piinputs[i] }
i
ifutputID = m_piQutputStatei]; I output state id
Break;
}

245 Sectlon 3 Artificial Intelligance

fF returning either this m_iStateID to indicate no output
A state was matched by the input (i.e., no state transitian
ff can accuf) or the transitioned output state ID

return(10utputID §;

I}
Listing 3.1.5
FoMclass: :FSMelass(| int iStatelID |
i
mn_icurrentState = iStatelD;
1
FoMclass: --FEMelass()
1
FRl=tate *pState = NULL:
State Map::iterator it
fFoonly perform this if there are pointers in the map
Af[Im_map.espty())
1
S Tirst delete any F3lstate objects in the map
Ter{ it = m_map.begin{); it != m_map.endf); ++it }
1
pEtate = [FEMstate *}[["it).second);
if(pState |= MULL)
dalete pStata;
}
{f let the pap dier{) erase the actual pointer ocut of the map
}
1
Listing 3.1.6

FEMatate *FSMolass::GetState(int iStatelD)
]

FSztate "pState = MULL;

State Map:iiterator it:

ff try to Tind thiz FEMstate in the map
if[Im_map.enpty{) }
{

it = m_map.find(iStatelD };
if{ it != m_map.end{))
pitate = [FEMstate =) (({*it}.second);
}

returni pState);

Listing 3.1.7

void FEMclass::AodState| FSMstate *pawState)

3.1 A Finite-State Machine Class

FEMstate *pState = NIALL:
State Map::iterator it

I try to 1ind this FSMstate in the nap
AT(!n_map.enpty{))
i
it = m_map.find{ pMewState->GotiD(} }:
if{ it = m_map.end{] }
pState = [FSWstate *}{(=it).secand);

A if the FSMstate object pointer is already in the map, return
if(pState I= HULL |
return;

fI otherwize put the FSMstate objact pointor into the map
m_map.1nsert({ SM_VT(plewState.>GetID(), plewStata));

Listing 3.1.8

vaid FEMeless::DeleteState| int iStateID ¥

{

Filstate *p&tate = NULL:

State_Map::iterator it;

Al try te find this FSMstate in the map

if[Im sap_ enpty({]))

{
i1 get the iterator ebject of the FSéstate obhject pointer
it = m map.find{ f3tateld j;
1T it I= m_map.end{] }

pEtate = (FSWstate *}((=it).second);

}

A1 confirm that the FEMstate is in the map

if{ pState I= NULL &&
pstate.->GetIl|) == iStatelID)

{
M_fap.erase(it); [l renove it Troa the map
delete pState; ff delete the object itself

¥

}
Listing 3.1.9

int FSMclaes: :StateTranasition(int ilnput)

i

/f the currgnt state of the FSM nust be set to have @ transitisn
if(Im_iCurrentState)
return m_iCurreéntState;

248 Section 3 Artificial Intelligence

! get the pointer to the FSMetate objoct thet is the current state
FSMatate *phitate = GetState| m_iCurrentState | H
if{ pState == NULL }

i
M signal thet there is a problem
n_iCurrentStata = 0;
return m_iCurrentState;

1

! now pass along the input trensition value and let the FSMstate
/I do the really tewegh job of transitioning for the FSM, and save
/I off the output state returned as the new current state of the
M F5SW and return the output state to the calling process
m_iCurrentiStiete = pState-»BetOutput| iInput 13

return m_iCurrentState;

Referances

More information on FSMs can be found at these World Wide Web links:
herp:-/fesruvic.cal -mmania/machines/inero.hom
www.erlang/ce/documentation/doe4.7.3/doc/design_principles/fim.heml
www. microconsultants,com/dps/fmifmarc] . him

Anaother implementation of an FSM in C++ code can be found at hotpa/fuw7doe.
s:.‘x::.mnﬂSDK,_cf+-’CTDC—_LT.uiug_Simp]:_l-’ini{z_Sum_I".I'm:hi-l-ntml

An implementarion in C can be found ar hotpeffw3.execner.com/les/Writing/ FinireY
205eate¥20Machines. heml

Game Trees

Jan Svarovsky

For many games such as chess and checkers, we can define the game mee as a e on
which the nodes are game states, and children of each node are the positions thar are
reached from it by one move. A computer player for these games works by consider-
ing this game tree as far as it can or wants o into the future from the current game
position. It also has an evaluation function that attempts to quantify how good a par-
ticular game position is for one player. This is because at some point the search must
stop, dus to time constraints. At that poin, some estimate will be made of the value
af the remaining game posidon.

The assumptions are that what is good for one player is bad for the other and thar
ane player plays o maximize the board evaluation function and the other 1o minimize
it. This “my gain is my opponent’s logs”™ type of game is known as 2 zero-sum ganre,
For example, tic-tac-toe is a zero-sum game; part of a fic-tac-toe game eree is illus-
trated in Figure 3.2.1. In a one-ply {one-level-deep) search, a player obviously simply
goes for the move that produces the best board as 2 result, as defined by the board
evaluation function. In a cwo-ply search, Player One assumes that wharever he does,
Mlayer Two will then do the described one-ply search, Player One, therefore, plays

e

: :/ﬂ PRI

o 0

L} i

o

®

b4

FIGURE 3.2.1. Parr af the Fpume trec for the opening of “ric-rac-toe”.

248

250 Section 3 Artificial Intelligence

whichever move leaves Player Two (who will then do the best move for himself) wirh
the worst possible best option. These assumptions are extended to s many ply
searches as is possible in the dme allowed.

The following function (wich a very similar counterpart, minimiza()) retumns the
best expected board walue, looking ahead a given amount. Trivially, saximiza()
should be called once for each availshle meove at the moment, and the one that recurns
the best value should be ralien.

int maximize(int ply)

1
it (ply == 0 || gese_over(}) roaturn évaluate current_board():
int best = -infinity;
Tor (Mowe *m = first_available mova(); m I= MULL:
m = next_divailable mowvef))
{
make mowa(m];
int few_walue = minimize(ply — 11;
unmake mova{m) ;
if (rew_wvalus = best) best = naw_walue;
H
return best;
}
Move *which move_shall I_take{int ply)
.1
Mave “best_move;
imt best valpe = -infinity;
Tor [Meve *m = first_available pove(); n != MIUILL;
n = next_available nowe(]]
i
nake_mave(m);
int now_value = maximize(ply):
unnaka_move (n) ;
if [new_value > best_valua)
{
best_walue = new_valug;
best_mave = m;
}
1
raturn best_move;
1

The Negamax Variation on the Minimax Algorithm

Rather than writing rwo functions, one that aims to minimize board stare and the
other to maximize it, we insert 3 negation and turn this into just one function. Note
thar now the evaluation function must rerurn the quality of the board for the current
player, rather than always returning low values, meaning a pood board for ene player

3.2 QGame Troes 251

and high for the other. Board state must therefore include or imply which player goes

ncxk;

int negamax{int ply)
{

if (ply == 0 || game_over(}} retern evaluate current board(};
int best = -infimity:

for (Mowe *m = first available move(); m != MULL;
m = next_avallable mewve(]]

{
make move(m);
int new_walue = -negamax(ply — 1):
unmake_move{m) ;
it (mew_walue < bpst) best = new wvalue;
H

return best;

}

The maost efficient syscem for this function is to have the board/game state put
forward and reversed by the make_nove and unnake_sove functions, as shown, and for
the evaluation funcrion o be calculared incremenmally rather than caloulared from
seratch every dme it is called.

Alpha-Beta Pruning

Newell, Simon, and Shaw invented alpha-bera pruning in 1958. This concepe is based
on the observation that in some cases, it is clear thar further investigation of past of
the game tres is pointles, as illustrated in Figure 3.2.2.

Here, as soon as we see that Player Bs move P will produce 2 hoard of value 1, we
know that Player A will never let B get to the point that it can make move B Player A

Al MOV (mandrizer)

B

B's mova [meximizar) __ﬂ.---"'j-

e x
P00

FIGURE 3.2.2. Sometimes parr of the game tree can be terminased,

_252 Saction 3 Artificlal intelliganca

already knows he can force B into situation (3, where the best B can hope for is 2
(remember, B ic seeking to minimize board value). Therefore, exploring P's siblings is
unnecessary, because Player A will never ler situation R happen. It is already clear thar
R is worse than Q) for Player A.

This concepr can be generalized 1o the starement thar if we know thar the oppos-
ing player can ger a better ourcome elsewhere, we know that the current board prosi-
tion will never be made available by thar player, The search now “pruncs” the rest of
Ps siblings and goes siraight on to 5.

This effectively means we add an extea parameter to the search. This is the bess
we know the other player can ger based on the parts of the tree searched o fir. As
=000 a5 our current search remurns something that is bewer for us (and worse for the
ether player) than this “current best,” we know that we don't have to search here any
more. OF course, this scoually becomes two parameters. One is the best the opposing
player has gorten so far (called fezs), and the other is the best we have gotten so far
(ealled afnha). Alpha is passed 10 the recussive <all for the other player’s mave, where

alpha and beta are swapped:
ant alphabeta(int ply, int amlpha, int beta)
i
if (ply == 0 || gane_ovar{}} return evaluato_current_board[);
Tor (Move *m = first_available_move({); m I= NULL:
= next_available mowve())
1
make_move(m);
int new_value = -alphabstaiply — 1, -béta, -alpha);
unmake_move (&) ;
if (new_value > beta) return new valus; (/ prune
if (naw_walue < alpha)
alpha = mew_value; f/ update ocur *best so far®
1
return alpha;
1

You can see thar ideally. you want to find your pruning moves as soon as possible.
This means you want 1o consider the best move firsz ar each point. That might seem
impossible (because finding the best move is the whole point of searching), but in facy
several methods exisr, and in practice game programs almest always succeed in soming
correctly. This method gives a theorerical squarc-rooting of the cost of the scarch,
which means the search can be performed 1o rwice the depth.

Move-Ordering Methods

One move-ordering method is étenazed deepening, Instead of straight-away searching ar
full ply, search at a gradually increasing ply, using the results of che previous level of
search 1o sort the moves for the next level. This method might seem like lots of extea

3.2 Game Trees 253

work, but, because of the exponential namre of che search, the lasr ireration is by far
the most significant cost.

The resules of the previows level can be stored a5 2 hash table [Sedgewick98], stor-
ing caleulared values of beard positions. This table hashes board stares 1o board val-
ues. [t helps in another way: to avoid recalculating board values when different
sequences of moves produce the same game stare.,

Game-specific heuristics can be used, such as always considering caprure moves
first in chess. Finally, there is the “killer” heuristic: if 2 move rumed out to be the best
in a sibling node in the tree, oy ic first in chis one.

Refinements on Alpha-Beta

Alpha and bera are effectively a lower and an upper bound on the expecred board
value. Alpha is the lower bound because it is the least you expect o be able o foree
play into. You know the ather player will be sble to force you into not gEtting any-
thing more than bera. If you are precry sure what the return value for the alpha-beta
search will be, instead of seeding the search with negative infinity and positive infin-
ity, seed it with a ranpe around whar you expect the retum value 1o be, If the return
value hits either side of your range, you know that the answer was actually oucside the
range, so you have to expand the range and try again.

A fved-depth search is bad because of the horizon effect. If a particulardy bad
move is going to happen soon, the computer will do all sores of other moves as long as
they move the terrible one just after the end of its search depth. This is because it can-
not see the teerible move happening if it i too far in the futuree, and therefore los of
other bad delaying moves seem like a bester idea, Many methods ist for choosing
when to increase the ply for some branches of the oree, bur these are out of the scope
of this arcle.

References

[Eppstein] Eppstein, David, “Strategy and Board Game Programming,” available
online ar www.ics,ucl.edw/-eppstein/ 1802970401 himl,

[Sedgewickd8] Sedgewick, R, Alsorithms in Cr+, Addison-Wesley Longman, Inc,,,
1998.

3.3

The Basics of A* for Path
Planning

Bryan Stout

The Problem

This article examines the basic soludon o the problem of planning a pach for an
auroromous 2gent to move from one location in a game word to another, 2 common
situatien in computer game Al On the CD thar aceompanies this book is a copy of
my PathDemo program, with which you can play to understand how A® {and other
path-planning rechniques) works.

The most common issue involved in path planning is the avoidance of obsiacles,
im;|11-;ling cul-de-sacs o be ignored (or. sometimes, discovered and explored). The
next most commen issue is perhaps the awareness of different terrain and seeking out
the most efficient pach among a variery of choices: exploiting roads or dear tessain,
avoiding swamps, and so on.

An Overview of the Solution

The A* {pronounced A star) algorithm is an old workhomse in the academic Al com-
munity, used since 1968 for solving different kinds of problems, of which the 15-puz-
zle is the favorite reaching example; fortunately, it is also very wseful for the
path-planning problem.

A*® 15 an algorithm thar searches in a sare space for the least costly path from a start
state t0 a goal state by examining the neighboring or adiacent stater of particular stares,
In the 15-puzzle, a stare consiss of 2 configuration of the 15 dles in the 4 x4 array, and
an adjacent stare is reached by sliding one tile into the blank area. In the pub-planning
problem, a statc consisss of the agent occupying a particular location in the game
world, and an adjacent state s reached by moving the apgent to an adjacent loeation,

In essence, the A” algorithm repeatedly cxamines the most promising unexplored
location it has scen. When a location i% :rpll;:-n:'d, the ;lEunﬁm iz finished [F[hm |q_-||:-_a.
tion is the goal; otherwise, it makes notz of all that location’s neiphbors for further

exploration.

3.3 The Bazlcs of A* for Path Planning 255

In mare detail. A* keeps track of two lists of states, ealled Open and Closed, for
uncxamined and examined states, respectively. At the suart, Closed is empty, and
Open has only che staring state (the agent in its current position), In each iterarion,
the algorithm removes the most promising state from Open for examinarion. If the
state is not 4 goal, the neighboring locations are soned: If they're new, they're placed
in Open:; if they're already in Opea, information abour those locations is updared, if
this is 3 cheaper path o them; if they're already in Closed, they are ignored, since
they've already been ecxamined. IF the Open list becomes empey before the goal is
tound, it means there is no path to the goal from rhar stare location,

The “most promising” state in Open is essentially the location with the lowest
estimated path thar would go through thar locarion. Each stare X includes informa-
tion to determine this: the cost of the cheapest path tha has led to this stare from the
start {which we'll cll costFronstart(X)); a heuristic estimate CostToBoa1(X) of the
cest of the remaining distance 1o the goal; and cthe ol path estimate, defined as
CostFromStart{X) + CostToeal(X). The coral path estimate is the lowest Total-
Cost(X) value that it determines is the next stare to examine. In additon, cach stare
Lkeeps a pointer to its "parent” state, the state thar led to this one in the cheapest path
to ir; when a goal state is found, these links can be traced back o the st in arder 1o
constnuct the path from start to goal. Please note that in the licerarure, you'll find
CostFroastart(X) called g(X). CostTosoal(X) referred to as h(X), and the roral path
estimate named). We'll wse our names for greater darity in this aricle.

Listing 3.3.1: The A* Algorithm

In psendocods form, here is the A alzorithm:

Open: prioritygueuss of sparchnods
Closed: list of ssarchnode

Astargearch{ lecation Startloc, location Goalloc,
agenttyps Agent)
clear Open and Glosed

{f initialize a start node

StartMNode.Log = S5tartLoc

Startiodes.CostFronmStart = 0

StartMods CostToBoal = PathCestEstinate(Startlec,
Goallos, Agent)

StartHode. Parent = null

push StartMode an Open

ff proceszs the list uniil success apF failure
while Dpen is Aot empty [
pop Mode from Open /I Mode has lowest TotalCost

& if at a goal, we're done
if (Mode is a goal nade) {
consiruct a path backward from Mode To Startlioc

258 Section 3 Artificial Intelligence

return Success
} el=a {
for each successor Newlods of Mode {
MewCost = Node.CostFromStart + TraverseCost{ Mode,
Mewhode, Agent)
[ignore this node T exists and no improveamsant
if (NewMode iz in Open or Closed) and
(Newhode . CostFromStart <= MemCost] |
continue
) else { I/ gtere the new or improwved
inforsation
KMewtode.Parent = Naode
Hemiode.CostFronStart = NowGost
Newhode.CoztTedeal = PathfostEstimate| Newdode.Loc,
Goalloe, Ageat)
Newmhpde.TotalCost = NewNode.CostFromstart +
Newiiode. CostTaGoal
1T (Wewdode is in Closed) {
ramcye HemNode from Closad
;

if (Mawhode 1z im Openr) |
adjuest MewNode's location im Qpen
} elss {
push Hewlode onto Open
+
iy
} /) now done with Kode

1
push Mode onto Closed

}
return fallure 7/ iT no path found and Open is empty

Properties of A"

A* has several useful properties. {They are not proved here; readers who are interssted
in the proofs can look in the References) First, A* finds 2 path from the start 1o the
goal, if one exists. Second, it finds an aptimal path, 2s long as the CostTosoa1(X) esdi-
mate is admisible, which means CostTooeal is always an underestimate—rthar is,
CostToGoal(X) is always less than or equal to the acuwal cheapest path cost from X o
the goal. Third, A* makes the most efficient use of the heuristic: No search thar uses
the same heurstc function CostToGoal(X) w find optimal paths examines fewer
states than A%, not counting tic breaking among states with equal cost.

Applying A* to Game-Path Planning

Ler's now look in detail ar how the aspects of A* can be applied to path planning in com-
puter games. Much of dhis discussion depends on the nature of the game and its internal
representation of the world; the following discussion is meant to suggest possibilities.

4.3 The Basics of A* for Path Planning 257

State

As stated above, the principle component of a stare in the path search is focarion.
However, it need not be the only component. An agent’s orientation and/or its veloc-
ity can also be important. For example, vehicles can often go only ssraiphe ahead or
rurn slightly, and the amount of turn possible is reduced the faster 2 vehicle moves.
Most vehicles can go backward only after coming to a stop. It is quite possible to plan
3 route based only on locations, bur ic could be desirable in some situations plan
based on velodity and orientation as well, to avoid planning 2 route through rerrain or
around obstacles thar would be difficult to navigace.

Even considering location alone, the ismee of which locations to consider is not
tvil. In some games, the world is saturally dled—real-time strategy games often
bave an underlying square grid, and many war games use a visible hex grid—bur
many games do not divide the space thas way, espedially games that use a 3D, firse-
persen, or oblique view of the world. Ln such cses, it is imporant to choose a ser of
locations among which o search. Figure 3.3.1 shows a path-planning simarion and
several ways of partitioning the space.

/
4

|
1T
|
=]
i
s

|
L'.

FIGURE 3.3.1. A variery of means nFFurririn:uu.i.uhl 2 CONTINUOWS SPace.

Sactien 3 Arlmﬁhl_hthlﬂnlnu

The ways of partitioning the space are 2s follows;

Rectangular grid. The simplest way is ro partition into a regular grid of squares,
as shown in Figure 3.3.1b. The locations can be either the center poines or the
comers of the squares; if appropriare for the game, the grid can be considered 1w
consist of the termin most common to the area it covers.

Quadtree. Another way to partition the space is into squares of differing sizes.
The quadmree recursively divides a square into four smaller squares, undl each
square has uniform (or at least mostly uniform) terrain, as shown in Figure
3.3.1c. Again, the locations for the scarch can be either the centers or the corners
of the squares. This method has a couple of advantages: The larger (and fewer)
squares allow for a faster search, and the representation is easy to srore.

Convex polygons. A more complex yer possibly more robust scheme is 1o break
up the space into convex polygons made up of uniform terrain (Figure 3.3.1d).
This scheme could already exist in the map's representation, so ir can be used
directly in the path search. There are several methods thar can be used 1o pari-
tion a space into polygons if the existing mesh is useless or inefficient. C-cells are
one way to partition the space; each verrex is connected to the nearest visible ver-
ex, and the connecting lines pamition the space. Another s maximum-area
decompaosition, where ar each convex vertex the edpes connecred 1o the vertex are
projected out untl they hir an obstacle or wall, and beoween these lines and the
line to the closest other vertex, the shartese is chosen as a boundary, Navigation
meshes, a third method, are discussed in anodher artcle in this volume {“Simpli-
fied 31 Movemnent and Pathfinding Using Naviganon Meshes®). Similar tech-
niques can be used ro divide variable-cost termin inwe convex polypons of
uniform terrain, After the polygons are laid out, search locations can be chosen ar
their center and/or along various pares of their perimeters.

Points of visibility. Mot all technigues divide the space into regions bur instead
come up with locations direcily. Points of visibilicy are concerned mainly with
obstacle avoidance: Place a search location just a livde beyond each convex vertex
af ezch ohstade, just far enough away w avoid collision with the abswacles (a5 in
Figure 3.3.1¢). The shomest path around obscades rypically passes near thess ver-
tices, as though a rubber band connecred the smarr and goal locations. One could
possibly extend this method to consider terrain cost by adding these poins w
those denved from convex uniform palygons.

Generalized cylinders. Anather technique concerned mainly with obstacle avoid-
ange 1s generalized cylinders: The space berween neighbaring obstacles can be
considered a 2D cylinder. the shape of which changes as it goes along. Between
gach pair of neighboring obstacles (including the walls or boundaries of the map),
calculate a cenrral axis (Figure 3.3, 1), The intesections of these lines provide the
locations for the search.

3.3 The Basics of A" for Path Planning 258

For most of these schemes, when a search is done, the start and goal locations are
usually not members of the scarch locations, so they need 1o be added o rhem for the
duration of thar search.

Whichever scheme is used for quantizing a continuous space, it probably must be
experimented with and weaked before it suits the game’s demands oprimally: There
need to be enough locations so that no resonable route is unconsidered, bur not too
many, or the search will take too long. Another issue is that most paths found from
any quantization scheme seem japped and a bic artificial, which means the soute needs
to be smaothed, cither before it is asigned to the agent or in the means the agent uses
to follow ic

Neighboring States

The neighbors of 3 state are determined by the map representation and the quantiza-
tion scheme. Some schemes wse only their adjacent locations as their neighbors—a
square grid would consider each interior point as having eight neighbors, four if diag-
onals are excluded—mwhereas in other schemes, a location’s neighbors are all other
locations visible to it

A lpcation's neighbors are also determined by the rerrin. Some termin might be
impassable, which means it is not a neighbor 1o its nearby locations after all. The ype
~of agent could also enter this determinarion; for example, land vehicles cannot travel
on the se3, and infantry can traverse rerrain forbidden to some vehicles,

We need an cfficient way to compute each location’s neighbors, for the sake of
search speed. Grids have a natral way of caleulating neighbors: The neighbors of (x,
M are (xel, 3}, (x+1, y+1), (x, y+ 1), ctc. Most other schemes require that some dara
structure store the neighbor informarion for fs: lookup, since the neighbor calcula-
tions are often expensive.

Cost

The cost function for the path berween two locations (CostFronstart sbave) repre-
scats whatever it is the path is suppased to minimize—rypically, distance traveled,
time of raversal, movement points expended, or fuel consumed. However, other e
tors can be added inte this funcrion, such as penaltics for passing through undesirsble
areas, bonuses for passing through desirable arcas, and aesthetic considerations (for
example. making diagonal moves more costly than erthogonal moves, even if they
aren’t, to make the resultant path look more direc see the anticle on acstheric opti-
mizations, "A” Aesthetic Optimizations,” for more discussion.)

Just as with connectivity considered previously, in many games, the cost is net the
same for all agents—far example, roads offer a grear speedup for wheeled vehicles but
lirdle if amy for infantey. What's more, in some gamcs, mavel cost is asymmerric: Going
from A o B may be more cosdy than going from B to A, such as is the case if B is
uphill from A. That is why the code in Listi ng 3.3.1 has the cost functions dependent
on the agent traveling as well as the twa endpoints of the travel.

Section 3 Artificial Intelligence

Again, these terrain costs need o be quickly looked up during the search and in
Face are probably best stored with the connectivity information, In char way, one
lookup can determine wherher two locarions are neighbors, and if so, the cost for the
given agent.

Estimate

The estimate of the path cost to the goal is the complement o the known distance
from the stare. If you want to guarancee thar an optimal path is found, this distance
should not be overestimared. A common way 1o do this is to mulkiply the acrual map
distance from the given location to the goal times the minimum tereain cost per unit
distance. Since the route cannot be shorter than the most direcy, "crow’s flight” line,
this figure will be an underestimare (unless your game has chings like instant-trans-
port locarions). In many games, this minimum distance is the Eudidean measure
between two points in 2D or 3D, but in games with strict square or hexagonal dles,
the shortest tle parh is usually a linde longer than the Euclidean distance berween the
tiles center points. Therefore, in a square grid, a tile (3, 5) away has a minimum dis-
tance of 2 + 3*sqr(2), not the Eudidean sqro(34), This actual shorrest distanes can
then be mulriplied by 2 typical terrain cost. This cost should indlude all the previously
discussed factors concerning the cost berween neighboring nodes.

However, guaranteeing an opumum path is not the only consideration; chere is
also the speed of the search, and the quality of the GostTooal value has 2 tremendous
impact on the scarch efficiency. Look at Figures 3.3.2 and 3.3.3. In Figure 3.3.2a, the
GostTobeal has been set to zero, which, after all, fr an underestimate, and we sse thar
the search spreads in a circle unel ic hirs the goal, because it has no heuristic informa-
tion to guide it in the correct direction. In Figure 3,3.2b, we see that an accurate
heuristic weight of 1 per square sends the search in a seraight line to the goal, In Fig-
ure 3.3.3, the starcand the goal are in costly rerrain (8 per square). Since the estimate
of 1 per square is a large underestimare, the search frontier is nearly as circular as the
uninformed search in Figure 3.3.2a. In Figure 3.3.3b, we see thar even an estimate of
3 per square focuses the search considerably. It is therefore imporeant, perhaps crucial,
that the estimare be faidy accurare. In fzet, in some simeations, one might want to
overesgimate the cost to the goal in order to get a fast scarch, ar the risk of gerring a
suboptimal path (the arvicle "A* Speed Optimizations™ ralks about this concepr). So
rather than using a mmimmmr weerain cost per unit, we could use a fypical cost, which
can cither be fixed or dynamically determined by sampling the termin berween the
stared starr and goal,

Goal

The goal is typically a single location, but it docs not have o be. For cxample, if a
vehicle low on fuel is trying to plan 2 route to the dosest refueling starion, with each
NCw I'II:IdE -Ii"'lII il-'l- l'l'.ll.' S-I:'Hﬁ:h dn ﬁ.‘[EtL'Lili: iE m.]_l:[r_'- uf[_h: mmiﬂ:iﬂg dismﬂc: T E‘.'.I.d'l A1
tien, and the minimum of them is used as the costTogeal(N) value. This methad

43 The Basics of A* for Path Planning 261

FIGURE 3.3.2. A" szarch in clear terrain, 2 With 2 heusistic weighr of 0. & With a heuristic
weighr of 1.

FIGURE 3.3.3. A" scirch in costly terrain. a- Wich 2 heuristic weight of 1, & With a heuristic
weighe of 5.

guarantees that the search figures out both the closest goal and the best route w it

simultaneously,

Weaknesses of A*

Although A® is about as good a search algorithm s you can find, it must be used
wisely: otherwise, it can be wasteful of resources. On a large map, hundreds or even
thousands of nodes might be in the Open and Closed lists, which can rake up more
memory than is available on systems with constrained memory, such as console sysE-
tems, On any system, A" can take oo much CPU time to be affordable.

The case in which A is most incfficient is in determining that no path is possible
berween the start and geal loeations; in thar case, it examines every possible location

262 Section 3 Artificial Intelligence

accessible from the stamc before determining thar the goal is not among them, as
shown in Figure 3.3.4. The best way o avoid this problem is to do 2 pre-analysis of
the map, manually or algorithmically, so thar the program can look up whether two
locations are accessible from cach other—say, on the same island. If they are not, the
search is not even attempted.

Further Work

There is much more derail rhar we could eover, because there are many differenc path-
planning and path-following siruarions. With an undenssanding of the workings of
A", one can often figure our how o adape it 1o their necds, Take a look ar che other
articles in this volume for further discusston on the ways o parition a floor space for
use in A%, as well as efficiency and aesthetic considerations.

References

Websites

[Woodcock] Woodcock, Steven, “The Game Al Page: Building Artificial Intelligence
inmo Games,” available online at www.pameal.com. Lhe ~Resources and Linle™

subpage of this site has many links to Websites that discuss A*, some of which
have sample code.

General Al Texts

The following are two recent, very good general Al textbooks, both of which happen
o use the agenr-centered paradigm for discussing AT:

[Ruseell95] Russell, Stuare, and Norvig, Peter, Arificial Inzefligence: A Modern Approach,
Prentice Hall, 1995, Perhaps the best current A6 vexr, it has a couple chaprers on
search techniques, including A™.

S
S \EE*

o
N

FIGURE 3.3.4. Search in a situation in which there is no path w the goal.

2.2 Tha Basics of A" for Path Planning 283

[Nilsson8] Nilsson, Nils], Artifeie! Intelligence: A New Symthesis. Morgan Kauf-
mann, 1998. Since Nilsson was one of the developers of A, his discussion of it is
valuable if one wanes 1o understand the theory behind i, This texr presenes for-
mal proofs of properries of A%,

Search Texts
These books discuss the general issues of search, which dare back o the cacly days of

Al research:

|Barr81] Barr, Avron, and Feigenbaum, Edward A., eds., Thr Handbook of Areificial
frzelligence, volume 1, Addison-Wesley, 1981, A good multivalume survey of
major Al issuss and imporcane Al programs. This volume incdludes che discussion
of search, induding A"

[KanalB8] Kanal, L., and Kumar, V., eds., Search in .."!:l'.l‘i':ll';'r.'i'.-i:.lI r.l'il'ﬂ!lrlh?.r.lf'f. Spr_i_ngi:r—
Verlag, 1988. A collecrion of good arricles for those who want to get into the
advanced considerations of scarch, including variations on A* (with imaginative
names like B, C, and DY)

[PearlB4] Pearl,)., Fewrisrics: Tntelligent Search Strategies for Computer Problem Solving,
Addison-Wesley, 1984, This is perhaps the most complete reference on ssarch
algorithms and is referenced by practically everyone else,

|Shapiro] Shapire, Stuan C., and Eckroth, David, eds., Encyclapedia of Arrificial Invel-
digence, 2 volumes, John Wiley & Sons, 1987. A truly excellent collection of arri-
cles abour mest aspects of Al research. Good articles pertinent ro this arricle are
“Search,” "A”® Algorithm,” and “Path Planning and Obsrade Avoidance.”

A* Aesthetic Optimizations

Steve Rabin

Computing a path for a characrer is more than merely an cxercise in search algo-
rithms. I also involves creating an aesthetically pleasing path and resulting execution.
Compured paths for characrers can be improved in three main ways: making the path
straighter, making it smoother, and making it more direcr. The execerion of the path
can be improved by simply maximizing respansiveness, All these oprimizations resule
in an experience that is more aesthetically pleasing to the player. Since providing a sat-
isfying experience is the ultimase goal, these things are fairly imporane and directly
impact the code within and surrounding A*,

Straight Paths

Paths calculated by A® often look like they were constructed by someone whe was
drunk. They weave and bob their way effidently ro the goal, but it surc doesn’t look
narural. This is 3 serious problem that undermines the believability of any game’s AL
There are two ways to deal with this isue, The first is o promotc straight paths
within the A® algorithm; the second is 10 clean up the mess afier the path has been
calculared.

Promoting straighrer paths involves careful cost weighting within the A" alpo-
rithm, Consider the rwo parhs computed by A* thar are shown in Figures 3.4.1 and
342,

The amazing observation is thas both paths tavel the exers same distance. Since
both paths have identical costs, A* is unable to differentiate berween them and simply
chooses the fimst path it scumbles upon. The wick thar will make A* choose the
straight path is held within the cost function. Simply fictor in an extra cost (penalry)
if the new step being considesed is not straight with the last step. Note that we are not
loaking at the overall straighiness of the path, just penalizing new considerarions thar
are not in line with the last s1ep.

A reasonable penalry is half the normal coss to step in a given direcrion. The rudh
is that on a regular grid, any penalty at all (0.0000001) for non-straighs choices causes
A*® to choose the siraighrest one, However, this is not the casc on an arbitrary net-
worl,

FIEURE 3.4.2. Suraightened A” pach.

A word of caution: Penalizing non-straight paths results in more work being done
by the pathfinder, chus slowing the compuration. Obviously, the alporithm has o
consider many more permutations in order to find the stmightest one. In facr,

searches can take significantly more tme. Howeves, if hierarchical methods are used,
the exra rime inight not be an issue, Make sure you understand the radeofs.

Straight Paths in a Polygonal Search Space

With a polygonal search space, this trick is not very uscful. Because triangles ares’
uniformly spaced, as a recrangular grid is, similar paths that cost the same are quite
rare. Therefore, there is no need o find the straighter path. Instead, there's 2 different
problem: Since triangles can vary greatly in size and propormion, paths are more
crooked than ever. The mrick is to optimize for straightness after the parh has been cal-
cubared. Gr@; Snook’s]:tath-ﬁ.n-:lin_g; argicle, nl..";En1:|:.|l|-:|.:|h:\:|:| A0 Movement and Pachfind-
ing Using Navigation Meshes,” discusses an excellent way to handle this problem.

Smooth Paths

Unforunately, paths compured by A are usually riddled with sharp turns. Even if
you employ a technigue o make straighter paths, sharp murns still have the potential
to make your characters look like roboss. By applying romarional dampening to your

Section 3 Artificial Intelligence

turns, you can probably mask them a linle, bue you'll swing wide on every sharp cor-
net. There'’s 2 much bewer way.

Straight from the field of computer graphics, theres an algorithm that makes
vour paths (simply series of poines in space) smooth for you. A simple Catmull-Rom
spline does the trick because it creates a curve that nails all the contrel points in the
original path {unlike a Bézier curve, which is smoother bur dossnt go through the
control points), Obviously, its beter 10 go directdy chrough your points because A*
deemed them clear and free of obstacles,

But how do you acrually input 2 list of points and get 3 smoother list back? The
Carmull-Rom formula requices four input points and pgives you back a smooch curve
between the second and third points. Figure 3.4.3 cxplains this concept a lirtde berrer,

To get the points berween the first and second inpur points, you simply give the
function the first poine twice, then the second and third. To get the points berween
the third and fourth, give the funcrion the second and third, and double up on the
fourth.

Each time you use the Carmull-Rom formula, it gives you a point mughly ut%
Between the second and third inputs, where uis a number you pass in. The following
is the formula (points can be 2D or 3D):

output_point = paint_ 1 * (-0,5T*u*u*u + u*y - 0,550} +

peint_2 * [(1.57T*u*U*u + -2 65Ff"u"y + 1.07) +
point 3 * [-1.5T*u*u*u + Z.0f"u"y + 0.5T*u) 4
point_4 * [0.5f*u*u*u - O.5fsp*y);

Note thar if u is zero, the formula gives you point_2. When w is 1, it gives you
point_3. As you can see. the spline really does go directly through the inpur poines.

splive Cugna Poants
] | LY

! E‘s._\‘

R

.

N

FIGURE 3.4.3. Gening spline paints from contrel poinis.

3.4 A" Aesthelic Optimizations 267

A Pre-Computed Catmull-Rom Formula

Since speed is an issuc, you might want to diceate that you wane u only ar cerrain
intervals, such as 0.0, (.25, 0.5, and 0.75. By freezing all instances of u, you can pre-
compure the formula 2t cach u. Note thar the formulas can ke either 2D or 3D
points. The following are some formulas ac various intervals:

ffu=28.10
outpurt_point = point_2;

= 0,25
output_peint = point 1 = -0.0708125F + poinmt_2Z2 * O.BETIBTET =
point_3 * O.23GE625T + point_4 * -0.0234375F;

MNuw=0.5
output_point

point_1 * -0.062%f + point_2 * 0.5625T +
point_3 * 0.5625f + point_4 * -0.0625T;

Hy=10.75
DUEPUT_point = poant 1 * -0.02343FEF + point_Z * 0.236563T =
point_3 = 0.88METSf + point_4 * -0.0703125F;

Hou=1.0
output_point = point_3;

Equipped with the Carmull-Rom formuls, all you need ro do is walk through che
path that A" found and create a new path. Remember to double up on the firse input
point when you starr, and double up on the last inpur poine when you get to the end.
1f the A™ path has only two points 1o begin with, simply don’t apply the spline to the
path.

Since you have a new path with four times the number of points, you might want
to lock into geering rid of redundant point. Running the new pach through a func-
tion thar prunes co-linear points should dramarically reduce your list.

Figure 3.4.4 shows a typical path before and afier the Catmull-Rom spline has
been applied. Motice how it's still just a series of points (piece-wise linear), but the
path is now much smoother. In the large scale of things, this path is perfectly smooth.

FIGURE 3.4.4. Pach points before and after 2 spline is applisd.

268 Section 3 Artificial Intelligence

Improving the Directnass of Hierarchical Paths

Avery important A* technique is fierarcbical pathing. However, the problem is that the
resulting paths can be less than ideal. In hierarchical pathing, you parthfind in twe dis-
unct steps. You first find the large-scale parh, and then you pathfind ar the local level.
For example, a castle might be broken up into rooms. You might want to get from the
dungeon o the throne room. The idea is that you fint find the largeseale path
berareen the rooms (by munning A* on the connectivity graph of the rooms). Onece that
path is found, you can then path-find berween each connecting roem a¢ you encounter
it The result is a huge s.rrings of time. Unfortunarely, the overall path can ook rather
bad because the goal poine will always be the door to the next room, thus causing the
character 1o always travel through the center of each door. When dooss are arbitrarily
large, this can look rather bad. Figure 3.4.5 illustrates the problem.

There is a simple, clegant way to ger the ideal path, bur it rakes rouphly twice the
compuration. The trick is 1o always path-find 10 the door beyond the next door.
Then, whenever the character crosses through the first doorway, throw away the rest
of the path and repeat the process. While the sscond half of the parh is always wasted,
it really does ereate the most direcr and aesthecically pleasing route. Figure 3.4.6
shows the final path.

This rechnigue always finds the oprimum passage through the deorway because it
takes into account the furure path. The following is a step-by-step sample path execu-
tion guide to show how this methad warks:

1. Find the best room-to-room path wsing A® on the connectivity graph of the
rooms.

2. The result is 1o travel the following sequence of rooms: 1, 2, 3, 4.

FIBURE 3.4.5. The path through several rooms.

4.4 A® Aesthetic Optimizations Fr 1]

FIGURE 3.4.8. The optimized path through several rooms.

Parhfind from Start to 5|.|1,'|||3_|:|n:-|] i I:F:iSLLn: 3473

Let the character walk unil he enters Room 2.

Throw away the remaining path and pathfind to subgoal 2 (Figure 3.4.7h).
Let the character walk until he enters Room 3.

Throw away the remaining path and pachfind to the final goal (Figure 3.4.7).
Let the character walk to the final goal.

el

ga =l g

Hierarchical Pathfinding on Open Fields

There is no real difference berween a set of connected rooms and 2 ser of connecred

ficlds. The same principles apply. The resulting path is not complerely straigh, ba it

R mangs b Ll ol 8 o Lo ae P

FIEURE 3.4.7. The computed path during various sepe.

270

Section 3 Artificial Intelligence

LA™ Wil faal
e Ceal 2
5 E I ! | [
s el]
Qs Currom ——
Lwiva Lol ‘I‘
1

+
j | ! | j
f=n S S
& L iouiep 3 b Lpeap c Tpiacip 7

FIGURE 3.4.8. The compured parh during various steps.

comes preoy close. You also need ro realize thar chese fields are Rirly large relative o
the player. Figure 3.4.8 shows the hierarchical steps applied 1o epen fields.

Eliminating Pauses During Hierarchical Searches

Note that every time the charcter enters a new room, a1 new local parh must be com-
puted. Since this cbviously takes time, the characrer appears to pause as he enters cach
doorway. The search iself can't be sped up, bur the new path requese can be anriei-
pated and computed slightdy before it's needed. This simple trick keeps the character
motion fluid throughour the pach.

Maximizing Responsiveness

Controller responsiveness is eritical to game play. When 2 player issues 2 move com-
mand in an RTS, they expect the unit to respond immediarely. However, in the world
of pathfinding and seasch algorithms, sometimes it can take awhile o find thar path.
That’s where we need to pull a few tricks in erder to give the freling of insantaneous
mesponse,

The first trick is 1o stall by playing a sound byte that identifies the unir as having
received the command. This rrick gives immediare feedback thar the unir is aware of
the command and will execute it shordy. Meanwhile, the pathfinder is working ar full
speed trying o find the path.

Another rick is to stall by playing a “ger ready 10 move” animarion. The move-
ment of the character signifies that he's going to move—even though he might not
actually take any steps. You can even rotare the characrer to the “hest-guess” direction
sor that he'll be raady 1o move when the final path is available, thus smalling even
longer.

3.4 A" Aesthetic Optimizations M

You can take the idea further by moving the characeer in the "best-guess” diree-
tion before the final path is ready. Unformunately, you could be dead wrong in your
guess, and the character will have w backirack. Unless the pathfinder is extremely
slow, it's probably best to avoid using this methad.

Moving large groups of people ar once can rake even longer. If the player grabs 20
unirs and asks them 10 move across the map, you could be waiting a long time 1o get
the 20 paths procesed. There are two ericks 1o dealing with this situation. The firse is
to quese the path requests and ler each unit move as its request is serviced. This way,
it looks as though there’s immediare feedback, because at least some of the units start
to move immediately. It looks 2 bit like popeom popping as cach unir stars to move,
base overall, it's fairly sarisfying to the player. The second wick is o choose 2 leader in
the group of 20 and find a path for only him. Then tell the other 19 units o follow
the leader, However, this method can get complicated because there could be massive
bunching, the leader could dic halfivay through the path, and cach unit should even-

tully stop at 2 unique destinarion.

Conclusion

All these techniques are designed 1o make pathfinding more rransparent to the player.
The goal has abways been 1o find good, direce parhs instantancoudy. Since that’s a
tough problem, hopefully you can apply these gems to your cursent pathfinder in order
to gee berrer-looking paths that ulGmarely feel better to the player.

References

[Patcl®9] Parel, Amic], “Amits Thoughts on Pathfinding,” availible online ar
htepe/{theorysuanford. edu/-amitp/GameProgramming/, November 27, 1999,

[Stout96] Stour, Bryan W., “Smart Moves: Inzelligent Path-Finding,” Game Devel-
aper, OctoberMovember 1996, pp. 28-35, also available online at www.gamasu-
tracom/fearures/ 1999021 2/sm_01.hem.

A* Speed Optimizations

Steve Rabin

Traditionally, A® is 2 slow algorithm thar never runs as fast as you'd like, Since there’s
a long list of oprimizations that you could make, its very important to understand
why its slow so you can wisely use your oprimization time.

The first thing o notice about A* is thar it is ar the mercy of the seareh space. Usu-
ally, the sheer number of connections o search i 2 pood indication of how fast A”
worls. In a rectangular grid of 1,000 by 1,000 squares, there are 1 million possible
squares to search. To find an arbitrary path in that kind of world simply takes a lor of
work, no marter how optimized your code. The solution is o oprimize the scarch space.

Oince the search space has been optimized, it's ime o look deeper into che acrual
A" implementation. Since A* churns through a lot of memory, it's critical to optimize
memory allocation as well as each of the data accesses. A also demands a lor of sort-
ing, bur this can be dealt with quickly and efficiendy wsing some specialized dara
SITUCTUrES.

Lastly, the best way to speed up A™ is by not using it ar all for simple cases. Con-
struct some kind of test to determine whether you absolurely need to fire up the
pathfinder. Many times, simple roures can be determined witheous using the full-
blown A implementation. For example, ery running a blind straight-line path 1o the
goal, testing to see if it collides with walls or other objects. Undoubtedly, there will be
times when this simple solution works amazingly well.

Search Space Optimization

272

Elmplifylng the Search Space

The biggest win always comes from searching through less dats. If you can represent
your world a5 a simplified connectivity graph, A* will work all the faster. Pracrically,
there are several options to choose from. Since speed isn't the only considerarion,
some other pros and cons are also diseussed here. A simple diagram of cach rechnique
is provided in Figure 3.5.1.

3.5 A" Speed Optimizations 273

Rectangular or Hexagonal Grid
Doscriplion
A uniform rectangular or hexagonal grid is overlaid onto the world, The size of cach

grid space is proportional to the size of the smallest character. Therefore, a character
in a grid space blocks that space during the A* search. See Figure 3.5.1a.

Fros
= Obseacles and characters can be easily marked in rhe grid allowing for aveidance.
This creates a one-step solution to finding a path through static and dynamic
objects.
» Works well for 2D dle-based worlds.

Cons
* Typically resulis in the lasgest search space.
* Recangular grids don’t map very well onto 3D wodds.
¢ Daths tend o look like moves on a cheschoard,

Actual Polygonal Floor

Description

In a 3D game world, the floos polygons are specifically marked and used directly az
the scarch space. This polygonal floor is identical to the rendered geomerry. thus
being arbirrasily simple or complex. See Figure 3.5.1b.

Pros

* Datz structure already exists in che 30 woeld,
= Can be walked through quickly with a BSP wree.

Cons
* Three-dimensional worlds can have arbicrarily high numbers of polygons on the
floor.
* (Can't represent obstacles such as tables or chairs (because the floor exists beneath
these objects).
* Requires algorithmic solution for choosing path points within a polygon.

A B C D
FIGURE 3.5.1. Four options for represenring rthe search space,

E'-H:Ii_m < Artlfisial Intelligence

Polygenal Flaor Representation
Descriplion
An artist or level designer creares a polygonal floor representation thar is used evclu-

sively for pathfinding. The polygons can be eliminated in places where characrers are
not allowed to walk, such as under rables or chairs, See Figure 3.3.1¢

Pros
* Small search space representation.
* Can be walked through quickly wich a BSP eree.
* Obstacles can be incorporated in the representation.

Cans
* Requires astist or level designer o construct.
* Can't represent characters within the space.
* Requires algorithmic solution for choosing path points within a polygon.

Points of Visibility
Description

Points are placed at convex comers in the world (sricking sut a little from each cor-
ner). Each poine is then connected to all other poines that it can “see”™. This ercates a
connectivity graph that describes the minimal pachs required to get around walls. See
Figure 3.5.1d.

Pros
* Cmates minimal search space represencation,
* (Obstacles can be incorporated in the fepretentation.
* Resulting pachs are peefecely direct.

Cons

* Reguires alporithmic or designer assistance to create the graph.

* Obstacles can't be remaved from the graph if they should be destroyed.

* Cant represent characters within the space.

* Doesn't worl well with entitics that have large widths, such as a wide formarion
of characters,

* Worlds with curved walls could cause the graph to become unnecessarily com-
plex.

As you can see, there is no obvious choice. Each representation has irs rade-offs.
If your world is 3D with few dynamic abstacles, then using points of visibiliry is a rea-
sonable choice. Ifyour world is 2D tile-based or there are hordes of moving characters
(s in a large RTS game), a recrangular grid might be the best choice. Just remember
that your decision in choosing a search space represenration has huge repercussions in
verms of speed and fexibilicy,

3.5 A* Speed Optimizations e 278

Points of Visibility Explained

Since using points of visibility is an extremely viable oprion, it's worth explaining a lie-
tle berter, The technique requires thar you build up a graph thar can be wsed 1o get
around the world. Points are placed at convex comers and connected o all other
points they can sce. It’s as though a freeway system has been construcred for the sole
purpose of getting around walls, The problem now is how you get on and off the free-
waY.
To get on the freeway, you test the visibility berween the starting point and every
point on the freeway. Since you can potenually compare thousands of poins, ir's
imporant that you use other space-partitioning techniques (such as hierarchical
pathfinding). Once you have a list of potendial on-ramp peints, you pur them on the
A*® Open list and begin running the algorichm. With each poinr you explore. you
must test its visibilicy with the poal poine. If you find a poinr char can sze the goal
point, you have a potental off-ramp. Figure 3.5.2 shows a simple example.

Hierarchical Pathfinding

Hicrarchical pathfinding is an extremely powerful technique thar speeds up the
pathfinding process. Begardless of which scarch space representation is used, this
technique in effect simplifies thar space. Therefore, if your world representation is
large, there's still hope. The key is 1o break up the world hierarchically.

Consider a castle. Ir can be thoughr of as a single, large building or as a collection
of rooms connecred by doors (a large-scale connectivity graph). The pathfinder works
in two distiner sveps. It first finds the room-to-room path, knowing the starting and
ending room. Once thar room-ro-room path is known, the pathfinder then works an
the micro problem of getting from the current room o the next room on the list.
Thus, the pathfinder doesnT need o compute the encire pach before it takes the first
step, The micro path is figured our on 2 need-to-kmow basis a5 cach new room i
entered. This method significantly cuts down on the search space and the resulting
ume to compure the path.

This technique really shines if your world is already constructed hicrarchically.
Even a 3D world could be constructed uﬁ::g;:i:::pk |,:||.|:i.|rJE|:t|;r|_;||ul;|-:]J:I_ml:l_iE]]].. Con-
sider a circular siircace. Normally, a eircular staircase causes most pathfinders a loe of

FIGURE 3.5.2. Poines-of-visithilicy example,

® Goal

Seclion 3 Artificial Intelligence

FIGURE 3.5.3. Hierarchical pathfinding on 2 circular suircase.

grick. The structure is very 3D, mostly circular, and could spiral for a very long dis-
tance. A spiral staircase could be built using 2 quarter-tumn piece of the stircase. This
picce could then be duplicared indefinitely o create 2 very tall spiral staircase.

A hierarchical pathfinder could blazingly compure 2 path up the swaircase if it
were constructed in this fashion. The pathfinder would first compure the large-seale
route through each connecting quarter-turn piece and then would quickly find the
kocal path from the start ro the end of each quarter-turn piece. All of a sudden, 2 com-
plicared path over some rather complicated geometry becomes trivial to compute,
Figure 3.5.3 shows an cxample.

Hierarchical pachfinding isn't restricted o rooms with doors. You can casily
extrapolate the idea to huge fields of landscape thar are stitched rogether. Although it's
true that there isn't one casily identifiable "door™ spot anymore, the eatire seam from
ane ficdd to another becomes the door.

Imagine an immense world created with these stitched pieces of land. Now imag-
ine telling a character to walk from one end to the other. No problem! The pathfinder
first finds 3 route through the nerwork of land pieces and then finds the local path
from the current land picce o the next. Wich a linde work, you can even imagine
planning a route from the throne reem of one castle to the ninth-level dungeon below
2 completely different castle—even though the casds might be 10 miles apard!

Avolding Pauses While Computing Local Paths

Since a path is compured every time the characrer enters a new room, irs important
thar the character not pause ar each door while his new path is construeted. In order
to avoid 3 pause, the path request must be anticipated and completed before the char-
acter actuilly needs it. This simple trick keeps the character motion fuid throughour
the execution of the path.

Algorithmic Optimization

Playlmng with the Heuristle Cast

Designing an algorithm for the heuristic cost can at times seem maore like voodoo
than science. The idea behind the heuristic cost is to estimare the true cost from a par-

35 A* Speead Optimizations 277

oicular node to the goal. Here's an interesting facr: If you always knew the true cost 1o
the goal, A* would beeline a path 1o the goal withour wasting any search time going
down the wrong path. Bur if the heuristic estimare happens to overestimare the true
cost, the heunstic becomes “inad missible,” and the algorithm might nor find the opri-
mal path (and might find a terrible parh).

The way to guarantee thar the cost is never overestimared is by caloularing che
promerric distanoe berween the node and the goal. When coding A™ for che first ime,
this is the best thing ro do unril ics time o oprimize. Since the cost will never be more
than rhis distance, the opriral path will always be found.

Owerastimating the Heurlatic Cosat

Interesting facr #2- Using a heuristic thar routinely overestimares by a little usually
resules in faster searches with reasonable paths. However, how much should the cast
be overestimared? To answer this question, you need o understand what happens
when this remaining parh cost is amificially bloared.

If the heuristic parr of rthe total cost (retal cosr = cost to node + benristic cost) is big-
ger than it should be, it disrorts the reasoning by which nodes an the Open list arc
picked off. Since A* always picks the node with the least toeal cost, this distortion pro-
motes aodes eloser to the goal to be picked.

When you look at an A* search that'’s trying to find its way around 2 wall, you can
sce a shape that develops from the nodes explored (nodes on the Closed list). This
shape is the casiest way to see the cffects of playing with the heuristic estimate.

When the heuristic equals zero, the search evolves as a cirde around the starting
point. When the heuristic uses the Euclidean distance to the goal, the search looks
like an oval, with the starr and poal points the foci. When the heuristic is overssti-
mated, the shape changes 1o be more of a diamond or hexagon, with the start and goal
poines ar the extreme comners of the shape. Figures 3.5.4. 3.5.5, and 3.5.6 show the

growth of the search using various heuristic costs while trying to overcome a large
obstacle.

L L L]
ﬂ Gk G |-|:-::|.:.1 O [TV

FIGURE 3.5.4. The heurstic oot of zemo.

278

Section 3 Artificial Intelligence

L] L L]
AHNAL, L GOl

FIGURE 3.5.5. The heurisic com uzsing Eudlidean distance to goal.

L L] L)
GO AL GOAL

FIGURE 3.5.5. The heurisic com overestimaned.

What dees 2ll this mean? It means that by overestimaring the heuristic, che search
pushes hard on the closest nodes to the goal. This causes pressure for the search o
overcome large obstacles that are between the starr and goal points of the scarch, If the
actual solution requires backtracking before going ro the goal, an overestimating
heuristic slows the search. However, if most of the dime there’s 2 way to get around
large blocking obstacles, the overestimating heuristic is fasrer. Figure 3.5.7 illustrates
this point as the non-overestimating heuristic explores three times more nodes than
the overestimaring heurisric.

Ultimarely, gerring the right amount of overestimating requires experimentation.
Unfortunarely, if the search space is not on a grid, ir’s probably not possible to accu-
rately observe the shape of the search. Instead, you need 10 measure indicators such as
the size of the Closed list and the maximum size of the Open list.

The final size of the Clossd list eells how many nodes were explored; the maxi-
mum size of the Open list is a good indicator of how long it takes w explore each
node (since Open list operations take a relatively long time as the lisc grows big).
When mning your heuristic, you can uy typical searches and warch che Open and
Clased list sizes in order to identify good heuristic values, By resting searches on your
actual game, you'll be able to tune the hewrisric to something reasonzble.

Decoupling Pathfinding Data from the Search Space

A" requires 2 large amount of memory in order ta store the progress of each search.
Traditionally, this memory is held inside each searchable node. If the search space is a

3.5

A* Speed Optimizations 279

LS

B Waibk
B Opew Meades
U o Panabes
8 Final Puih

Hon-Thorws]lmadisg Fesrisik Thvt prabisiatiag 1wl
1 Explomd MNodes 50 Explard [Nndes

FIGURE 3.5.7. A NON-ovErCSTimaring heuriste va, an oversstimating heuristic.

rectangular grid, cach grid square contzins pathfinding node dat. If the scarch space
is 2 polygonal mesh, cach triangle contains pathfinding node dara. Since an individual
scarch almest never covers every single node in the search space, there is no reason 10
have this incredible amount of memory dedicated to pathfinding. For example, a
LOOD = 1,000 tiled world has | million pathfinding nodes just siming there unused
mast of the dme,

The solution 15 to decouple the pathfinding node dara from the search space.
This solution reduces the huge memory overhead and could also speed up searches.
Interestingly, by decoupling the node dara from the search space, you allow for simul-
taneous searches, which can now occur because muldple-node daea can poine o the
same real node in the search space. However, ic's generally not a good idea o allow
simultaneous searches——still, in cerrain circumstances, it might be useful.

Pre-allocating a Minimum Amount of Memory

Decoupling the node dam from the seanch space requires thar each search use some
other chunk of memory. We could simply allocate node data on the fly, bur A® can
churn through hundreds of nodes each search, 10 this isnt a reasonable solution. A
way around this is ro pee-allocate 2 sufficiently large block of memory that can be
recycled for each A® search.

Whar is A® storing so much off It's all the dara that tracks the propress of the
search. For every node explored, the algorithm needs to save the following informa-
ton:

. A pointer to the parent node

. The cost to get to this node

. The total cost (core + benrintic efmare)
. Whether this node is on the Open lisc

. Whether this node is on the Closed list

W o L b =

Section 3 Artificlal Intelligence

The idea is to pre-allocare a ton of these nodes (call it the mode fank). The actual
number varies depending on the size of your largest search. Now, you dose want to
pre-allocate oo much memory, so this army should be able w grow if necded—or
aleernatively, force the search to give up.

When A*® explores 2 new node for the first time, it needs to ask for 2 free node
from the node bank. When it gets a free node back, it needs to fill out the info in
order to personalize it for this new node.

Storing Explared Nodes In a Master Mode List

Once a node has been personalized from the node bank, it needs to be put somewhere
for fast rerrieval. The optimal data structure for chis activity is a bash able, Hash
tables allow constant-time storing and looking up of das. Therefore, we store all
explored nodes in this master node e, This hash able allows us to instantansously
find out if a pasticular node is on the Closed list or the Open lisc. Remember. since
the node dam memory is already allocated, the hash tble contins only pointers to
these nodes.

At this point you might ask yourself, “Where is the Closed list™ The answer is
that it lives inside the master node list. All explored nodes are stored inside the master
node list, and the Closed list just happens to be in the same place. This isn't a prob-
lem, because each node is cleardy marked a5 whether it’s on the Closed or Open lisr. So
where does the Open list live? The Open list is maintained separately, but the master
node list also eontains pointers to all the same nodes that are on the Open list. Why
the duplication? Because sometimes it’s faster o find the node you want using the
master node list, and sometimes it’s faster using the Open list. It's all abour speed.

When any given node is explored during the A* algorithm, ics possible char the
node was already explored during this same search. To make things simple, you'll
want a funcrion that gives you back a pointer to thar particular node’s data, whether
its been searched before or now

This funetion first checks the master nade list 10 see if the node has been explored
before. IF it has, the funcrion simply remrns a pointer m thar existing node. If the
node is not in the master node list, a free node is taken from the node bank, it is ini-
rialized to represent the desired node, and is pointer is rerurned. In effect, the fune-
tion completely hides the desils of allocating new nodes feom the node bank and
getting nodes thar already exise.

Hode™ GatMods| MasterModeList nodelist, Modelocation node_location)
1
{ {GethodeFromasterNodelist asccesses the hash table of nodes
Node® node = GetNodeFromMasterModelist(nodelist, nade_location)
if(nade) {
return{ node j;
}
elsp
{ /fNot in the Master Node List - got new one from tha Node Bank
Mode* newNode = GetFreeNcdeFronModedanki);

3.5

A* Spead Optimizations 289

newlode ->1location = naode location;
newhoda ->on0pen = falae:
newhoda - >onGlosed = fﬂ.lﬁt;

fiStoraNodeInMesteriodel izt places the nodes into the hash table
StoreliodeInMasteriodellst] nodelist, newlode)3
return] nestode)

Optimizing the Open List

The beaury of AY comes fram its ability to direer the search coward the most promis-
ing directions. The way it achieves this goal is by puning all nodes it could search next
into the Orpen list. Ir then orders the list from the most promising to the lease promis-
ing nodes to search. The problem is that the Open list tends to gee big, and cach fime
it goes through the A* loop, the most promising node must be extracred from che list.
The node to extract is the one with the lowest total cost (oo 1o gt b the mode + beurds-
tor extimnate of the remaining cost to the poal). As it turns out, the best wiy o store the
Owpen list is o keep it sorted a3 a priority queue.

A priority queus can be implemented as a binary heap. A Binary heap is 2 sorted
tree thar has the property that the parent always has a lower value than irs children.
However, there is no ordering among siblings, so a heap is nor a complerely ordered
tree. Because of this interesting property, inserrons and extractions (remeving the
lowest element) take only Oflbg 7). Forrunarely, thar’s premmy much all A* needs ro da
with the Open list.

Implementing a Priority Queus

It’s out of the scope of this aricle to implement a priority quewe from scrarch, bur
there’s an easy way to implement one using STL. Whether you're using STL ar nor, be
sure to check ourt 2 grear article abour priority quenes [Nelson96]. Ir describes prior-
ity queues dearly enough that you could probably construct one withour the help of
STL. Odherwise, consult any standard algorithm and dara strucoure book for more
informarion.

In order to properly use the priority queue, use the following four operations thar A*
needs 1o perform on the Open liss

Extract the node with the minimum toral cost (2nd resort the list): CNlag w).
Insert a new node on the Open list (and resort the list): t_'}ﬁ!ug i,

Updatc the total cost of 2 node aleady on the Open list (and resort the list):
Orelog).

4. Determine whether the Open list is empry= O(1).

STL acmally implements a priority queue with something called a2 conrainer
adapter. However, the operations that can be performed on it are very limiting. 1n

ol e o

282 Saction 3 Artificial Intelligence

fact, it has no interface to perform operation #3 (updating a node’s totl cost and
resorting the list). Therefore, we cant use the STL implementuion of a priority
quene. However, we can use the STL heap operations on an STL vector container o
make our own pricrity queue!

Listings 3.5.1, 3.5.2, 3.5.3, and 3.5.4 conain the four Open list operations along
with the node object, the heap ohject, and the STL comparison object—all imple-
mented in Ce+ using STL. In addition, on the CID that accompanies this book, you'll
find that Greg Snook’s pathfinding article, “Simplified 3D Movement and Parhfind-
ing Using Navigarion Meshes,” contains almest identical code for implementing an
STL prioticy quene.

A® Using the Optimized Master Node List and Open
Li=t

There's nothing too ericky about using the ideas presented, bur just in case, the grs of
the A* algorithm are implemented in Listing 3.5.5 using the master node list and the
Open list. Some other small tricks are also included, such as not searching the node
from which the search just came,

Conclusion

Since pathfinding i fundamentally a rough compurational problem, the best srare-
gies have always been 10 simplify the problem. Before any cffert is made tw oprimize
the algorithm, ensure that the world is represented in the simplest reasonable way.
Once that's decided, it's very imporant that some kind of hicrarchical scheme is also
incorporated. Usually this scheme involves some pre-processing that requires level
designers and ardists 1o be very involved in the search space representation. Although
it 2dds some overhead o the development of assets, therc’s no berrer way w0 speed up
pathfinding.

Unee the search space is finalized, its important to get the pathfinder working
correctly in that space before any optimizations are atrempred. A* is not a trivial algo-
rithm, and irs extremely difficult 1o debug if many of the optimizations have been
incorporated. When you are ready to optimize, start by decoupling the node memory
from the search space, The next step is to implement a priority queue for the Open
list and a hash table for the master node/Closed list. Finally, when everything works
like a charm and the game is stable, you can play with the heuristic cost. In order to
get the best resules, you'll want to wne the heuristic several times during development
as the game world becomes betrer defined.

After all these techniques have been implemented, the next step is to chear. Same
technigues for giving the impression of instantancous pathfinding can be found in che
“A® Aesthetic Optimization” article in this book. The wick involves making the player
think thar 2 path has been found when in reality you are just stalling. If the player
feels that the game is very responsive, the pathfinder appears to be unobirusive and

3.5 A" Spesd Optimizations

wransparent, which is the core reason for speeding it up.

Listing 3.5.1: Node Object

class Rode

i
public:

Nodelgeation location; |/ location of node (soms location
i representation)

Hode* parent; [parent node [zero pointer represents
{ starting noda)

float cost; ff cost to get t0 this nade

float total; /{ total cost [COST * heuristio estimate]

bool anOpen; {{ on Qpen list

bopl onClosed; {f on Closed list

Listing 3.5.2: Priority Queue Object

class Prioritydusue

{

public:
{/Heap implementation using an GTL vector
fiMote: the weetor iz an STL contalner, but the
{foperations done on the container cause it €4

{/be a priority gqueue organized as a heap
std: ivector<Kode*> heap;

Listing 3.5.3: STL Comparison Function

class NodeTotalGreater

{

public:
HiThia 1= reguired for 5TL to sort the priecity gqueaus
Ji(ita entered 8% an prgunent in the STL heap fenctions)
bopl aperator(){ Mode * first, Hode = second) const {

reatura(first->total = second-=total);

h

}i

Listing 3.5.4: Four Open List Operations

Hega* FopPrisritylucue| PriorityQueussk pgueue)
{ !/Total time = O(Lag nj

ffGet the node at the front — it has the lowost total cost
Mode * nmode = pgueus.hsap.Tront();

}

Sgction 3 Artificial Intelligence

//pop_heap will move the node at the front to the position N
fland then sort the hesp to make positions 1 through M-1 correct
FA{5TL makes no essumptions about your data and doesn't wamt
fito change the eize of the container.

std:ipep_heap(pgueua.heap.begini), pgueus.heap.end(),
NodeTotalGreater());

{/pop_back(] will actually remowe the Last element Trom the heap
{finow The heap is sorted for positions 1 through M)
pouewe . heap.peg hack();

return{ node };

vold PushPrioritylueve| PriorityQueved pgueus, Node* node)

{

}

/1Total time = O{lsg n}

{/Pushes the node ents the back of the vector (the heap is
Jinow unsorted)
pOweus.heap. push_back(node)3

ffSorts the new plemont into the heap
5%d: tpush_heap(pguausa.heap.bagin(}, pqueue.heap.end(],
NodeTotalGreator());

vold UpdatedfadeOnfriorityOueue| Prioritylusuedh pgueue, MNode® node)

1

¥

ffTotal time = O{n+log n)

{fleop through the heap and Tind the nede to be updated
std:ivector<Nede*=: itgrator 1i:

for(1=pqueue.heap.begini); Ll=pguave.heap.endij; it++ }
i

it{ (*L}-»location == node-=location)

{ f(/Found node = resort from this position in the heap
frisince its total value was changoed before this Tunction
fiwag called)
atd: i push_beap{ pgueus.heap_begin{), i+,

RodeTotalGraatar());
return;

bool IsPricrityCusucEnpty| PriorityQusuek pgueua)

{

flempty(} iz an STL function that determines if
ffthe STL wvecter has no elemsnts
return{ pgueue.heap.enpty{])=

35 A’ Speed Optimizations

Listing 3.5.5: A* Implemented with a Master Node

List and a Priority Queue Open List

Masterligdelist g_nodelist;

bool FindPath(Gamedbject* ganschject, WorldLocation gosl)

{

fiGet a path in progress if it exists for this gane ehject with
{/thia goal
/A path may have been started and not finished from last game tick
LT g path in pregress, 1T returns en empty path structure

Path* path = EatPathInfrogress{ gamepbject, goal j:

if[lpath-=initialized }

path structere for

has np cost to get to

{ [{The Initializefath function fills out the
fithis path regeest
IfIt initializes a clean WasterModelist and a clean Open list
Initializefath| path, pameobject, goal);
ffCreate the wery first node and put it on the Open list
Hode* startnode = GetNodel g_nodelist, GetModelocation|
gamegbject->pas] §;
startnode-=gnlpen = true; JiThis node goes on Opem list
startnode->onClosed = falsa; JIThiz node not on Closed List
startnode->parent = 0Q; JIThis node has no parent
startnade->gost = Q] JIThis node
startnode->total = GatNodeHeuristie| startnode-=location,
path.goal);
PushPrioritylueua| path.opan, startnode);
}

while([IsPriorityOusueEmpty(path-=opsm))

i

fi1Get the best candidate node ©o Search na
Mode™ besinpde = PopPriorityDuweue(path.op

£f(atGoal(bestnode, goal))

{ [/Found the goal node — construct a pat
{IThe complete path will be stored insi
ConstructPRinToGeal(ganechjeqt, path)
return{ troe j); rireturn with success

b

while{ f*loocp through all connecting nodes
L

Node newnode;

newnode . location = [*whatever the new 1

f34
en };

h and exit
de the game object

of bDestnode*f)

pcation is+/;

1iThis avolds searching the node we just came Trom

if{ bestnode-=parant == 0 ||

bestnods->parant -=Lecation != newnode.location)

{

newnode. parent = bestnode;

newngde . east = bestnpde-=gost + CostFromNodeTolode |

Sectlon 3 Artificial Intelligence

Anewnode, bestnode);
newnedi. total = nesnode.cost;

{fGet the preallocated node Tor this location

{/Both newnode and acteslnode represent the same node
{flecation, but the search at this point may not want
fite clobber over the data fram 2 more prondsing route —
{ithus theé dusplicate nodes for now

Hode™ actualnode = GetMode| g_nodelist,
ngwnods , location |

{/Hote: the Tollowing test takes O[1] Tine (no s2arching
fithrough lists)
if(!{ actvalnode-=andpen L& newnode.total =
actualnode->total) 4%
!{ actualmode->onClosed B4 newnode.totel =
actualnode->total |)
{ [iThis node 1 very promising
[ITake it off the Open and Clesed lists (in theary)
fiand push on Open
actualnode-=onClosed = false; J/effectively remaving it
fitrom Clozsed
actvalnode-»pareat = nownode . parent:
actualnode->cast = newnods.cost:
actualnode->tatal = nownpde,total:

if{ actualmade-=onlipen)

{ f/since this node is already on the Open list,
flupdate it's position
UpdatelodeOnPrigrityQueua| path.open, actualnode J;

1

nlsa

{ fI/Put the node on the Open 1list
FPushPrioritylusue| path.open, actualmode §;
actualnode-=ealpen = trus;

1

}
}

i//Now that we've explored bestnode, put it on the Closed list
bestnoda->enClesed = true;

fflUze same method to determinme 1f we've taken too much tims
fithis Tick and should abort the search until next tick
if [ShouldsbartSearch{]) {
return{ Talse };:
1

¥

11T we got here, all nodes have been searched without Tinding
{i/the goal
return| false)3

35 A®Spoed Optimizations 287

References

A* Algorithm

[Heyes-Jones98] Heyes-Jones, Justin, “A* Algorithm Tutorial,” available online at
www.gamedev.net/reference/programming/aifaricle690.asp, 1998,

[Parel99] Parel, Amic .. “Amit’s Thnu#au on I"ﬂ]&ﬁndinﬁ,ﬂ' available online
hitp:/ ftheory.stanford.ed w/-amitp/GameProgramming/, November 27, 1999,

[Stout®6] Stour, Bryan VW, “Smart Moves: ln:r:'lligm: Path-Finding,” (e Depel-
aper, ~Ocrober/Novemnber 1996, pp. 2835, also available online ar www.gama-
surma.com/feanres/ 1999021 2/sm_01 him.

Data Structures

[Lewis91] Lewis, Harry R., Diatiz Serucennes and Their Algarithrms, HarperCollins Pub-
lishiers Imc., 1991,
[Melson96] Nelson, Mark, "Prioricy Queues and the STL,” D Dobbt Jeurnal. also

available online ar www.dogma.net/marknfarticles/pg_stl/prioritghem, January
1996.

3.6

Simplified 3D Movement and
Pathfinding Using Navigation
Meshes

Greg Snook

Getting an object 10 move from Foint A o Point B intelligently has always been a
challenge for the game proprammer. Doing the same for an objecr in 3D space is a
greater challenge sll. In todsy's world of complex 3D environments, the task can
became overwhelming. This artidde proposes 2 rather simple method 1o help over-
come these obstacles and ger all your objects safely to Poine B with the lease amount
of work: Chear.

¥es, chear. Rarely do real-time games have the time w0 compute true 3D object-
te-scene interaction and pathfinding, and the code complexity o do so is often
unneccessary for most applications. We are here to find the casier way out. We seck a
simple, extendable method o roll our dice and move our mice in a way that looks
believable 1o the player. Ler’s face it: The casicst ways almost always invalve cheating,

In a Nutshall

What we nced is a way w simplify 3D space into more familiar 200 1erms. Objects in
2013 space move in a highly predicable fashion and can be contralled very incuinvely
by the player. In addition, there is a myriad of 2D scarch algarithms at our disposal o
create intelligent pachs for our objects 1o move on. Whar we will create is 2 methad
allawing our objeces 1o function in a pseudo-3D environment while providing a full-
3D presentation for the player. To do this, we employ a mesh of eriangular polygons
to represent our 30 space as a warped 2D playing feld.

The idea stems from the fact thar, for most game environments, you can pretry
casily predict where objects can and can't move. From char informarion. a simple ser
of geometry can be created to define this area as 2 “walkable” surface area, One way o
visualize chis area is 1o imagine a room within a typical 3D environment. Since yolur
characters are humaneid and the planet hosting the game has gravity, you can assume
the game objects will spend most of their time on the floor of this reom. You can ala

4.8 Simplified 3D Movement and Pathfinding Using Navigation Meshes 2849

FIGURE 3.6.1. A 31D environment with the ssociaed iavigation mesh drawn in wireframe.

assume that they wont be walking through the pillars, desks, soda machines, and
other objects sharing the floor space. We can define the remaining portions of the
floor with some simple, coarse geometry that covers the open, walkable surface area.
Think of this geometry as a sort of polygonal carper, which we refer to 25 a mavigarion
migsh. It represents the area around which your ohjects can maove within the environ-
ment, Figure 3.6.1 shows the 313 environment used in the marimesh program avail-
able on the CD that accompanies this book. The wireframe polygons show the
navigation mesh, which defines the area where objecs can move.

In 2 sense, this navigation mesh object can be treated like the grid systems
employed by 2D tile-based games. Each palygon of the mesh can be thought of as a
grid cell, except that they arrach ro adjacent cells on three sides instead of four, With
a bir of effort, we can even use this mesh for traditional grid-based algorithms such as
line-of-sight detection and pathfinding, The added bonus is that our replacemen for
the 21 grid can have cells of irregular shape and size, wind up and down seairs and
hills, and even overlap itsell on things like bridges and carwalks—all while providing
access to the same rime-tested 2D algorithms we all know and love.

Uslizing a navigation mesh can also reduce the amounrt of collision testing
required between an object and its static environment, Since the navigarion mesh
already represencs an approximation of the open surface area in the environment, our
objects need collide with only the mesh edges rather than the true scene geometry. By
projecting a control point from the object onto the mesh, we can casily track objeet
movement and collisions with 2D line intersecrion tests mcher than full 3D polygon
intersection. In cases in which hig,hr.r detail is needed for collision, the mesh cells can
still link to sets of true scene geometry for refined testing, Objects char collide with a
cell edge would then be passed onto rourines that resolve the collision with the associ-
ated room geometry. Linking process dara with the cells in this manner serves as a

280 Saction 3 Artificlal Intelligence

quick-and-dirty proximity rest for objecs in motion, an idea that can be exrended 1o
triggrer traps, doors, or switches whenever an object enters a given cell or collides with
a particular edge.

Construction

Navigation mesh geomerry needs 1o adhere to 2 few simple rules in order 1o work cor-
rectly. First, it needs to be compased completely of triangles to ensure that each cell is
contained in a single plinc. Seeond, the entire mesh must be contiguous, with all
adjacent triangles sharing rwo vertices and a single edge. Finally, no two rriangles
should overlap on the same plane. That is, any given peint within a riangular cell
should be exclusive ro thar cell. This will aid our algorichms immensely and provide
believable movement for the player.

The navigation mesh is aor intended to be visible to che player. We use it only
behind the scenes o limic character movement and determine paths. Therefore, it
need consist of only the minimal amount of polygons necessary to represent che area
in which objects can move. Highly deailed navigation meshes might produce the
maost accurate resules, bur their overhead would be a limiting factor for maost real-time
games. The mesh should be one that conrains anly the cells necesary to fcilitate
believable movement 1o the player, not onc that represents every pebble and twig on
the ground.

Roll the Dice and Move Your Mice

To begin, we first cxamine using the navigation mesh o control object movement in
a 3D environment. Once we have our objecis happily interacring with the mesh, we
can extend irs use for pathfinding and line of sight. Bur first things first: We need to
get some objects moving around the confines of the mesh geometry.

We attach abjects to the mesh using a conrol peint thar will be locked to the nav-
igation mesh surface. This control point may never leave the mesh, buc it can move
abour the surface of the mesh ac will. Using our polygonal carper example, imagine a
person standing in a om. The control point can be visualized as 2 marble siming
directly below cthe person, resting between his ar her feer. Wherever the person is
moved in the room, the marble rolls along, always maintaining a position on the ear-
pet directly under che person.

All desired object movement is rransferred va this control peint, which, in wrn,
gets resolved on the surface of the navigation mesh. The object is then moved relarive
tor the new control point location. In our example, kick the marble and let it ricacher
off the walls, then move the person o the new marble locrion.

The basic procedure is as follows, given that each object maintains a conerol poine
on the mesh and we know which cell of the mesh currently contains the conrrol

poinG

3.6 Simplified 3D Hnﬂu'n_-prrﬂ and Pathfinding Using Navigation Meshes 291

I Project the object’s desired motian vector onto the plane of its current eell. This
translares the motion into 2 2D vector along the plane of the cdll. We'll call this
new vector & motion path and represent it as a 2D line segment. The endpoints of
the scgment are the srarring location of the control point and the desired ending
location, both translared w 2D space relative to the plane of the cell.

2. Test the motion parh against the cell’s 2D riangle edges. Due 1o the nature of ti-
angles, we know chat for our path o exit the cell, it must intersect with cxactly
one side of the triangle. S0, we test the 2D line segment of the mosdon path
against the chree line segments representing the cell triangle for any possible inter-
sections. There can be only one of three possible results 1o this test
a} Qur path intersects with an unshared edge (ie., an edge not connecred o an

adjacent cell). This means we have hit something solid. Resalve the collision of
the motion path vector and the cell wall, adjusting the motion path 1o account
for any change in direction, and repeat Step 2.

B) Our path interseets with a shared edge. Move o the adjacent cell and repeil
the entire process from Step 1, projecting our current vectar to the plane of the
new cell and testing against is walls.

<) The only remaining possibiliry is that our motion path does not exit the eur-
rent cell. We have reached the end of our process and found the cell thar hasts
the object’s new resting position. We translate our resulting 2D motion path
endpoint back into 3D space to find the tue 3D location of the control paine
and move the object relarive to it

Obwviously, for complex navigation meshes, this can be a very cumbersome PIOCEss.,
For each cell encountered, we need 1o project an arbitrary 3D vector onto 2 3D plane.
From there we translae the resulting vecror along with the cell edges o 2D space,
where we can perform our line intersection tests. Once finished meving abour the
mesh, we need o undo the translations and projections to produce our new control-
point position in 3D space.

That’s quite an effort to undertake in real time, especially if you have many
objects to test or your objects plan to eravel over many cells in 2 given frame. For sim-
ple environments, however, this could be plausible and allows for the grearest flexibil-
ity in navigation mesh geomerry. For eomplex environments, we can still speed up the
process considerably with a bir more careful planning (read: cheating) and an addi-
tional navigarion mesh geometry rule: 7o facifitare fasr projections, all cell mormats must
Jace in the same divection along a predesermined cardinal axic

Imagine our room again with the navigation mesh carpet on the floor. All eell
normals of the flooe point up, so they meet this new requirement of our mesh, Thae
is to say, all cell normals have a positive y value in our environment, Note that we do
not require our new navigation mesh to be flat, we simply ne longer allow cells whase
normals are 90 degrees or more away from our chosen axis.

Section 2 Artificial Intelligence

With this new rule, the projections become incredibly simple. We simply throw
out the dimension along the axis we have chosen. In our carpeted room example, pro-
jecting points onto the floor is now as simple as throwing their y values our the win-
dow. In addition, when we have finished the Motion Path processing along the
navigation mesh eells, we have a new 2D (x, z) locarion and the cell that contains ic.
Using the cell's plane equation, we can solve for y using our {x, z) location and ans-
form ourselves back into 30 space casily. Our new motion-tracking process is reduced
to the following:

1. Create 2 motion path consisting of the concrol point and the desired location,
reduced ro 21D peints by rossing out their common axis values.

2. Test the 2D metion path against the sides of the cell riangle as before until a cell
is found thar contzing the destination endpoint of the motion path,

3. Using our new (x, z) control point location and the plane equation of the cell ic
resides in, solve for y and reconvert our control point back into 3D space,

The savimerh sample program includes some simple classes thar illustrare chis
process. In the source code, an object called Nevigarion Cell is used to represenr a sin-
gle triangular cell, and NavsgarionMenh represents a collection of chose cells. Lec's fiese
examine NavigationCell, since it does most of the work.

NavigationCell defines a single cell of the mesh with the following members:

Plane m_CellPlane; // A plane containing the cell triangle
vectord m_WVertex[3]; [f the three vartices of this cell
LainadD m_Sida[3]; /Ff a 20 line representing each cell wall
HavigationGell* m Link[a]: Ii pointers to celle that attach to
ff this cell on each of its three
{f sides. A WAL link denotes B solid
{7 edge.

Vectors, Plane and Line2D are premy straightforward workhorse classes whose
source code is also provided. One point of distinction is thar Line20 is really treated
a5 4 ray pasang through two poins. It has an implied direcrion, from Endpoint A to
Endpoint B. It also tracks a perpendicular “normal” for the 2D linc sepment. This
normal is used o classify points as being either on the line’s left or right side, These
notions of “left” and “right” are defined a5 though you were standing on Endpoine A
of the line looking toward Endpoine B. As you see in the source code, the ability to
classify points in relation to the line is used quite heavily in our motion processing,

The main use of NavigationCell is to perform the step in our process where we
determine how a path intersces with the walls of a cell. NavisarionCell contains a
member funcrion to classify 2 2D line segment to its three cell walls and return a
result, This function, ClassifyPathToGell(], is the basic building block of navigation
mesh use. The remurn value of this function can be one of the following enumerated
types:

enmn PATH_RESULT

3.6 Simplified 30 Movement and Fa.iihﬁndim Using Mavigation Meshes 293

{
NO_RELATIDNEHIP = 0, J// the path does not cross this cell
ENDING_CELL, /f the path ends in this cell
EXITING_CELL /i the path exits this cell

}i

In the case where EXTTING_CELL is the result, the cell wall traversed as well as the
2D paoint of intersection with the wall are provided o the caller. This allows us 1o
compare any 2D path 1o the cell and derermine what type of intersection occurs,
When an intersection with 2 solid edge occurs, we can use the point of intersection
«culate our new direction and recest, Listing 3.6.1 shows the ClassifyPathToCell()
function in derail.

NavigarionMedh uses this funcoon as needed 1o process our movemene as defined
in the preceding steps. The NevfgarionMedh member function ResolvelotionOnkeshi)
manages the entire process, testing each cell encountered using ClassiryPatnTacell().
It rakes in a 30 conrrol point, a pointer to the cell it is currently occupying, and the
desired location for the contrel poine after movement has oceurred, It returns o the
caller the true final location of the conerol point and the cell the new control point will
resicle in. Listing 3.6.2 details the use of the ResolveliotionGnMesni) funcrion.

Getting There Is Half the Fun

MNow thar we have seen how to use the navigation mesh to control object movement,
we can look into other applicadions for the mesh. The first obvious use is pathfinding,
Keep in mind that our mesh consists of linked cells, which share common edges, just
lik= a grid or hex map. Any path-finding algosithms eraditionally applied 1o 2 grid or
hex map should then reasonably translare o our mesh.

As a marrer of facr, using palygonal meshes for search algorithms is no new feae.,
Since path-finding algorithms were designed 10 work over databases of linked node
data, they work quite nicely across sers of linked vertices. As game programmers, we
have become too accustomed 1o seeing these methods applied o grids and hexes,
which is only a small subset of the environments within which they can be used.

Using our navigation meshes, we do add one small wrinkle o the path-finding-
over-polygons method: We don't use the mesh vertices. Instead, we use the midpoints
of each cell wall. Why? Twe reasons come to mind, both of which arc arpuable
depending on your game environment, The first is that we are also using our naviga-
tion mesh ro limir object movement in the environment. If we generate 3 path along
the cell vertices, we are always taveling on the edges of the cells. This is the most
costly movement on a navigation mesh, since moving down the edge of 3 cell exactly
means yeu ase constantly colliding with the cell edge, causing a lot of extra, unneces-
Sary INIerscction Tess,

The second reason is purely aestheric. IFwe assume our mesh was designed to use
the minimal number of polygons, it stands to reason thar there are not many verrices

Saction 3 Artificial Intelligence

FIGURE 3.6.2. Two overhead views of o sample hallway and navigation mesh showing a
pach & generated along cell edpes and & through cell wall midpoines

or polygon edges in the body of our open space. Have 2 look at Figures 3.6.2a and
3.6.2b, which show an overhead view of a hallway, and a reasonable number of poly-
gons to define the open space within it. If we generated a path on the cell edyres (Fig-
ure 3.6.2a), we would spend most of our tdme dragging ourselves against the wall of
the hallway. Using the cell wall midpoints (Figure 3.6.2b), we can generate 2 more
visually appealing path dewn the body of the hallway.

As [said, both reasons are arguable. You could simply increase the complexiry of
your navigation mesh and add code to avoid paths that deag along the solid edges of
the mesh, bur I have found it easier (and conceprually more inmidve) o move
through the wall mid points. In application, it has also proved to be easier for the level
designers crearing the mesh to work withour having to concern themselves with the
placement of extra vertices and cell edges for pathfinding. In essence, all we have
really done is offser our mesh vertices to creare a more believable path.

So how do we build the path? As in any path-finding situation, you need w
choose the best method for your game environmene. Best-first searching, Dijkstras
algorithm, and the venerable A* can all be applied 1o the cells of our navigation mesh.
Elscwhere in this book are some excellent explanations of the various search methads,
=0 I will not go into detzil on them all here. Check out the articles by Steve Rabin and
Bryan Stout in this book for detailed information on A*. You can also check the ref-
erences at the end of this artidle for some recommended reading on parhfinding.

For demonstration, the navimed sample code shows how o use A® on the navi-
gation mesh. Although it can be the most complex method to employ, A* can achieve
highly accurate results and is often more efficient than other mechods in reems of
memory usc and search time. However, its efficiency hinges on the use of a good
heuristic. The heusistic helps steer the search algorithm toward che goal, preventing it
from fanning out all over the mesh unless necessary.

The best heuristic to usc is purely a game-specific matter. Only you know how
well your objects move over your game’s rerrain, and you need to tune your heusistic
accordingly. You might even need to railor separate heuristics for each object type,
taking into account its abiliry ro climb steep grades, comer at high speeds. and @ on.

4.5 Simplified 3D Movement and Pathfinding Using Havigation Meshes 285

In most cases, however, this heuristic is simply the approximare distance from a given
cell vo the goal. For the purpose of our demonstration, this is the hewristic we employ.

To run the A* algorithm, we maingain a list of cells thar need to be processed. In
the navimesh sample code, these "Open” cells are held in an ordered list called a Na-
igationteap. Cells are listed in the order of best to worst cost in terms of the disance
required to reach the goal. Therefore, each time we pull a cell off the heap, we know
we are dealing with the current “best guess” of the cell thar will provide the best path
to our goal,

To begin pathfinding, we need to stoke the heap with the first cell, our destina-
tion. We then pop and process each cll on the heap until we reach our starting posi-
tion or run our of heap. If the heap runs dry before we reach the goal, we know there
is no path available berween our two locadons.

To process a cell, examine cach of its neighbors. We determine the distance reav-
eled to reach cach one by adding the cost assodared with our current cell to the dis-
tance required o cross the cell wo each neighbor. This Arrival Cost for each neighbor
is then added to the neighbor’ own heuristic values ro arrive at a prioricy score For
each of the neighboring cells.

We now examine the score, or cost, of cach neighbosing <l to do one of two
things. If the neighboring cell is not currendy in the Open heap, we must sort it by s
score value, This cssenially pus it off for larer processing. If the cell is already in the
heap, we need to see if our new score is berter than the score by which the cell is cur-
rently sorted. If the new score is an improvement, we need to move the cell up within
the heap to its new priority pesition for earlier processing. IF the new scoze is not an
IMPrOvEmEnt, We 10ss it out, since 3 more optimal path already passes chrough this
cell. In either case, each time a cell is added to dhe heap or repositioned within the
heap, we record the idenrity of the cell thar has ser the current Arfval Cosr.

This is done so thar the cells can]-:l:cp track of the next closest cell to the destina-
tion along the generated path. You'll notice that the masdmesd sample runs the A®
algorithm in the reverse search direction, starting ar the destination ocll and searching
for a path backward te cur current location. When the ssarch is complete, each cell
contains a link to the next cell clossst wo the goal along the generated path. We can
hop through these links in the proper order, from eurrent location ro destisasion, and
build a final waypoint list for our pame object,

In the sample ende, the entire process is run by the BuildiavigationPathi) mem-
ber funcrion of the NeigasionMesh class. It uses the NavigationHeap object to main-
eain a list of NawigarionCells to be processed. As each cell is pulled from the heap, its
ProcessCelll) funcrion is called, which does the work of testing cach neighboring
cell, as outlined previously. Cells are added or moved within the heap a5 necesary,
until a parh is found. At that point, BuileNavigationfath() iterares through the cells
on the path, adding their wall midpoints to the final Nawigation ek waypoint List,
Source code for the entire process is shown in Listing 3.6.3.

Section 3 Artificial Intelligence

It Works, But It Ain't Pretty

As you can see by the bue lines drawn in the rarfmesh smple program, building a
path through]:lc:lvgu:mal uh]:cn yields a very jagged result. Very rarely will you find
that your navigation geomerry is s up to produce a straighe-line path. The nanre of
the mesh forces our path ro meander from cell ta cell, making many abrupt owists and
turns {see Figure 3.6.3a). Any object that uses this path verbaim will look very odd
indeed to the player. Luckily, we have one final application to discuss thar can smooth
the path our considerably: line-of-sight determinadon.

Back when we were working out how 1o move objects around the mesh, we
defined a funetion, ClassifyPathTeCell(), to compare a 200 line of motion o a cell.
The resule of the function told us whether the path ended within the cell, encoun-
wered a solid edge, or passed through to an adjacent cell. We can now use thar function

again to perform a linc-of-sight test, smoothing our our parh by skipping ahead to the
furchesr visible waypaint.

Each time we arrive 2t 3 waypoint in our path, we look ahead to the nest few way-
poins in the list. By creating a line of motion from our current position to each of
these waypoints, we can quickly test if the waypoinms are “visible.” To da this, we test
the path against each cell berween our current position and the waypoint using the
classifyPathToGell() functon. If the funcron remirns a solid-wall intersection, we
know the waypoine is not visble from our current position. Conversely, if we reach
the waypoint without such an intersection, we know the point is visible to us. By
searching for the furthess visible waypoine up the chain, we can skip over some of the
meandering waypoines and smooth our our path. Figure 3.6.3b shows the new
smoother path generated by skipping over the redundant visible waypoints.

This method can be used for all sons of wisibility testing. Using our Glassity-
PatnTolell() function, we can test whether any rwo points on the mesh can see each
other. This has some very useful applications in enemy Al since you can quiclly test
whether enemy objects can see the player's position at any given moment. The Line-
ofgightTest() member funcion of the MavigarionMesh class details the process for
determining point visibilicy.

[E}] [1-1]

FIGURE 3.6.3. & Asample path genemted wsing A”. f The same path smoothed wing line-
oif-aigght eesting.

4.5 Simplified 3D Movement and Pﬂl‘hﬁﬂﬂ'l‘h_n Using Navigation Meshes 287

Conclusion

I hope this anicle has demonstrated thar 30 space need not be o computationally
complex. My goal was to show thar using familiar 2D methods (and a bit of cheat-
ing), we can greatly simplify the game envirenment withour impacting the player’s
3D experience. The end result is a very flexible and uscful ol for moving objects
around in 31D space without a boatload of 31 mach.

This method allows you o reduce object/scene collision operations, creare com-
plex paths, and test for the visibility between any two points in the environment space.,
However, there is stll more thar can be done with navigarion meshes, They can be con-
structed of high-order primitives rather than rgid tiangles, tessellated like multireso-
lurtion meshes for greater path finding detail near the camera, or even animared 1o
represent fluid surfaces. For now, I leave the exploration of these ideas to you. Give the
meshes 2 try and sec what new wses you can layer on top of this foundarion.

Listing 3.6.1: Intersecting a 2D Line with a Cell of
the Navigation Mesh

Hewigationtell: :PATH_RESULT MavigationCell::ClassifyPathToCell{const
Line2D4 MetionPath, MevipationCell** pNextCell, CELL_SIDEa Bida,
vector2® pPodntO0fIntersection)const

{

int InteriorCount = 0

/i Gheck our MotionPath against each of #Be threa cell

M walle
for (int 1=07 $<3: 40}
{

!l Glassify the MetionPath endpointe as being either
I/ OM_LINE, or to its LEFT_SIDE or RIGHT SIDE,

I/ Since our triangle vertices are in elockwise order,
!l we know that peints to the right of each line are
f) inside the sell. Points o0 the left are gutside.
ff We do this test using the ClassifyPoint function of
f Line2d

ff If the destination endpoint of the MotionPath
ff is HNot on the right side of this wall...
if [m_Side[i].ClassifyPoint (MoticnPath.EngPoints(]} !=
LinedD: :AIGHT_SIDE)
{
f7 ..and the starting endgoint of the MotlonPath
ff iz WOt on the left side of thiz wall...
ir
(m_Side[i] .ClassifyPoint(MotionPath. EndPointA()) 1=
LineD: :LEFT_SIDE)

ff Check to see if we intersect the wall
I{ using the Imterszection function of
i Line2D

288 Section 3 Artificial Intelligence

Linedh: ;LINE_CLASSIFICATION IntersectResult =
WotisnPath. Intersectionin_Side[i],
pPointdfIntersection);

if (IntersectResult ==
Ling2i; SEGMENTS_INTERSEGT | |
Intersactlesuls ==
Line3D: :A_BISECTS_B)
{
{{ record the link to the next
f{ adjacent cell {aor MULL if ng
/i attachment exists) and the
i enmmarated ID of the side we hit.

"pNextGall = m_Link[i];
Side = {CELL _SIDE)i;
return {EXITING CELL):

}
}
}
elae
i
f} The destination endpaint of the MotionPath
ff 15 on the right side. Increment gur
£ InteriorCount s0 we'll know how many walls we
ff were ta the right of.
Interiorfounts+;
H

}

i An ImteriorCount of 3 means the destination andpoint of
if the MotionFath was on the right side of all walls in the
ff gell. That means it is located within this triangle,

M and this 15 ocur ending cell.

if {ImteriorCount == 3)

{

return (ENDING_CELL};

#f We reach here only if the MotionFath does nat
I intersect the cell at all,
return [HO_RELATIONGHIP) ;

Listing 3.6.2: Resolving Motion on a Navigation
Meash

wold MavigetionMesh: :ReselvelotionOnMeshconst vectords StartPos,
HavigationCell* StartCell, wectordk EndPos,

HavigationCell** EndCell)

1

ff create a 20 motion path from ocur Start and End

4.8 Simplified 30 Movement and Pathfinding Using Navigation Meshes

ff positlons, tossing out their ¥ walues to project them
M1 down o the XZ plane.

Line2D MotioaPath{vector2(StartPos.x,5tartfos.o),
vector2{Endfos.x,EndPes.z});

[0 these three will hold the resulte of our tests against
fI the cell walls

NawigationCell::PATH RESULT Result -

HavigationCell: ;M0 RELATIONSHIR:

HavigationCell::CELL SIDE Wallhusher;

vester2 PaintOfInterzection;

HavigationCell® MextCell;

{f TestCell ds the cell we are currently exanining.
HavigationCell* Testlell = StartCell;

I
1 Keep testing untll we find our ending cell or step
M moving due to Triction
H
while {{Result != MavigationCell::ERDING_GELL)
&4 (MotionPath.EndPoaintal) =
MotionFath.EndPoing&()))

!/ use RavigetionCell to determine how our path and

!4 gall dnteract

Result = TestCell-»ClassifyPathToCell(MotisaPath,
ANextCell, WallNunber, SFointOfIntersectian);

fi AT exiting the cell...
1f (Result == NavigationCell::EXITING CELL)
{
ff St if we are moving to an adjacent sell ar
I we hawe hit a solid {enlinked) sedge
if {Mextlell)
{
ff movwinmg en, Set pur motion origin to the
[i point of intersection with this cell
I and sontinue, wsing the new cell as our
IF test oell.
UationPath.SetEndPointAlPoint0FfIntersaction)
TestCell = MoxtCell;
§
el
{
I{ we have hit a solid wall.
f Rezalve the collision &nd correct our
Il path,
Mationfath.SetEndPointa{PointOf Intersection) ;
TegiCell->ProjectPathinCellwall (WallNunber,
Mation®ath);

[add some friction te the new MotionPFath
fi sinca we are scraping against a wall.
ff we do this by redecing the magnitede of

Sectlon 3 Artificial Intelligence

41 our motion 10%
wecterd Ddrection =
Motionfath.EndPoineB () =
Botionfath.EndPointAl) ;
Direction *= 0.07;
UptionPath.SetEndPolntB(Mationfath_ EndPointaf] +
Direction);

}

H
else if (Aesult == NavigationGell::NO_RELATIONSHIP)
{

{F Althowgh thesretically we should newver

{f encounter this caze, we do sometimes Tind

{f ourselves directly on a vertex of the cell.

{f This can be viewsd by Some routines as being
{/ outslde the cell. To accommodate this rare
/! case, wo Torce our starting point into the
/! current cell by nudging it back so we may

i eontinge.

veotars Newlrigin = MotionPath.EndPointa|):
Testéell->ForcePointTeCellGollumn(NewDriging ;
MotionPath.SetEndPainta(Newlriging

}

ff we now have our new host oell
*Endiell = TestCall;

/f Update the new control point position,

M solving for ¥ using the Plane member of the
If MHavigationCell

Endfas.x = MotlonPath.EndPoint®().x;

EndPos.z = WptlonFath.EndPoint®().v;

TestCell -=MapVectorHeightTeCell|EndPos) §

Listing 3.6.3: Building a Navigation Path on the
Mesh Using A*

bool KavigationMesh::BuildMavigationPath(Mavigationfaths MavPath,
HavigationCell* StartCell, const vector3k StartPos,
HavigationCall* EndCell, const wactord& EndPaos)

bool FoundPath = false;

ff Incremant our path finding sessionm ID

ff This idemtiTies each path finding session
/f 5o wa do not nead to ¢lear out old data
ff in the eells from previous sesaions.
+#m_Fath3ession;

[load our data into the NavigatissHeap object

4.8 Simplified 3D Movement and Pathfinding Using Navigation Mashes ELlih |

/! to prepare it for use.
n_MavHeap.Setup(m_PathSession, StartPas):

Ml Wa are doing & reverse search, Trom EndCell to
i StartCell. Push our Endiall onte the Heap as the first
A call o e processed.

EndCell-»OueryForfath(&n_NavHaap, O, 0O):

Ml process the heap untll empty, or 2 path is found
while (m_MavHeap.NotEmpty ()} 23 IFsund®ath)

|
HavipationMode ThisMaods;

Hl pop the top cell (the open cell with the lowsst
/I st off the Heap
m_MavHeap.GetTop (ThisNods)

fi if this gell is our StartCell, we are done
if (ThisHoda.cell == Startlell)

{

]
clse

{

FaundPath = truoe;

/I Procees the Cell, Adding its nedighbors to the
[/ Open Heap as needed
Thiskode.cell-»ProcessCell (dm_MavHeap) ;

}

A If wa found & path, build a waypoint 1ist
A out of the cells on the path
if (FoundPath)
{
NavigationCell* TestCell = StartCell:
veCtord NewWeyPoint;

// Setup the Path ebject, clearing out any eld datn
HavPath.Zetup(this, S5tartPps, StartCell, EndPos,
EnaCell):

ff Step through esch cell linked by eur A* algorithm
£ Trom StartCell to EncCell
while (Testlell K& TestCell != EndCell)
il
{f add the link point of the call as & way point
§f (the exit wall's canter)
int LinkWall = TestCell-=ArrivalWall();

HawWayPoint = Testlell-=wallMidpoint{LinkWall);
HawWayPoint = SsapPointTofall{TestCell,
HawWayPoint) :

ff Just to be sure

Section 3 Artificial Intelligence

HNavPath.AddWayPoint (NewWayPoint, TestCell):

i and aa to the next cell
Testfall = TestCall.=>Link({LinkWall):

}

/! cap the end of the path.
HavPath.EndPath();
returnitrue);

}

ff no path exists between the two points provided.
ff i.e. "you can‘t get there from here®

ff This will pever happen on & contiguous mesk.
return{false);

bl HavigationCell::ProcessCell(NavigationHeap* pHeap)

{
AT (m_BegsisnlD==pHeap->SessionID|])
{
ff onoe we have bean processed, we are sloged
m_Open = false;
ff guery all our naighbore ta ses if they need to be
ff added to Open haap
for (int 1=0;i=3;++i)
{
if (m_Link[i]}
{
IJ Tha Disvances betwesn the wall midpoints
£ ot this call are held in the order
£ AStoBG, BCToRA End CAToAR.
ff abs(i-n_ArrivalWall) iz a forAula to
i/ deterning which distance measurement
f7 to use. We add this distance to known
§f m_ArrivalCost to compute the total cost
{f to reach the next adjacent sell.
B Link[i]->0ueryForPath|pHeap, this,
B_ArrivalCast+m Walllkstance|abs(
1-m_Arrivalwall)]):
}
H
returnitrua);
]
return|false) ;
}

bool NavigetionCell::OueryForPath({HavigationHeap* pHeap,
MavigationCall* Caller, Tloat arrivaloost)
{

it (m_SeseionIDl=pHeap-=>Sess5loni0())

3.6 Eﬁm{ﬂiﬁl:lEIIIHqumnuwn:and Pathfinding Using Navigation Meshes

i

ff this is a new session, reset our internal data
A_%e55i0nI0 = pHeap->Sessionll{):

if {Caller)
i

n_QOpen = true;
ConputeHeuristic|pHeap-=doal())}
n_ArrivalCost = arrivaleost:

/! Remamber the triangle wall this caller is
i Bl'l-tﬂf"ll"lﬂ Tron
it (Caller == m_Link([0]}

1
n_ArrivalWsil = 0:
¥
else 1f (Caller == m Link[1]})
i
n_ArrivalWall = 1:
k
else 1f (Caller == m Link[2]})
i
n_ArrivalWall = 2;
L
F
glsa
1

M We are the cell that contains the starting
1 lasation of the A* sgarch.

m_Open = false:
n_ArrivalCost = 0;
n_Heuristic = 0;
m_ArrivalWall = 0;

ff add this eell ta the Open heap
pHeap-»AddCell (this);
returnitrue) ;

else if (m_Open)

{

AA tree m_Open means we are already in the Open
fi Heap. If this new caller provides & better path,

Ml adjust gur data. Then tell the Heap to resort our
Ml position in the list.

if {{arfivalcost + m Heuristic) < (m_ArrivalCost + = Heuristic))
{

m_Arrivalfast = arrivaloost;

[) Renenber the triangls wall this caller iz
Jf entering from
if (Caller == m_Link[0])
{
=_Arrivalwall = 0O;

an4g : Section 3 Artificial Intelligence

1
else if (Caller == m_Link[1])

{
n_ArrivalWall = 13

}
else if (Caller == m_Link[2])
{

1

/i B8% the heap to resort our position inm the
1 priority heap

pHeap-=AdjustCell {this);

return{Trog);

n_ArrivalWall = 3;

b

1
§f this cell is clased
return{falss);

]
wold MavigationCell::ComputeHeuristic({const wector3s dGpal)
{
ff our heuristic is the estimated distance {using the
{f longast axie delta) between gur cell center point
ff and the goal lacatien
Tipat XDelta = fabs(Goal.x - u_ﬁanteanint.x]:
tloat YDelta = fabs(Goal.y - m_GanterPoint.y);
tloat Zhelta = fabs{Boal.z - m_GanterPoint.z);
y n_Heuristie = _ max(__ max(XDelta,¥Delta), ZDelta);
Refarances

[Parel99] Parel, Amit].. "Amirs Thoughts on F'a.thﬁ.uding," availalle anline at h[tp;H
rhmr:.rmnFnrd.cdu.frzmi:p.’{:amcl‘:ngrmmingf, Wovernber 27, 1999,

[Heyes-Jones99] Heyes-Jones, Justin, “A* Algorichm Tisorial,” available online ar
www.gamedevnet/reference/programmingfaifaricleG90.asp. November 27, 1999,

[Srourd6] Stout, Bryan W., “Smarc Moves: Intelligent Path-Finding,” Game Devel-
oper, abio available online ar www.gamasurra com/fearures/ 19994021 2/sm_01
Jum, Ocrober 1996,

Flocking: A Simple Technique
for Simulating Group Behavior

Steven Woodcock

Flocking (sometimes called ssoarming or berding) is 2 iechnique first put forth by Craig
Reynolds in a 1987 paper he did for SIGGRAPH, “Flocks, Herds, and Schools: A
Disrributed Behavioral Madel™ In that paper, Reynolds proposed a series of three
simple rules, which, when taken together, gave groups of autonomous agents (also
called foidy) 2 realistic form of group behavior similar to flocks of birds, schools of
fish, or swarms of bees, (Sec Figure 3.7.1 for an example of this behavior in acrion.)
These rules, which Reynolds refers m a8 steering behaviors, are;

* Scparation. Steer ro avoid cmwn:IEnE local Hockmares.
* Alignment. Steer toward the averape heading of local flockmares.
* Cohesion. Steer 1o move towand the average position of local flockmares.

s

\RJI?::_’_;E .] ,-f"l

J

FIGURE 3.7.1. An mmpl-r inugt af the ﬂ-;.h'l:-lnE diemo in action.

Section 3 Artificlal intelligence

Separarion gives an agent the ability 1o uy 1w mainein a cermin separartion dis-
tance from other agents in the immediate vicinitg. This helps prevent agents from
crowding together while ensuring 3 “natural-looking” claseness thar emulates groups
in the real world. The code presented in this article accomplishes this goal by having
cach member of a lock test how close it is 10 its nearby fockmates and then adjust is
heading (steering) to obrain a desized distance.

Aligrment provides an agent that has the ability to align itself with (ie., head in
the same direction andfer speed as) other agents in its immediate viciniry As with
scparation, this artcle acepunts for alipnment through each member of a flock look-
ing at nearby Hockmares and then adjusting its heading and speed ro march the aver-
2ge heading and speed of its neighbors,

Cobesion gives an agent the ability to “group” with other nearby agents, thus emu-
lating similar behavior seen in nature. Again, this article accomplishes this goal by
having each agent examine nearby agents, averaging their positions and then adjust jts
heading o march.

The Fourth Rule

In later implementations and papers, Reynolds added what has somerimes been
referred to as the “fourth rule® of flocking:

* Avoidance. Steer to avoid running into local obstacles or enemies.

Aveidance provides an agent with the ability to steer away from obstacles and
avoid collisions. This behavior is accomplished by giving each agenr the ability o
“look forward” some distance and derermine whether a collision with some ohject is
likely, then to adjust its heading to prevent ic. Similacly, it might be desirable to avoid
certain other types of agents (such as rabbits avoiding foxes or doves avoiding hawks),
and again this principle would come into play.

No Memory

Note that the steering behaviors say nothing about stare informarion or about a given
agent mainmining knowledge of the fock, ies environment, where it’s headed, or the
like. Flocking is a seaseler algorithm in that no information is maintined from updare
to updare; each boid recvaluares its environment at every updare cyele. Not only docs
this reduce memory requirements that might otherwise be needed 1o provide a simi-
lar behavior wsing approaches besides locking, but it also allows the flack to reacr in
real time ro changing environmental conditions. As a resuls, flocks exhibit elements of
emergens behavior: No one member of the flock knows anything about where the flock
is going, bur the flock maoves as one mass, avoids obstacles and enemies, and keeps
pace with one another in 3 Auid, dynamic fashion,

How Is This Concept Useful for Computer Games?

Flocking provides a powerful wool for unit motion and making more realistic environ-
ments the player can explore; it has been used with erear succes in a varierv of com-

4.7 Flecking: A Simple Technlgue for Simulating Group Behavior 307

mercial titles. For example, both Unreal (Epic) and HelfLifr (Sicrra) used flocking
algorithms for many of their monsters as well 25 less life-threatening crearures such as
hirds and fish. Enemy Navions (Windward Studios) used a modified flocking algo-
rithm to control unit formations and movement across a 3D environment. Groups of
animals can be made to wander the termain in real-time strategy games or RPGs more
realistically than can be done with simple scripring. Groups of archers or swordsmen
can be made to move realistcally across bridges or around boulders and other obsta-
cles. Monsters in a firs-person shooter can wander the dungeon halls in a more
believable fashion, avoiding players where possible but perhaps launching an amack
when the flock grows large enough. The possibilities are practically endless.

Implementation

Vectors and Motion

A quick overview of the mechanics of morion for the members of a flock helps in
understanding how the code does whar it does.

Figure 3.7.2 demonstrares the concepr of beal space (space relative o the boid
itz2lf). “Forward” 15 coward the positive Z-axis, “left” is toward the positive X-axis,
and “up” is vertical roward the rop of the boid. Our boid in this ardcle is the dassic
delta-wing shape often used by Reynolds, but of course it can be any shape desired.

Figure 3.7.3 demonsrrares another important principle, sriewarion. Beferred 10
as rall, pizch, and yawr, orientation i simply an indication of how a given object is ori-
enred in the local space, shown in Figure 3.7.2. Roll is rotation around the local #-
axis (the one facing forward and backward). Pitch is rotatdon around the local X-axis
{the one running left and right). Yaw is rotation around the Y-axis (the one running
directly up and down through the boid). Understanding orientation is important

usz we use it when making decisions abourt our boid’s orientation during move-
ment. The idea presented in this anicle works by building a velacity vector during each

Lacal Y

‘ Local Z

Local X

\/

FIGURE 3.7.2. Loczl space is defined for cach baid.

Section 3 Artificial Intelligence

Yiwr

) A

Fireh
|

FIBURE 3.7.3. The three axis rotations are defined as roll, pitch, and yaw.

update cycle that will adjust the boid's local X, ¥, and 7 orientations o march the
needs of the four steering behaviors.

Another important aspect of how this idea operates is the manner in which it
arbitrares conflicting desires on the part of a boid. Looking at the four steering behay-
inrs for 2 moment. one can see char there is no guidance on how 1w prioritize these
behaviors—all are considered of equal importance. This loosely marches most normal
behavior in the real world: A dove might want to bath kezp up with itz fellows and
avoid curting through a flock of hawks while doing so; however, this conicept doesn't
take into account life-and-death situations.

One can solve this problem in several ways—awomarically giving higher prioricy
to avoidance, for example—but this article uses a vector accwmulation approach. The
onientation changes thar a given boid wants to make o sarisfy each of ehe four steer-
ing behaviors are summed in a dunge vector before being applied to the boid’s
motion. This change vector, by convention, is held to a unit vector so thar the sccu-
mulated changes are kept in proper proportion. This method allows cach steezing
behavior ro have a proportional influence on the boids final motion changes while
enabling the boid to satisfy (2t leass panially) the needs of two or more conflicting

directives. Owver time I've found thar this approach is generally more sarisfactory than
athers,

Constraints

Several conserints on ouwr beids restrict how they can move and react. Possibly the
mest influential in chis implementation is cach boid's pereption range, which restricts
how far a flockmate can “lock™ areund its environment to detect other floclkmares,
potential abstacles, or enemics. The larger chis range, the more organized and coher-
ent the flocks and the better they are at avoiding enemies and obstacles. Making this
range smaller results in more ereatic flocks, groups of boids splitting off more often
when confronted by obstacles or enemies, and o on

Another constraint on how our agents can move is their velocity and muadmam
welocity change. In the real world, animals in flocks are restriceed in cheir ability to keep
up with their flockmares by how fast chey can move, how fast they can turm, and the

3.7 Flacking: A Simple Technique for Simulating Group Behaviar 308

like. This aricle simplifies the problem of morion in a 3D environment somewhar by
ignoring acceleration and focusing endrely on velocity; changes o velocity are
restricted o some proportion of overall maximum velocity. This helps prevent the
agents in our demo from curning on a dime or purting on ridiculous burses of speed
when mying o carch up with their fockmates. Tt also provides 2 governing reseraing on
how quickly they can slow dewn or alter course to avoid an obstacle. IF allowed “infi-
nite response,” they might fly directly up o the surface of an obssacle before tuming
with infinite agility and speed o move around i—not a very realistic behavior.

A final constraine for the purposes of our demo is the world in which our boids
Hock. For the purposes of this artide, I've arbirrarily creared a Box class that defines
the word in which our boids can move. Any boid thar strays bevond the boundaries
of the Box is magically transported w the oppaosite side, keeping the same motion
characteristics it had before, The effect is thar flocks thar stray oo close to the edge of
the Box can lose members to the “other side of the world.”™ where they can lose mack
of the main flock and form a new flock of cheir own.

Virmually all these parameters are adjustable so char one can see the potential
impace of fiddling with them.

The Code

Three dasses make up the hearr of this article: Clax, CFlock, and CRoid. Organiza-
tinnally, these classes can be viewed as deseribed in Figure 3.7 4.

Each flock is represented by an insamiiation of a CHock object. There can be
multiple CHlack objects resident within CBeax, and they can be created or destroyed ar
any point (although this article creates them only ar initalization). CFack objects
serve to organize and simplify access to the members of the flock.

Similarly, a CBord object represents cach member of a flock. There can, of course,
be multiple CBoid objects asseciated with each CFlack (if there weren, it would be a

—* CFlock | | Flock 1 through n.... |

—_—

CHoid | | Member 1 through n__ |

i

FIGURE 3.7.4. The CBax dass defines the basic world in which our flocks wiall fly.

310

Section 3 Artificial Intelligence

prerry small flock), and, like CFlock objects, they can be created or destroyed at any
point. Although this article creares flock members only at inidalizarion, it wouldn he
hard to all to build in some “lifetimes™ for individual members (see the “Limitations
and Potential Improvements” section) so thar individuals might age and die.

The CBox Class
CBav is a rather simple class, as one might expect:

class [Box
{

public:

PAERETEERE AT RE L RE e Ed
{1 constructors and destructors
P N N

M Constructor M.

!l Creates a Box with default valees of 50 maters
Al on any side not apecificd.

CBox (float 1v=50.0; float ww=50.0, Tloat hvy=50.0):

£ Dastrectar
virtual -CBox(};

PRSP REEErFE it ddfns}
ff migcellan&ous functigns

A O I

! GetBoxlength.
{! Returns the length of the Box, in meters.
float GetBoxLength (void);

{1 GatBoxWidth.
f! Returns the width of the Box, in meters.
Tloat GetBoxWidth (woid);

! GetBoxHeipght.
Ml Returns the height of the Box, in meters.
Tloat GetBoxHeight [vold):

This class provides us with a simple way 1o parameterize and retrieve the bound-
aries of our world.

The CFlock Class

The CHack class represents a basic Hock of boids and serves mostly as an organiza-
tional rool rather than a strict representation of each flock per se. [ts various funcrions
are fairly simple and deal primarily with the *hookkeeping” thar one might desire
when handling flocks. The class definition for CFlsek can be found in Listing 3.7.1.

3.7 Flocking: A Simple Ti_chnlqua for Simulating Group Behavior 311

Procedurally, flocks are first created and then have one or more boids added o
them. The elass is built to allow for real-time creation and deletion of flocks., although
the demo itself does not do this. A list of all CHlbek objects is maintained in the imple
stafic array CFlock: :Lisu0fFlocks|] (again, simplified for the purposes of this article),
Ar each updare cydle, the flodks’ cFlock: :Update() method is called ro updare all the
members of that flock. New boids can be added at any time using cFlack: :AddTa(},
and members can be removed, if desired, via 6Flock: :RemoveFrom(). CFlock::Get-
Count () and CFlock: :GetFirstMember(} provide methods o obrain specfic sarus
information about a given flock, whereas the debugging method cFlock: :Printoata()
provides mors exhaustve informarion.

Flocks can be creared ar any rime, although the demo provided ercates them only
at initialtzation. Each flock can have any number of CBoid ebjects as members. Note
that members of a flock have no idea whas flock they're 2 member of, but the flock
itslf does know who its members are. For the purposes of this aricle, 2 CRoid object
remaing a member of wharever CFlack it is initially assigned o, bur it wouldn® be
hard ar all to add code thar would allow beids o chanpe their loyalties if so desired
{see the “Limitations and Potential Improvements” section).

The CBoid Class

The CBosd class implements the true “meat” of the flocking algorithms and, as such,
is fairly beefy. It is conrained in Listing 3.7.2. This dlass handles all aspects of 2 spe-
cific agent’s motion and existence: how it moves, how it senses its environment, how
it pricritzes its ACTIons.

Each CBoid object represents a2 single individual agent. Much as with CHack
objects, CBaid objects can be ereated or deleted ar will. Onee ereated, they are indi-
rectly managed through the €Flock::AsdTo(), CFlock::Benovesrom(}, and
CFlock: :Update() methods, 25 described previously.

Each CBoid object is updated via its GFlock: :FlockIt() method, which begins by
building a list of thoss flockmates that a given boid can see (based on its
Jrereeption_nange value). A list of enemies (members of ather flocks) is also builr if thar
Option IS 10ive.

The method then begins to implement the steering behaviors as described previ-
ously, summing an accumulating series of velocity vector changes o accommodate
the wishes of the apent. The methods CBoid: :Keepbistance() (separation behavior),
CBoid: :MatchHeading() (alignment behavior), and C8oid: :SteerTocentar (cohesion
behavior) are called ro determine whar the boid would like to do. If the option is
active, avoidance behavior of members of ather flocks is modeled through a call to
CBold: :FlasEnamies|).

One addirional method implemented here is CBoid: :6ruising(). This method
attempts o model a boids “desired cruising speed,” if everything were up o it and i
wasn't under any other influences. The primary reason for this method was o give

a2

Saction 3 Artificial Intelligence

any boids wandering on their own (our of sight of their flockmates) some “purpose”
o their motion,

At each stage of the update process, we accumulaze all desired velocity vector
changes proportionally into an accumularion vector, A check at the end of the
CBold::Flockit() method ensures thar an individual never exceeds its maximum
allowed speed or velocity change,

Two final methods serve as “deanup” to ensure that everything looks correct.
CHoid: :ComputeRFY(} makes calcularions necessary to orent our boid properly as a
result of its final velocity vector changes. CBoid: :Worldsound () does some saniry test-
ing 1o determine whether any agent has serayed outside the bounds of the CBax warld
object in which it resides and, if it has, places it back in i box.

Various private methods handle visibility and linked-list management; there's
nothing particularty special about them, nor are they Hocking related per se. A dehug
method, CBoid: (PrintData(), provides exhaustive informarion on 2 given boid on an

updare-by-updare basis.

Limitations and Potential Improvements

Hard reality dicrates that any demonstrarion of flocking behavior has some limitations,
This article docs not implement obstacle avoidance ar all, although it does allow far
avoidance in the form of “enemy flocks.” Boids remain assigned to the flocks they seart
with, but one could easily envision code that reassigns a boid dynamically o 2 new
flock should it lose sight of is old asne. Similarly, beids in this implementation are
blessed with an amazing, 360-degree, full-spherical ficld of view; there are no reseric-
tions such thar they can see only objects or flockmares directly in front of them. A
mere realistic field of view would probably be desired for any game implemencarion,

A list of other possible improvements is Rirly easy to come up with. Many people
who have used flocking behavior and its variations have implemented “life clacks" on
individual agents, making boids thar die if they stray too far from cheir mazes but that
can “breed” new flock members if they remain with their brathers long enough. One
could also examine predator and prey behavior, modifying the base code w allow one
type of flock to “feed” on anodher.

Listing 3.7.1: The CFlock Class Definition

class CFlock
{
public:
LR A

i static variables
AR

3.7 Flocking: A Simple Technigue for Simulating Group Behavior

ff nungar of Tlocks
static 1nt FlockGount;

¢ list ot Tlocks
static GFlock * L1sTO0TFLociks[WAX FLOCKS] ;

BLFFER iR iR i I FEET
ff comstrectors and destructors
FEFFREE SRR rr i Err il riry

I Constructar.
I Greates a new flock.
CFlock [vedd);

I Destructor.
—CFlock [vodd);

HECERE i errre i
I flocking functions
PEEEFESLPRREFErSLL NN

I Updata.
[Updates all members of a flosk.
vold Update (void);

FEFERrrS At s ErErtddtiffers
[misgellanaous functions

FEERAR A ERE R R

I AddTo.
i Adds the indicated boid to the flock.
vold AddTo (CBoid * badd);

I GetCount.
fd Returns the & of boids in & givem flock.
int GetCount (wold);

I GetFirstMamber .

fi Rmeturns & pointer to the first boid in a
fi given fleck (if any).

CBoid * GetFirssMember (void);

[f PrintData,
[/ Dump= all data describing a glven flock.
void PrintData (void);

If MemaveFrom.
[/ Memoves the indicated boid from the flock.
vold RemoveFrom (CBoid * boid);

private:
int m_id; 1 id of this flock
int fi_fun sesbars; 1 mumber of bolds in this flock

CBoid *m first nomber; {{ peinter to first member

314 Section 3 Artificial Intelligence

Listing 3.7.2: The CBoid Class Definition

clags CHoid {
public:

FEERrTfERfirdissiis
1§ static wariables
TEEREREL AR ety

Il wisible friends list (work space reused by each boid)
static CBoid VisibleFrisndslist|May FRIEMDS VISIELE];

FEAEEE R R st e rid
f! constructors and destructors
R NN RS TN F N

Il Constructor .

f{ Greates an individual bold with randomized pasition,
I welocity, and prientatfcn.

C8oid [short id v);

/! Constructor &2,
[l Creates an dndividual bedid with specific position,
f welocity, and orientation.
CBoid (zhoart id v,
vector | pos_w, vettor ® wvel v, vectar * ang wv);

{4 Destructor
-CBoid (void);

HEEEFRr g EEf st indfory
If public flacking methods
TEEERErS P i e rEsiaridifrs

f{ FlockIt.

ff Used for frans-by-frose updates: no time

f{ deltas om positions.

void FlockIt (int fleck_id, CBodd *first bodid);

TP ERfFd i nddrardieiy
If miscellangous Tunctians

RS PN RN

i AddTevisiblelist,

I This wisibility list i% regenereted for each nenbar sach
{1 update cycle, and zcts much like a push-down queus: the

{1 latest menber added to the list becomes the first ame

/7 when the list is sequentially sccessed. Mostly 1 did

fI this for speed reasons, as this allows for TAET inserts

fl (and wo don't delete from this 1ist, wo just rebuild it

2.7 Flocking: A Simple Technique for Simulsting Group Behavior 215

Fi each update cycle).
void AddToVisiblelist {CBoid *ptr);

ff ClearVisiblelist.
I Clears the wisibility list.
vold Clear¥isibleList (void);

fI GetHaxt.

[/ Returns the *next® pointer of the lnvoking member.
CBoid = GetMext();

Fi LinkOut.
ff Remaves a menber from a list,
vold LinkOut [);

[/ Printhata.
[Dunp= all data describing & given membar.
wvoid PrintData (woid);

fi SetMaxt.
fi BBt the *"next" pointer of an individual member.
vold SetMext [CBaid "ptr);

Il SetPrawv.
ff Get the “prev® pointer of an individual member.
volid SatPrev [(CBodd *ptr);
private:
FIAAEEEFaiEitss
fi data mesbers
N

f! supplied with gonstructor(s)

short m_id; {7 membar individual ID
float m_perception_rangs; JF how far senber can see
vector m_pos; {I poeition of meabar
Iiin metears)
vector m wel; if welpcity of mesbor
I o(Beters/sec)
vactor m_ang; I arientation of member
{1 computed
float m_speed; i1 owerall speed of member
v_short m_nup_flockmates seen: il ¥ of flacknates this
Il nepber sses
¥_short = _num_snamiss seen; if % of enezies this
I fiefber Sees
GHoid “m_nearast_Tlockmate; /I pointer to nearest
I flockmate (if any)
CBoid “n_nearast_sneny; /I poimter to nearest

I enemy [if any)
float n_dist to nearest flockmate; J/ distance to
M nearast flockmate

216 Saction 3 Artiicial Intelllgence

ar
i {if any), in
I oAeters
float m_dlst_fto_nearest_anemy; i distance to

M mearest encmny
Ir (5f any), in

I neters
vector m_oldpos; If last pasition
vector m oldvel; Il last velocity
CEopid *m_NEXT; M pointer to next
i flockmate
CBold "B prev; il pointer to

Il previgus
Hi flockmate

FHERrRE TR RREiry
I Tlocking methads
Pt EEEFErsfdirdss

£/ Grulsing.

I Genarates & vector indicating hew a flack boid would

I like to move, iT &t were all up to him and he was under
Ii no other inTluences of any kind.

vector CBoid::Cruising (vodid);

I FlesEnemies.
[Generates & vestor foer a flock boid to avoid the
Ii nearest enesmy (boid of a different flock] it sees,

vector CBolid::FlasEmemies (void);

I/ KespDistance.

I{ Genarates & vector for a flock boid to maintain his

I'{ desired separation distance from the nearest flockmate
ff ha sees.

vactor CBoid::MespDistance (void);

I MatchHeadlmg.
Il Genarates a vactor for a flock bodd to try
i to match the heading of its nearest flockmate.

vector CBoid: :MatchHeading (void);

I SeeEnamies,

i Detarnines which enemy flock boids a given flock bodd
I can sea.

int CHBoid::SepEnenies (int flock id);

Il SeefFriends.

I Determdines which flocknates a given flock boid can see.
int CHBoid::SeeFriends (CBodid =first boid):;

4.7 Flocking: A Simple Technique for Simulating Group Behavior 317

I{ StaarToCenter.
[Genarates 8 vestor to guide a flock Boid towards
ff the "center of mass® of the Tlockmates he can son,

wector CBoid::EteerToCenter ([wodd);

I{ WorldBound,

fi Implements a world boundary so that flecks don’t fly

ff infinitely far away from the camera, instead remaining
ffin & nice viewable area. It does this by wrapping flock
I/ bofde araund to the othar side of the world, so (for

f{ example} they move out the right and return on the 1left.

wold CEoid: :WorldBound (wodd);

FEEEEETTiant s rngesiey
i migcallamesus functions

FEEAETEEEERE PR ERER L d e}

£ AccunulateChanges.

I Aods wvecter walues in changes imto the accumumlator
I wvector. Returns magnitwde of accumulator weotor after
Il aoding changes.

Tloat CBoid::AccunulataChanges {vector Laccumulator,
vestor changes);

i CanI&pg.
If Detérning whather a given inwvoking boid can see the boid
ff in guestion. Retwrns the distance to The boid.

Tloat CBoid::Canifes (CBoid *ptrl;

/I ComputeRPY.
[l Computes thé rollfpitch/yaw of the flock boid based on
[l its latest velocity vector changss. Roll/pitch/yaw are
ff stored in the "ang” data nember a3 follows:

ff piteh £ about the x axis

fif yaw is about the v axis

fif rmoll is about the z axis

fi ALl calculations assume a right-banded coordinste

Il systen:

I +x = through the left side of the object
fl +y = up

fi #z = through the nose of the model

vold CBoid::GomputeRPY (wold):

Resources and Acknowledgments

Ies virnally impossible o study this parsicular field withour quickly discovering that
nearly every flocking/swarming/herding application on the Web is somehow relared

318

Section 3 Artificial Intelligence

10, derived from, or inspired by some other flocking/swarming/herding application.
The implementation described in chis aride is no exception, Many thanks to
Christopher Kline (Mitre Corporation) for his original method for computing
roll/pirch/yaw (liberally adapred here), originally published in his Co+ Bosds imple-
mentaton (available on his Website). Alss chanks o Mike Louic I::Hming_] for helping
with the rransformation math (1 hate matrices).

Besides Christopher’s Wb page, which includes many excellent demos and sam-
ple code (3t werwmedia miteduw/-ckline/boidsf), there are a number of other excel-
lent references on this subject on the Web and in bookstores. Probably the besr single
place to start seeking more informarion is with the “father of flocking™ himself, Craig
Reynaolds, Craig’s Website can be found ar wwew red comdinr, Also see Reynolds, C.
W, "Flocks, Herds, and Schools: A Disributed Behavioral Model,™ in Compaer
Graphics, 21(4),SIGGRAPH ‘87 Conference Proceedings, pages 25-34, 1987,

The Migosoft DireaX SDK also comes with two hirly simple-ro-follow imple-
mentatons included on the source CD. On the DirectX 7z CD, they are locared ar
\DXFPusmples\muliimedia\d3dim\srd\boids and \DXPuampledmultimedia\dmusicire
dmbpidi. Both versons fearure obsracle avoidance wsing a “force-ficld” approach thar
is fairly natural looking.

Finally, an excellent book thar addresses the topic of arrificial life in general, in
addition to discussing both Aocking and boids, is Steven Levy's Ariffcial Life, Vintage
Boals.

3.8

Fuzzy Logic for Video Games

Mason McCuskey

This anicle is an introducrion to an artificial intelligence technique called fuzey bygic.

The best way to define fuzzy logic is to explain how it differs from traditional
logic. Traditional logic works on the idea of “truc” and “false” —something’s either on
or off, 2ero or one, yes or no, positive or negarive.

Fuzzy logic allows us 1o work with concepes thar aren't “crisp™—in other words,
things that require an adjective specifying "w what degree” or "how much.” For
example, fuzzy logic allows us to mathemarically model size conceps such as “prerry
big." “awfully small,” "medium,” “gigantic,” and s0 on.

Fuzzy logic has myriad wses in game AL For example. we can use fuzzy logic to
simulaze emotions of computer-conerolled characters: “irritared” vs. “incredibly
angry,” “a bit nervouws” vs. “terrified,” "happy” vs. “ecstatic,” and so oa. This in mwen
allows us to create an Al that’s more human or deep than one buile using traditional
("black or white”) logic could ever be.

How Fuzzy Logic Works

To define how fuzzy logic works, lets first take 2 step back and review how wraditonal
logic works. Traditonal logic manipulates “crisp sets.” A crisp fet i8 a set for which a
given element either belongs to the set or doesa't. For example, ler’s define a crisp set
called M, which consists of all real mumbers between % and 10:

M =[5, 10]

The characteristic function for ser M looks like the one shewn in Figure 3.5.1
(for the sake of this cxample, let’s assume our universe of discousse is the ser of all real
numbers berween 0 and 20, as shown in Figure 3.8.1).

This is a crisp set because any given number in our universe is cither in st M ar
not in set Ad—thar is, either the number iz between 5 and 10, in which case our func-
ton returms one, of it isn't, in which case it returns zemo,

A CIiSP' - Wﬂrhﬁ Emsai FI:I'J' b]tE]{-ill‘ld-\'\'l.‘litn:’ !H'CRE.I'i.-EIS, b i I-:_”; 3F3_|_1 under cer-
tain sitwarions. Say we wane o make a set of all rall people. We decide thar 7 feet is

318

Section 3 Artificial Intelllgence

] I‘? = zn'

- 0

FIGURE 3.8.1. Representation of sex M.

tall, so we declare our ser of tall people a5 “all people who arc ar least 7 feet eall.™ We
make a funcrion thar remens one if the given heighr is greater than 7 feet, zero if it
isnt. The problem with this is that people who are 6 feer, 11.5 inches aren't in our rall
set, even though very few people would dispute the fact thar they're all. So, w oy and
fix the problem, we drop cur minimum heighr requirement down to 6 feer, bur i's
just as silly to put two people, one 5 feet 11 inches and one 6 fest, next to each other
and say that one of them is “wll"” and one isot. The rigidity of the crisp set works
AFAINST us,

In other words, whae crisp sets don't give us is the ability ro specify bow mach {or
to wihar degree) something is in a set. Fuzy sets, however, give us that abilicy. Using
fuzzy sets, we can *flex” the separation berween “in the set® and "not in the ser” o
include chings like “just a litde bic in the ser” or “almost entirely in the set.”

We do this by having our characreristic function return not only zero and one,
bur also values berseen zero and one that indicate fo winas degree the given number is
in the ser. Going back to our previous example, if zero means "not wll™ and one
means “rall,” then 0.5 can mean "sore of wll” (or, “halfway in the ser of wll people”).
and (.01 can mean “a licde @ll” {or, *just barely in the tall ™).

Figure 3.8.2 shows our fuzzy ser of all wll peaple.

Compare the graph in Figure 3.8.2 o the graph of the crisp set in Figure 3.8.1,
The turzy ser in Figure 3.8.2 has slopes—3—someone who's five feet is not rall, bur
starting ar 3 feet 3 inches, the heights gradually stare belonging to the tall ser, uniil
finally, ar 7 feer, they belong entirely to the all ser.

Thar's a fueeey st

4.8 Furzy Logic for Video Games 321

: ! —

5 g Glpat T Fised

FIGURE 3.8.2. Represenration of set "mll people,®

Fuzzy Logic Operations

WNovw that we understand whar a fuzzy ser is, let’s do some operations en it

Figure 3.8.3 defines another furzy ser: a set of people “shour 6 feet tall.”

Here’s an example of the fizzy sec AND operation. Figure 3.8.4 shows the graph
of the fuzzy set “people who are tall AND are about 6 feet.”

Conrinuing with that same ides, Figure 3.8.5 shows the graph of the fuzzy set
“people who are tall OR 6 feet.”

2 i & ¥
5ot £ oot T tead,
Hesght

FIGURE 3.8.3. Representation of ser “abour gix feer wll,”

2

q22 Section 3 Artificial Intelligence

i
e
Holght

FIGURE 3.8.4. Reprosentation of ser “peopls who are all all AND abowr sx fee”

Finally, Figure 3.8.6 shows an example of the NEGATIOMN operator: the set
“people who are NOT rall.”

| Brake for Fuzzy Control

Now we know how 1o create and operate on fuzzy sers. The nex step is using fuzzy
sets o accomplish something. This is called fizzy comtrsl

Lers say, for the sake of example, that we want ro model eraffic, Maybe we're
making a ciry simularion game, and we want the linle cars in our dey to behave mal-
stically. We have a line of cars, and we want each car in that line 1w speed up or slow
down as chough it were driven by a real person. This means that no cars can bump

s

1——.

. T
5 ok 5 Tt el }
Heght

FIGURE 3.B.5. R:Pn::-:nnl:i:nn of 5= 'pe;:lp]-.- who are rall OF six fee ™

3.8 Fuzzy Logic for Videos Games 323

i‘-

i
L]
& el B
Hesght

FIEURE 3.8.6. Fepresentation of ser “people who are NOT rall.”

¥ ool

into the backs of other cars and that inside cach car is a safe d river who tHes to main-
tain a reasonable distance {two ear lengths) berween his or her car and the car in front.

This situation is casy to model with fuzzy logic, because for cach car, there are
only two varizhles we need 1o worry about (in fuzzy logic, these are called [mgnistic
pnarible):

L. The distance between this car and the ane in frone of ie. (We'll call this linguistic
variable diregnee)

2. The distance defes between this car and the one in front of ic. If the space berween
the two cars is growing, we have a positive distance delta; iF the space is shrinking,
we have a negative distance delta. If the space is neither growing nor shrinking,
the disrance delea is zero,

After spending hours earefully studying real cars on real highways, we come up
some rules, For each car:

* I disance delea is zero and distance is abour two car lengths, maintain your cur-
rent speed.

* IF distance dela is negative and distance is less than two car lengths, slow down.

* IFdisance delea is positive and distance is greater than two car lengths, speed up,

There are many maote rules, which all follow the same partern and are summed up
in Table 3.8.1.

Mow that we've got our rules, we need o nail down all the rerms we've used o
deseribe distanee and aistance defea with furzy sets. This means thar we need to define
15 fuzzy sets: five cach for disance, dismance defoa, and the action of the car (which
we'll call action). These sets are summarized by Tables 3.8.2, 3.8.3, and 3.8.4 and the
graphs in Figures 3.8.7, 3.8.8, and 3.8.9,

224 ~ Section 3 Artificial Intelligence

Table 3.8.1. Rules for Ouwr Car Al

Digtance Dafs
Vory Nogatre) | Plegati) (Zarc) Poste) | (very Postie)
¥ery | Maingain
small Brake]ur:i'__l Brake hard! | Slow down Slenw dorarn gpeed
Small Bainmain
Brake hard! Sl down Slow down spied Speed up
§ Pericer (rwo Maintain
; car lenpths) Slow down Slowr doern speed Specdup | Speed up
Big Maintain
Slow devwn speed Speed up Spesd up Floar nf
Yery Maintain
big speed Speed up Speed up Floor it! Floor i

Table 3.8.2. Distance Fuzzy Set Definltion

?Ean:r: Labed Comasponding Fuory Se

Very small Less than one car length

Small About one car length

Perfect Abaut two car l-:nE:h:; i

Big Ahout three cr il:nEths o
Very hié More than three car lengzhs

Table 3.8.3. Distance Delta Furzy Set Definition

D'_:.'E.;_lfr:EDEHELaI::EI Comesponding Fuezy Sal

Shrinking fast Roughly equal to negative (half the car’s present]
Shrinking Less than zero i1

Suble About zero (the two cars are moving at roughly the same speed)
Growing Grearer than zero

Growing fast Rl:lﬂ_g'ﬂf equal to half the car’s present speed

Table 3.8.4. Actlon Furry Set Definfion

Action Lebal Comasponding Action

Brake Hard Half your speed (speed V= 2)

Slow down Drecrease your specd by half pour present spoed [speed —= speed [2)
Malntamn ::P:uﬂ Do nodhi ng

Speed up Increase your speed by half your present speed (speed += speed / 2)

Floor ic Double your specd (speed *= 2)

3.8 Fuzzy Logle for Video Games 326

Vory email Sl iy Wery Big

< = >

L=y than 1 o lengh 1 e lergth 2 ar Langsra! Joriongte More tron 3 carlangite

FIGURE 3.8.7. Representarion of Dhistoece definition.

F
ey 2ol Gl By ey Big

= >

Limas than 1 car length 1 2mr ek 2 Car Lergra) lorlengts Mo than 3 oor legis

FIGURE 3.8.8. Represcnnaton of Dirserce Deler definicion.

Now let's ke a concrete example and leam how the numbers flow through the
fuzzy control system we've just created. Figure 3.8.10 shows an actual value we've
picked for disance; Figure 3.8.11 shows an actual value for diseamee defez,

As you can see, we've picked 1.3 as the dimance variable and 0,25 as the dirtance
drlta. Ohur fursy sets tell us thata disanee defta of 0.25 is “slightly growing” (it belongs
to the “growing” set to a degree of abous 0.3), and that a distance of 1.3 is “mosty
small” (it belongs to the “small” set ro a degree of abour 0.75). Note that we could ko
say distance is “barely perfect” (it belongs vo the “perfect” set 1o a degres of about 0.1),
and thar ditteney deltz is “mostly srable” (ic belongs to the “stable” set o a degree of
abour (.5},

Saction 3 Artificial Intelligence

Ereak, Harzl e Diown Spood Up Floar 2

< e 14

i spaed St et apmend
FIEURE 3.8.8. Represcnration of Acrive definirion.
F

Vary sl Sirall : Biy wery Bg
1.7 < lorgthn

¢ e 4

Lesss than 1 Gr b 1 s length & Car Lengthe] leorlergna Mo than Jarienghs

FIGURE 3.8.10. The Dimorer value we've chosen for this example.

This means that we're dealing with four of our sets: the rwo sets w which dimarree
belongs (“small® and “perfecs™) and the two scs o which disiance defra belongs
(“growing” and “stable”). Given the combination of these sets, we know whatever we
decide will be based on ane of thess four rules;

= If distance is small and dizaree defta is growing, maintain current speed.
* If dimtamce is small and dimance defea is srable, slow down.

= If distance is perfecr and distance delta is growing, speed up.

If dirtamce 15 pcrﬁ:cr and distance defea is stable, maintin speed.

The next step is to evaluare the degree o which each of these rules is “rrue.”

3.8 Fu:qu_n-ulu_:fmﬁdmﬂam 327

N - >

Hdergaiyes (it o Gar's pressert et fsbic Hatl o car's pressed agsee]

FIBURE 3.8,11. The Dissance Delta value we've chosen for this example.

Let’s look ar the first rule. The degree ro which we should maintain our current
speed depends on “how true” the statement “distance is small and dirance defog i
growing” is. We kinow thar dimanee belongs to the “small” set to a degree of 0.75, and
we know thar déstance deltz belongs o the “growing” set to a depree of 0.3, So, we
knaw the result of the fuzzy statement "distanee is small and disance defta is growing”
is (1.3, This is because 0.3 is the largest degree 10 which bark statements will still hald
true.

We can evaluate the degres of “rucness” of the other three rules the same way,
giving us the following:

* distance is small and disance delez is growing: 0.3 depree of “trueness”

* disamce is small and dittance defez is srable: 0.6 degree of “truenes”

* distance is perfect and dittance defta is growing: 0.1 degree of “trueness”
* distance is perfect and distance defta is stable: 0.1 depree of “trueness”

This means that of our possible actions, “maintain speed” gets a score of 0.3 and
0.1, “slow down” gets a score of 0.6, and “speed up” gets a score of 0.1.

The exace way we ger from where we are now to a final value is clled a defeezifi-
carion method. There are many available defimzificarion methods; you need o pick
one thar suis your applicarion. Most of the time, however, is good enough o per-
form a simple center-of-mass caleulation on the “uc” area of the action graph (see
Figure 3.8.12).

This ealeulation gives us our final course of action, namely, “dow down”™ m a
degree of about 0.25. Now it's simply a matter of applying 25% of the show-dawn rule
to the car's present speed. Since “dow down” w a degree of 1.0 is 0.75 of the car’s
Epffd, 25% l-'lafl'-’."hi: sloe-dorarn rule meesns we shouwld mu]lipl}-‘ 1'|"|¢ CArs .mn;‘-r:d b}‘ abowt
0El.

3_23 Saction 3 Artificial Intalligence

il
Ersak Hard Siey Dicawn - Gpwsed U Foar iE
Frecaeri

FIEURE 3.8,12. Using the defuzzificarion method.

So the car slows down slightly, which makes sense given the inpur crireria (-
ramee is small, bur diseence delea is growing).

Of course, the entire process we just wene chrough is performed by the computer
hundreds of times a second, simulating the expert control of a safe driver.

Other Applications of Fuzzy Logic

Fuzzy logic and fuzzy control can be used ina varicty of game situations. The peneral
idea is that fuzzy logic can be used anywhere you're irying o emulate 2 human expert.
Other good places for fuzzy logic include Al for enemies (the ogres in barde against
the player’s paladins are scarcd fe what degree?), non-player characrers (how muck does
the shopkeeper trust the player?), flocking algorithms (bow far away am [from the
rest of the pack?), and myriad other places.

Fuzzy logic can also be used to represent inorganic evens, such as how douds
move, given wind speed and directon.

Conclusion

Fuzzy logic 5 a powerful wol with many wses. With any luck, chis artide has
explained fuzzy logic and how the processes of furry logic and fizzy control work, as
well as giving you 2 few ideas on where 1o use furzy logic in your games.

If you have questions or comments, please contact me or visit my Website, See
the author’s section for my conracy informarion.

3.8 Furzy Logic for Video Games 20

Resources

[Bauer00] Bauer, Peter, Nousk, Stephan, and Winkler, Roman, available online ar
www fl 1 Luni-linz.ac ao/pdw fuzzy/index.himl, March 21, 2000.1 based chis arri-
cle on their excellent online lecture,

[Mguyen9] Nguyen, Hung T, and Walker, Elbert A., A First Conrse In Fuzzy Logic,
CRC Press, 1999. This is an excellent book thar expliins mathemarically the
basic idcas of fzzy logic.

[Rao95] Rao, Valluru B., and Rao, Hayagriva Y., Ce+ Neural Networks and Fuezsy
Logic, 1GD Books Worldwide, 1995. Another grear book, this one with an
emphasis on creating Cr+ classes and code for both fuzy logic and neural-ner Al
techniques.

[Woodcock(M] Woodcock, Steven M., “Game AL" availzble online ac WWWLLmE
Lom, March. 21, 2000. This is a great place for information on all sors of Game
Programming Al topics, including fuzzy logic.

And. in general, www.gamedev.net/ is a grear site for game development,

3.9

A Neural-Net Primer

André LaMothe

In many ways, the compurational limies of digital computers have been realized. Sure,
we will kecp making them faster, smaller, and cheaper. bue digital compurers will
always process digital information because they are based on deterministic binary
models of computation. Nenmal pers, on the other hand, are based on different models
of computation, They are based on highly parllel, distributed, probabilistic models
that don't necessarily model a solution o a problem the way a compurer program
does, Instead, they model a nerwork of cells that can find, ascermain, or correlate pos-
sible solutions to a problem in a more biological way by solving the problem in lietle
pieces and purting the result together. This amicle is a whirlwind tour of neural nets
and how they work.

Biological Analogs

Meural nets were inspired by our own brains. Literally, some brain in someone’s head
said, “1 wonder how I work?™ and then procesded to create a simple model of juself,
Weird, huh? The mode of the standard mesowde is based on a simplified model,
invented over 50 years 2go, of a human neuron. As shown in Figure 3.9.1, thers are
three main parts 1o a biological neuron:

* Dendrites. Responsible for collecting incoming signals.
* Soma. Responsible for the main processing and summardon of signals.
* Axon, Responsible for cransmining signals 1o other dendrites.

The average human brain has abour 100,000,000,000, or 10", neurons, and
cach neuron has up ro 10,000 connections via the dendriter. The signals are passed via
electrochemical processes based on sodium, potassium, and chlaride jons. Signals are
transterred by accomulation and potendal differences caused by these jons. The
chemisry is unimportane, but the signals can be thought of as simple electrical
JIHPLIJSE that cravel from axem to demdrire. The connections [rem one dendrite to an
axon are called grigpses, and these are the basic signal rransfer points,

3.9 A Neural-Met Primer : 331

FIGURE 3.9.1. A basic biological nevron,

S0 how does 2 neuron work? Well, that question doesn't have a simple answer, bur
tor our purposes, the following explanation suffices. The dendrites collect the signals
received from other newrons; then the soma performs a summarion of sores and, based
on the resulr, causes the axon to fire and trnsmit the signal. The fifing is contingent
upon a number of Gctors, but we can model it a5 o transfer funcrion that processss the
summed inputs and then creates an owrpur if the properies of the transfer funcrion
are met. In addition, the ourpur is non-linear in real neusons—thar is, signals aren't
digital, they are analog, In fact, neurons are constantly receiving and sending signals,
and the real mode of them is frequency dependenrt and must be analyzed in the S-
denair (the frequency domain). The real mansfer function of 3 simple biological ney-
ron has, in fact, been derived. and it fills 2 number of chalkboards.

MNeow that we have some idea of what neurons arc and whar we are rying to
model, ler’s alk for 2 moment about whas we can use newral ness for in video games.

Applications to Games

Neural nets seem w be the answer for which we all are looking, If we could juse give
the characters in our game a litcle brains, imagine how cool a game it would be! Well,
this is possible, in 2 sense. Neural nets model the structure of neurons in a crude way,
bat not the high level funcrionality of reason and deduction—ar least, not in the das-
sical sense of the words. It takes a bit of thought to come up with ways 1o apply
neural-net technology o game Al bur once you get the hang of it, you can use it in
conjunction with deterministic algorithms, fuzzy logic, and genetic algorithms wo cre-
are very robust thinking models for your games. Withour a doubt, it will be better
than anything you can do with hundreds of if-then stazements or scripted logic,
Neural nets can be used for such things as:

* Environmental scanning and dassification. A neural ner can be fed with infoe-
mation that could be interpreted as vision or andirory information. This infoe-
mation can then be used ro select an ourpur response or teach the ner. These
responses can be leamed in real time and updared to optimize the response.

332 Section 3 Artificial Intelligence

* Memory. A neural ner can be wsed by game crearures as a form of memory. The
newral net can learn through experience a set of responses; then when a new axpe-
rience occurs, the net can respond with something thar is the best guess ar whar
should be done.

* Behavioral control. The outpur of 2 neural net can be used 1o control the actions
of a game creature. The inputs can be various variables in the game engine. The
net ean then control the behavior of the creature.

* Response mapping. Neural nets are really good ar “association,” which is the
mapping of one space w another. Asociation comes in two flavors: autmesocia-
tier, which is the mapping of an input with irself, and beteroamociaion, which is
the mapping of an inpur with something else. Response mapping uses a neural
net at the back end or output to creare another layer of indirection in the control
or behavior of an object. Basically, we might have a number of conool variables,
bur we have crisp responses for only a number of certin combinations with
which we can teach the ner. Hewever, using a neural net on the outpur, we can
obtain other responses thar are in the same ballpark as our well-defined ones.

The preceding examples might seem a linde furzy, and chey are. The point is that
neural nets are tools that we can use in whatever way we like. The key is to use them
in cool ways that make our Al programming simpler and make game creatures
respond more intellipendy.

MNeural Nets 101

In this section, we cover the basic terminology and conceprs used in neural-ner dis-
cussions. This isn't easy, since neural nes are really the work of 2 number of different
disciplines, and therefore, each discipline creates its own vocabulary. The vocabulary
thar we describe here is 2 good intersection of the well-known vocabularics, Tn addi-
tion, newral-network theory is replete with research dhar is redundan, meaning thar
many people reinvent the wheel. This has had che effece of ereating 2 number of
neural-net architectures thar have different names. T try to keep things as generic as
possible in this article so thar we don't ger caughr up in naming conventions. Larer in
the article we cover some nets that are distine enough that we refer to them by their
proper names. As you read, don’t be roo alarmed if you doa't make the “connections”
with all the concepes. Just read them for now; most of the concepts are covered again
in full context in the remainder of the anicle. Lecs begin.

Mow that we have seen the werware version of 2 neuron, let's take a look ar the
basic arificial neuron on which te base our discussions. Figure 3.9.2 is a graphic of a
sandard newrode, or amificial newran, As you can see, it has a number of inpurs
labeled X — X, and B. These inpuss each have an associated weight w, — w_, and b
artached to them. In addirion, there is 2 summing juncrion Y and a single ourpur y.
The ourput y of the neurode is based on a transfer or *acrivation” funcrion, which is 2
function of the net inpur to the neurode. The inputs come from the Xs and from B,
which is a bias node. Think of B as a past history, memory, or inclinzrion.

4.5 A NHeural-Met Primer 333

Bias
@E‘\]{J

b
3N

¥

o= 7ANGn

single neurodsa

Totalinput ¥, = B-b + Ex - w,

FIEURE 3.9.2. A single newrods with & inpurs.

The basic operation of the neurode is as follows: The inputs X; are cach mulri-
plied by their associated weights and summed. The output of the summing is referred
to as the inpur aeination Y, The actvarion is then fed to the activadon funcrion £ (x),
and the final eutput is y. The equation for this operation is:

Y,=Bb+ T X *w, (3.9.1)

and y = £{Y,). The various forms of F(x) are covered in a moment.

Before we move on, we need to talk about the inpurs X, the weights w;, and their
respective domains. [n most cases, inputs consist of the positive and negative integers
in the st (—e=, +2=), However, many neural nets use simpler Sivadens valucs {(meaning
thar they have only two values). The reason for using such a simple input scheme is
thar ultimarely all inpurs are dinary or fipolar, and complex inputs are converted to
pure binary or bipolar represenrarions anyway. In addition, Ity Limes we are trying
to solve computer problems such as image or voice recognition, which lend them-
selves to bivalent represenrations. Nevertheless, this rule is not etched in stone. The
values used in bivalent systems are primarily 0 and 1 in a binary system or—1 and 1 in
a bipolar system. The two systems are similar except that bipolar represencarions ruen
out 80 be mathemarically bewer than binary ones. The weights w; on each inpur are
typically in the range (=, +e<) and are referred w as exeizarory and inbibitory for pos-
itive and negative values, respectively. The extra inpur B (the bias) is always 1.0 and is
scaled or multiplied by b—thar is, b is its weight, in a sense. This eoneept is ilhustrated
in Equation 3.9.1 by the leading rerm,

Continuing with our analysis, once the activation Y, is found for a neurode, it is
applicd to the acivation funcrion and the ourput ¥ can be computed. There are a
number of activation functions, which have different uses. The basic activation func-
tions E(x) are shown in Table 3.9,1.

334 Saction 3 Artiicial Intelligence

Table 2.9.1. The Activation Functions f, [x)

SEp Linear Exponental
T — 1. 4
1 e / _— b v et
-A0-RE-10 | 18 20 3 S0-ze-ie | LD 20 3o Ap-20-18 | 10 2030
= ul.0 sl e rrmrrtert | ettt o,] ffre v
Equation 3.9.2 Equation 3.9.3 Equation 3.9.4
Fix) =1,ifxz=8 Fix)=x, forall x F(x) = 1/{1+e77)
0, ifx<B

The equarions for each function are fairly simple, bur each is derived 1o model or
fit various properies.

The step funcrion is used in a number of neural ners and models as 2 neuron fir-
ing when a crirical inpur signal is reached. This is the purpose of the factor 8, which
models the critical input level or threshold ac which the neurode should fire. The fin-
ear acrivarien function i used when we want the output of the neurede o more
dosely follow the input activarion. This kind of activation function is used in model-
ing fnear systems such as basic motion with constant velocity. Finally, the expomensial
activarion funcrion is used to create a mon-linear reponse, which is the only possible
way o create newral nets thar have non-linear responses and model non-linear
processes. The expenential acivation funcrion is key in advanced neural nees becanse
the composition of linear and step activation functions is aluays linear or step; we will
never be able to create 2 net that has non-linear response. Therefore, we need the
exponential activation funciion to address the non-linear problems that we wane 1o
solve with ncural nets. However, we are not locked into using the exponential fune-
tion. Hyperbolic. logarithmic, and rranseendental fienctions can be used as well, depend-
ing on the desired properties of the ner. Finally, we can scale and shift all these
funcrions if we need to.

As you can imagine, a single neurode isn't going o do a lot for us, so we nesd to
take a group of them and creare a layer of neurodes, as shown in Figure 3.9.3. This
figure illustrares a single-layer neural nerwork. The neural ner in Figure 3.9.5 has a
number of inputs and a number of cutput nedes. By convention, this is a single-layer
net because the input layer is not counted unless it is the only layer in the nerwaork, In
this case, the input layer is also the output layer; henee, there is one layer. Figure 3.9.4
shows a rwo-layer neural ner. The inpur layer is still not counted, 2nd the internal
layer is referred to as “hidden.” The output layer is referred to as the eugpur or FEIpOTISE
Layer. Theoretically, there is ne limit 1o the number of kayers a neural net can have;

3.9 A Neural-Met Primor 335

Bahae wie's that arsr'| shown are egual o 000

FIBURE 3.9.3. A four-inpur, three-neurode, sinple-Baver neural net.

however, it might be difficult to derive the relztionship of the various layers and come
up with rraciable taining methods, The best way to create multilayer neural nets is 1o
make exch nerwork one or two layers and then connect them as components or fune-
tonil blocks.

All right, now lec’s mlk abour remporal or time-relared ropics, We all know thar
our brains are faidy slow compared o a digiral computer. In fact, our brains have
eyele times in the millisecond range, whereas digital computers have cyele times in the

HILHDEM LAYER OUTRFUT LAYER
Bigs Blas

Inpul:s<

Mofn: walghis wig And wie b diteeect

FIGURE 3.9.4. A two-layer neumsl network.

Section 3 Artificial Intelligence

nanosceond and, soon, sub-nanosecond range. This means that signals ke tme
travel from neuron o neuron. This fact is also modeled by amificial neurons in the
sense that we perform the compurations layer by layer and transmir the resuls
sequentially. This model helps ro berter model the time lag involved in the signal
transmission in biological systems such as humans.

We are almost done with the preliminarics. Let’s talk about some high-level con-
cepts and then finish up with 2 couple more terms. The question thar you should be
asking is, "Whar the heck do neursl nets do?™ This is a good question, and it's a hard
ane to answer definitively. The question should be. “Whar do you want o y Lo
make neural ners do?” Neural nets are basically mapping devices thar help map ene
space to another space. In essence, they are a ype of memory. Like any MEMmory, We
can use some familiar terms o describe chem. Neural nees have both short-rerm
memory (STM) and long-term memaory (LTM). STM is the ability for 2 neural net o
remember something it just learned, whereas ITM is the ability of 2 neural net
remember something it learned some rime ago amid its new learning.

This leads us to the concepr of plasticitg or, in other words, how 2 neural net deals
with new information or training. Can a neural net learn more informarion and still
recall previously stored information comectly? If w0, does the neural net become
unstable because it is holding so much informarion that the dar starts 1o overlap or
has common intersections? This ares is referred o as stelility. The borrom line is, we
want a newral net 1o have a good LTM, a good STM, be plastic (in most cases), and
exhibit stability. OF course, some neural nets have no analog 0 memary. They are
more for functional mapping, so these conceprs don't apply as is.

Now that we know abour these memory concepts, ler's talk abeut some mathe-
matical factors thar help measure and understand these propertics.

One of the main uses for neveal nets is 25 memories, which ean produce a
response by processing inpur that is incomplete or “noisy.” The response might be the
input itself (aussassciation) or another output thar is weally different from the input
(heteroasociarion). Furthermore, the mapping may be from an n-dimensional space 1o
an m-dimensional space and non-linear o boor. The borrom line is that we wanr 1o
somehow store infarmation in the neural net so that inputs (perfect inputs as well as
noisy ones) can be processed in parallel. This means thar 2 neural net is 2 kind of
hyperdimensional memery unit because it can asociate an input n-tuple with an out-
put m-ruple, where m can equal o, but it doesn’t have ro.

Whar newral nets do in esence is partition an n-dimensional space into regions
thas uniquely map the input 1o the outpur or dassify the mpur into distiner classes,
like a funnel of sorts. Now, as the number of input values (vecrors) in the input data
set (which we eall 5) increase, it logically follows that the neural ner will have a harder
time separating the informartion. As 2 neural net is filled with information, the input
values that are to be recalled overlap, since the input space can no longer keep every-
thing partitioned in a finite number of dimensions. This overlap results in crosstall,
meaning that some inpurs are not as distinet s they could be. Crosstalk might or

4.8 A Neural-Net Primer 337

might not be desired. Although this problem isn't a concemn in all cases, itis a concern
in associative memory neural nerts, so w illustrare the concept, ler's assume thar we are
trying to associate n-tuple inpur vectors with some output set. The ourpur set isnt as
much of 2 concern to proper funcrioning as the inpus set is.

If a ser of inputs S is binary, we are looking ar sequences in the form
1101010...101 10, Let’s say char our inpur hit vectors are only 3 bits each; cherefore,
the entire input space consist of these cight vectors:

v, = (0,0,0), v, = (0,01}, v. = (0,100, v, = (0,1,1). %, = (1,000, v, = (1,0,1), v, =
(1,1,0), v. = {1,1,1}

To bL‘.I'I'HZIH.‘ precize, the basis for this set of vectors is:
v=(1.0,0) * by + (0,1,0) * b, + (0,0,1) " b,,

where by, can take on the valus D or 1.
For cxample, if we ler b=1, b,=0, and b,=1, then we get the vecror

v=(1,0,0) * 1 + (0,1,0) * 0 « (0,0,1) * 1 = (1,0,0) + (0,0,0) + (0,0,1) = (1,0,1)

wihich is ¥, in our possible inpur ser.

A basis is 2 special vector summation that describes a ser of vectors in a space. So
v describes all the vectors in our space. To make a long story shorr, the more arshogo-
mal the vectors in the inpur set, the better they disoibuce in a neueal net and the bet-
ter they can be recalled. Orthogonaliey refers to the independence of the vectors or, in
other words, if two vectors are orthogonal, their dot product is 0, their projection
onto one another is 0, and they cant be written in terms of one another, In the set v
are 4 lot of orthogonal vecrors, but they come in small groups—for example, ¥, is
orthogonal to all the vecrors, so we can abways include ic. But if we include v, in our
st 5, the only other vecrors thar will fir and maintain orthogonality are v, and v, or
the sec:

¥y = {ulﬂ"‘:l}! ¥y = {D1n|1-}r V.= {I:I':] |n]r1r| - {.[ru1n_:|

Why? Because v; « v, for all i,j from 0..3 is equal to 0. In ether words, the dot
produc of all the pairs of vectors is 0, so they must all be orthogonal. Therefore, this

sex will do very well in 2 neural net as input vectors. However, the set:
Y= {lalnﬂ}r V= {]Jll.l-]

will potentizlly do poerly as inputs because v; - v; s non-zero or, in a binary gystem,
itis 1. The next question is, “Can we measure this orthogonaling?” The answer is yes,
In the binary vector system, there is a measure called hammiing distance. It iz used to
measure the n-dimensional distance between binary bit vecrors. The hamming dis-
tance is simply the number of bits that are different berween two vectors. Far exam-
ple. the vecrors:

¥p = {D|ﬂpﬂ]|‘ ¥y = I:-ﬂ'aull.:l

338 Section 3 Artificial Intelligence

have a hamming distance of 1, whereas the vectors:
v = (0,1,0), v = (1,0,0)

have a hamming distance of 2.

We can use hamming distance as the measure of orthogonality in binary bir vee
tor systems, which can help us derermine whether our input vecrors will have a lot of
overlap. Determining orthogonality with general vector inpurs is harder, but the con-
cept is the same.

Thar’s all the time we have for concepts and rerminalogy, so lers jumgp right in
and see some actual newsal nets thar you will be able o use in your game’s Al We
cover neural nets wsed to perform logic functions, classify inputs, and associate inputs
with outputs.

Pure Logic, Mr. Spock

The first anificial neural networks were created by McCulloch and Pits in 1943
These neural necworls were compased of a number of neurodes and were rypically
used to compure simple logic funcrions such as AND, OR. XOR, and combinations
of them. Figure 3.9.5 is a representation of a basic McCulloch-Pitts neurode with ewo
inpuits, If you are an electrical engineer, you will immediarely see a dose resemblance
besween McCulloch-Pires neurodes and transistors or MOSFET:. In any case,
McCulloch-Fitrs neurodes do mor have biases and have the simple activation function
Fw[x}, which iz -r:quz| T Equa.r_i.nn 30,5,

foolx)=1,ifx=0 (3.9.5)
0 ifx<B

The MP (McCulloch-Pits) neurode functions by summing the product of the
inputs X, and weights w; and applying rhe result ¥, to the activation function Foolx).
The early research of McCulloch-Pirrs focused on creating complex logical circuitry
with the neurede models. In addirion, ane of the rules of the neurode model s thar it
takes one time step for a signal o travel from neurode 1o nerode, This helps model
the biological nature of neurons more closely.

Ler's take a look ar some examples of MI neural nets that implement basic logic
functions. The logical AND function has the following truth table:

X1 X2 Charpur
0 (1] LI
0 1 0
I 1] LI}
| 1 1

We can madel this table with a two-inpur MP neural ner with weights wy=1,
wi=1, and B=2. This newral net is shown in Figure 3.9.6a. As you can see, all impur

4.9 A Neural-Net Primer 339

@&

Inputs v Output
W ¥
Xy Wi = XWX, 000,
y=1,0Y, 28
0,#Y, <8

FIGURE 3.8.5. The McCulloch-Pitts neurods,

combinations work correctly. For example, if we try inpurs X, =0, ¥, =1, the activadon

will be:
Xy + X we = (10(1) + (00*(1) = 1

If we input 1 to the activation funcrion £}, the resulr s 0, which is correcr. As
another example, if we oy inpurs X;=1, X;=1, the activation will be:

Xyt o+ Xt m (1)%(1) = (1341 =2

It we input 2 to the activarion funcrion £ {x), the reult is 1, which is comect.
The other cases works also. The function of the OR = similar, but the threshold of B is
changed ro 1 instead of 2, as it is in the AND. You can try running through the truth
table yourself 1o see the resulis.

The XOR nerwork is a lirde different becauvse it really has two layers, in a sense,
becanse the results of the pre-processing are further processed in the output neuron.
This is a good example of the reason a newral net nocds more than one layer to solve
certain problems. The XOR is a common problem in newral nets, used to test a neural
net's performance. In any case, XOR is not lineatly separable in a single layer; it must
be broken down into smaller problems and then the results added together. Lets ke
a look ar XOR as the final example of MP neural networks, The truth table for XOR

iz as follows:
X1 X2 Ourput
0 L1 0
0 i 1
1 L] 1
1 I 0

XOR is mue only when the inputs are different. This is a problem because both
inpurs map o the same output. XOR i not lineardy separable, as shown in Figure
3.9.7. As you can see, there is no way to separate the proper responsss with a siraight
line. The point is that we can scparate the proper responsss with two lines, which is
juse what two layers do. The first layer pre-processes or solves part of the problem, and

Section 3 Artificial Intelligence

Inputs

Inputs

B=1

Inputs

FIGURE 3.9.6. Basic logic funciions implemented with McCulloch-Pins nets.

the remaining layer finiches up. Referring 1o Figure 3.9_6¢, we sce thar the weights are
wi=l, wa=—1, wye=l, wi=—1, wy=1, wy=1. The network works as follows: Layer One
compures whether X, and X, are opposites in parallel, che results of either case (0,1)
or (1,0) are fed to Layer Two, which sums these up and fires if either is true. In

essence, we have created the logic funcrion:
z = ((X; AND NOT X,) OR (NOT X, AND X,))

If you would like to experiment wich the basic McCulloch-Fitts neurode, Listing
3.9.1 on the CD is a complete two-inpur, single-neurode simulator with which you
CaN CXPeriment,

4.8 A Heural-Net Primer 341

8. The best & single layer

network cen do x,

y [5.1] "1.1) A singla line can't
portion the +'s
from the —'s

s f
= ot i
(0.0 / (1.0) =r
b, With two layars Layer 2
the xor can ba s,
+ -
Salved (0,1} %1.1)
— Layer 1
' - S y I x
(0,0} (1.0) "t

FIBURE 3.9.7. Using the XOR funcrion o illustrate linear sepasabilite.

That finishes up our discussion of the basic building block invented by McCul-
loch and Pits. Now ler's move on 1o more contemporary neural nets such as those
used to clasafy inpurt vecrors.

Classification and “Image” Recognition

At this poing, we are ready to start looking at real neural nets thar have some pirth 1o
them! To segue into the following discussions on Hebfian and Hopffeld newral nets,
we analyze a generic newral ner serucrure thar illustrates 2 number of concepes such as
linear separabilicy, bipolar representations, and the analog that neural nets have wich
Mmemories.

Lets begin by wmking a look ar Figure 3.9.8, which shows the basic neural net
model we use. As you can see, it is a single-node net with three inpuss, induding the
bias, and 2 single ourpur. We will see whether we cn use this network o solve the
logical AND funcrion thar we solved so easily with McCulloch-Pires neurodes.

Section 3 Artificial Intelligence

Imputs

FIEURE 3.8.B. The basic neural-ner model used for discussion,

Lers stase by first using bipelar representarions. All Os are replaced with —1s, and
15 are lefr alone. The truth wble for logical AND using bipolar inputs and ourpurs is
as follows:

X1 2 Ourput
-1 -] -1
=] 1 -1

1 =] —1

1 1 1

Equartion 3.9.6 shows the activarion funetion £(x) char we will use.

fixl=1ifx=8 (3.9.6)
~1,ifx<B

Notice that the funcrion is step with bipelar outputs. Before we continue, let me
place a seed in your mind: The bias and threshold end up daing the same thing, giv=
ing us another degree of freedom in our neurons thar make the nevrons respond in
ways that can’t be achieved without them. You will see this conecept illustrated shortly,

The single-ncurode net in Figure 3.9.8 will perform 2 classification for us, Ty will
rell us whether our input is in one dass or another. For example, is this image a tree or
mof A tree? Or in our case, is this inpur (which just happens to be the logic for an
ANDY) in the +1 class or the —1 class? This is the basis of mest neural nets and the rea-
son I was belaboring linear separability. We need to come up with a linear partition-
ing of space that maps our inpurs and eutputs so a solid delineation of space separates
them. Thus, we need o come up with the correct weights and a bias thar will do this
for us. But how do we achieve this goal? Do we mercly use trial and error, of is there 2
methodology? The answer is that there are 2 number of trining methods to teach a
neural net, These mining methods werk on various marhematical premises and can
be proven, but for now, we simply pull some values thar work our of a har. These exer-
cises lead us inro the learning algorithms and more complex ners thar follow.

All right, we are trying to find weights w; and bias b thar give use the comect
result when the various inputs are fed to our nerwork with the given activation func-

38 A MNeural-Net Primer 343

tion F.(x). Let’s write down the activation summartion of our neurode and see whether
we can infer any relationship berween the weights and the inpurs thar mighr help us.
Given the inputs X; and X, with weights w, and w; along with B=1 and bias b, we
have the following formula:

K:-“ﬁ + x:“w': + B‘I!=E {3_9.?]'
Since B is always equal to 1.0, the equarion simplifies to:
.'."i:"w, + H;w;- * b'ﬂ

Whar is this entity? Ir's a ine! And if the left side is greater than or equal to 8, thar
15, (X "wy + X;*wny + b, the newrode will fire and ourput 1; otherwise, the newrode
will ourpuc —1. Therefore, the line is a decision boundary. Figure 3.9.9a illustrates chis
concept. In the figure, You can see that the slope of the line is —w,/w, and the X,
intercept is (B-b)/wa. Now can you see why we can get rid of 82 It is parr of a con-
stant, and we can abways scale b 1o ke up any loss, so we assume thar @ = 0. The
resulting equarion is:

Xy = =X, wyfwy = blw,

Xy ==X,"w/w; + (B-b)w; (solving in terms of X,)

Whar we want to find are weights w, and w; and bias b so that it separates our
ourpurs or classifies them into singular partidons withour overlap. This is the key o
linear separabiliry. Figure 3.9.9b shows a number of decision boundaries thae suffice,
s0 we can pick any of them, Let's pick the simplest values, which are:

Wy = wowm |

b=~=1
With these values, our decision boundary becomes:
.H.: = —K]'wul'wl— blr‘?i'l —F :{1 = —1"".'{| + 1

The slope is =1 and the X; intercept is 1. 1If we plug dhe input vectors for the log-
ical AND into this eguation and use the £(x) acrivarion function, we will gee the cor-
rect outputs. For example, if X; + X, — 1 > 0, then fire the neurode; else ourpur —1.
Ler's try ir with our AND inputs and see whar we come up with:

Input X1 X2 Cratput (X2+X1-1)
= | -1 (1) +{-1}-1=3<0 doni firc, outpur —1
-1 | = +(l)-1==1<0 don't fire, outpur -1

1 -1 (I)+(-1})-1=-2<0 doni fire, outpur —1

| 1 (M +(1-1=1=0 fire, outpue 1

Section 3 Artificial Intelligence

a.
e
IMercept
g—b
Wi -k
. “jpﬂ: i
_\fr Wz
— b e
45 Xy
=l =—— Decislon boundary for {w, w.,8,b)
W = b
My ==y (_';];)-F (w,)
b

FIGURE 3.9.8, Marhematical decssion boundasies gererated by weights, bias, and 6.

3.9 A Meural-Met Primer 345

As you can ses, the neural nerwork with the proper weights and bias solves the
problem perfectly. Moreover, there is a whole family of weights thar will do just as
well (sliding the decision boundary in a direcion perpendicular to imelf). However,
there is an important poine here. Withour the bias or threshold, only lines through
the origin are possible, since the X; inrercepr has to be zero. This is very imporeant
and the basis for using a bias or threshold, so this example has proven an important
one, since it has flushed out chis facr.

S0, are we closer to seeing how to algorithmically find weighes? Yes, we now have
a gromemical analogy, which is the beginning of finding an algorithm.

The Ebb of Hebbian

Now we are ready 1o see the first leaening algorithm and ics application 10 a neural
net. One of the simplest learning algorithms was invented by Donald Hebb and is
based on using the inpur vectors 1o modify the weights in a way so that the weights
ercate the best possible lincar separation of the inputs and ourpurs. Alas, the alga-
rithm works merely okay. Acnually, for inputs that are orthogonal, it is perfece, but for
nen-erthogonal inpurs, the algorithm falls apart. Even though the algerithm dossn't
result in correct weighrs for all inpurs, however, it is the basis of most leaming algo-
rithms, so we start here.

Before we see the algorithm, remember that it is for a single-neurode, single-layer
neural ner. You can, of coursz, place a number of neurodes in the layer, bur they all
work in parallel and can be taught in parallel. Are you starting to see the massive par-
allelization that nenral ners exhibic? Instead of using a single weight vector, a multi-
neurade net uses a weight marrix. The algorithm is simple; it goes like chis:

Cripens:

* Input vectors are in bipolar form I = (<1,1....—1,1) and conmin k elements,

= There are n inpur vectors, and we refer to the sez as 1 and the joh elernent as L.
= Qhurpurs are referred to as y, and there are k of them, one for each input I,

* The weighrs w—w, are contained in 2 single vector w = (w), ws, ... w,).

1. Iniralize all your weights wo 0, and ler them be contained in 2 vector w that has n
entrics. Abso initialize the bias b to 0.

2. Forj=1ton,do:
b=h+y (where v is the desired outpur)
w=wel *y (remember, this is a vector operation)

etd dia

The algorithm is nothing more than an "accumulator™ of sorts, shifting the deci-
sion boundary based on the changes in the inpur and curpur. The only problem is

348 Section 3 Artificial Intelligence

that it sometimes can't move the boundary fast enough (or at all), and so “learning™
doesn’t ake place.

So how do we use Hebbian leaming? The answer is, the same way as the previous
network except that now we have an algorithmic method with which to teach the net,
so we refer to the net as 2 Hebb or Hebbian ner,

As an example, let's take our wusty logical AND funcrion and see whether the
algorithm can find the proper weights and bias to solve the problem. The following

summation i equivalent to running the algorithm:

w = [1,"vi] + "y + [Lys] + [L7wad = (=1, 1% (=101 + [(=1, 1)*(=1)] +
LL-1"CIH + [(L, 1)%(1)] = (2,2}

b=y +y+ym+y=D+ =D+ 1)+ {1)==2

Therefore, wi=2, wy=2, and b=—2. These are simply scaled versions of the values
wi=1, wy=1, b=—1 rhar we derived geometrically in the previous secrion. Killer, huh!
With this simple learning algorithm, we can train a neural net (consisting of a single
neurode) to respond to 1 set of inputs and eicher classify the inpur as true or false, 1 or
—1. Now if we were to areay these neurodes rogether to creare a network of neurodes,
instead of simply classifying the inputs as on or off, we can associate patterns with the
inputs. This is one of the foundations for the next neursl-ner srueture, the Hopfield
net. Ome more thing: The activation function used for a Hebb nct is a step with a
threshold of 0 and bipolar outpurs 1 and —1.

To get a feel for Hebbian learning and how to implement an actual Hebb ner,
Lesting 3.9.2 on the CID contains a complete Hebbian Neural Net Simulator. You can
create networks with up to 16 inpurs and 16 neurodes (outpus). The program is self-
cxplanatory, bur there are o couple of interesting properties: You can select one of
three activation funcrions, and you can input any kind of dara. Mormally, we would
stick to the step activarion funcrion, and inputsfoutputs would be binary or bipolar.
However, in the light of discovery, maybe you will find something interssting with
these added degrees of freedom. T suggest that you begin with the step funcrion and
all bipolar inpurs and ourpurs, though.

Playing the Hopfield

John Hopficld is a physicist who likes 1o play with neural nets (which is good for ws).
He came up with a simple (in scrucrure ar least) bur effective newral necwork called
the Fiopfield met, which is used for autassociation. You input a vector x and ¥ou ger x
back (hopefully!). A Hopfield net is shown in Figure 3.9.10. I is a single-layer ner-
work with a number of neurodes equal to the number of inputs X.. The nerwork is
fully connecied, meaning thar every neursde is connecred 1o every other neurode and
the inputs are also the outpurs. This stricture should serike you as weird, since there
is feealback. Feedback is one of the key features of the Hopfield net and the basis for
the convergence to the correct resule.

4.9 A Maural-Met Primer 247

w:[d-h;#]

:> Outpuls

* Simple Layer
* Inpuls x; 3¢t as outputs v,

Bi-directional arrows

mean thal w, = w,"w, = w_

Outpul Becomes input
after 1si cycle

FIGURE 3.9.10. A four-node Hopficld auraassociative noural ner.

The Hoplield network is an freranive autoanociative memory. This means thar i
can rake one or more cycles to rerurn the correer resule (if at all). Ler me clarify: The
Hopficld network takes an inpuc and then feeds it back, and the resulting output
might or might not be the desired inpur. This feedback cycle can occur a number of
times before the inpur vecror is rerurned. Hence, a Hopficld network functional
sequence is as follows: First, we determine the weights based on our input vectors that
W wint to auroassociare, then we input 3 vector and see what comes our of the acti-
vations, IF the resulr is the same a5 our original input, we are done; if not, we ke the
resule vector and feed it back through the network.

MNow let’s take a look ar the weighe matrix and learning algorithm used for Hop-
field nets.

The leamning algorithm for Hopfield nets is based on the Hebbian rule and is
simply 2 summation of products. However, since the Hopfield nerwork has a number
of input neurons, the weights are no longer a single array or vecror bur a collection of

wectors that are most compacily contained in a single marrix. Thus the weight matrix
W for a Hoplicld net is creaved based on this equation:

Saction 3 Artificial Intelligence

UrEperns:
* Input vectors are in bipolar form I = {-1.1.....=1,1) and conrain k elements.
* There are n input vectors, and we refer 1o the ser as T and the jih element as L.
* Outputs are referred o as y; and there are k of them, one for cach input L,
* The weight marrix W is square and has dimenson k x k, since there are k inputs.

k
Wy = i, (3.9.8)

=1

Note: Each outer product kas dimension k ¢ k, since we arc multiplying 2 column
vector and a row vecror

W =0, forall i,

MNotice that there are no bias terms and the main diagenal of W must be all
zerocs. The weight marrix is simply the sum of marrices generated by mulriplying the
manspose 1" % I, for all i from 1 1o n, This is almost identical to the Hebbian algo-
rithmn for a dngle neurode except that instead of multiplying the inpur by the output,
the input is multiplied by itself, which is equivalent to the ourpur in the case of
auroassociation, Finally, the activatdon funciion f{x) is as follows.

.E-hfl} = 11 x=0 [3-9:5'_]
0, ffx=0

f(x) is 2 step funesion with a binary ourput. This means thar the inputs must be
binary, but didn’t we alteady say that the inpurs are bipolar? Well, they are, and they
arent. When the weight matrix is generated, we convert all inpur vectars to bipolar,
but for normal operation we use the binary version of the inpurs, and the output of
the Hopfield ner will also be binary. This convention is not necessary, but it makes the
network discussion a linde simpler.

Anyweay, let’s move en to an example. Say we want to create 2 four-node Hopfield
net and we want it to recall these vectors:

1,=(0,0,1,0), T,=(1,0,0,0), 1,=(0,1,0,1) Note: these are orthogonal.
Converting mo bipolar (*), we have:
I'=-1-11-1) . = (1-1-1-1), I; = (-1,1,-1.1

Now we need to compute W, W, Wy, where W, is the product of the transpase
af each inpur with iself:

W= [L"%1] = (1,-1,1,-1F (=1 =1.1-1) =
1 1 I 1
1 gy e o4 |
=] N T
1 T Cal

3.8 A Meural-MNet Primer 2445

W]‘ - [II.: K]!-II - {.I'-_I1_1:'"|]: S []:_] I_l -_I} -

1 -1 -1 -1
-1 1 1 1
! 1 1 1
-1 1 1 1

w.:l' |II;:'H Il-]=(_!Jl:‘1r|}1x':_l11|_1|-1:|:
1 -1 1 -1
=] | I | 1

Zeroing out the main diagonal gives us the fnal weight marrix:

W=

i =1 -1 -1
-1 0 - 3
-1 -1 0 -
=1 3 =] 1]

That's it, now we are ready to rock. Let's input our original vecors and see the
results. To do this, we simply multiply the inpur by the marrix and then process cach
output value with our activation funcron F {x). Here are the results:

L W = (-1,-1.0,-1) and f{{-1,=1,0,-1)) = {D,0,1,00
L %W = (0,-1,~1.-1) and £{{0.-1,-1,-1)) = {1,0,0,0)
Iy X W = (-2,5,-2,3) and £((-2,3.-2.3)) = (0,1,0,1}

The inpurs wese perfectly recalled, and they should be, since they were all orthog-
onal. As 2 final example, let’s assume thar our inpur (visual, auditory, etc.) is a lirde
noisy and the inpur has a single error in ic. Let's ke T, = (0,1,0,1) and 2dd some nioise
to I resulting in 1,4 = (0,1,1,1). Now let's sz what happens if we input this noisy
vector to the Hopfield net:

ljlm"' W= (3, 2 =2, 2] and [5['[—3:2:—1! 1}] =(0,1,0,1)

250 Section 3 Artificial Intelligence

Amazingly enough, the original vector is recalled. This is very cool. Sa we might
have 2 memory that is filled with bit patterns thar look like rress (oaks, weeping wil-
low, spruce. redwoad, etc.). 1f we input another tree thar is similar o, say, 2 weeping
willow but hasn't been entered into the net, our ner will (hapefully) outpur a weeping
willow, indicaring that this is whar it “thinks” it looks like.

This is one of the strengrhs of associative memorics: We den't have to teach the
nerwork every possible inpur. We just have to teach it enough o give it 2 good ides.
Then inputs thar are “close” will usually converge o an actual trined inpuc. This is
the basis for image and voice recognition systems.

To complete our study of neural nets, T have induded 2 Hopfield autcassociarive
simulator thar allows you 1o create nets with up o 16 neurodes. It is similar 1o the
Hebb net, bur you must use a step activation function and your input exemplars must
be in bipolar while training and binary while associating (running). Listing 3.9.3 on
the CD contains the code for the simulator.

Conclusion

1 hope that this article has given you an idea of whar neural nets are and how 1o create
some working computer programs to model them. We covered basic terminology and
concepts, some mathematical foundarions, and finished up with some of the more
prevalent newral-net structures.

However, there is still so much more 1o leam abour newral nets: Perceptrons,
ZFIIE-}" ASFOCIATIVE MEmores (FAMs), bidirectional associaiive memories (BAM:),
Kohonen maps, Adalines, Madalines, back-propagation networks, adaprive resonance
theary networks, “brain state in a box,” and a lor more, Well, that's i, my neural net
wants to play PlayScarion 2!

4.0

Optimizing Vertex Submission
for OpenGL

Herbert Marselas

There are a4 number of funcrions available for submirting and rendering vertices in
CIFI:IIGL which rAnge from the simple immediare mode funceions to mors -L'ﬂl:l:l.p[i.—
caed multiple vertex funcrions and vendar-specific extensions. However, the perfor-
mance can vary greatly depending en the funcrionality used.

Immediate Mode

CHten, immediare mode functions (e.g., gIvertex*, gltalor®, giNornal®) are used to
get up and rendering quickly. These are easy 1o use since cach funcrion is geased
toward submitting a different component of the vertex: pasition, color, normal, tex-
tere coondinates, cic. However, what makes che immediate mode funciions so casy to
use (submitting a vertex companent by component) also makes them the lowest per-
forming,

This is due to two factors. First, several funcrion ealls are required to render a sin-
gle vertex. Second, each function must be entered, where it then performs a small
amount of work, and then exited. The time required to enter and leave a funcrion s
called the fiimction everhead. This overhead occurs regardless of the amount of work
the function does, and represents a fixed amount of time required o use the funcion.
If the funcrion does a lot of work, then the overhead will be low compared to the
work being accomplished. TF the funcrion doesn’t do a lot of work, o if the funcrion
is called 2 large number of times, the overhead aan quicldy add up.

Figure 4.0.1 shows the amount of time in CPU cycles required ro submie 300 col-
ored, toxtured, and transformed vertices wsing the immediare mode functions
glTexturedf, glColor4f, and givertexar. The 300 vertices comprise 100, three-pixel,
discrete, uniform, right tiangles. These imings were taken under Microsoft Win-
dows 98 on 2 450MHz Pentium 11 using a popular consumer OpenGL graphics card.
"The source code used 1o generate this dara can be found as a Microsolt Visual Ce+ 6
project on the accampanying CD.

354 Sectlon 4 Polygonal Technigues

[mmediaie Mode Vietex Submisson
Tumne 1o Swbinit Each Viatex

FIEURE 4.0.1 CP'U cycles to submit 300 vertices (100 discreee triangles) using immediate mode,

Using small rransformed eriangles removes the time spent in transform (they are
already transformed), lighting (they are pre-lit), and rasterization (they are very
small). This guarancees that we are effectively measuring the fme required to enter
each function, store the data, and return. In total, it required -163,154 CPU cycles to
submit and render all 300 verrices.

On average, it ook -544 CPU cycles wo submit the position, coler, and texture
coordinate of a single verex. However, there were spikes in performance. This can be
seen in the glVertex funcrion thar ok -38238 CPU cydes the first time it was called
during a frame, probably to allocare dara. although more derailed analysis of the dri-
ver would be required to verify this. It then averaged -308 CPU eyeles per call with
spikes up o ~1500+ CPU cycles per call. The full analysis is contained in 3 Microsoft
Excel 97 spreadsheet on the accompanying CD.

The simplest way of improving performance would be to remove the funcrion
overhead by reducing the number of funcrions called to submit and render the 300
vertices. Calling one or two functions to submit and render all 300 vertices could be
much higher performing than clling 900 funcions as we have just done.

Interleaved Data

1f your vertex daea is already contained in a single strucrure, g1interlsavedar rays can
be used to submic all the components of the verrex in a single function call. glTnter-
leavedArrays is capable of submitting a number of standard interleaved verrex struc-
tures ranging from a lighoweight position-only vertex, 1o 2 heavyweight vertex with

positon, normal, diffuse color, and texmure coordinates,

:‘ 4.0 Dplimizing Vertex Submission for OpenGL 355

plinterleavedarrays only submits a peinter to the vertices o be rendered.
Ancther funcrion such as plbrawarrays, glorawElensnts, or glarrayElenent must be
cilled to acnually render the dara.

Applying the use of glinterlesvedarrays to the previous immediate mode exam-
ple. o sngle function cll could be used to submit all of the dara for a single verrex.
Hoveever, as its name implics, glinterleavedarrays can accepran array of vertices ro
submir for rendering, This allows us 1o make a single funcrion call 1o submit all 300
werrices, rather than three calls per vertex (900 toral) in immediate mode.

In the case of the test dara, an array of 300 verrices is generated using the g11n-
terleaveddrrays GL_T2F C3F_V3F vertex strucrure formae, This effectively dupli-
cates the data that was submined and rendered by the immediate mode funcrions.

Figuee 4.0.2 The amount of time required to submit and render the verrex work-
load wsing glinterleavedarrays and plorawarrays. The average time to submir the
300 eriangle workload is ~72,821 CPU cycles. This is less than half the time {-44%)
that was required by the immediare mode funcrions to submit and render the same
worlload.

glinterleavedArrays Vertex Submission

200000
160000
160000 |ERE—
140000 12
120000 S
100000 §
a0000 12
BOHMD
40000
zoppp
o

CPU Cycles

gintariaavedh Haye gDraw Affays Total Submission

Tena

FIGURE 4.0.2 Submiming vertices with glinterlcavedAreays.

Strided and Streamed Data

Another alternarive vertex submission inrerface is the gl*Posnter functions. Similar o
glinterleavedArrays, pointers to the vertex dam are submirted wsing the gl*Pointar

356 Section 4 Polygonal Technigues

Independent Date Sireams

Colort | G2 |ca| ... | cn
TemCooedd THC2 | TwC3 |...| TxCn
Interleaved Daty

| Vartex1 | Colort [TextCoordt| ve | G2 [Txc2|va[cs[Txca[... [vn [Cn [Txtn]

FIGURE 4.0.3 Screamed v interleaved dara.

funcrions (e.g., glvertexPointer, glcalorPointer). The submitted vertex data is then
rendered using the glbrawArrays, glarrayElesent, or glbrawElenents funcrions.

The g1*Fointer functions also have a uniform stride parameter, similar to glIn-
terleavedarrays. The swide specifies dhe number of bytes from the beginning of one
vertex component to the next. When the seride is greater than zero, the operarion of
the gl*Pointer functions is essentially the same as muking a single call 1o glinter.
leavedArrays. When the stride is zero (the dat is dghtly packed rogedher), the dara is
referred to as stream da (Figure £.0.3).

Stream data s very imporant when using SIMD {Single Instruction Mulriple
Dara} instruction sets like Intel’s SSE (Streaming SIMD Instructions) or AMDs
3DNow! instructions to transform, light, andfor dip vertices. If the dara was in an
interleaved vertex formar, the dara must be moved piecemeal into and out of the
CPU's SIMD registers. Wich the dara in stream formar, the CPU can quickly and cas-
ity move large chunks of the dara into the SIMD registers for processing,

Even withour taking advantage of the CPU’s SIMD instructions for geometry
and lighting, a performance boost can be had just by using the g1*Peinter functions.

It takes on average -51.212 CPU cycles to submir and render the 300 vertex
uﬂrk]uad usfng the gl Pointer E-um:tiun.s with g]_ljra_w.h,rr&!,m fﬁ_gu_:: -'E_ﬂ_-"i._:l % CONTi
pared to ~F2EXT CPU c}'lﬂﬁ. using glInterleavedArrays and glDrewArrays [(Figure
4.0.3). This is ~30% reduction in time. Again, the performance increase would be
even larger if we were relying on SIMD CPU instructions to perform geometry and
lighting operations.

Compiled Vertex Arrays

The compiled vertex arrays extension (EXT_compiled_vertex_array) builds upon the
functionality of glinterleaveddrrays and the gl*Pointer functions. The compiled

4.0 Optimizing Vertex Submission for OpenGL 357

glDrawAmrays va. CVA
gl*Pointer Stream Drata

200000
120000
150000
120000 =
120004

jRifanjifa] W E0ra vl rray &

WCVYA goawhTins

CPU Cycles

E0an
)i
L0 ¢

FIEURE 4.0.4 Verter submission time for glDmwArmrays with snd without Compiled Verrex
Armays,

vertex: array (CVA) function allows the application o specify a range of data in the
arrays supplied by glinterleavedarrays or gl Pointer thar won't be changed by the
application. These allow the driver to oprimize the data range once, and re-use the
eptimized version until the application unlocks the data,

This can result in significant speed increases by allowing the CPU's transform and
lighting implementarion o re-arrange che data for sptimal access. It can also allow the
rendering hardware to modify the data for faster performance, or cven make a local
copy of it on the graphics adaprer for faster aceess,

The performance difference berween using CVA and not using CVA is not very
large in our test workload (Figure 4.0.4), but this is only because we are attempring to
quantify the overhead of the function. The performance differential would be sub-
stantially greater if the vertices were being transformed, lit, and clipped, or if there
were more of them.

CVA is very usehul for data thar is stadic, or that can be used multiple times before
being modified. If the data is only used once, then the overhead of wing CVA may
autweigh the benefit. To improve the performance of dynamic dar, the only current
alternative is to use a vendor-specific extension.

Eliminating Data Copy—Vendor Extensions

With both the immediare mode functions and the array functions when not using
CVA, the dara submiteed for rendesing must be copied from application-allocared

358 Sectlon 4 Pelygonal Techniques

memory to driver-allocsted memory. As any data copy wkes tme, eliminating the
copy is an casy performance win,

CVA reduees this copy o a single time when the veriex array is locked. However,
CVA assumes thar the dara is static or will be used repeatedly before being modified.
The problem of eopying daea from application memory to driver memory seill exists
for dynamic arrays of dara that are frequently updated or changed.

The only way w remove this copy would be for che application o store vertices
directly in driver-allocated memory, and some vendors support this as an extension,
The nVidia extension wglallocateMenoryNy is one such vendor-specific extension, It
allocares memaory directly accessible to the graphics card where the application can
store vertex data. This eliminates the need for any driver copying of data, and im-
proves the performance when a verrex array is submitted and then immediately ren-
dered since the data is ready o go.

Check with your vendor for their specific OpenGL cxrensions.

Data Format

A second area of consideration is the formar thar vertices are submitted in for render-
ing triangles. Veriex lists, like chose used in the test workload, are the most common
format. In a vertex list, chree verrices define each mriangle (Figure 4.0.5a). However,
when triangles share veriices, there's often no reason 1o repeatedly include the same
vertex. One aleernanve is to use triangle strips or fans (Figure 4.0.5hb).

Diiscrete, strip, or fan mriangles are identificd by the mode paramerers of
glorawArrays and glorawElesents. These are GL_TRIANGLES, GL_TRIANGLE
STRIE and GL_TRIANGLE_FAN, respectively.

Urilizing a separare array of verrex indices ro build fees from the vertex armay is
another way to reduce the number of vertices required to draw 3 number of triangles
(Figure 4.0.5¢). glorawElements is similar to glDrawArrays, but it adds a new parz-
meter that acceprs the face vervex index list.

Using both miangle strips and face vertex indexing, it's possible to lower the ver-
tex per triangle rario to almost 1:1 for some complex triangle meshes. On many rypes

Indexed Vertices
Varlex List irte: Sirip 3Vortioes Por Fst
3 \rices Per Triangie 1 Vo Por Aodtions Tiargs 1 3 A 1 Vertex Per Adiional
& 'vertices o Draw 3 Trianglos 5 Varfices 1o Dvaw 5 Targee EVaoriicos to Draw B
A B [

FIGURE 4.0.5 A, B, €. Verdces for o three discress triangles, & chree strip 'r_rl';].ngﬂﬁ,, and &=
six indexed trianples.

4.0 Optimizing Vertex Submisslon for OpenGL 359

of data, however, miangle fies combined with face vertex indexing ane nearly as fast,
and require less pre-processing to create.

General Recommendations

There are also a number of general recommendations for increasing vertex submission
and readering performance.

1. When using indexed data, care should be taken to co-locare all the vertices for a
single rriangle as near to cach other 25 possible. If the vertices required for a mian-
gle are too far apart in the array, it may cause the graphics adaprer to continually
re-process sub-parts of the array as it jumps around.

2. Pre-sorting vertex data by maverial, shader, and texcure serrings ean help increase
the number of vertices that can be submined and/or rendered in a single funcrion
call.

3. Keep the amount of informarion submirred per vertex as lean as possible. Don't
include exra information thars only used occasionally. This muse be balanced
with continually changing vertex formats. For example, don't submit a vertex
with additional color informartion if that informarion is rarely used.

4. There is a balance berween submitting too little data and wo much data, Most
array functions require ar least 10-50 vertices to be submitted 10 overcome che
funcrion overhead. On the upper end of the scale, no more than 32k—64k of dara
of vertex data should be submitted. These amounts vary by graphics adapter.

3. dpending too much rime geeting 2 lot of vertex dara together into a single buffer
(if ir's not a driver-allocared buffer) can present more problems than it solves on
the CPPUL These include cache issucs, letting the graphics card stall, and over-
whelming the funcron with too much das.

Conelusions

1. Immediate mode funcrions may be easy to use when getting started, bur they are
the lowest performing functions for submirting vertices for rendering (Figure
4.0.6).

2. Submit and/or render as many verrices as is feasible in 2 single funcrion call.

3. Use Compiled Vervex Arrays (CVA) for static dam, or for data thar doesn't change
very often.

4. For the best CPU transform and lighting performance, use streamed dara formars
with CVA.

5. Some vendors will provide specific vertex submission extensions for cven higher
performance.

6. Usz indexed vertex data with discrete or strip triangles to increase the number of
triangles that can be drawn with the smallest number of vermices.

350 Section 4 Polygonal Technigues

Summary Vertex Submission Time

Hmmediale Mode

B an e awe 48 Ay
OafPeslar Skaam

OtvA gFFainter Straam

=Ll T

FIGURE 4.0.6 Summary comparison of vertex submission and [mdu’in,g tme by function,

Referances

[ARB] OpenGL Extensions. Open(GL ARB. Availahle worw.opengl.ofg,

[Kempf7] Kempf, R., and Frazier, C., OpenGL Reference Mansual 2 Edition, Addi-
son-Wesley Developers Press, 1997.

[Spitzer00] Spitzes, John F., Maximizing OpenGL Performance for GPUs. Online. 08
March 2000, Available www.nvidia.com.

4.1

Tweaking a Vertex’s Projected
Depth Value

Eric Lengyel

Many games need to render special effects such 25 scorch marlks on a wall ar foorprints
on the ground that are not an original pare of 2 scene, bur are creared during, game-
play. These types of decorarive additions are wsually decaled onto an existing surface,
and thus consist of polygons thar are coplanar with other polygons in a scene. The
problem is that pixels rendered as part of one polygon rarely have exactly the sme
depth value as pixels rendered as par of 2 coplanar polygon, The result i an unde-
sired pattern in which parts of the original surface show through the decaled poly-
gons.

The goal is to find 2 way to offet a polygon’s depth in 2 scene withou changing
s projected screen coordinates or altering its texoure mapping pemspective. Most 3D
graphics libraries contin some kind of polygon offer function to help achieve this
poal. However, these solutions generally lack fine control and wally incur a per-ver-
tex performance cost. This article presents an alternarive method thar modifies the
projection matrix to achieve the deprh offser effec,

Examining the Projection Matrix

Let us first examine the effece of the standard OpenGL perspective projeetion matrix
on an cye space point P = (P, F,, F, 1). To simplify our marrix, we assume thar the
view frustum is centered abour the z-axis in eye space (l.e., the rectangle on the near
clipping plane carved our by the four side planes has the property that &iff = —riphr and
boteam = —rop). Calling the distance 1o the near clipping plane m and the distance o
the far clipping planc £ we have:

362 Sectlon 4 Polygonal Technigues

= 0 0 Ojceline, k",

0 n 0 0 B nP,

o R PJ S|_fte 2| (611
i =] fi=n 3 Jfii—in 3 f=n

00 -1 of il P

o =

o finich the projection, we need to divide this result by its w-coordinate, which
has the value -, This division gives us the following projected 3D poin, which we

will call P,

3 .I'i'..i""'_‘
P
!.l

P = = S E12
P
f+n 2t
+
| f-n B(f-a

Recall char the near elipping planc lies ar z = —n, and the far clipping plane Lies at
= =—f since the camera points in the negative = direction. Thus, plugging —r and —f
into Equarion 4.1.2 for P, gives us the expecied = valucs of =1 and 1 bounding the
normalized dipping volume. Also recall thar this mapping from [—r.—f] to [-1..1] is
a funcrion of inverse = This is necessary so thar linear interpolation by the 3D hard-
ware of values in the depth buffer remain perspective correer.

Tweaking the Depth Value

It is elear from Equation 4.1.2 that preserving the value of =P, for the s~coordinate
will guarantee the preservation of the projecred »- and y-coordinares as well. From this
point forward, we shall only concern ourselves with the lower-right 22 potiion of
the projection matrix, since this is the only part that affects the 2 and w—coordinates,
The projected s-coordinate may be altered without disturbing the w-coordinate by
inrroducing a factor of 1 + £, for some small £ as follows.

3 f+s 26 |, frng, 2f
{1+E]f—n Jfisn I[Ill]: h{1+E}|f_”P' f-#=] G13)
] =1

&

After division by 1w, we arrive at the following value for the projected z-coordi-
nate.

4.1 Tweaking a Vertex's Projected Depth Value 363

f’;={1+5}|f+'{+ L[

f=n PB[f-n)

s :
=_,|"+.'-r+ 2 +Ef+n
f=n PR(f-n) f-n
Comparing chis to the z-coordinate in Equation 4.1.2, we see thar we have found

S *n
- z

a way 1o offset projecied deprh values by a constant £ =

(4.1.4)

Choosing an Appropriate Epsilon

Due o the nonlinear namure of die z-buffer, the constane offiet piven in Equarion
4.1.4 corresponds to a larger eye space difference far from the camera than it does near
the camera. While this constant offset may work well for some applications, there is
no single solution that works for every application at all depths. The best we can do is
chaose an appropriate £ given an eye space offset § and a depeh value P, which collec-
rively represents the object thar we are offsetting. To determine a formula for &, ler us
examine the result of applying the standard projection marrix from Equarion 4.1.1 to
a point whoss z-coordinate has been offset by some small &

e SN e B e L
d R R [’rf]= f—n{') f-=n {4.1.5)

1 0 -~ +)

Drividing by n, we have the following value for the projected z-coordinate.
pr= f+m " 2 e
f-n (P+8)f-x

_fEn, 26 +zﬁ;[1 _L]
f-n Blf-a) f-nlP+§ &

Equaring this resule to Equarion 4.1.4 and simplifying a bir, we end up with:

(4.1.0]

E =

2 [2 {4.1.7)

falp(m+a))

A good value of & for a particular application can be found with a linde experi-
mentation. In should be kept in mind char & is an cye space offser, and thus becomes

384 Sectlon 4 Polygonal Technigues

less effective as P, gees larger. For an m-bit integer depeh buffer, we want to make sure

thar:
f=n . (4.0.8)
f +n j

H}

since smaller values of £ will not yield an offser significant enough to alter the integer
depth value. Substituting the right side of Equation 4.1.7 for £and solving for & gives

sz
MI
5z = 1.
&P (4.1.9)
—kP?
d = £ 1.
YTy {4.1.10)
where the constant £ is given by:
e (4.0.11)
1}5{1" -1)

Equarion 4.1.9 gives us the minimum effective value for Swhen offserting a paly-
gon toward the camera (the usual ease), and Equation 4.1.10 gives us the maximum
effective value for & when offserting a polyzon away from the camera.

Implementation

The following sample code demonstrates how the projection matrix shown in Equa-
tion 4.1.3 may be implemented under OpenGL. The function LoadOffsatMatrix
takes the same six values that are passed 1o the OpenGL fenction glFrustun. It also
takes values for 8 and P, that are used to calculare £

Source Code

ginclude =gl.h=

void LoadOffsetMatrix(Gldouble 1, Gldouble r,
Gldouble b, Gldouble £,
GlLdouble n, GlLdouble £,
Giflost dalta, GLfloat pz)
i
GLfloat natrix]16];

4.1 Tweaking a Vertex's Projacted Depth Value 365

fF Set up standard perspective projection
glitatrixMode (GL_FROJECTION) ;
glFrustun{l, r, b, t, n, T};

{f Retrieve the projection matrix
glEetFloatw (EL_FROJECTION MATRIX, matriu);

{f Galculate epsilon with eguation (4.1.7)
GLfloat epsilan = -2.0F * £ * p = delta
Lt + n) * pz * (pz + delta));

£ Madity entry (3,3} of the projection matrix
Ratrix[10] *= 1.0F + epsilon;

/! Semd the projecticn matrix back to OpenGlL
plloadiatri=f(mateix) ;

4.2

The Vector Camera

David Paull

The vecror camera is a gencralized form of the matrix-based camera found in many
maditional graphics engines. Marrices are olten difficult to read due to the faer that
they rypically hold several operations concatenated together. The vector camera uses
only simple vecrors 1o describe ies orientation, positien, ficld of view, and ISPECE ranie.
This formar allows for some inreresting optimizations to the overall graphics pipeline.
The vecror eamera uses the same information lound in matrix-based cameras. The
world-to-camera matrix (view marrix) is broken down into four vecrors. As you can
see in Figure 4.2.1, a view matrix is really four vectors.,

Three vectors represent the three axes that define the camera’s arientation, and
ofc vector represents the camera’s position in the world coordinare space. In total, this
provides six degrees of freedom., In some graphics engines, you may need to invers che
view matrix to be compadble with the vector camera. Figure 4.2.2 shows a scene with
the vector camera and a cube model. It also shows the viewing pyramid that defines
the limits of the camera’s view.

The main advantage to the vecror camers is thar it can operate in both local and
world eoordinate space. The camera’s orientation and position vectors are stored in
world space; however, they can be inverse transformed into local space using the
inverse of the model’s local-to-world matrix. The camera and the object won't move
in relation to each ocher; rather, the camera’s new orientation and position are relative
to the local space object. These are the only ransformarions required to render the

=>, 0.707 0.000 0.707 §0.000 %
=, 0.000 1.000 0.000 §0.000
0.000 =

0.000 0.000 0.000

FIGURE 4.2.1. The view matrix is composed of four vectors,

4.2 The Vector Camera : JIBT

FIGURE £.2.2. Nlusirarion of the vector camen,

object. Now that the vecror camesa is in locl space, it can project the local space
coordinates, and no further wransformations are required. After doing almoss no
work, the vector camera can now cycle through each of the local space vertices in the
madel, and project them into 2D screen coordinates. If the modd is swaric, like a
mountain, the model data can be stored in world space, This allows for an even faster
code path. With both the object and the camera in world space, no inverse matrix
needs to be cloulated, and no ransformations are required ac all.

These diagrams use 2 lefi-handed coordinate system with the Faxis pointing up.
The vector camera’s position is (0, 2, =2), and has a small roracion abour the [i-axis to
tilt the camera down. The box's position is (0, 0, 2), and has 2 rotation of 45 degrees
about the Y-axis. The smaller arrows show world (x, , 2)-axis vectors to help illusrate
rotations.

Introduction to the Vector Camera

The vector camera uses three vectars to represent its orentadon. The &5V, and NV
vectors are parallel to the X, ¥, and & origin vectors, respectively, if the camera has no
rotation and is positioned ac (0,0,0). The Lf vector points o the right, the V vector
points up, and the N vector points in the direction thar the camera is facing, Figure
4.2.3 shows the vector camera with its 3D screen. This 310 screen is created using the

368 Section 4 Polygenal Technigues

cameras LV, and N vectors, and owo field of view parameters. The fidd of view
parameters are caleulated using a user-defined field of view that is then scaled by the
aspect ratio. There are many ways o calculate the field of view paramerers. For thess
examples, [used the I!'nlluwing code :

Tloat AspectRatic = Screentalght/ScraenWidih;
Tloat FOV = pij2:

Tloat hFrac = tan(FOV=D.5):

float vwFrac = tan{FOV*0D.5*AapectRatio);

[f the camera had no rotadons or rranslations, the vecrors would be defined as fal-
borws:

@ vector = -U vectar * hFeras 4+ WV vector * vFrac
E wegtor = U vector * hFrac = 2
T wector = -W wector ® vFrac = 2

The 3D screen is created by adding these vectors. For this example, the distance
to the near planc & 1.0; thus, starning ar the camera’s position, add 1.0 = N vector.
Then add the O vector, This defines the point in 3D that will be called the screen ori-
gin. The Sand T vectors originate from this point. The S and Tvecrors define lines of
constant screen X and screen ¥, respectively. It is analogous to adding a sereen-sized
texture to the quad defined by the $and 7 vectors. Using the world space position of
the camera and the world space §and T vectors, any point in world space can be pro-
jected into screen coordinares using the following method. A vector is created starting
at the world space position of the camers, which ends ar the world space position of
the vertex to be projecred. If the vertex is in view of the camera, we can caleulae the
3D point where the ray intersects the 3D screen of the vector camera. This intersec-
tion point is shown in Figure 4.2.3 and Figure 4.2.4 as the P vecror. Then using the
vector dot product, the distance along both the § and Tvectors can be found, which
essentially converts che values into 2D, These 2D values are rescaled based on the er-
rent display resolution, and the result is 2D screen coordinates ready for display.

Local Space Optimization

The camera vecrors ave stored in world space; however models are typically stored in
local space, somermes called model space. The model is centered around (0,0,0) and
15 accompanicd by 2 local-to-world matrix. This local-to-world matrix defines how
the object will rotate and ranskte in order to end up in its final world space orienta-
tion and position. Since the model data & stored in local space, it would be advanta-
geous to be able wo work in local space. In order to accomplish this, the camera must
be moved from world space into local space. The camera must be rotated and trans-
lated about the object, such that the camera’s new orientation and position retains the
same sparial relationship as if the object was ransformed local-to-world, and viewed
by the camera in world space. The solution is the invesse of the model’s local-ro-world

4.2 The Vector Camera 3688

-
-

FIEURE 4.2.3. Using the P vector.

matrix. The inverse of a rotation matrix is calculared in two pares. The first part per-
forms a rrarspose of the upper 3%3 rotation marrix. The sccond part uses three dot
products ro calculate the new posidon, This inverse matrix can perform the apposite
operation of world-ro-local.

Please mote thart there are really two local-to-wodd mransformarions that need to
be preserved. The camera has an asumed local-to-world already applied 10 the cam-
eras orientanion and position; thus, we only need to worry abour the ebject’s locl-1o-
world macrix. The newly ecated world-to-local matrix defines how the cameras
orientation and position will rotate and manslate in order 1o preserve the spatial rela-
tionship between the object and the camera. As you can see in Figure 4.2.3, the cube
has undergone the local-to-world transformadon, which is a slow per-vertex process.
Also in Figure 4.2.3, note the camera’s world position and orientation for comparison
with Figure 4.2.4. You can sec in Figure 4.2_4 thar the cube is in its local coordinare
space without any rotation or transladon. The camera, however, has been rotated and
translated such thar the camera generates the same image found in Figure 4.2.3. Mov-
ing the camera into local space is compurationally fascer than moving the locl data
into world space. Only four transforms are required to move the camera into local
space, while ir rakes N rransforms to move a shape with N vertices from local-to-
world. Once the model data and the camera data are in the same coordinate space,
projecrion of the model data requires linde compuradon.

Now that the camera is in local space, some additional optimizations are possible.
If you store the planc normal for cach wiangle with your model, back facing can be

3T0

Sectlon 4 Polygonal Techniques

FIGURE 4.2.4. The cube r=ides in a local eoardinare space.,

performed using a single dot product. If the iangle faces the camera, all of its versices
are flagged as visible. When the entire object has been back-face culled, only the visi-
ble vertices waill need to be projecred.

Conclusion

The vector camera is a handy way of representing the eamera math for use in software
or hardware 3D rendering engines. Trs simplicity allows the freedom to intitively
phice and manipulare the camera. The camerds ability to work in the local coordinate
space allows for several well-known optimizations to have 2 larger impact on render-
ing speed than they do on traditional matrix-based cameras. The vector camera pro-
vides a consistent 25% increase in frame rate. It accomplishes this by reducing the
number of required rransforms, computing small final packets for display, and using a
low amount of memory aversll. The projection math is flexible enough thar it can
also be applied to any focus-based frustum like shadow volumes. Somerimes, the best
optimization is to redesign the method, rather than squesze performance out of the
existing method!.

The OrpenGL source code to the vector camera is included with this book. For
the latest version of the source code, please visit the Tanzanite Software Website ar
www, tanzanite.to. All disgrams used in this article were rendered using the TechNa-
ture engine.

4.3

Camera Control Techniques

Dante Treglia Il

The inreracrive narure of games is the key element in whar atracts and enthralls che
player. The fact thar one ean become so many different characters, from a sexy, scant-
ily clad warrior to an Iralian plumber with the charm o atcrace a princess, is what
entices 50 many people to purchase games. But in order to allow the player o see the
wuorld through a different set of eyes, the game nesds to have a solid camera model.
This is where camera conrrol enters the picture. This article will outline a few basic
techniques that can be wsed o develop the proper camera model for your game,

First-Person Camera

Look-At

Basic first-pesson camesa models rely on “look-ar” wriliries such as OpenGLs glu-
Lookat(). Given a camera position, view direcdon, and up vector, this function
retums an onentaton view marrix. The view marrix is then placed on the OpenGL
MODELVIEW murrix stack and concatenated with orientarion marrices for each object in
the scene as they are rendered. This camera model is very easy to implement, and
quite useful. An implementation of this funcdon can be found in the Cos matrix

library.

Euler Angles

Otrientation in thres-dimensional space can be represented with three Euler angles:
yaw. pirch, and roll (also known as azimurh, elevation, and mil). Yaw, pitch, and roll
account for the rotation in the Y-axis, Xaxis, Z-axis, respectively as illustrated in Fig-
ure £.3.1.

One method for caleulating the orfenation matsix is to concatenate the three
axes’ rotarion marrices, However, for conmrol purposes, it is necessary to maineain the
current position as well as informaren sbour the camers’s X (side), ¥ {up), and -Z
{forward) directions. The forward, side, and up vecrors are used 1o calculate the cam-
eras forward movement, strafe, and jump, respectively. The following code gives a
funcrion that caleolates these vectors, which can be wsed as parameters to cthe glu-
Leskat() Function to produce the cameras view matrix.

Section 4 Polygonal Techniques

yaw

FIGURE 4.3.1. An image of a plane with the yaw, pitch, and roll angles deseribed.

woid FlyCan::Cosputelnfa() {
flpat cosY, cosP, cosR;
float sinY, sinP, sinR;

{f Only Want to Cale these once
cosY = costiY)]

cosP = cosTiP);
cosA = cosT(A);
sin¥ = sinf(Y);
sinf = sinf(P);
sinf = sinf(A);

A Fed Vector
Twd.x = ain¥ = cosP;
Twd.y = sinp:
Twd.z = cosP * -cosY;

fF Look At Paint
at = fwd + eye;

ff Up Vector

Up.x = -co8Y * sinR -« sin¥ * s5inP * cosA;
Up.y = cosP * cosf;

Wp.z = -gin¥ * &sisR - sinP * cosH * -cosY;

/1 Side wector (right}
side = CrossProduct(fwd, up);

4.3 Camera Contral Techniques ar3

Controls

Metheds for moving the cameras orfentarion and position through the scene are very
game-dependent. For example, the camera position of a first-person shoorer will most
likely follow the contours of the environment. A very accurate Hight simulator will
rely on other environmeneal Betors such as engine thrust, altitude, air conditions, rue-
bulence, etc. I'm only going to cover the necessary components to get you off the
ground. Lec’s assume that the user's inpur device is 2 keyboard and a mouse, hur keep
in mind that these techniques can be easily applied to almost any inpur device,
including joysticks, console controllers, and even VR devices.

The most intuitive control using Euler angles is to map the yaw o the mouse's
(screen-relarive) X position, and the pitek to the ¥ position. This mapping will mimic
the camera control found in Cuake, which allows the user o change their view
rapidly with ewo degrees of freedom. This rechnique can be used in conjunceion with
other camera models, For example, Super Mario64 was mostly a third-person game,
bur also included the ability to examine the world through Mario's eyes. Since rlf is
not a common human experience, it is usnally disrezarded,

The camera’s interaction with the environment is a very game-specific wopic. As
menooned ealies, the forward, side, and up vectars are used for contralling the posi-
gon of the camera, and should de directly into your game engine. However you
choose w incorporate these vecrors, [strongly recommend thar you use time-based
physics. This will ensure thar your controls are frame-rate independent and give the
game 3 more realistic feel. Ara bare minimum, you should interpret the user’s input as
a velocity in the desired direcrion. Since you have the camera's orthegonal orientaton
basis vectors (forward, side, up), the implementation is a simple one-dimensional
physics problem:

positien += deltaTime * inputSpeed * formard

Accelerations can also be applied o achieve damping effecs. In the sample code,
I have consolidated these control rechniques into a flying camera thar allows you to
move the view in any direction.

Scripted Camera

Seripted cameras are a crucial part of many games, from cinemaric scenes in role-play-
ing games to helicopter fy-throughs of a golf course. Most games that use this camera
technique use an animadon package 1o script the camera, then import the animarion
into their game engines. This is an excellent solution for a staie path, but what sbour
dynamic paths? Say, for example, you want the player to have an out-of-body experi-
ence and fly through the scene while rargeting on enemies, allies, the gates of heaven,
or the gates of hell.

374

Section 4 Polygonal Technigues

B-Spline Curves

B-Spline curves are a flexible, casy, and efficient solution o generaring a smooth curve
given a set of control points. There are several ather curve-generaring algasithms and
madificarions that effer more flexibility and power that 1 encourage you explore,
but B-Splines are a great place to stare. The cubic implementation T will discuss i
based on a basis funetion in the form of the matrix shown in Equarion 4.3.1, Given a
set of four conrel points and a parameter, 1, that uniformly progresses from 0 o 1
through a sex number of subdivisions, this matrix will produce a smooth curve sec-
ton. For each element (x, 7, 2) of the control points, the Build() function is applicd.

-1 3 31
3 <6 0 4|1
B — Spline = =
S0 s siancks: it | 6

41" Vo g

EQUATION 4.3.1. The cubsc]LS_pqi_r,u: beasis funcrion.

vold Spline::Build(} {
Tloat u, u 3, u_3;
int 1, j, k:
int fndex;

index = 0;
/! Far each control Point (Minus the last three)
for fi = 0; i = controlCnt - 3; i++) 4

M Far each subdivision

Tor|j = O; J < curveSubD; j++) {
u = [float)j [/ curveSubD:
L2 =uru;
A=y s

for(k = 0; k = 3; kes) {
1 Pasition
curvalrata indax].pas[k] =
{
{-1*u 3 # 3%u 2 - 3%y + 1]
contralDatali].pos[k]
{3"u3 - B7u 2 + 0%y = 4)
contralDatai+0] .pos]k]
(-0 3 + 274 2 + 3%y + 1)
controlData]i+l].posik]
{ 1*u 3 + 0% 2 + 0%y + 0)
controlDatai+2].pos[k]
1} oB.OF;

& ik o ¢ d B

}

index ++;
}
}

4.3 Camera Control Technigues ars

WNore thar the paramerer o is squared and cubed; hence, we have a cubic spline,
Also note thar the last three control poines are nor used, since this algorithm utilizes
four conrinuous control poins ar a fime. I leave these extra components in my algo-
rithm so thar [can preserve the continuiry of the cusves. For example, the following
control points will create a very close approxinarion of a drcle.

G: 48.000000 200030 48.000000 /F Hot drawn
C: 48.000000 2.000000 -46.000000
C: -48.000000 2.000000 -48.000000
G: ~48.000000 2.000000 48.000000
C: J48.000000 2.000000 48.003000
C: 48.000000 2.000000 -28.000000 [/ Mot drawn
C: ~-a48.000000 2.000000 -<28.000000 [/ Mot drawn

Utilizing B-Splincs for our purpase requires a little work. The curve provides the
pesition of the camera, but we also need a target and an up vector. For multiple
curves, cach control point should be asociated with a @rpet position. Hence, the
camera will continue 1o focus on the targer 25 it moves along the curve. Ones it
encounters a new arget position, the camera control logic can simply ineerpolate
berwreen the point 1o ger the desired effect. A more complex but flexible solution
would be to use two B-Spline curves, one for amera position and the other for arger
position.

Tricks

Given a set of control peints, the game engine can either compure the endre curve
during one frame, or calculate only the nesded portons of the curve. This reduces the
amount of computations per frame, and also reduces the amount of memory needed
to sgore curve data. B-Splines only requine four control points for any subsection of a
curve. S, by continuously cycling in a new control point, whether it is a random
point or a refully calculated one, a smooth curve of infinice length can be creared.
The demo software for this article demonserares such a solurion.

Although the curve is guaranteed ro be continuous, the distance berween subdivi-
sions is not. Hence, moving the camera across the curve incrementally is nor a suffi-
cient solution. The camera would visibly change velocity between conerol points, and
it would be subjecr to changing frame rares. The best method for moving the curve
across the screen is 1o use distance and speed caleulasions. For accurate distance caleu-
lation, you nesd 1o calculate the distance berween cach subdivision ar the curve level,
This method requires a loc of calculation, bur it is worth ir. Use this funcrion w cal-
culate an appropriate index for a given distance:

int Spline::OetIndexAtDistance|floet distance) {
int imdex = 0;

1T {distenca < 0.0} return -1;
{§ Forward Push
while [(index < curveCnt A&k

376

Section 4 Polygonal Technigues

distange > gurveDataindex].distance)

1
index++;

it {index == curvelnt) return -1;
returt index:
}

Another useful trick for using B-Splines is to uilize the mngents of the curve to
force the orientation of the camera to the curve. This would be particulardy wseful if
you wanted to implement a roller coaster. A close approximation can be ealeylaged Loy
subtracting each curve point from the one preceding ir. However, 2 more accurate
solution is to calculate the derivative of the B-5pline basis function. This derivative is
given in Equation 2. These calculations are performed in the sample code.

A e Lok oy

. [0 3 < o1

B3 o= 2 1z
0T bty Eo

EQUATION 4.3.2. Firs derivative of the B-Spline basis.,

One pidhll | should mention is normal caleulations, Finding a normal o a curve
s 2 simple problem. One solution is to take the tangent of the current conrrol point
and cross it with the tangent of the next control point. Finding the appropriate nor-
mal, on the other hand, is a difficuls problem. Thers are an infinite number of aor-
mals at any given point of a curve, and the problem is to find the one thar produces
the result you want. [found thar esing the narural nermal, by crossing tangents, wsu-
ally gave me the resule T wanted. However, since | was using the cross produce, the
right-hand rule would occasionally flip my normal when the curve swicched diree-
tions, | compensared for this by checking the dor producr of the eurrent normal and
the previous one to sce if the difference was ~180°, If so, T would set 2 fag vo fip the
normals back. In some instanees, I simply provided the normal that [wanted with the
control point, and interpolated to the next natuml (or specificd) nommal as T subdi-
vided the curve,

Catmull-Roem

Since I'm an the topic of B-Splines, I should mention a variation of curve gencration
functions called Catmull-Rom curves. The bigpest difference between these two
curves is that Catmull-Rom cusves go through the control points, whereas B-Splines
do not. However, I must warn you that the “rurviness™ of this variation is nor as pleas-
ing o the cye as B-Splines. Nonetheless, you may find it useful or necessary o have
the curve pass through the control points. The basis functions are lisied in Equation
4.4.3.

4.3 Cameora Control Techniguas 377

=1 ZX2 =1 0
Catminll — Rom = N LA [—
=3 4 1 012
1 -1 0 0
-3 -1 4 -1
Catminll = Rom® = A e Ve —1-

-4 =3 5 1 |2
oL R0)
EQUATION #.4.3. The Carmull-Ram hasis fusctions.

Camera Tricks

Zoom

Say you want to have a high-powered sniper rifle with a long range scope in your
game, and you want the player to be able to look around through the scope, One
quick and dirty methed for accomplishing this in OpenGL is 1o use the FOV para-
meter of the gluPerspective() funciion. This snipper of code will cuse the camera
to zoom in and out with the cosine function:

plMatrixMode (GL_PROJECTION) ;

glloadIdentity();

-ﬂll.lF'Ell'EDﬂﬂ'tl‘l’El:EDS{tmnﬂ += Q.0FF}™10 + 33,
B40.0F /480.0F, 1.0, 2000.0);

glMatrizMode (GL_WDELVIEN) ;

Damping

Damping is the key to making camera controls lnok and feel right. The following
function will return a vector that approaches the rarger vector such that as it reaches
the rarger, it begins to slow down. However, there is 2 major problem with this solu-
tion: Ir is frame rate dependent, As the frame-rare increases, the damping effece
decreases.

vectard dampTypel{vectord curr¥, vectord targetk) {
return curr¥ # | (targetX - currX) J 16.0F);
}

Using physice is one possible solution for damping. Applying aceelerations and
friction to the camera’s position will produce the desired resule, and physics equations
are frame-rare independent. Bur, physics is more appropriate for an interactive solu-

378

Section 4 Polygonal Technigues

tion. They don't easily offer 2 current and rarget position interface. which would be
meore useful in situations where the camera is seripred or affected by fixed animations.
Springs are the perfecr solurion.

Fama=—fex— kv
EQUATION 4.3.4, The spring equation.

Ler’s break the spring equation up into usable pieces and get a function. Firsr, ler's
assume that our mass is 1. x represenes the displacement from the resting (@rper) stane
of the spring to the current position. The two constants & and £, represent Hooke's
spring constant and the damping constant, respectively. v is the velocity of the rarges
position. The function thar implements this damping is shown here. Whar a perfees
opporunity for C++!

vegtord SpringDanp(
vectord currPas, £ CGurremt Position
vectord trgPos, i Target Pesition
Yeciard prevTrgPos, [/ Previsus Target Position
float deltaTine, {J Change in Time
float springfanst, J/ Hooke's Constant

float despConst, fF Damp Comstant
float springlen) {

vectord disp; {4 Dizplacement
vectord veloeity; if Veleeity
float forcelag; ff Force Magnitipds

1 Galeplate Spring Force

disp = currfos - trgPos;

velocity = (prevTrgPos - trgPas) * deltaTime:

forcolag = springConst * (springlen - dizp.lengthi)) +
dampConst * (DotProduct(disp, velocity) [
disp.length{}};

{f Apply Spring Forge
disp.normalize();

disp *= forceMag * deltaTime:
rFEtUrn currfas += disp:

}

Third-Person Camera

On the topic of cameras, 1 also need ro mention the valuable third-person camera, As
an example, | have added a spring-based third-person camers modd to my sample
code. The actor in the scene is regulated by 2 spline. This is only to mimic random
orientations that an acter could possibly undertake. In an interactive game, the orien-
tation of the actual acror ean be contralled by game logic, canned animarions, or even
the first-person camera model described carlier. Regardless, the camera macks 2 pasi-
von that is a given distance behind the actor. I use the spring damping function to
give the camera a realistic fecl,

43 Cameara Contral Technigues 378

Quaternlons

As a final note, quaternions have become an integral part of game programming, and
play an important role in camera orientation technigues. There are many benefiss to
using quaternions to intermally represent orientations. The three-parameter represen-
tation of Euler angles requires wrigonometry and nine-parameter orthogonal matrices.
Cuaternions, on the other hand, only require four paramerers and are less computa-
tionally expensive.

When it comes to view interpolaton, the Euler angle implementation is inher-
endy buggy. Say you wish 10 rotate the object 907 in the ¥axis (yaw = m/2). Because
cach romrion is compured separately, this operation rotues the Xeaxis onto the nega-
tive Z-axis. Hence, the result of a rotarion in the X axic by an angle 8 is the same as
rotating -8 in the Z-axis. In other words, the camera will roll when you apply a change
in the yaw. This parametric singularicy is called gimbal bek. Because of this lock,
interpolating through these singularitics produces strange and most likely unwaneed
results. Cluarermions, on the other hand, do not have this problem, and can be inter-
polated quite casily. By representing camera orientation with quaternions, we can per-
form smooth interpolations between two viewpoins.

More sophisticated implementations of orentation controls such as those found
in commercial Highe simulators apply angular velocities via quaternions. However, for
our purpases, it is sufficient and more intuitive w increment rotation around an angle
using the Euler angles, than to directly recalculare a quatemion. Hence, it is useful o
have a function that produces a quarernion given the three Euler angles.

quaterfion Bquaternion::SetEuler({Tloat yvaw, flosat pitch,

float roll) {

Tloat cos¥ = casf(yaw | 2.0F);

Tloat sin¥ = sinf(yaw [/ 2.0F)!

Tlpat cosP = gasf(pitch ! 2.0F):

Tlpat sinP = sinf(pitch ! 2.0F);

Tlopat cosh = cosf(roll 7 2.0F);

flpat sinRk = sinf{roll §/ 2.0F):

SetValues|
cosR * s5inP * cogY + ginpAl * easP ¢ giny,
cosR * cosP * sinY - sinfl * sinP * cosY,
sinR * ¢osP * co8Y - cosR * sinP * siny,
cosh * cosF * cosY & sinfl * sinP * sin¥

i

return *this;

A Fast Cylinder-Frustum
Intersection Test

Eric Lengyel

Before attempting to render a complex objecr, many games first determine whether 2
geomerrically simple volume bounding thar object is visible, Due to their computa-
tional efficiency, spheres and boxes are commonly used as bounding volumes, bar it &
sometimes the case thar objects are naturally suited 1o be bounded by a ofinder
Although we will not be able to achieve the speed ar which 2 sphere or box could be
rested, chis article presents a quick algorithm for determining whether an arbitrary
cylinder potentially intersects the view frustum {and thus whether the object is visible).

The efficiency of the algorithm reliss on the fact that we can reduce the problem
w that of determining whether 2 line segment intersecs a propery modified view
frustum. Given a cylinder described by 2 radius and two poin in SPRCE TEpresenting
the centers of the end faces, we individually move each of the six planes of the view
frustum outward by the cylinder’s effecsive radius with respect to thar plane. The effec-
tive radius depends on the cylinder's orientarion, and ranges from zero (when the
cylinder is perpendicular to the plane) to the acrual radius (when the cylinder is par-
allel o the plane).

The eylinder test has advantages over the sphere and hox tosts when an object’s
bounding cylinder has a large heighe-to-radius rarie. Such a case arises, for insance,
when rendesing shadow volumes for infinite light sources, since 2 shadew volume
typically needs to be long relative to the size of the object casting ic. A shadow volume
i completely contained inside the exrrusion of the object’s bounding sphere along the
light direction, making it a natural candidate for 3 cylindrical bounding volume.
Using 3 bounding sphere for such a volume would contain a grear deal of empry
space, causing a sphere visibility test to reurn positive in many cases when the volume
is not really visible. Although a bounding box would generally conrin an acceptably
small amount of empry space, box visibility tests are not well suited for boxes having
one dimension that is much larger than the other two. This is due to the face that box
tests only detect that a box is invisible by determining that the box lies completely on
the negative side of amy ome of the six plancs bounding the view frusum. A long rec-
rangular bounding box could casily straddle one of the view frusrum planes far our-
side the view frusum, but the box tests would return positive.

4.4 A Fast Cylinder-Frustum Interzection Test 281

The View Frustum

Ohur view frustum shall be complerely described by four quantites. The first is the
focal length £ which determines the field of view. For a desired horizonral field of view
angle B, the focal length is given by the formuls:

fier —r .
can@ / 2]

The second quantity is the aspect ratio «, which is simply the viewport’s height
divided by its width. Ara distance { from the camera, a plane perpendicular to the
cameras viewing direcrion carves a rectangle out of the view frustum whese lefi and
right edges reside at x = 21, and whose top and botrom cdges reside at y = 2.,

The remaining owo quantites thar describe our view frusum are the minimum
and maximum depths thar define the near plane distance # and the far plane distance
f- Ara distance # from the camera, the viewport rectangle is bounded by x = n//and
¥ = 2nall. These values are passed o the OpenGL function glFrestun.

Using the values of / and &, the inward-pointing unit-length normals of the six
frustum planes are given, in eye space coordinates, by the following formulas:

(4.4.1)

Table 4.4.1. View Frustum Plans Normals

Plango Mormal
["-.u'.r fﬂ, ':lr_]]
Far (0,0, 1)

d
Top [D. - = - -

/ 3
P

0, .= =

Bosom { Ic 3 e 2

Section 4 Polygonal Techniques

The cylinder intersection test will take place in eye space so that we can wke
advantage of the symmetry of thess normals, 2s well as the numerous zcros that appear
in the mble.

Calculating Effective Radii

Let us call the two endpoints of the cylinder’s axis P, and P, and the cylinders radius
r(see Figure 4.4.1). Now we sclecr one of the six view frustum planes, label its noemal

N, and call the angle between the normal and the cylinders axis e The effective
radius r'of the cylinder with respect to this plne is given by the simple formula

r'=75in o (£.4.2)

The most immediate method for dezermining the value of sin @ would be 1o cal-
culate the magninde of 2 cross product, bur we can calculate the same value using sig-

nificantly fewer operations through a bit of rigonometric manipularion. Recall the
identiny:

$int o+ cost o= 1. (4.4.3)
This gives us the alternative form for Equarion 4.4.2:
r =yl = cos’ @, (4.4.4)
The value of cos oris given by
E=F|-N
cos o = (- 7) . (4.4.5)
: ~E|

The normalized vector representing the axis of the cylinder only needs to be cleu-
lated onee. For cach view frustum plane, Equation 4.4.5 can then be evaluared through
a simple dot product with a normal having at most two non-zero companents.

It is not absolutely necessary o calculate the effective radii, sinee the actual rdius
could be used in its place, saving up to five possible square root calculations. Using
the actual radius may be desirable in the case when many cylinder visibilicy tests are
be performed, and the square root operation is slow on the target machine. The dis-
advantage of using the acrual radius is that it increases the number of visible cylinders,
pechaps significandy if the acual radius is lasge. If speed is an issue, the decision o
use effective radii or the actual radius should be determined through experimentation.

The Algorithm

The intersection test execures by visiting each of the six view frustum planes individ-
wally. We consider the near and far planes first since they are parallel and thus produce

4.4 A Fast Cylinder-Frustum Intersection Test Q83

i_l

FIEUAE 4.4.1. Caloularing an effecrive radius.

the same effective radii. Onee we have discovered thar ar least part of the cinder lies
berween these planes, we proceed 1o the four side planes. For each plane, we first cal-
culare the cffective radius ' of the olinder and move the plane outward by char dis-
tance, s illustrated in Figure 4.4.2. This has the effect of reducing the cylinder o 2
line segment, but it carries the slight cost of induding a few more cylinders in our vis-
ible set that do not actually intersect the view frustum.

Afeer adjusting a plane, we next test the two endpoints Py and P; 1o determine on
which side of the plane they lie. This is done by plugging each endpoints coordinates
into the planc equarion

P-N-d=0 (£.4.6)

where d = — ' for the near plane, d = ~f'- r"for the far plane, and = =r'for any of
the four side plancs. The sign of the left side of Equation 4.4.6 indicates on which
side of the plane the point P liss. Since the plane’s normal points toward the interior
of the view frustum, any point lying on the negative side of che plane lies ourside the
view frustum. Thus, if both Py and P, lie on the negarive side of the plane, then we
immediately kaow that the cylinder is not visible, and the algorithm exits, Any point
interior to the view frustum muse lie on the positive side of all six planes, so whenever
both I*; and P, lic on the positive side of a single plane, we cannot draw any condlu-
sions and just continue to the next plane.

Section 4 Polygonal Techniques

FIBURE 4.4.2, The shaded region represents the volume added o the view frussum afees
each plane has been expanded by the associared clfective sadius,

In the remaining case that one endpoint lics on the positive side and the other lies
on the negative side, we caloulare the point where the line sepment interseces the
planc and replace the exterior endpoint with it. This effectively chops off the part of
the cylinder thae we know to lic ouside the view fruscum. To find the point of inrer-
section, we use the parametric equarion for a line

P-P, +AP,—P) (44.7)

where 0 S ¢ 5 1, Substuing the right side of this equarion for P in Equarion £.4.6
allows us to solve for the value of rar the point of intersecrion:

d—P-N
(p.-p)-N

(4.4.8)

Plugging this back into Equation 4.4.7 gives us our new endpoinr. After replac-
ing the exterior endpoine with it, we continue to the next plane.

I we visit all six planes of the view frustum and never encounter the case thar
both endpoints lie on the negative side of 2 plane, then the cylinder is ar least partially
visible. Of course, this means that we do not have to replace any endpoints for the last
plane that we visit. As soon as we know thae at least one of the endpoines lies on the

posirive side of the final plane, we know that part of the cylinder intersects the view
frustum.

4.4 A Fast Cylinder-Frustum Intersection Test 385

Implementation

The sample code in Listing £.4.1 implements the cylinder visibilicy test. The Frustun
class encapsulates the view frustum and is constructed by specifying the focal length,
aspect ratio, near plane distance, and far plane disrance, The components of the nor-
mals listed in Table 4.4.1 are precalculated inside the constructor. The member fine-
tion CylinderVisible determines whether a cylinder specified by two peints and a
radius intersects the view frustum and reourns true or false.

Listing 4.4.1

#include *mixlib.h"

class Frustum

{

private:

!} Mear and far plane distances
float nearDistance;

}

float

TarDistance;

{f Precaleulated normal componemnts

float
Tloat
Tloat
Tloat

public:

leftRightx:
leftRightZ;
topBottony s
topBotionZ

/! Constructer defines the frustos
Frustum{fleat 1, float a, Tloat m, float);

{f Intersection test returns true or false
bool CylinderVisible{vecterd pi, wectors p2,
Tloat radius) const:

Frustum: :Frestun(float 1, float a, float n, Tlozt f)

1

M Zave off near plane and far plane distances
neardistance = n:
TearDistance = f;

M Precalévlate side plane narmal components
Tloat d = 1.0F ! sqretfl * 1 + 1.6F);
letTtRightX = 1 = d;

lefTtRightZ = d;

d=1.0F [sqrt[l = 1 + 8 = a);
topBottomy = 1 * dy
topBottond = a * d;

Section 4 Polygonal Techniques

?nul Frustun; ;Cylinder¥isible (vector3d pl, wvectord p2, Tloat radius) const
ff Calculate unit vector repreésenting cylinder's axis
vectord dp = p2 - pi;
dp.normalize(};

ff Visit near plane Tirst, N = {0,0,-1}
float dot1 = -pl.z;
fleat dot2 = -p2.z;

ff Calculste effective radius for near and Tar planss
float effectiveRadius = radivs ® sgri(1.0F - dp.2 * dp.z);

Hf Test endpoint® apainst adjusted mear plane
Tloat d = nearDistance pffectiveRadius:
bool interiori = (dotl = dj;

bool interior? = (dot2 > d};

if {linteriori)

{
fF If neither endpoint is inmterior,
M ocylinder is not visible
it {linterior?) return (false);

Pl was outside, so move £t to the near plane
float t = (d + pi.z} / dp.z;
pil.x -= T * dp.x;

pl.y -= 1 * dp.¥;
pl.z = -dj
elze if (limnteriorz)
i
I op2 was sutside, 50 move it te the near plane
Tloat t ~ {d + pi.z) F dp.z;
p.x = pi.¥ - € * dp.x;
p2.y = pl.y = t ™ dp.ws
p2.z = -d;
1

{f Test endpeints against adjustaed far plane
d = farfistance + effectiveRadius;

interiorl = (dotl < dj;

interiorz = (dot2 < dj;

if {linterdori)

{
ff If nedther andpoint is isterior,
ff eylinder is not wisible
if {linterdior2) returm (Talsze);

{1 pl was outslds, so mave it to the far plane
float t = (d + pl.z) [(p2.z = p1.2);

Pl.x == § * [p2.% - pi.x);

Pl.y == T * [pd.y - pl_y);

pl.z = -d;

4.4 A Fast Cylinder-Frustum Intersection Test

}
else if (limterisca)
{
fF p2 was outside, 50 move it to the far plane
float t = (d + pi.z) [{p2.z - pl.z);
pE.x = pl.x - £ * [(p2.x - pi1.%};
Pe.¥ = pl.y - T " [p2.y - pl.y);
p2.z = -d;
}

f vimit lefe side plane next

AP The morazal components have been precalculated
float nx = leftRightX;

float nz = leftRightZ;

ff Compute gl * H and p2 * M
doti = nx * pi.x - Az * pl.z;
dof2 = NX * p2.X ~ NZ * p2.Z:

FF Caloulate effective radius Tor this plane
flpat & = nx * dp.x - nz * dp.z:
effactivefadius = -radius * sgro({1.0F - 5 * s5);

{f Test endpoints apainst adjusted plane
interiari = {doti = effectiveRadius);
intarigr? = (dot? = effectiveladius);

Ir (limteriory)

!
Hd If nelther endpoint 4% imterior,
A0 cylinder 15 not visible
if (linterier2) return (false);

S p1 was outside, 50 move it to the plane

Tloat t = (effectiveAadius - doti) [(dot2 - doti);
pl.x += £t * [p2.x - pl.x)}

pl.y += 1 * (p2.¥ - pl.¥);

pl.2 += ¢t * (p2.z - pi.z);

else if (Lintarliorz)
{
{{ p& was outside, o mova it to the plane
float t = (effectiveRadius - doti) / {(dot2 - doti);
PE.x = pi.x + ¢ * (p2.x - pl.x)};
Pe.y = pl.y + t * (p2.y - pl.y]}
pe.z = pl.2 + T * {p2.z - pl1.2);
}

fF Wisit right side plane next
dotl = -nx * pl.x - nx * p1.z;
dat2 = -nx * p2.X - nx * p2.z;

& = -nx ® dp.X - nz * dp,z;
effectivefadiug = -radius * sgri{1.0F - & *);

Section4 Folygonal Techniques

interiard = (detl > effectiveRadius);
imterior2 = (dot2 > effoctiveRadius):

it [(linteriori)

1
1t [linterior2) return (false);
Tleat t = (effectiveRadius - dotil) f (dot2 - dotil);
pl.x += & * [p2.x - pi.x};
pl.y 4= £ * [p2.y - pl.y];
pl.z += £t * (pZ.z - pl1.Z]);
1
glag if (linteriorZ)
i1
float t = (effectiveRadius - doti) [(dot2 - doti);
p2.x = pl.x + t * [(pE.X - pl.xX};
p.y = pl.y + t * (p2.¥y - pi.y};
p2.z = pl.z + £t * [(p2.T - pl.Z}):
i

1§ Visit top side plane next
Ii The norpal components have been pracaleulsted
float ay = topBottomy;

nz = topBotton?;

dotl = -ny * pl.y - nZ *~ pl.z;
dotZ = -ny " p2.y - nz * p2.z;

%= «ny * dp.y - Nz * dp.z;
effectivifadius = -radive = sgre(i.0F - 5 * 5);

imteriar! = (deot! = effectiveRadius);
interiard = [dot2 = gffectiveRedius);

it [linteriori)

{
if (linteriorZ) return [Talsa);
float t = (effectiveRadius - dotl) / (dot2 - doti});
pl.x += £t * [p2.X - pl.X);
pl.y +=t * [p2.y - pl.y};
Pl.z += &t * [p2.z - pi.2);
]
else if (linterior2)
{
fleat T = (effectiveRadius - dot1) [[dot2 - dotl1);
PE.x = pl.x + 1T * [p2.X - pl.x);
Pe-¥ = pl.y + ¥ * (p2.y - pl.¥)};
PE.z = pl.z + t * [pd.7 - p1.%):
]

{f Fimally, visit bottom side plans
dot! = ny * pl.y - nz * pl.z;
dot? = ny * p2.y - nz * p2.z;

4.4 A Fast Cylinder-Frustum Intersection Tast 388

$ =y * dp.y - ar % odp,z;
effoctiveRadius = -radius * aqre(1.0F - & * g5);

interior! = (doti > effpctiveRadius);
interior2 = [dot2 > effoctiveRadius);

ff At least one endpoint must be interier
fF oer cylinder is pot visible
return {interiorl | interior2);

4.5

3D Collision Detection

Kevin Kaiser

A real-time physics engine is central to creating a 3D gaming environment where the
player can easily suspend rheir dishelief; instead of just realistic picrures, the physics
engine provides realistic intesactions between objects in the picrures. These interae-
tions provide che player with a basis for reality; in other words, the player can berrer
understand and navigare in 2 world where things act as they do in real Life. The fiest,
and arguably most important step in setting up a real-time physics simuolation is hav-
ing accurare collision detection; once collisions are detected, the simulation can react
accordingly. This article will help lay the groundwork for building an accurare physics
simularion by starting with one of the most crucial pars of a real-time physics engine
3D collision detection.

Overview of the Algorithms

The two basic collision algorithms this article covers are:

= Bounding Sphere Collision Detection—For the sake of clean code and an easy-
to-understand explanadon, we'll be using bounding spheres. The bulk of this
code checls the radius of a bounding sphere against the radius of another bound-
ing sphere to determine possible collisions.

* Triangle-to-Triangle Collision Detection—It might be wise o brush up on
your calculus before amempting 1o understand chis algorithm; it uses parametric
equations to determine collision points berween one rriangle and the plane of che
other mangle, then determines whether those collision points lie inside the appo-
site triangle.

Bounding Sphere Collision Detection

Collision detection is best performed in hierarchical steps: Object Bounding Sphere
1o Object Bounding Sphere, Polygon Bounding Sphere to Polygon Bounding Sphere,
then Triangle to Triangle. We will begin by generating bounding spheres. Calculating

4.5 3D Collision Detection 281

bounding spheres is very simple; all you need is o find the center of the object, then
compute the maximum distance between the center and a vertex in the objece. By
storing the radius of each bounding sphere, you can perform bounding sphere colli-
sion detection by adding the mdii of the two objects, then taking the distance
berween the two center vertices. If the distance is grearer dhan the sum of the radii, the
spheres are certainly not colliding,

Let's go through this step by step. First, you'll need 1o determine the center poine
of the mesh. One way o do this i to create a bounding box and find the midpaine
between diagonally oppasite vertices (see Figure 4.5.1). To compute the bounding
box. you need to find the minimum and maximum x, 3, and z values for the entire
object. This can be accomplished by iterating through the vertices and maintaining a
“current” minimum and maximum. After checking all vertices, you'll have the maxi-
mum extents of the bounding box, The minimum and maximum values will be wsed
to create the box,

Given & bounding box with eight maximal poini: (ABCDEFGH, see Figure
4.3.2), let’s call the vertex assignments:

(minx, miny, minz)
[minx, maxy, minz)
[maxx, maxy, minz)
[maxx, miny, minz)
(minx, miny, maxz)
{ming, maxy, maxz)
{Mmaxx, maxy, maxz)
(maxx, miny, maxz)

ISZTMTMOaOm®e

[CI A T I 1]

Mow find the center point, given by averaging the minimum and maximum
points on the bounding box (these are indicared by points A and G).

s

X+

7

FIEURE 4.5.1 Fincing the midpoine.

Section 4 Polygonal Technigues

X+

FIGURE 4.5.2 C:r\uu'ng; h:lll.nﬂing box

I Widpoint formula: Given A{x1,y1,21) and B(x2, y2, 22),

/i the midpoint of the lina the pesses through A and B is
I [i=i4x2))2, (yi+y2)i2, [zi#22))2]

I

center.x = [A.x + G.x)/2;

center.y = [A.y + G.y}/2:

center.z = [A.I + G.Z)/2;

The radius of the bounding sphere is casily computed by looping through the
object’s vertices and finding the distance berween the center point and the cument
vertex. IF the distance is greater than the current maximum distance, replace the max-
imum distance with the new distance. After the loop, the maximum distance is the
radius of the bounding sphere. (Of course, an casy optimization here is to only do the
square root at the very end.)

ff Distance Tormula:
ff 0 dist = eqrif {((x2-x1)°2)4((y2-V1)~2)+{{z2-21)"2)]
Fi distsg = ((¥2-31)"2)+{{y2-y1} 2)#{(z2-21)>2})
r
foreach wvertex v in object {
current_distancs_sg = distsqebject.centar, v);
if (cwrremt_distance_sg > max_distance_sq)
max_distance sq = gurrent distance sg;
}

object.bs_radius = agro[mex_distance sq);

This will next be repeared on the polygonal level; bounding sphere checks are
quick and simple, which is wiy when you have ta check many polypons apainst each
other, it’s advantageous o begin with this test. After you have generazed the necessary
bounding boxes, bounding sphetes, and center points for each objecr and polygon.

4.5 3D Collision Detection 393

you will be ready 1o get into the real meat of this aricle: riangle-to-triangle intersec-
tion eests! Get out the caleulus book—you mighe need ir.

Triangle-to-Triangle Collision Detection

This method of mriangle-to-triangle collision detection relies directly on some easy-
to-understand but slighrly tricky mathematics, Imagine thar we are given two triangles
in 30 space (see Figure 4.5.3). We'll need to collecr a lot of information from the rwo
triangles. We need 1o begin by finding the plane equarion of ane of the miangles. Ifyou
remember correcty, the planc equation is Axs Byt Co+ D=0. We determine A, B, Cand
D by taking cross produces of vertices:

/i piven a triamgle tril with vertices a, b and ¢,
ff wectord a, b, &
vectord w1, w2, cross winvd;

ff create vectors wi, ¥2 (tril.b - trii.a,
£ tril.c - trit.a)
#1 = tril.b — trit.a;
w2 = tril.c — trif.a;

Il HOTE: You may be able to skip this step and substitute your
A own surfece narmels if you already have then stored sonewhere,
M Take cross prodect of w1 and w2 (this is the normal

M vactor of the cross product of Wi and w2)

crosa_wixv2 = GrossProductivl, w2):

FIGURE 4.5.3. Two imterseming rringlos.

Section 4 Polygonal Technigues

ff Then we pleg these values back into AxsBy<Cz+D=0
tril.pA = cross vixvd.x;
rif.p8 = erogs wixe2.y:
tril.pC = cross wixw2.I;

I Following this rule: Ax+By+Gz+D=0

ff 11 point P{x0,¥0,20] is a point on the polygon
fl A = cross_ vizw2.x

i B = crogs vizwl.y

fi G = I:rn!.!_'\rh:'.rz-z

D= (-Axd-B*y0-G=Z0)

tril.pD = -DotProduct{cross vixw2, P);

Line-Plane Intersection

We now have the plane equation of rriangle] and can move on 1o step two: secing if
srigngle? collides with sangle s planc. This is done in multiple steps. The main ides
is thar given owo vertices of miangle2, we take the line defined by these vertices and
determine at whart poine that line collides with rriamglel's plane. I the collision point
is berween the two vertices, miangle? s colliding with erianglel’s plane; if ir isnl
beoween the pwo vertices, we iterate through the other two lines ufrrf..-mgf.-_?' o see if
there are collision points berween those poines.

W solve this line-plane intersection using paramietric eguations from caleulus
Given two vemtices, a(e0p0z0) and bixlylzl), we set alxly0el*s =
bix! yI.zf)*{1-). £ is an interpolation Geror thac ranges from 0 o 1. When =0 you
are at point b, and when r=1 you are at point a. IF we plug in paramerric equations for
each component of the plane equarion, we can then solve for &

A% + xIN1-1)) « Bt v 31 (1—)) + Cf20% + z1%1=t}) + D = O
This reduces down to:

£ = —(AT + BY] + 'l + D) (A*(x0xI) + BYG0-p1) + Czfzl))
The following code solves for

ff A0 = (A*xD} = (B*y0)} + (C=z0)
in = {Tril-=pA*a->x] + [tril-=p@*a-=y) + {Trifi-»pt=a-»z};

ff 11 = (A xl} = (B*y1) + [C*z1)}
11 = (eril->pAth-=x) + [tril-=p@*b->y} + [trii->pl*h.>z);

[Be wary of possible divide-by-zeros here (f.e. if @0 == if}
final &t = -(11 * tril->pb) / (i0-i1);:

ff Then plug Tinal_t back into the functions x(]}, yi(} and z{}
i to get the point of intergectlon from line to planpe
final_x = {{{a-=x)=(final t}}+{{b->x)*[1-Tinal T}});

final y = (((a->y)*(final _t)}+((b->y)*(1-Tinal_t)});

final z = {[{a->Z}*(final t}}+{{b->z}*{1-Final t]]};

4.5 3D Collision Detection 395

This will give you the final point where the line intersects the plane (see Figure
4.5.4). OF course, the t value we've compured must be berween zero and one or the
intersection is not between our two vertices! A special case thar you also need to look
far at this step is the presence of vertical line segments. The quickest way to determine
the intersection point is to plug xand = of either point a or b into the plane equation
for the triangle and sobve for 3. The intersection point would then be (a.x, solved.y,

as).

Triangle “Flattening®

We're going ro assume 2 right-handed coordinate system now. Imagine flarcening a
triangle against one of the coordinate planes, depending upon mangle orientation. It
might lose the y coordinate and keep the x and = coordinates. The concepr here
docsn't specifically call for losing the y coordinare; it just requires losing the appropri-
ate coordinate so that it will flaeen. A good way ro decide which coordinate to drop
is by Inoking at the normal of the plane; if you determine which component’s absolure
value is the greatest, you can then find a plane to flarren against where the triangle will
not be a “straight linc” (such as a vertical triangle losing the y coordinate). For cxam-
ple. if the x component is greatest, you would project to the yz plane. Regardless of
orienation, the oriangle produced by chis will be flat (s if it were lying flar on a wble,
see Figure 4.5.5). This is very advantageous because now we can use basic algebra 1o
check and see if the final intemection point, when flattened in a similar manner, lies
inside the flarened triangle. The code in Listing 4.5.1 effectively flarens the polygon
against one of the coordinare planes.

FIGURE 4.5.4 Derermining collision points.

Section 4 Polygonal Technigues

B -

A Flattened Triangle +

FIGURE 4.5.5 Wertex projection.

Point-in-Triangle Test

Now that we have flattened the coordinates, we need to do some algebra 1o determine
whether the flattened intessection point lies inside the flamened rriangle or not. There
are several popular ways of doing this; we're going to make use the equation for each
line of the flatened wiangle. Take note that regardless of which plane you projec to,
in this discussion we will still refer to the x and y coordinares of the flattened points.
This is because by projecung the vertices, we have effectively reduced the problem
2D; hence, the x and y. First, we need ro find a point that is definitely inside the tran-
gle. The casicst point to find thar firs this descriprion is the cenrer of the trizngle,
computed as the average of its vertices: ((ofexlex2)/2, (0 T3 2)/2)). Now that we
know what direction the inside of the triangle is, we need o see if our paint is on the
“inside” side of the lines thar are made by each pair of vertices (see Figure 4.5.6).
Liven owo vertices, vl and w1, frst find the equation of the line that goes through
them in the form y=mux+b. Remember that the formula for slope (m) s (yf-0)/ (cl-xd),
and you can find & by using the computed slope and 2 known point on the line. Now
that we have the equation of the line in slope-intercepe form, we can determing
whether che flactened intersection poine lies on the side of the line that is the inside of
the tiangle. We do this h}’mmpuﬁrtg_p walues. If you plug the x coordinate of che flatr-
tened intersection poine into the line y=mecs b, you will ger che y value of the line ar x.
Mext, you derermine whether the center point we compured earlier is “abowe™ or
“below” the line by checking y valuss. We know thar it is inside the triangle, so our
tntersection point has w have 2 y value that is in the same “direction” from the line as
the center point. Ifit dos, the intersection poine is “inside” the trangle with respect to
the line ab. Repear this for lines be and ca. If the point is on the inside after each tese,
the point is cerrainly inside the triangle. There is a special case o take into considera-

4.5 3D Collision Detection aa7

FIBURE 4.5.6 Derermining the boundaries of 3 wiangle.

tion: & projected vertical line segment. You cannot graph verrical lines using y=rwce 6. I
this is encountered, you instead check x coordinates instead of 5 coordinares; thar s,
first determine on which side of the vertical line the inside point is, Then, check the x
value of the projected intersection poinc. IF it is on the "inside” side of the verical line,
it is inside with respect to thar line. See Listing 4.5.2 for this procedure.

Check All the Lines, in Both Triangles]

Of course, if one line of our riangle does not intersect, we sill need o check the
other lines. Omne line/triangle collision is all thar is needed to show thar both triangles
are colliding. See Listing 4.5.3 for the rest of this sample code.

After all of this has finished, if no collision has occurred, you need to reverse the

procedure, starting with wriangleZ as the source. This ensures a perfect collision detee-
tiom.

Listing 4.5.1

it (¥==FALZE) { /! drogping x coordinate
a1 = tri->a,y;
bl = tri-=a.z;

a2 = tri->b.y;
b2 = tri->b.z;
83 = tri-=g.y;
b3 = trl-=g.z;

ad = yart-sy;
bd = wart->z;
ingide = 0;
1
alse if (y==FALSE) { [/ dropping y coordinate
8l = tri-»a.x;
Bl = tri.->a.z;
a2 = tri-»h.x;
b2 = tri-=b.z;
a4l = tri-=o.x;

358 Section 4 Polygenal Techniques

b3 = tri->c.z;
af = wert-=x;
b4 = wert-=z;
inside = 03

'

else if [z==FALSE) { [/ dropping z coardimate
al = tri-=a.x;
bl = tri->a.y;
a2 = tri-»b.x;
b2 = tri-=b.y:
B3 = Tri-»c.x;

b3 = Eri-»e&, y;:
g1 = Wart-»u;
bd = wart->y;
inside = 0

Listing 4.5.2

fI These are used to check Tor vertical line segnents in the

il flattened triangle; you cannot graph vertical lines in 20

£ using y=ax:h, 50 we heve To Lnstead check if the flattened
Il intersection polnt lies between the x coordinates of any

Ff vertical line and the center point of the triangls fo see if
ff the flattened intersection point lies on the inzide of the
fI triangle with respect to the vertical line segment.

FAB vert = BC vert = C4 vert = FALSE;

'l y=mx+h for outer 3 lines
if ({a2.a1)1=0] {
il = [(b2«b1)f{a2-a1): JFif a->h
bb1 = [bi1}-{mi=af}; ff ylinx) wsing wertex a
} else if ((aZ-at)==0) {
AB vert = THRUE;
}

i [(a3-22)1=0) {
m2 = (b3-b2)/(a3-a2); [b->g
Bb2 = (B2)-(n2*a2); Moyl mx} using vertex b
b oelse if {(a3-g2)==0) {
BL wvart = TRUE;
}

if {{a1-a3)i=0] {

83 = (b1-b3)/(a1-a3);: JIF c-=a

Bhad = (BbE)-{m3®e3); £ yiimx) wsing vertex ¢
} else if [[ail-a3)==0) {

CA_vert = TAUE;

)
Il find average point of triangle (point iz pguaranieed
center x = [al+aZ+ad)fa; /1 to lie imside the triangle)

center_y = (b1+b2+b3)/3;

4.5 30 Collision Detection 1 298

i See whether (center_x,center_y} 15 abova or below the line,
M then set directlon to UP 1f the point is above or DOWE if the
/7 point is below the Lling

M oa-=h
it [(mi*center x)+b&1) >= center y)
DIRECTIOM(direction,UP);
elsa
DIRECTION{direction DOAH)
iT (AR vert==TRUE] {
if ([at=ag)Bdfat<center_x)) /J vert projected line
insidess;
else if ((a1=as)8&(at=centar_x}} /f wert projected line
insideds;
} elze |
if (direction==U#] {
if (b4 <= ((m1*as)+bb1}) /S b4 less than y to be inside
ingides+: fF (line iz above poimt)
b elze if (direction==DOWN] {
if (b4 >= ({m1*a4)+bb1}) /r b4 greater than y¥ o be inside
ingidess; fF (line 13 balow point)
¥

}

f be=c
if (((m2*center_x)+bb2) == canter_y)
DIREGT IOM{direction UR);
else
DIRECTION({directlion DOWN) ;
if (BC_wart==TRUE) {
if { (a2 = ad4)&&{a2 < centar_x})} §/ vert projected line
ingsida++;
else if (| (a2 = ad4)&k(a2 = ceater =)) // vert projected line
dnsidets;
} else {
if (direction==Uf) {
if (b4 == ((m2*a4)rbb2}) [/ b4 less than y to be inside
inside++; /f (line is above point)
} elsa if (direction=-DOWM) {
it (b4 == ((m2*ad)+bb2}) [F b4 greater tham ¥ to be insida
ingider+; ff (Line 15 below point)
H
i

Pl c-=3
1T (((m3*center_x)+bbd) »= center_y)
DIRECTION(direction UP}:
glse
DIRECTION[direction DOWNH) ;
if (CA_vert==TRLUE) {
AT { (a3 < ad)k&k{ad < centar_x} } ff vert projected line
insidet+s;
elze if [(ad > ad)8&(ald = center_x)) ff vert projacted Lline
inside+e:
} elae |

400 Section4 Polygonal Technigues

if (direction==UP) {
if (b4 == [(m3*ad)+hb3)} // b4 less than y to be inside
ingida++: fF (lime iz abowe point)
¢ oelse if (direction==0D0WH] {
iF_{h{ = ((m3*ad}+bb3}) // b4 greater than y to be inside
: ingides+; ff (Line is Below poimt)

1
if [inside==3} {
rturn TRUE;
¥ else {
raturn FALSE;
}

Listing 4.5.3

ff Sgroll thru 3 line sepments of the other trianple

ff First iteration {a,b}

p-line_planehnnlliainn[[vcrtex_ptr]&trit.:,1verteu_ptr]atr12.h.
(triangle ptr)&tril);

/I Deserminge which axis to project to
M X iz greatest
if ((aks (Tril.pA)==abs(tril.ps))4& (abs{tril.pA)>=abs(tril1.pC)))
tenp = point_inside_triangle((triangle_ptri&tril, (vertex_ptr)kp,
TRUE, THUE ,FALEE} ;
ff Y is graatest
elsa 1if ((abs{tril -PE)F=abs{ tril . pa)) RE(aba [tril -pE}==abs(trii.p&))}
Ramp = point_inside_trianglef(triangle ptr)&trit,(ve riex_ptr)dp,
12 s greatest e
elsa if [[nhaﬂtril-p¢}==ab5[tr11.pﬁjjaﬁ[ahattri1.pt:b=ahs{tri1.pﬂl}]
tenp = point_inside_triangle((triangle_ptr)atril, (vertex ptr)&p,
FALSE, TRUE , TRUE) ;

if [(temp==TRUE} {

{/ Point needs to be checked to spa iT it lies hetwgen the WG
#! wartices.
i F1raF check for the special case of wvertical lina SEQNENTS
if 1itr12.§.x = trid.b.xj8&(tri2.a.z == tri2.b.z))

it (((tri2.a.y <= p.y)8&(p.y <= TriZ.b.y)]|

((tri2.b.y <= p.y)8&(p.y <= triZ.a_y)))
ratura TAUE;

}
fi End vertical line segment check

f/ How check for point on line segment
if (point_inbetwoen_vertices|[vertex_ptr)&tri2.a,
{vertex_ptrjitriz.b,(trianple_ptr)&tril)==TRUE}
return TRIE;
¢laa
raturn FALSE;

4.5 3D Collision Detection 401

I Second iteration (b,c)
p=line_plane collision((vertex ptr)ktri2.b, (vertex ptr)dtriz.c,
[triangle ptrjitril);

Il Determinge which axis to project To
M X iz greatest
if ((abs(tril.pAj==abs(tril.pB)i&&k(aba(tril . pa)==abs{trit.pt)))
tenp = point_inside triangle((triangle ptr)&trii, [vertex pir)dp,
TALE, TRUE, FALSE] ;
MY is greatest
else if ([(abs(trii.p8)==abs{tril.pa))dd|abs{tril.pB)==abs(tri1.pcl}]
tenp = poant_inslde triengle{(triangle ptr)&trid, (vertex_ptr)dp,
TALE , FALSE , TAUE) ;
I 2 is greatest
else if ([(abs(tril.pCi==abs{tril.pA)jak{abs{iril. pC)>=abs(trii.pB}}}
tenp = point_inside_trisngle((trisngle_ptr)&tril, (vertex_ptr)ap,
FALSE , TRUE, TRAUE} ;

if (temp==TRUE) {
{! Point meeds To D@ checked to see if it lies between the two wertices
{{ First check for the spacial case of wertical line segments
if ((tri2.b.x == tri2.c.x)3&(trl2.b. 2 == tri2.c.z))] {
if (({tri2.b.y == p.y)}3&{p.y <= tri2.c.¥]}|
{{trif.c.y == p.y}EL{p.y <= tri2.B.¥}]}
raturn TRUE;
}

/! Wow check Tor point on line segment
if (point_inbetween vertices{[wertex ptrif&triz.b,
(vertex_ptrjétriz.c, (triengle ptr)ierid)j==TRLE)
return TRUE;
elsp
return FALSE;
¥

ff Third iteration (c.a}
p=line_plans_collision((vertex_ptr)&triZ.c, (vertex_ptrib&triz.a,
{trianple_ptri&tril);

[l Determine which axis to project to
fi X% is graatest
if ((abs{trii.pA)>==abs(tril.pB))&&(abs(tril.pA)>=abs{trili.pt}))
tenp = point_fnside triangle((triangle ptr)&trii, (vertex_pir)dp,
THUE , TRUE ; FALSE] ;
If ¥ is greatest
else if ({abs(tril.pB)>=abs(tril.pa))&&(abs{tril.p8)>=abs{trii.pC}])
temp = point_inside_triengle{(triangle ptr)&irii, (vertex_pir)ép,
TRUE ,FALSE , TRUE) ;
fI £ is greatest
else If ({abs(tril.pC)>=abs(tril.ph))&s(abs|trit,pb)>=abs{tri1.pB}})
temp = polnt_inaide_trisnglef(triasgle ptr)diril, (vertex pir)ip,
FALBE, TRIME, TRUE) ;

if (temp==TRUE} {
I14 Point meeds to be checked to see if it lies berween the two vertices

Section 4 Polygonal Technigue:

ff First check for the specisl case of wertical line segments
1f ((tri2.c.x == tri2.a.x)BE(tri2.c.z = tri2.a.z)) {
it (((tri2.e.y <= p.y)BB[p.y <= triZ.a.v}}||
((tri2.a.y <= p.y)d&{p.y == triz.c.v}})
return TRUE;
¥

/) Wow check for point gn line segnent
if [Dﬂiﬂt_inb&twuqn_vurticaaI[uEP[ﬂ;_ptr]&triE.nr
(vertex_ptr)&tri2.a, [triangleé_ptr)&tril]==TRUE)
return TRUE; ff Intersection point is inside the triangle and an
aleg /! the limne ségment
return FALSE;
}

raturn FALSE; [/ Default walue/no collision

4.6

Using a

Multi-Resolution Maps for
Interaction Detection

Jan Svarovsky

This aricle deseribes 2 method for reducing the number of proximity teses thar must
be Pr.l!'fﬂ!l'l!'l:ll:d. for A with la'l.lg-r_' |!|u|:'|:|.|_1¢|:$ uf Eaine ubims af '-:i.l'}'fl.'LE sizes. The cost
of simply testing every object against every other object goss up with the square of the
number of objects, which can ger very large! This is particularly bad if the proximicy
1est is expensive.

Grid

The simple solution is to cut up the wordd with a grid-based map. Each grid square
has a linked list of the objects whoss centers are located above it Because the objects
are of non-zero size, they may overlap into adjacent map squares. When the rime
comes o search for all possible collisions between objects, cach object only has o test
for others after it in the linked list associated with its own map square, and also map
squares to the cast. southeast, and south. Any collisions wo the north and west and
with objects earlier in the list are detecied when other objects do their check, This
enables you 1o avoid checking for the same collision twice.

Problems with Varying Object Size

This approach has problems when the game objects vary widdly in size, You are only
guaranteed o find all the collisions in this way if your game objects are smaller than
your map squarcs. If you have large game objects, you could make the map squares
|larger. However, this would mean that smaller objeces would test against each ather
when they are in fact far apart, when a finer grid system would have avoided them
even considering each other. See Figure 4.6.1.

If you make the map squares smaller than some game objects, then there is a dan-
ger that objects” interactions are not detected because they are far enough apart in
map squares to never check each other, though physically they do touch.

403

Section4 Polygonal Technigues

FIGURE 4.6.1 Objec 2 checks against Objecr 3 and map squares A, B, and C.

You can solve this by giving each object "feer.” Here, objects do not sit in the map
directly (unless they are small enough); instead, rarher small helper objects sit in the
map squares that the object touches. Management of these feet is simple, though a lic-
tle clumsy (Figure 4.6.2).

FIGURE 4.8.2. Larger Objecs 2 now has fect!

4.6 Muli-Resolution Mape for Interaction Detection 405

Multi-Resolution Maps

The alternative suggested here is o have several resolutions of map. The map square
s1zes go up in powers of two to make conversion berween the different conrdinate sys-
tems simple. Each object resides in the map where the squarcs are the smallest possi-
ble while actually being larger than the object. When doing the collision decection,
you not only check against your own map square bur also the map squares in the
lower-resolution maps (larger map squares) that you wuch. Much like only checking
in the linked list after yourself, you don't bather checking in higher-resolution maps.
The smaller objects will find you when they do their own checking, so you don’t have
to search for them (Figure 4.6.3).

It is simplest to have all resolutions of map squares, down o one map square cov-
enng the whole world, Each lower-resolution map is four dmes less data, 5o the mem-
ory requircments are vanishingly small. In my experience, if you cut off the map
resolutions ar some level, you may every now and then during pame development dis-
cover a game object (such as an explosions effect sphere) will be just 2 little too large
and crash your game. The only exra cost for not curting off the map resoludions is
that the searching goes all the way 1o the lowest-resolution map.

You can 2dd a lower bound for the resolution simply. with a decision—do you
disallow larger objects, or do you just put them in the lowese-resolution map squares,
accepting that sometimes they won't be collided with correctly? T recommend allow-
ing them to revide in the lowest-resslution map, assuming that the objects are only
too large during development of the game, and by the time of release you will need 1o
tune the map square size to suit che lacgest abject available in the game.

.

&@n i
4 i

FIBURE 4.8.3 Multiple simple maps; esch objece resides in the finest resolution map
passible.

T

ErFEEENL]

_.-.

406 Section 4 Polygonal Techniques

Source Code

#include <stdio.h=
#Finclude <assert_h-=
#include "mExlib_h*

i Thiz i your gane object bass class
class Gamedbjest:

R Ny N N F ARy TR
IF
ff External definitions

[l If the =map decldes two objects are close endugh together, it will
ff call this function, which you have to provids
extern void process_collision(GampObject *a, GameDbject *h);

R N NN NN N NN AT TNy
I

ff A gama object. Darive your own objects off this
class Ganelbject

public:
GanpObjacti)
{
MextInMap = MULL;
MapSQuera = NULL;
Maphteg = 03
¥

i The object iz in a singly linked list hanging off one of
Il the map squarss
Gangdbject ~MextInMap;

£ And this is the map square that this shject 1s hanping off,
Ir 1e the start of that list
Ganelbject **HapSquare;

Ff The rescluticn of the map the objest is sitting in
int MapRes:

ff Take the pbject out of the map's linked list
void RemaveFrcallapi):

[l calls ‘precess collision® on all the relevant other sbjeccts in
f'f the nap, as per the article
wold ProcessCollisions{class Map *my_map);

private:

fI 0o one resolution of map, useéd by ProcessCollisions()
void ProcessOnelevel(Map *smy_map, GasgObject **map who,
Gamelbject *walker, int current_ras);

4.8

Multi-Resolution Maps for Interaction Detection 407

JERSEERERE R T R R EERd g A AR I L TR E SRR EERER i BRI IRRi LS
M
i The map.

fF for efficiency’s sake, the map dimensions etc are constants, you
I could sinply turn thes into variables if you so0 wished

S (1 =< This) is number of @dp squares at highest ras
Fdefing MAP HI RES SHIET (B}

A and the number of map sguares at the 1loweet res
#define MAP LO_RES SHIFT (4}

Jf smallest size of a map sguare

sdefine MAF SHALLEET SUUARE FILE_SHIFT (@)

saefine MAF SMALLEST SOUARE SIZE §1 == %
HAP_ EHALLEST SﬂUﬁHE SIEE _SHIFT})

A largest
fdefine mP_ElEEEEF_mHE_SIEEHEHIFI' {MAF_SMALLEST BOUARE SITE EMIFT +
MAP HI RES ZHIPT |
- MAP_LO_RES_SHIFT)
gdefing “AP_EIBEEST_SQUAHE_SIIE 1 =
WAP BIGGEST SOUMAE SIZE_SHIFT)

J1 The length of one -Eﬂl]E of the nap in astual gare coprdinates
#gatine MAP_SIZE (1 <<\
(MAP_SMALLEST SOUARE_SIZE SHIFT + WAP_MI_RES _SHIFT))

J1 The map.
class Wap

{

pubrlic:

fira array of PIH.ITEEI‘! o the different resalutions of map.
Game0bject **Who[MAP_HI_RES SHIFT - MAP_LO RES SHIFT + 1];

Map(}
=Map(}i

ff Fills in the who array and clears it
bool Init{);

If deallaocate
void Resst{);

fF Fills dn the ebject's map-related information piven its
I position and radius

vaid Placedbject(Ganedbject &obj, const wectord &pos,
float radius);

I given & map sguare at a certain resolution, returns the

{f one at the next lower resolution, or HULL if that was the
ff Llowest res

Ganelbject *“GetlowarlapSguars|famedbject **current, int res);

Section 4 Polygonal Techniques

I

."Hn'n'n'J'J'J'J'J'”FH.I'.I'J'J'I-"-'-"-"H.".l'."-f-"u"u"n'r.f.l'.l'.l'h’n'n'n'.f.".l'.l'."HJ'J'.l'J'n".f.’.’.l'.l'.l'.l'.l'Hn'h'
I
{f implamentation

void GameObject::ProcessCollisisns(Map *my_map)
{
/i We loop through several resclutions of map, starting with
ff the eurrent.
f First start with the objects in my map square
Gamelbject *walker = HextInWap;
int current_res = Wapfes:

Gamadbject **map who = MapSguara:

o0

i
Hf Do one resolution's worth of eollisign
ProcessOnelevel (my_map, nap_who, walker, CUrrent_rag);

£ Move to the next lower resolution
map_who = my_map->GetlowsrMapSquare (map_who, cufrent_ras);
CUFrEnt_ras—;

¥

while (map_who); J/ wntil we're at the lowest resoluticn,

void GaneQbject::ProcessOnelevel{Map Tny_map, Ganedbject **map_=q,
GameObject *walker, int current_res_shift)

int currant_res_size = | << current_res_shift;

/I 0o all the objects in the Tirst 1ist presented
Tor {5 walker; walker = walker-»HextInMap)

{
}

FI Work out i you can go to the adjacent MAp SOuArgs
int current_offset = map_eg - y_map-*#holeurrent_ras_shift -
MAP LO RES_SHIFT];

process_collision(this, walker):

if Than do ®map sguares to the past, southeast and south
if |{current_offset & {current_res_size - 1)) I=
currant_res size - 1)
{

! Square to the sast

for (walker = nap_sq[1]; walker;

walker = walker-=HextInlap)

{

}

process collision(this, walker);

4.5 Multi-Resolution Maps for Interaction Detection

if (current_offsét + current_res size <
(1 =< [curremt_res_shift * 2)))

{
M Bguarse to the sauth
Tor (walker = nap_sqfcurrent_ras size]; walker:
walker = walker->HextInlagp)
1
process_collisiaon(this, wmalker);
}
!l and lastly, southeast.
if ((ourrent_offset & (current_res_size - 1)) I=
current_ros_size - 1)
{
for (walker = map_sglcurrent_ras_size + 1]; walker;
walker = walker-=NaxtInMap]
{
process_collisioni{this, walker);
}
}
}
1
void GaneQbject: :RenovafroaMap()
{
If Search for nysalf.
for (Gase(bject **pointer_to_me = MapSquare;
*pointer_to ma = this;
pointer_to me = A(*pointer_to_me)-=HextInliap)
{
assert | *polnter_to me &8
“Fame object couldn't Tind itself in msp”):
}
Jf Remowve myself.
"pn:i.nttr‘_'t-e:-_nz = MoxtIinMap;
Hioand for safety's sake, lat's clear ny pointers.
Hextinkap = MULL;
MapSquara = MULL;
}
l;:n::“a:u-::l
for (int res = WAP LD RES SHIFT; res <= WAP HI RES SHIFT; ros++)
{
Whojres - MAF LD _RES SHIFT] = MULL;
}
1
Map: :-Map()
Reset();

410 Section 4 Paolygonal Techniques

woid Map::Reset()
{
fI You'd better have cleared all the objects sut by now.
ff I wmon't check.
for (int res = MAP_LO RES SHIFT; res <= MAP_HI RES SHIFT; res++)
{
dalete|] Whalres - WAP LD RES BHIFT];
Wno[res - W_Lﬁ_FIEE_EHIFI'] = NULL;

)
bool Map::Tmit()

{
Reaset({}; /! just in casze
ff allscate and clear everything.
Tor (int res = MAP_LO RES SHIFT; res <= MAP_HI_RES SHIFT; ress+)
i
Who[res - MAP_LO RES_SHIFT] = new GameObject®
[1 =< [res = 2}];
it (IWho[res - MAP_LO RES_SHIFT])
return false; /f alloc failed
for {int 50 = 0; &4 < (1 =< (res - 2)); sg)
Whelres - MAP LO RES SHIFT][sq] = WuLL;
}
i
return trie;
}

ff fills in the ohject's map-related information pivan its

i position and radius

woid Map::Placedbject (Gamslbject Aobi, const weestord Bpos,
Tloat radius)

{

fI Lnput value checking.
assertiradivs »= 0.f &% radius < MAP_SIZE);

ff If you want to allow positions off the map, change
fI these meserts into assignments

asserf(pos.x »= 0.f &8 pos.x < MAP_SIZE);
assert{pos.y == 0. L& pos.y < WAP SIFE);

Ml Conversion inte integer coordinate system needed far

f shiftinglarray maths later on. Hote that these canversions
[are often slow and may have ©o be replacad with faster

ff versions in some compilers. If you do replace thenm,

{l presarva their rousding-down nature

imt iradius = Int{radius);

imt iw int{pos.x);

int iy intipes.y);

4.6 Multi-Resolution Maps for Interaction Detection

411

[Find which resolutien level of the map the object should
if po dn.

obf.MEpAes = MAP HI_RES SHMIFT;

for (int map size = MAP SMALLEST SOUARE SIZE; map size <=
MAF_BIGGEST BOUARE SIZE;

map_giza <<= 1)

{
§0 Does the ﬂhj&tt fiz?
if (iradius == map_slze) goto it Tits;
If =tep an. ..
obhj _MapRes=;
]

azsert{!"object too large for map - some callisions may not be
detected®) ;

it_fits:

}

I'f Put it in the nap.
int which_level = obj.Mapfes - MAP_ LD _REZ SHIFT;
GameObject **which_who = Who|which_level];

ff Then add on the position

which who == lx == tW_EIEEEET_EME_EIEE_EliIFT - whigh lewel):
which_who += {iy >> [MAP_BIGGEST SOUARE_SIZE_SHIFT - _
shich_lewgl}) << obj.MapRes;

[Insert tha object inta the #ap squire
cbj,HextInMap = *which_wha;
*which_who = &obj;

ob] MapSquare = which_wha;

Ganelbject **Map::GetlowerMapsquare(Gamedbject *Tourrent, int who _res)

{

i Top of map?
if (who_res == WAP_LD RAES SHIFT) return MULL;

& Gamning bit-shifting.
int current_offset = current - Who[who res - WAP LO RES SHIFT];

{f Extract tha y part of the current offset.
int y_maek = QxTTTTTIfF << who_res;

{f The new offset g this:
int new_pffset = ([current_offset & -y _mask) == 1) #
[{cuwrrent_offset & (y _mask =< 1)) == 2);

return Who[who_res - MAP_LO RES SHIFT - 1] + naw offset:

4.7

Computing the Distance into a
Sector

Steven Ranck

This article describes 2 simple and fast algorithm for derermining where 2 point is
berween the edges of 2 2D quad (or sector). The result is 2 unit loating point num-
ber, where 0 indicates that the poinc lies on the leading edge, and where 1 indicates
that the point lies on the opposite edge. The sector may be any four-sided, 2D convex
shape,

"This article is useful for any game that may require knowledge of how far “in” a
2D sector an object or point is. For example, 2 3D racing game might use 2 top-down
2D sectorization of its wrack to describe 1o the Al driving system how to navigate the
track. Using the sector dara and a vehide’s X7 position within a sector, the Al system
could use this algorithm to determine hew far into the current sector the vehicle is, ar
where laterally it is. The algorithm is very fast, and in most cases can easily be com-
puted for every vehicle each frame, if necessary.

The Problam

412

Figure 4.7.1 shows 2 four-sided, 21D sector in X7 world space. The object’s posi-
tion on the AZ plane is shown as point P. We would like 1o find 3 continuous fune-
tion that accepes P as a parameter and produces a value of 0 if 7 lies on the leading
edge, 1 if P lies anywhere on the mailing edge, and a value between 0 and 1 if the
point lies between the leading and rrailing edges. Figure 4.7.2 shows the desired scalar
values for several points within a secror.

As Figure 4.7.2 shows, all points lying on the leading edge produce 2 value of 0,
and all points lying on the triling edge produce a value of 1. Points between the two
edges produce values that increase from 0 to 1 as the poine is swept acros the sector
from the leading edge 10 the tmailing edge. Because we're interested in an algorithm
that's compurationally inexpensive, we will not require thar the interpolation be lin-
car. However, it must be a smoorh interpalation, and the function must work for all
convex sector shapes. A few examples are shown in Figure 4.7.3.

4.T Coemputing the Distance into a Secter 413

Warld
Space

Lesading
Edge

L 4

FIGURE 4.7.2 Dresired scalar valuss for varows poinn within a ssctor.

Figure 4.7.3 shows that, regardless of the secror® shape, the value
returned from our desired function is always 0 on the leading edge and 1
on the mailing edge, and it is interpolaced when our peint lies between the

twn edpes,

1.0 1.0
'I:I.f._l 1.0
0.0
0.0 0
1.0
0.0—" 1.0

1.
i)
0.0 10 00
0.0 1.0

FIGURE 4.7.3 Example convex sector shapes showing corresponding =calar values.

1]

414 Section4 Polygonal Technigues

Description of the Algorithm

A fast and simple soluticn to the problem in the previous section is given by the equa-
Licif:

Vip o Ny + Vo o IV,

EQUATION 4.7.1 Equarion for computing 1 distancs value 2cros a secor,

Whernes
Vie=P_P,
And:

P iz the point of interest within the sector.

"t s any point on the Leading Edge.
P is any point on the Triling Edpe.

't is the inward-pointing unit normal of the Leading Edge.
N is the imward-pointing unit normal of the Trailing Edge.
D is our result- a floating point number from 0o 1.

Figure 4.7.4 shows the variables involved in Equarion 4.7.1 and their relationship
1o the problem. Moze thar Py may lie anywhere along the leading edge, and P may lie
anywhere along the trailing edge. However, using opposite corners of the sector offers
several advantages. First, since the seetor is most likely defined by its four vertices, it
makes sense to use the comers for aur purposes. Second, by choosing oppasite cor-
ners, Equation 4.7.1 can be wsed 1o compute both the distance from leading edge o
trailing edgr, as well as the distance laterally. This is because P, lies on both the lead-

ing edge and one of the lateral edges, and F; lics on both the trailing edge and the
other lateral edge.

Equation £.7.1 has several feamures:

It produces a scalar from 0 eo 1.

It prexduces 0 3 P lies on the leading edge.

It produces 1 # P lics on the trailing edpe.

Although not lincarly, it does produce a smooth, interpolared value from 0o 1,

depending on how far into the sector P lies.

5. It's fast, requiring only two 2D vector subtractions, two 2D det products, one
scalar addition, and one scalar divide o compute.

6. The raw, world-space peint P can be directly plugged into the equarion. No

transformation into warped sector space is required.

MM i

4.7 Computing the Distance into a Sector 415

FIGURE 4.7.4 Paramerers used in che algorithm,

7-

Lf the sector is a staric shape, then Py, Py, N, and N-may all be pre-determined

and stored in the sector definition dat soucture.

8. Ifthe sector dynamically changes shape, P; and Prare sill available from the sec-
tor's vertices, and N and N7 can easily be compured from the sector’s vertices
{although this is slower because it involves a square roor per normal).

9. It may be used o compute the distance lacerally, 0o, provided char the twa

inward-pointing unit normals for the lateral edpes are available,

The equation has several requirements:

- The sector must be convex and have four sides, each of non-zero length.

- The scctor must have non-zero area.

- # must lic within the secor, or along any of its perimeter line segments. If the
point lies outside of the secror. the roult might not be 2 value between 0 and 1,

as expected.

il el ==

Applications

Distance Down a Track

Equation 4.7.1 has many applications in game development, One example is in the
determination of how far down the track a vehicle is. Figure 4.7.5 shows a top-down
view of 2 road track overaid with a ehain of sectors.

What wed likes to know is how far down the track cach vehicle is. When the vehi-
cle is ar the starting line, it should be a value of 0. When the vehide is ar the finish
line, we'd like a value of 1. And. we'd like reasonable interpolation in between,

The sectors are construcred 1o completely conmain the track so that the vehicle
pesition, P, will always be within a sector. This also means thas adjacent sectors use
the same vertex points. At game initialization time, cach sector’s inward-pointing unit
normal for both its leading edge and trailing edge is computed. Note thar a secror’s

418

Section 4 Polygonal Technigues

FIGURE 4.7.5 Secrorization of 2 rack.

trailing edge normal is equal to its neighboring sector’s negated leading edze normal.
Bur if the memary is available, it’s fastest to store the two normals with each secror.
Another picce of information we'll need is the approximare world-space distance
between each sector’s leading and miling edges. A sloppy bur decent metric for this is
to use the magnitude of the vecror extending between the midpoines of the leading
and trailing edges as shown in Figure 4.7.6.
As with the other secror dara, we pré-compure 5 for each sector and store it in the

sector's data structure. Ar this poinr, we might have a secror dara strueture thar looks
like this:

typedef struct {

float fX, 1Z; /I 2D ¥Z worldspace coordinata
} VeckZ t;

typeded struct {
I/ Clockwise, where [O] = left side of Leading Edge
VookZ_t avertices[4]:
fI Glockwise, where [0] = Leading Edge
VecXZ_t aUnitNormals[4]:
ff Digtence from Leéading Edge's sidpoint te

ff Trailing Edge's midpodint
Tloat fEactorDist;

ff = previous sector's fTotalPriorDist + fSactorDist
float fTotalPriorDist;
} Sector_t;

Note the fTotalPriorDist field, which is simply the sum of the previous secror's
flotalPriordist and fSecterDist ficlds (fTotalPriorDist is O for the first sector).
We'll discover why we need this below, The final picce of information we will need is
the sum of all 5, adding together fSsctorpdst for all secrors. We'll pre-compute and
store the inverse of this and ll it fonevarTotalsectordist, We store the inverse
because, as we'll see, we actually nesd to divide by the sum of all 5, and muldplying by

4.7 mmgmmmmam 417

FIBURE 4.7.6 Approximating the world-space distance between sector edpes.

the inverse is faster on meost CPUs than dividing, Since we have the luxury of pre-
compuring this information, we won't pass up the opporeunity to do the division (rec-
iprocal) ar that time and score an inexpensive multiplication at run-time,

Armed with the preceding information, we're now able to derermine how fas
down a track a vehicle is. For cach vehicle, we need the following informarion:

#include “mixlib_R*®

typedef struct {
Vectors Worldfos3D; /f Vehicle's origin in 3D werldspace
Sgctor_t "pSector; Ml Podnts to the secior the
M wehicle origin is currently in
¥ Vehicle_t;

At the start of the race, the vehicle structure is initialized for cach vehicle, and
pSector is pointed to the sector containing its origin. This initial secror may be found
by either scanning the entire list of sectors for the one sector containing the vehicle
origin point, or by storing che inirial sccrors as part of the starting line dara.

Onez the race begins, we need to track which sectors the vehicles are in, since
Equation 4.7.1 requires thar the poine lic within a seceor. To do this, each time we
move the vehicle, we use a simple point-in-sector test o see if the vehide is sill within
psector. If not, then the vehicle i either in the next sector or the previous secror, and
we agiin use the point-in-sector test. Most of the time, only one test js required; occa-
siomally, two tests are required. If the vehicle is moving backward, three tests will be
needed. If it is possible thar the vehicle'’s speed is fast enough that the vehicle skips an
entire sector from one frame o cthe next, 3 more sophisticared sector-tracking algo-
rithm will be needed. One such solution would be to check. in order, the next N for-
ward sectors first. If the vehicle is not found in any of these, the algorithm would nexr
check the previous N seciors. If the sector is siill not found, this could be considered
in uncommon condition, and the algorithm would resort 1o scanning the entire sec-
tor list,

Sectlon 4 Polygonal Techniques

Mow thar we have a valid secror for cach vehicle, we can write a function for
Equarion £.7.1 to determine how far into its sector sach vehicle is:

Tloat CalclnitDistIntoSector(fleat fPointX, Tloat FPaintZ, const
Sasctor t *pSector 1 {

VeexZ © VLP, WTP:

Tloat flatl, fDotT;

[/ Compute wector from point on Leading Edge to P:
VLP.fX = fPointX - pSector->avVertices[D].fX:
VLF. fI = fPointZ - pSector-=aVertices[0].fZ;

{f Gompute wector from point on Trailing Edge to F:
ViF.fX = TPointX - pSectar-=aVertices[2].fX;
VTP TZ = TPointZ - pSectar-=aVertices[2].§Z;

A Compute (VLP dot Leading Edge Mormal):
fhotl = VWLP.fX*pSector->alnitMornals[0] . fX +
WLP f24pSector-=alnitHornals|o].T2;

II Compute (WTP dot Trailing Edge Wormal):
fDotT = VTP.TX*pSector->allnitNormals[2]. X +
ViP.fZ pSactor->elnitharnals[2].12;

{f Compute unit distance into sector and return it:
return [fDotL [/ (f0oth + TOOLT) };
I

Finally, we can compute the distance down the track like this:

ff Pre-conputed to be the inverse sum of Seoter_t::TSectorDist
ir Tor all sectors.

float TOnedverTotalSectorDist;

float CalcUnitDistDewnTrack| const Vehicle t *pVehicle) {
float TUnitDistlntoSector, TOLstDownTrack;

Al Compute how far vehicle i3 into its scctor:
TunitDistInteSector = CalcUnitDistintoSoctor|
p¥enicle-*NorldPas3D, x,
p¥ehicle->WorldPaoszh, z,
pYehicle->pSpctar
bi

fF The distance down The track is the full distapee

fi across all previous sectors, plus the partial

ff distancg imto our current Sectar:

fistDewnTrack = p¥ehicle-=pSector->fTotalPriorDist
+ pvehicle-=pSector ->fSectorDist *
funitDistIntoSestor;

ff Finally, our unit distance down the track iz our
ff distance 5o tar divided by the track's tobal digtance:
réeturn foisthownTrack = finelverTotalSectarDist;

4.7 Computing the Distance inte & Sector 419

The function CalcUnitDistOownTrack() remens a value of 0 if the vehicle is on
the leading edge of the first sector of the mack, returns a value of 1 if the vehicle is an
the erailing edge of the last sector of the track, and returns an interpolared value
berween 0 and | based on how Far devarn thie track the vehicle s,

Smooth Light Changes

Anather practical application of Equation 4.7.1 is the smooth incerpelation af light-
ing on objects moving through sectors. If we asseciate ambient and directional lights
with leading/trailing sector edges, we can interpolate the lighting parameters as the
abjects o be lit move from sector to secror.

Consider a secror enclosing a section of a track that begins in the sun at the sec-
tor’s leading edpe. and ends in a dark cave a2 the sector’s wailing edge as in Figure
4.7.7.

Wi can store the ambient RGB light color at each adjeining secror edge like so:

typedel struct {
float TR, &, fB; // ROB ambient light
1 Anbisnt_t;

typedef stroct {
[/ Clockwise, where [0] = left $ide of Leeding Edge
VeckZ + aVertices[4];
fi Clockwisa, wher2 [0] = Leading Edgs
VeekZ t alnitMormels[4);
{f Distamce Trom Leading Edge's midpoint to Trailing
ff Edge‘s
fleat fSsctorDiet;
ff = previous sector'e fTotalPriorDist + 1SectorDist
float fTotalfriorDist;
J Ambient light at Lesding Edga
Anbient_t Leadingsmbient;
/) Ambient light at Treiling Edge
Ambient_t TrailinpAmbisat;
} Seator t;

The ambient value of adjacent sectors must be the same to avoid a visual pop of
the light level when the vehicle erasses into a different sector. In the preceding imple-

Brigh sunlight
ambiant light =T Dk e
o Leadky . ambiant light
Edga B on Trafing Edge

FIGURE 4.7.7 ..-"nmhimq' |i§'l[g_mfiml ACTOLS @ RO,

Section 4 Polygonal Techniques

mentation, we simply store both leading and trailing ambient values with each sector,
bur a more memory-conscious implemencation might share ambienr dara through
pointers. In any exse, the preceding is all we need 1o smeothly animate the ambient
light level from sunlight to cave light as the object progresses through the secror. The
Fn]lmviug function does the ek

fdeTine LERP(fUnit, W0, f¥1) [(1.0F-[fUnit))*fvo + 1
[fUnit)=fv1 |

Aabient_t CalcAmbleniLightlevel(const Vehicle_t *p¥ehicle § {
float funitDistIntoSector;
Ambignt_t *pleadAnblent, *pTrailAsmbient, RetAmbient;

{f Compute how Ter vehicle is into its sector:

fllnitDistIntoSector = CalelnitDistIntoSector
pvehicle->MarldPos3D.x,
pvenicle->WarldPos3n, z,
pvehicle-»p3sctor

13

pleadimbiont = SpVehicle-»pSector-*Leadinginbient;
pTrailAsbient = &pV¥ehicle-=pSector->TrailingAnbient:

Retidmbient.fA = LERP| fUnitDistIntoSector,
pLeaddmbient-=TA, pTrailimbient-=fR);
Retémbient .10 = LERP[fUnitDistIntoSector,
pLeadAmbient->f38, pTrailAnbient-=F0);
RetAmbient.Td = LERP[fUnitDistIntoSector,
pLeadAmbient->TE,; pTrailanbient-=fE)

return RetAmbient;
}

The preceding function computes the ambient lighe level at the world position of
the vehicle, A graphics engine could use the resulting ambient RGB o provide the
overall ambient light with which o light the vehicle, combining it with other, more
sophisticated lighting if desired. As the vehicle drives through the sector, the ambient
light is smoothly interpolared, regandless of the shape of the sectae.

Functions similar to CalesmbientLightlevel() can be written to smoothly inter-
polate any paramerer that'’s associared with a secror edge. Examples are direcdonal
ligh (interpolating the direction and color), secror height, water flow rate and direc-
tion, for characreristics, skv appearance, Al difficuloe. etc.

4.8

Object Occlusion Culling

Tim Round

Occlusion culling is a technigue for culling unwanted gromerry from the field of
view, This is an exvension of field of view culling, in that it helps reduce unnecessary
processing time associated with rendering a mesh (ie., transformarion, lighting, and
rasterization). The occlusion provides a culling method that will work an arbitrary
and dynamic geometry data, This means the mesh data doesn’t have to contsin any
informarion about the potentially visible dara set. Occlusion culling also fsns limited
to indoor scenes, and can be wed o mark anywhere in the mesh dara thar could be
blocked from yous field of view (sec Figure 4.8.1 for an cxample).

Uking a Z-bulfer makes it casier to display a scene correctly, but you stll nesd o
transform, light, and draw the polygons, while resting cach pizels depth. This imple-
mentation of occlusion culling simplifies the process of building the occlusion da by
using simple pre-defined occlusion shapes, namely recrangles. These occlusion recran-
gles could easily be added into the original geometry as two co-planar triangles, and
cither named or colored in such a way that the exporter or the loader could separare
them our from the original mesh dara

FIGURE 4.8.1 A rypical occlusion.

az2 Section 4 Polygonal Technigques

Frustum Culling

To help explain the process of occlusion culling, it’s worth describing a sechnique for
field of view culling. The field of view is the area in 3D space visible from the current
point of view of the camera. This area is rypically described using front and back dip
planes and the viewing angle (see Figure 4.8.2).

The culling process uses the bounding sphere (in world space) of each object
mesh, and rests if ir falls inside che field of view. To perform this rest, you wransform
the bounding sphere center point ineo view space (relative to the camera) and check
the new £ value agains the near and far clip plancs. You can then test the center poing
against the left, right, top, and botom clip planes. The clip planes for the field of view
ean be pre-caleulated ar the starr of the render loop. Because these clip planes are in
view space, we can simplify the clipping rest. The front and back dip planes will be
perpendiculas 1o the Z-axis, so a simple compare against the Z value can quickly
decide if the mesh is in front or behind the camera. The coefficients 8 and £ in the
equation of the plane for the left and righr planes are zero (because they are vermical),
and the planes pass through the origin (0.0,0). This means o test a poine against the
lefe or right plane, you can wze the following equation:

tistanceFroeClipelane = (x * Planc.a) + [z * Flane.c);

This also appliss to the top and bottom dip plam:s except the coeflidents A and
D are now zero, and this produces the following equation:

pistancaFromGlipflane = (y * Flane.b) + (z * Flane.c};

Block cip plane

Fromd cip plane

FIGURE 4.8.2 Ficld of vicw or viewine frusmm,

4.8 Object Occlusion Culling 423

If the distance of the point from the plane is greater than the bounding sphere
radius, then the bounding sphere is outside the area. By testing the bounding spherc
against all the clip planes, we can find out if the mesh lies within the field of view- this
helps us remove all meshes that are not visible. The order we test the center point
against the clip planes can be changed to march the geomerric das: for crample, a
landseape expands more along the Xand Z axes than the Faxis, 5o we test the left and
right dlip planes before the top and bottom dlip planes. The frone and back planss are
vested first because they require less compuration and can typically remove a larpe
proportion of the geometry. See Listing 4.8.1 for sample code that implements field
of view culling.

As you see, we can use the plane equation o describe the boundaries of the view-
ing frustum, and by first ransforming the bounding sphere center point into view
space we can simplify the point-to-planc test. So, using this same principal, we can
describe the boundaries of an occlusion.

Occlusion Culling

Occlusions described in this asticle are four-sided flar or planar polygons, but they can
easily use more or less sides, providing che polygon is planar. We can pre-caleulare the
eeclusion’s clip planes in the same way as for field of view culling, cxeepr this time we
only need a front plane and four edge planes (sce Figure 4.8.3).

The occlusion area differs from the viewing frustum in that it deseribes 2 hole. If
any mesh lies inside this hole, it wonT be rendered (see Figure 4.8.4).

The frant plane of the occlusion won't always be perpendicular with the fronr clip
plane, so we will have to use all four coefficients of the plane equation. We also can't
simplify the edge planes because they too can be at any angle. The front plane is cal-

_I-'-'--'--'-F

R
e

e

.-''___,_,-'-"
e

FIGURE 4.8.3 A four-sided occlusion is described with four planes, fronr, lefi, tight, top and
botoom,

Ser.ﬂm:! Polygonal Tachniques

FIGURE 4.8.4 '|:|'|.1il:|:1::-i that arc behind the occlusion are invisible,

culaced by using three poines from the oecdusion polygon after chey have been trans-
formed into view space. The edge planes are calculated by using the camera position
(remember in view space this is 0,0,0) and two points along the edge of the ocdusion
polypon (see the Setupfecluszion() funcrion in Listing 4.8.2). Occlusions can be
made two-sided by testing which way the fronr plane faces and reversing the order of
the points used o generate the planes.

We will necd to test if an object’s mesh flls inside the ficld of view before westing
it against the occlusions, so we have already transformed the bounding sphere center
into view space. To help speed up the scclusion test, we can pre-caleulare 2 minimum
Zalue (the value elasest to the frons clip planc) in view space for cach ocdusion, and
we can test the transformed bounding sphere center against it w quickly rest if the
mesh is in front of the occlusion (see Figure 4.8.5.)

If the bounding sphere of the mesh overlaps the edee of an ocdusion, we could
test all the poines of an axis-aligned bounding box for extra precision. If an object is
much bigger along one axis (eg., very wll), then a bounding sphere can be very wasre-
ful in describing irs area, but the bounding sphere can be tested against a plane much
faster than 2 bounding box. S0 we use the bounding sphere first 1o quickly reject any
meshes thar are roually ourside or inside of an occlusion.

When building up a list of occlusions that are visible, you can also test the ocelu-
sions against exch other to remove any occluded occlusion. If an ocdusion covers the
entire viewing frustum, we can move the back clip plane dloser. Ocelusions can also

4.5 Object Ooclusion Gulling 425

FIGURE 4.8.5 A minimum Z value can be used 10 speed up the test.

have their own beunding sphere, which can be used to remave any occlusions thar are
not visible in the viewing frustum.

Summary

As you can see, occlusion culling of this nature is ficly easy w0 implement, bur it
doesit have o be limited to mesh culling—it can also be wsed for culling sounds.
Ucclusions can also help o prevent time-consuming effects like skinned animarion
from being applied to objects thar aren't visible.

Oeclusions can be made more efficient by joining several rogether to form com-
plex occlusion zones, but this is beyond this discussion.

The example code is wrinen with DireceX in mind (ie., it's lefr-handed), but it
can easily be changed to suit any coordinate system. The code is designed ro (lusrrare
the algorithm, and can easily be adapred to suit any targer platform or application.

Listing 4.B.1: Field of View Culling Code

typedel struct VECTOR

{
Tloat x;

flaat y;:
float z;

Section 4 Pelygonal Technigues

JVECTOR;
typadet struct _PLANE
1
Tloat a;
Tloat b;
float ¢
float dj
JPLANE;
typedef struct MATHIX
i
float _11;
flaat _ 123
float _ 13;
float _ 14;
flmat _ 21;
float _ 22;
float _23;
float _ 24;
Tloat _a1;
float _ 32;
float _ 3a;
float _ a4;
float _ 41;
float _ 43;
float _ 43;
float _ 44;
JMATRIX;

PLANE g FOVLeftPlane:
PLANE o_FOVRightPlane:
PLANE g_FOVTopPlane;
PLANE g_FOVEottosPlane;
flaat g_FOVFrantClip:
flaat g_FOVBackClip:
MATAIY g ViewTransfors;

vold Mormalize (VECTOR *pV)
1
float Length , Inviength;

Langth = (float)l sqri (pv-=x % p¥-=x | +
[pV-=y * pW-2y | + [pN-=z * p¥W.2z)];

Inviength = 1.0f | Length;

pV==>x f= Inviength;

pVa==y f= Inviength;

pW=>z = Enviength;

vold Crossfroduct (VEGTOR *pVig , VECTOR =pu1 |
VYEGCTOR *pCrossProduct)
{

4.8 Object Ocelusion Culling 427

FCreesProduct-»x = pVd-=y * pWi->z - pWO->z = pii==y;
FCrossProdutt->y = pWl->z * pVi-=x - pVill-2x = p\i.->z;
FCrossProduct -»2= pW0-=x * pyi-=y - pVd-=y * pi¥1->x;

void PlanefronPoints{VECTOR =pP0 , VECTOR *pPi ,
VECTOR *pP2 | PLANE *pPlane)

|
VECTOR WO ,V1,v2;
Vi.% = pP1.>x - pPO->x3
¥l.y = pPl->y - pPO-=y;
W0.z= gP1->z- pPO->z;
Vi.x = pPZ.>x - pFO-»x;
¥i.y = pPZ->y - pPl-=y;
Vi.2= pP2-3z. pPh->z;
CrossProdect | &W0, Evi1, BV2):
Kormalize(&N2);
pPlane-»a = W2.x;
pPlang->»b = W2.y;
pPlane-»¢ = W2.z3
pPlane->d = - V2.x * pPO-=x + W3,y * pPl.>y = yg_ 7z *
pPO-=z §;
1

{/This funciion calculates the planes for describing the view
fffrustun wsing 3 pointa. Becsuse we are in viaw space the
ffcameras position is at 0,0,0. We use the back clip positisn
Ifand the wiswing angle to work out a poimt on the edge of
[fthe frustum. The view angle iz the angle between the top
ffand bottea of the view frustum im radizns.

viald SetupFOVClipPlanes(float Anple , float Aspect |,
float FrontClip , floet BackClip)
i

VECTOR PO , P1 , P2;

ff Caleulate left plane using 3 podnts

PO.x = D.0f;

PO.Y = 0.07;

PR,z = 0.0f;

Pl.x = -BackClip * [(float)tan({ Angle * 0.57) / Aspect);
Fi.y = -BackClip * [{float}tan{ Angle * D.5T))3

P1.2 = BackCGlip;

P2.x = P1.x;

P2Z.y = -Pl1.¥}

P2.z = P1.z;

PlaneFromPoints{ &P, &P1 , &FZ | &g _FOVLeTtPlane);

ff Caleulate right planme using 3 points
PO.x = 0.0f;
PO.y = 0.07;
PO.Z = 0.0f;

Section 4 Polygonal Techniques

i

I

BDOL

(i}

M

ir

fr

P1.x = BackClip = { (float)tan{ Angle ® O0.5T) / Aspect):
Fl.y = BackClip = { (float)tan{ Angle * Q.57));

Fl.z = Backolip:

P2.x = Pl.x;

PZ.y = -Pl.y;

P2.z = Pl1.2;

PlaneFromPointe(&PO, &P1 , &P2 , &) FOVRightPlane):
Caloculate tep plang using 3 points

PO.% = O.0F;

PO.y = O.0F;

FO.Z = O,0f;

Fi.x = -BackClip ® [(Tloat)tan{ Angle * D.5T) [Aspoct):
Fl.y = BackElip * [(Tloat)tan| Angle * 0.5F } 1;

P1.2 = BackClip;

F2.x = -PFl.x;

2.y = Pl.y;

F2.Z = P1.%;

FlaneFronfoints(4F0, &P1 , &P2 , & FOVTopPlame }:

Calculate bottom plane using 3 paints

PO.x = 0.07;

PO.y = 0.0f;

PO.Z = 0.0f;

Fi.x = BackClip = { ([Tloat)tan{ Anple * O.5F } [Aspect);
Pi.y = -Back{lip * [(float)tan(Angle * 0.5F });
Pi.Z = BackClip;

F2.x = =P{.x;

Fa.y = P1.y;

P2.Z = P1.1;

FlaneFromfoints(&P0, &P1 , &P2 , &g FOVBottomPlane |

UeshFOVCheck (VECTOR *paspherePos ,
float BEpherpRadius,VECTOR *pviowPos)

Tloat Dist:

Transform £ into view space

pYiewPos->z = g ViewTransform, 13 * pBSpherePos-sx +
g_ViewTransTorn._23 * pSSpheraPos-=y +
g_ViewTransTorn._33 * pSSpheraPos-»z +
g_ViewTranstorn._ 43;

Behind front clip plangd

Af{ (pWiewPos-=z + BSphereRadius) < g_FOVWFromtGlip)
return FALBE;

Beyand the back clip plane?
if{ { pV¥igwPos-»z - BSphereRadius) > g FOVBackGlip)
return FALSE]

Trgnsfnrm & Into wiew space
pViewPos->x = g ViewTransform. 11 * pBSphercPos-=x +
g_ViewTransforn._21 4 p3Spherafos-»y +

4.8 Object Oeelu=ion Culling

g _ViewTransform. 31 = pBSphereFos-=z #
q_ViewTransfarm. £1;

i Test Bgainst left clip plane
Dist = | pViswPos.=x * g FOVLeftPlame.a) #
[pViewPos->z * g FOMLeftRlane.c };
if(Dist > BESphereRadius
raturn FALSE:

ff Test against right clip plane
Dist = { pviawPos-Px * g FOWREghtPlane a) +
{ pV¥iewPos-=z * g _FOVALghtPlame.a) ;
if{ Dist = BSphereRadiusg |
return FALSE;

ff Transform ¥ into view space
priewfos-Fy = g WiewTransform. 12 = pBSpharePos-=x +
p_viewTransform. 22 * pBSpherePos-=y +
g_viewTransform. 32 * pBSpherePos-=z +
o_ViewTransform. 42;

ff Test against top clip plans
Dist = { pViewPos-»y * g FONTopPlane.b | +
{ pViswPos-=z * g_FO0WTapPlane.c);
if(| Ddst = BSpherefadius §
return FALSE;

ff Test apalnst bottom plane
Dist = [pviewPos->y * g FiWBottemPlane.b) +
{ pViewPpe->z * g _F0WBottomPlane.c);
if{ Dist > BSphersRadius)
return FALSE;

{f M=sh 35 inside the field of view
return TAUE;

Listing 4.8.2: Occlusion Culling Code

typadet struct OOCLUSION
i
YECTOR PO;
YECTOR P1;
YECTOR P2;
YECTOR P3;
flgat MinZ ;
FLANE FromtPlane;
PLAMNE FiratPlane;
FLANE SacondPlans;
FLANE ThirdPlane;
PLANE FourthPlane;
FOCCLUSTON:

Section 4 Polygonal Technigues

vodd VectorMatrisbultiply3=4 (VECTOR “pHNewVector ,
VECTOR *pVector , MATRIX *patrix)

{

}

vadd Setwploclusion (DCCLUSION *pOoclusion |,
MATRIX *pViewTransform)

{

YEGTOR PO , P11 , P2 , P3 , Canera;

fr Transferm points form world space to view space
VectorifatrizMultiplydxd | &P0 , ApQcclusion.->Po |
pviewTransforn);
VectoriatrisMultiplyd=d(&M , Apdcclusion-=f1
pViemTransforn):
VectorMatrisWultiply3xd| £02 , ApOcclusion-»P2
pviewTransform) :
VectorMatrixMultiply3xd|{ &3 |, &pOcclusion->Pa |
pvisaTranstorm) ;

plcclusion->MinZ = PD.Z;

if{ P.z = ploclesion-=MinZ)
poeclusion-=WinZ = P1.z;

if{ P2.z = pOcclusilon->Mind)
phcclusign-=MinZ = P2,z;

if{ PA.z < plcoclusion->Mind)
pocclusion-=MinZ = P3,1;

A The camera position in view spece is 0,0,0
Camera.x=0.07;
Camera.y=0.,07;
Cemara.z=0.0%;

Il Create freont plane Tron first three points
PlaneFromPoints (BPO , &P1 |, 4P2 | gploclusion->FrontPlans) ;

ff Test the D co-effecient to find which way the
i osscluesion faces
if{pOcclusion->FrantPlane.d = 0.0F)
{
FlaneFronPoints(&Canmera |, EPO , &P
&plcclusion->FirstPlans)
FlaneFrenPoints(&Camera , &P1 , 892 ,
Spleclusian-*SecondPlane) |
FlaneFronPoints(&Cangra , &F2 |, &P3
dpDeclusion-=ThirdPlane) ;
PlaneFronPoints| &Camera , &F3 |, &PO
aplcolusion->FourthPlans) ;
}

ales

FlaneFronfoints(&F2 , &P1 , AP0 ,
Epleclusion->FrontPlans) ;
PlaneFronfoints(ECanera , &P1 , &FO ,

4.8 ﬂtﬁlctil:chnﬂuw1Ehﬂﬁng 431

}

Apbeclusion->FirstPlane) ;
PlaneFronPoints| 4Campra , &FZ , &P1 |
Apheclusion->Seoondflane) ;
PlangFromPoints| &Camera , &F3 , &PP
EpDeclusion->ThirdPlana) ;
FlaneFromPoints{ &Campra , &PQ , &F3 .
Epbeelugion->Fourth®lana);

B00L TestIfOccludad{OCCLUSION *plcclusion |

{

VEGTOR *pV¥iewFos , Tloat BSphereRadius)
float MinZ;

WinZ = pWiewPosg->z - BSpherefadive;

if{ plcelusion-=MinZ < MWinZ)
return FALSE;

af{ { [p¥iewPos-=x * pOcclusion->FrontPlame.a) +
(PYiewPos-=y * plcclusion-=FrontPlane.b) 4
(pviewros-=z * pOcclusion-=FrontPlane.c) 4
pocclusion->FrantfFlene.d) = ESphereRadius §
return FALSE:

if{ { (pYiewPos-=x * pOcclusion->FirstPlane.a) +
(pViewPos-=y * pleclusion-»First®lane.b) +
(pViewPos-=z * pleslusiasn->FirstPlane.c] +
poczlusion-*FirstPlane.d) > BSpheroRadius)
return FALSE;

if{ { { pYiewPas->x = plcclusion->Second®lane.a) +
(pviewPos-»=y = pleclusion->SecondPlane. b} +
(p¥iewPos-»=z = pleclusion->SecondPlane.c) #
pocclusion-=FiretPlane.d) > BSphersRadius)
return FALSE;

if{ [[pViewPog-»x * plocclugion->Third®lane.a) +
(pViewFos-»y * pleclusion-=ThirdPlane.b) +
(pY¥iewPos-»z * pOcclusion->ThirdPlane.c) +
plcclusion->FirstPlane.d) = BSpheroRadius)
return FALSE;

it [[p¥iewfos->x = plcclusions=>Fourthflane.a] +
(pViewPos->y * pheclusion->FourthPlane.b) +
(pViswPos->z * phcolusion->FourthPlane.c) +
ploclugion->FirstPlane.d] »> BSphareRadius)
réturn FALSE;

return TRUE;

4.9

Never Let ‘Em See You Pop—
Issues in Geometric Level of
Detail Selection

Yossarian King

Objects and characters are represented in computer graphics as gromerric models.
Modeks can be arated ar different levels of detail (LODs), with mors polygons and
larger wextures for the more detailed models, and fewer polygons and smaller rexrures
for the less detailed models. Why would you want to do this? To improve rendering
performance and visual quality. Drawing fewer polygons when objects are far away
from the camera reduces the palygon count of the scene, and so speeds up rendering,
Having a more deailed model for use when an object is dose 10 the camera improves
visual quality. If only a single model is used, then there is always a tradeofF berween
performance and quality—multiple levels of detail help to achieve both.

To implement LOD rendering, mulriple models are creared ac different levels of
derail, and the model ro be rendered is chosen, each frame based on distance from the
camera. As a rough rule of thumb, cach level of detail should have sbour twice the
number of polygons as the preceding level. The models are created to reduce “pop-
ping” as much as possible—when the character or object switches from one level of
detail to another, the visible change in peomerry (especially at the silhouere edge) and
rexturing must be minimized. The artist’s job is to create models char are as similar as
possible when rendered at the scale where the mransition will occur, The programmer’s
job is to determine when to change LODs to achicve the desized performance and
quality while minimizing the number of LOD transitions. This article explains how.

Note that for ebjects or characters that stay a relarively constant distance from the
camera (such as the hero character in 2 third-person game), level of derail selection is
not necessary. Also note thar this arricle does not address level of decail issues for cer-
rain rendering.

4.9 MNever Lot ‘Em See You Pop 433

LOD Selection

The simplest way to select which level of detail to render is to apply a threshald 1o the
disrance of the object from the camera. For example, use the high denail model when
the objecr is cloter than 500 units, the medium dersil model for distances of
300-1500 unirs, and the low detail model when the objec is furcher than 1500 unics
from the camera. Ar first glance this scems reasonable—swhen the object is doser, use
more detail; when it is farther away, use less demil—however, there are two problems
with this method.

First, it dowesn’t account for che field of view of the camera. If the ohject is a long
way from the camera, bur the field of view is very nareow (e, 2 zoom lens) then the
object may appear large on screen, and a dersiled model may be appropriate. Simi-
larly, an abject may be relacdvely dose 1o the camera, bur if the field of view is very
wide (2 maco lens), then the object may appear small on screen and a low detail
model should be used. Figure 4.9.1 shows thar the same objece ar the same disance
from the camera does not always appear the same size on screen. Rather than distance
from the camera, we really want to use the projected size of the object on the screen as
a basis for choosing the detail level. Size on screen is obviously related o distance
from the camera, but the field of view must also be accounted for.

The second problem with the simple distance threshold approach is thart if the
object remains close to the threshold distance, then there may be rapid toggling back

——'_'_'_
— —— e
——'_'_'_
= fy i]
—I—_'_.-_.
—I__'_'_'_'-
=t
Pelen =
I—'-'_
e
—I-_I—'_'_'__'_'_
o e \ﬁ
oo . 3
e)
— e
_‘—.\-:‘H____
st dians o
____\—_._
AED

FIGURE 4.9.1 Varying the fcld of view changes the projeaed size of objects on the screen.
Tep: A narrow field of view produces 2 larger image on screen. Borems: A wider ficd of view
produces 2 smaller image. In bath cases, the size of the oree and the distance from the tree to
the camera are the me, demonstrating that camera distance is not sufficieat for choosing
lewel af detail.

4034 Section 4 Polygonal Technigues

and forth berween levels of detail. This can happen when a charseter is TUNDINg aCross
the field of view close 1o the threshold distance. Popping once from ane level of degzil
to another might be neticeable, bur rapid cyding back and forth berween levels will
be very distracting and undesicable.

Forunately, both of these problems are easily solved. A better alternarive tm cam-
cra dismance is a “magnification factor,” which is the screen size of the object relarive ro
its physical size, As this ratio increases (ie., as the object grows larper on screen), we
choose higher levels of detail. Screen size accounts for both camera, distance and ficld
of view, so the first problem is eliminated. The magnification factor is casy 1o calou-
late, as explained in the next secrion.

The problem of rapid popping back and forth is solved by using hysreresis theesh-
olding. Normal thresholding selects an ourput based on applying a single threshold to
an input value. Hysteresis thresholding uses an upper and a lower threshold, and
decides which to apply based on the previous output vilue. As long as the input value
remains between the upper and lawer threshold, the outpur value doesn't change, thus
stabilizing the thresholded curpur and, in our case. maintaining stabiliy of LOD
selection. Details are deseribed later.

Magnification Factor

The screen size of an object could be determined by transforming and projecting the
highest and lowest point on the object and subtracting the screen position of cach
coordinane to get the screen heipht. This methad depends on the onencation of the
object, and requires processing wo poines. The magnification Fucor is simpler to
compute and is independent of orientation. It can be compured by transforming the
object pesition into view space and then calcularing:

M = zrealel ey
where aseale is the scaling parameter used in the projection equation;
xroreen = { xutew * xveale) f sview + xcenter

Since view coordinates are just a rowation and manslation of the world coordi-
nates, sview is messured in world unics. sreale, which relates to the camera Giedd of
view, has pixel units; hence, the magnificarion factor M measures pixels per world
unit. As M increases, there are more pizels per world unit—the object is relatively
larger on screen and therefore should use a higher level of derail. Note thar M is simi-
lar to the level of detail used for interpolaring mipmapped textures, bur in the case of
mipmapping, pixels-per-texel are the measure of interest.

M accounts for both camera distance (via zvden) and feld of view (viz xieale), and
makes a much better choice for determining level of derail selection than simple cam-
cra distance. However, applying a sample theeshold to M will have the same popping
problems described previously. Hysteresis thresholding is the solution.

4.8 Never Let ‘Em See You Pop 435

Hysteresis Thresholding

Hysteresis thresholding s a fancy term for thresholding against a range of values,
rather than a single value. A simple threshold Tis applied as:

putput = (1 ifinpur == T
ja J_"ﬁrr‘rm'.l'-r: "l

Hyszeresis thresholding uses an upper and a lower threshold and remembers che
previous ourpur value, The output doesn’t change if the inpur is berween the upper
and lower chresholds:

1 if imput == 'I_',;,,ﬁ,
ouipntt) = {0 ifinput <« T,
fosipuit—1) otherwise

If the inpur is increasing, then the ourpuc will be 0 unril the inpur reaches Tb_,:-,_ i
the inpur is decreasing, then the output will remain 1 unil the inpue falls below T
Regardless of whether the value is increasing or decreasing, the outpur doesn’t change
when the inpur is between the upper and lower threshelds. Using this approach for
level of deeail selection means there is no single point at which the object will 1oeple
back and fosth between levels of detail—the hysteresis thresholding ensures thar all
we get s a single pop, never a toggling behavior. A visual comparison of simple
thresholding and hysteresis thresholding is shown in Figure 4.9.2

Implementation

With the magnification fictor and hysteresis thresholding we can create a level of
derzil selecrion algosithm that accounts for camera field of view and avoids rapid pop-
ping problems. Assume we have models for three levels of detail: high, medium, and
low. The hysteresis thresholds for moving berween high and medium desail are T,
and T . The thresholds for moving berween medium and low detail ace T g a0
T e In preudocode, the level of detail selection algorithm looks like this:

int computelod:
worldpes world position of the abject
lodprey Igvel of derail chosen im previous frame
{
vigmpos = transform{ worldpos)
M = xscale | wiewpds.z

if [W= 'I'_nlmr]

lod = low
else if (M < T _muppar |
lod = lodprev hysterssis ranpe Ffor sadium/low

glse 1f [M = T_hlowar }
lod = medium
else 1f [M < T_hupper }

£36

Section 4 Polygonal Technigues

eEput

- 'y =
Simple Threshold cetput Hysteresis Threshold
[T
P o
B —
&5 changs
lﬂl";‘r.l.ll:g
.-—
b l } ! *
I s T Thige 555

FIGURE 4.9.2 Lfi- An input valus is thresholded agains a single threshold 7 Righe: An input value is
thresholded against hysterssis thresholds T, and T, with the appropriate threshold chasen based on
the preceding ourput value. As long as the input remains beoween Ty, and Thipto there s no change in the
DUTPUL

lod = lodprev hystarasis range for highimedicm
Blaes

lod = high N >= T _hmipper
return lad

I

Note that if Mis berween Ty, and Ty, then this will always reurn the pre-
vious level of decail, even if it was low desail. If you expect your abject to be magnify-
ing this quickly, then the algorithm is easily adapted.

The equivalent algorithm wsing 2 simple distance threshold would jusc use one
threshold berween each level of detail, and would look like this:

int coaputeledwithpoppimng:
warLdpos
1

viewpos = transforn| worldpos)

if [viewpos.z = T_m }
lad = low

eles if | viewpos.z < T h |
lod = medium

elgs VIBWDOS. T >= T _h
1pd = high

réturn lod

4.9 H-_-'u':lr Lat “Em See You Fop 43T

As can be scen, solving the field of view dependence and popping problems does
not add significandy to the complexiry of the level of detail selection.

Other Issues

Threshold Selection

For any thresholding methed, hysteresis or otherwise, you need to choose your
thresholds. For level of detail selection, d:msing the thresholds is a radeoff beoween
performance and visual quality. 1F the thresholds are set 100 low, then the higher levels
of detall will be drawn maore often, and you will have w render more polygons per
frame, which will slow dawn the rendering. If the thresholds are 100 high, then the
lower quality models will be drawn more olten, and popping between levels will be
more noticeable,

To reduce popping, you can implement the selection algorithm, then move the
object toward and away from the camera, moving the thresholds untl che popping is
accepiable. Keep in mind thar in a game-play situarion with a moving object, moving
camera, and distracted user, the popping will be less noticeable than in a testbed envi-
ronment. Achieving performance targets is a combined effort by che ards and pro-
grammer to reduce the polygon counts and adjust the thresholds to achieve a suitable
balance.

Lisor Altention

So far, we have only considered rhe size of an object on sereen to determine which
level of detail to render. Another factor o consider is where the user is looking. In
general, we expect the user 1o be paying arrention ro things that are dose o the cam-
era, but we may have addidonal knowledge abour the particular game situation o
help us know where the user is probably looking. For example, in a sports game, 2
player character controlled by the user will probably be the focus of attention, as will
a player character with the ball, or one involved in the current play. This “expected
focus of attention” can be used in the level of detail selection algorithm by biasing the
magnification facror when the user is likely 1o be warching an object or character. In
the sports game example, we can muliply the magnification factor by a scaling para-
meter (e.g., 1.1) when the character is under user control.

Biasing the Magnification Factor

The idea of biasing the magnification factor can be used in arher ways as well. 1f there
is 3 pame situation in which rendening quality is more impormane than performance
(such as a non-interactive rendered cut scene), the magnification facior for all objects
can be biased higher in onder to render objects at higher derail. Or the magnificarion
factar can be biased dynamiclly depending on frame rate—when frame rate drops,
bias the magnification lower to select more lower polypgon medels and improve the

i-n.r.nrz rate,

k:

Sectlon 4 Polygonal Technigues

Limiting Number of Modals or Polygons

If a scene has multiple instances of the same object, then there may be limits on the
number of objects that can be rendered ar each level of derail. Such constraints may be
imposed in order to conserve memory in the object representarion, or Vou may sim-
ply wich to limit the maximum number of high polygon medds in order o improve
performance. Limits on the number of models at each level of desail en casily be
built into the selection algorithm—sort the objects by magnificarion factor, and then
take the M largest objects at each level of detail, demoting any remaining object 1o the
next lower level of derail. 'With a litde more work, the selection algorithm can be
medified to selecr objects so the wotal palygon count for all objects falls below seme
targer.

FProgressive Meshes

A final issue worth mentioning is the use of progressive meshes, or ather dynamic
level of detail methods. Increasing processor performance and increasing polygon
counts in game models are sarcing to make these rechniques feasible, With these
techniques, the polygon count of objects can be varied on the fly across a confinuous
range. A suitable polygon count sl needs o be chosen for each frame, and so the
magnification factor is stll useful. If polygon count varies contnuously, then hystere-
sis thresholding is no longer needed. However, this may cause distracting popping
effects as polygons are contineously dropped from or added to the model, so it mxy
still be desirable to use hysteresis thresholds ro decide when 1o change the polygon
COUNE.

4.10

Octree Construction

Dan Ginsburg

Culling geomerry for visibility determination and collision detecrion is 2 problem
that must be taclded in the dc‘-‘clnpmﬂu af nl::r|}" cvery 3D r_ng'm_.:_ There are numer-
ous data structures and approaches to the problem. Most solutions pur constraints on
the geometry and often require the 30D astises to explicitly provide informarion such
as portal locations to the engine. However, an actree is a simple data structure char
can be used o spau:iall:.r subdivide goOMCciTy |;:|E-;.|n_'|.' form.

This article deals with che specific steps required to take an inpur ser of polygons
and construct an ocrree that spatially partitions the gromerry. The oaree is best suired
to static terrain, but can also be used to store attachment lists for objects thar move
dynamically in 2 scene. An octree can be used as 2 complere solution for visibiliey
culling, collision derection culling, and object management.

Octree Overview

At the I'IEEhEI.’ level, an octree i Rimpl:r- atree (an aqn:lii: direcred gmph] with 2 maxi-
mum of eight children ar every node, It tumns our char this is an ideal strucrure for rep-
resenting a three-dimensional world enclosed by cubes. The root node of an octree
contains a cube thar encloses 2ll the geometry in the world. The children at each node
are the cight cubes of equal size that subdivide the parent into octants (see Figure
4.10.1). Subdivision stops when some user-defined heuristic is met: typically, either
the bounding cubes are of a certain size, or some minimum number of polygons are
contained within each node,

The bounding cubes at cach node are the key 10 using an octree for sparial subdi-
vision. Each node contzing pointers to all of the polygons that lie within it volume.
Given this information, one can begin to see the power of the daa structure. For vis-
ibiliry determination, the axis-aligned bounding cube of the roor node of the tree will
be rested against the view frustum. IF ic is fully visible, all of its geometry will be ren-
dered. If partially visible, traversal will condnue dewn o the children, If it is com-
pletely outside the view frustum, maversal can stope it and all of its children are not
visible. Further examples of using octrees will be presented later. However, first it s
RECEsary 1o examine the specific steps required to construct an ociree.

440 Section 4 Polygonal Techniques

FIBURE 4.10.1 Subdivision of a2 cube into acmaies,

Octree Data

Fartitioning the geometry using an octree is a step thac is cypically performed ar the
pre-processing stage. Some tool will take the input set of geomerry and produce ocrree
data as outpur thar can be used at run-rime by the application.

At a minimum, each node in the octree must contain the following data:

* Bounding Cube—This is the cube in space thar the nade of the octres encloses.

* Geometry List—Each node encloses a number of polygons; these must be stored
in some way at each node.

* Children—Each node can have up o eight children; pointers to each of these
must be stored ar every nade,

* Neighbors—Fach nods can have up to six neighbors {one for each of the cube
faces). Tree rraversal for collision detection requires that cach node have pointers to
all of its neighbors. The neighbors allow the collision alzorithm o quickly “step”
through the tree along a collision ray. This will be discussed in more detail larer.

Building the Tree

The first step ro building the octree is o pet a list of all the polygons in the world.
Once this list has been created, the root node of the ocrree can be construceed. The
largest absolute value Vfor any component X, Y, or Z in the vertex list is determined,

4.10 Octres Construction 441

This value is used o creare the h-nunding cube for the world (it spans from [V -¥, -
W to [V, ¥, V). By definition, the gromerry list for the root node will conmin all the
polygons in the world. Searting with this root node, the world can now be subdivided
recursively using an octree. Here is pseudocode for the building algorithm:

BuildOctres(Made M)

{
it {RumPolys(H) > POLY THAESHOLD)
Tarf{int L = 0; 4 < B 1i+#)
Buildhode (M->Child[i], £, M)
BuildOctres (N-~Child[i]};
¥
1

Builoctreed) creates all cight children for any node that contains more than the
minimum threshold number of polygons. Creating all eight children simplifies the
run-time code by allowing it to always assume that if any children exisz for 2 node, all
eight do. If this assumption was not mads, there could be nodes withour neighbars,
which would make teaversal for collision detection difficult.

The heart of BuildOctree() is Buildkode(), which creates the nede dara. This
performs two steps:

1. Creates the bounding cube for the node.
2. Dretermines which polygons lic within the node’s cube.

Crearing the bounding cube for the node is erivial, The index i can be wsed o
specify which octant the node lies in. The box will then be fully determined by taking
the parent’s box and panitioning ic appropriately. The box will have half the width,
heighr, and depth of the parent’s box, and will be centered at one of cight positions,
depending on i

Dretermining which polygons lie within the bounding cube is slightly more com-
plicated. Before addressing this, it is worth addsessing how to store the polygen list ac
each node. Obwiously, it would be hugely memory inefficient 1o store copies of the
polygon at every node in the mee. A polygon can exist within several nodes: a parent
will always contain a superser of the polygons in its children. Addirionally, polygons
might span across node boundarics. One solution to this problem would be to split
the palygons along the boundaries. However, this generates additional polygon data,
which could adversely affect run-time perdformance. Instead, the polygons will have
“frame count” value, and the run-time render code will be responsible for making sure
that each polygon is rendered only once per frame.

One possible approach to storing the geometry for each node is 1o store 2 list of
area IDs. Then, clsewhere in the builder, for each area 1D a list of indices into a shared
polygon rable will be stored. This requires very little data ar cach node and ensures
that polygons will noc be duplicated when they span multple nodes.

442 Section 4 Polygonal Techniques

Polygon Overlap

Given the solution for storing polygon lists ar cach node, the next step is to create an
algorithm for determining whether a polygon lies within a cube. A fast method for
testing whether a triangle interscets 2 voxel is presented in [Moller99] (Section 10,9).
Avoxel is a cube centered ar the origin, with cach edge having a length of one. Tt ums
out that this algorithm can easily be expanded for resting whether a miangle intersects
a world-aligned cube of any size, The trick is o determine whar rransbation and scale
will eransform the cube into 2 voxel. Then, that transform is petformed on each tri-
angle. Fach transformed triangle is then tested for intersecrion with 2 voxel, Here is an
outline of thar algorithm:

TrilnGube (Teri T, Cube &)

L Vector Trans= C.Center;

Vector Scale= 1.0 f C.Siza:

for (int 4= 0p 1 = 3: i44)
T.Vert[i]= (T.¥ertii]l — Trans}) Scale;

if (TriIsVoxel(T))
return troe;

return falae;

Neighbors

The primary components of each octree node are now filled in: the bou nding cube,
the geometry list, and the children. This is all the information needed for visibility
culling. However, in order 1o use the ocmee for collision detection, the neighbors o
each of the six cube faces must be determined. A neighbor for a given cube face is
defined to be the node of equal size or greater that touches it. A neighbor can never be
smaller, and the algorithm will search for the best-fit neighbor (e.g,, the smallest pos-
sible thar is no smaller than the node).

This step needs to be performed after the tree has been fully construcred once all
of the nodes have been creared. The algorithm works by wking each cube face of each
node and comparing it against the cube faces of the other nodes in the tree ar the same
level or higher. Several conditions must be met in order for owo cube faces w be con-
sidered neighbors:

¢ The normals of che faces must be in opposite directions.
* All the vertices in the source face lie on or inside the destination fee.
* The size of the source face is less than or equal to the size of the destination face,

The cube that meets all three conditions and has the smallest size s considered 1o
be the neighbar,

4.10 mmmﬁun 443

Applications

As discussed previously, one application of the constructed octree is for visibilicy
determinarion of static geomerry. However, the actree can also be used for managing
the visibiliry of dynamic abjects in the world. Each ectree node in the run-time code
could store a list of attachment objects, and each object in the world could store a lisc
of nodes i is attached to. Then, to render the scene, the termin polygons in each vis-
ible node are rendered, as well as all objects atrached o the node. When an object
maoves, it detaches itself from all the nodes it is atached o, and re-areaches ro whar-
ever new nodes it now lies within. The only wick is w0 agdin store a " frame counter”
pes abject to make sure it only gers rendered once per frame (since an object could
easily span multiple nodes).

The octize can now also be used for culling in collison detecrion. Consider the
simple case of a ray collision 1=t Two peints define a collision ray: a start and an end
point. The collision test begins by finding the leaf node of the actree char the starr
point Lies within, The ssgment is broken into a subssgment at each cube face it inter-
sects. The mew subsepment is tested apainse all the geometry and objeces wichin its
node, The next subsegment starts ar the end poine of the previous subsegment, in the
node thar neighbors the cube face thar it intersected. This rraversal through neighbors
continues, colliding with the geomerry and objects at every node uniil the original end
point is reached. Several other collision tests such s axis-aligned box and sphere tesis
also work very well when using the ectree.

Conclusion

The octree 15 2 useful data structure in building a simple geometry culling system.
This article & meant as 2 simple incroducrion in how to build an octree. There are fur-
ther optimizations and enhancements thar can be made o the structure in order 10
improve its run-tame performance a5 well as ussfulness (e.g., adding occlusion culling
and depth sorting). Please see the references for pointers to further informarion on
octress and their applications in 3D graphics,

References

[Foley87] Foley, van Dam, Feines, and Hughes, “Computer Graphics: Principles and
Practice 2" Edition”, 1987, p 530-555.

[Hoff] Hoff, Kenny, “Fat ABBB ViensFrustum Choerlap Tent” wwacsuncedus -hofff
rescarchiviculler/boxvie/boxvic himl

[Mollerd9] Moller and Haines, “Real-Time Rendering”, 1999, p. 206-211, 310-312,

[Suter?9] Suter, Japp "Introduction to Octrees™ April 13, 1999, wwwflipcade.com/

tutorialsftut ocrrees sheml

4.11

Loose Octrees

Thatcher Ulrich

The octree is a classic and effective daw structure for partiioning 3D darasets into
hierarchies of bounding volumes. For darasers with a lot of objects, octrees ean greatly
accelerate frustum culling, ray casting. proximity queries, and just abour any other
spatial operarion.

However, ondinary octress do have 2 few disadvantages. In this article, T will focus
on one disadvantage in particular, which is thar a small object, depending on its loca-
tion, may be stored in an ociree node with a very large bounding volume. This hap-
pens when an object straddles the boundary plane berween two large nodes. This
creates “sticky” areas in the partitioning hierarchy, keeping small objects high in the
tree hierarchy and reducing the effectiveness of the partitdoning.

There are various methods of adjusting the basic octree dara structure and algo-
rithms to mitigate or avoid this problem, and each merhod has its unique tradeoffs. In
this article, I present one such alternarive, the “loose octree.” lis primary advantage
over an ordinary octree is that it avoids stickiness in the object panitioning, resulting
i more FDEEiEf Epﬁﬁﬂl database q:I.IH'EL"S. For cerrain :ppﬁqtiﬂm, such as n:u;u;| ;;.._1.].
lision detecion between numerous moving objects, the efficiency gain can be signifi-
cant. There is an additional minor side benefit, in that computing a given object’s
desired node in the tree is a simple Of1) operation. A similar trick can be done using
ordinary octrees, but it’s not as straightforward.

Tts main weakness is that it tends to use more partitioning nodes for a given
daraset than an ordinary octree. Limiting the depth of the tree can mitigate chis, bur
ir’s something to be aware of.

Quadtrees

The ocree is a 30 dara scructure. The analogous 2D dara structure is the quaderes,
which shares the same basic properies. This remains true of loose quaderess; they are
just 2 2D version of loose octrees. Loose quaderess have the same tradeoffs a5 loose
octrees, with respect to their conventional counterparts, so they can be useful in appli-
cations thar only require hierarchical partitioning in two dimensions.

4.11 Loose Octrees 445

Sinee ir's much easier to visualize these data structures in 2D, in this artide I'm
going to use 2D diagrams based on quadtress, However, the octree principles are
cxactly the same, and the oaension o 3D is ssmightforward.

Bounding Volumes

In a conventional octree, the basic node bounding volume iz a cube. All objects asso-
ciared with a node must be contined completely within the node’s bounding cube.
Each nade may also have up to eight child nodes, whose bounding cubes are formed
by slicing the parent cube into eight equal sub-cubes. The quadtree version is dlus-
trated in Figure 4.11.1.

The bounding velumes of the child nodes nest perfectly within the bounding vol-
ume of the parent node, filling the entire space with no overlap. The child nodss can
be further subdivided the same way. If you examine the sizes and spacing of the
bounding volumes, you can see thar they follow a regular panesn. Consider the edge
length of the bounding cubes: ar the root of the tree, the cube edge length is cqual o
the world dimensions. Ar each level deeper into the e, the cube edge length is half
the size of the previous level’s cube edge length. Thus, the formula for bounding cube
edge length is:

Lidepth) = W1 (2 A depeh)

where Wis the world size, and depth is the number of levels by which a node is sepa-
rated from the roor. The root node has depch 0.

B L e o e o oo o B R]

FIGURE 4.11.1 A quadtres nods, shewn with bounding square in bold, subdivided along
dotred lines. Each quadrant becomes a child node. The child nodes can also be subdivided as
shown in the upper-night quadrant.

445 Bection 4 Polygonal Technigues

The spacing of the bounding cubes’ cenrers ar a given depth fallows the same pat-
tern, At the root there'’s only one node, so node spacing doesn’t really have any mean-
ing, but starting at depth 1, the cenrers of the roor’s child nodes are spaced W2 units
apart from their neighboring nodes. Each subsequent level curs the node spacing in
half. The formula for node spacing is:

Stdepel) = W/ (2 * depah)

So, for a given depth, the cube edge size and the node spacing are identical. This
makes sense becavse at a given tree level, the bounding cubes are perfectly packed into
the world volume with no gaps and no overlap.

Partitioning Objects

Given a set of objects in a virmual world, each object having some finite bounding vol-
ume, an ocree can be used o partiton the objects within the world space, to acoeler-
ate various spatial operations such as frustum culling, ray casting, proximicy tests, erc.
Different criteria can be used for partitioning, but the clasic octree partitioning
scheme is to associare a given ohject with the node in the octres whoss bounding cube
most tightly contains the entire abject volume. This node cn casily be found by 2
recursive traversal of the tree. Here is some pseudocode:

struct node {
Vectord Cubelenter;
node® Child[2][21i2];
objectlist Objocts;

¥

int Classify|plane p, wolumg v

i
if (v is completely behind p) {
return 03
) else if (v i5 completely in front of p} {
return 13
} else {
fow straddles p.
return 2;
}
}

void InsertObjectintoTrea{node* n, Object* o)
{
int we = Classify(plane{1,0,0,CubaCanter.x},
0. Boundingvoluna) ;
int yo = Glasslfy(plana{d,1,0,CubaCanter.y),
o . BgundingVolune);
int zc = Classifyi(planse({0,0,1,CubaCanter.2),
o.BoundingvVolune) ;

4.11 Loose Oclrees 447

if fue =2 || yo == 2 |] zc == 2} {
i

{f Object streddles one or mora of the shild
{1 partition planes, and so won't Tit in any
{4 child mode, =8 store it in thiz node.
Objects.Insertio);

} elza {
/) Object Tite in one af the child nodes. Recurse to
1l find the correct descendant.
InsertObjectIntoTree(Chila[zel [ye] xc], o);

}

1

This is a nice, scraightforward hicrarchical pareitioning scheme that handles
whatever you throw ar it and generally comes up with 2 decent parritioning. However,
ir has one disturbing oddiry. Notice that if an object straddles any one of a node’s par-
titioning planes, then the object is stored in thar node. This happens even if the object
is riny and the node is huge; see Figure 4.11.2 for an example. In practice, if you have
lots of small objects, the ones located along the root node partitioning planes can
“clog up” the root node by filling it with small, poorly partitioned objects, and reduc-
ing the efficiency of sparial operations (e.g., Figure 4.11.3).

I'll call this problem the “sticky planes™ problem, the idea being thar partitioning
planes high in the tee hietarchy attmract excess ebjects to their associared nodes, and
are thus “sticky.” There are various ways to solve this problem. One method is to splic
objects on pamitioning plancs and then clasify the picces individually. Another
method is to allow an object to be referenced by more than one nede, o an ohject can

S e e i e o e e e e Y S i e e e

FIGURE 4.11.2 Even though the circle is very small compared 1o the root node (bold
square], it can’t be placed in a child node because it straddles one of the (doted) pamitioning
|ime==,

448 Section 4 Palygonal Technigues

FIGURE 4.11.3 All of the objecs are small, bare the shaded ones are smck o higher nodes in
the quadtres, due to siraddling the panitioning line.

be shared by child nodes on cither side of a sticky plane, rather than being stored in
the parent node. For staric objects, those approaches are effective, but they're not so
good for handling dynamic objects.

Making It Loose

The "loose” ocrree method takes a different tack: ir solves the sticky planes problem
by adjusting the node bounding volumes. Speafically, by “loosening” the bounding
cubes, but leaving the node hierarchy and the node centers as is, The bounding vol-
ume of a node is stll a cube, but where in the conventional ocwres the cube edge may
have had length £, in the loose ocmree the cube edge would be &£, where £ > 1. Thus,
the formula for bounding cube edge length is modified o be:

Lidepeh) = f * W/ (2 1 depth)

However, the node spacing remains the same as in the convenrional ocree. Whar
this means is that 2 node’s bounding cube now overlaps with the bounding cubes of
its neighbars. Figure 4.11.4 shows this overlap for a loose quadrree.

This loosening of the bounding cubes increases the minimum size of objects
anreacted by a sticky plane. Where previously an objecr with any size ar all thar crossed
a sricky plane would be stored in char plane’s node, with looser bounding cubes,
smaller objects will fic within one of che child nodes (Figure 4.11.5). How small must
an object be to avoid being caughe by a sticky plane? It depends on the wee depth of
the plane’s node, and on the value we choose for k. For 2 node ar a given depth, no
object with 2 bounding radivs smaller than (& — I} * L /7 can be siuck wo thar node
due o straddling a pamitioning plane, Instead, since the child nodes’ bounding vol-
wmes have besan enlarped, such objects can fit in one of the child nodes.

4.11 Loose Octress 445

—]

e] = [

FIEURE 4.11.4 Four noder. The conventional bounding squares are shown with dashed
lines, The same four nodes in a loase quadtres have bounding squares shown in black. The
squares have been offiet so that they can be distinguished from each other,

5o, whart's a good value for & Withour fully exploring all the tradeoffs in this asti-
dle, | propose £=2 as a useful all-around value. A tree with £ much less than 2 starts to
suffer from the sticky planes problem, and a wee with # oo much grearer than 2
results in excessively loose bounding volumes,

e s —

FIGURE 8.11.5 The circle won't fit in any of the conventional child node bounding squares,
bz ix will fir in the loose bounding square of the lower-righe child.

Section 4 Polygonal Techniques

Assuming a loose ocrree with £=2, we can write an extremely simple object inser-
ton procedure, The basic principle is that for 3 given object, the depth of the con-
mining node can be calculared salely based on the object’s size, and then the choice of
the particular node ar thar depth in the tree is based solely on the object’s center loca-
ton. To get the formula for depih, note thar a given level in the loose octres can
accommodate any object whose radius is less than or equal ro 1/4 of the bounding
cube edge length, regardless of its position. Any object with a eadius <= 1/8 of the
bounding cube edge length should go in the next deeper level in the tree. For exam-
ple, in Figure 4.11.5, notice that no matter where the objecr is placed, it will fit within
one of the nodes” bounding squares.

Hexe's the denvadion of the level-selection formula:

Lidepeh) = 2 = W (2~ deprh}

Let Rrnaxi{depth) = maximum object radius thar can be accommodarted ar depth.
Remax(depels) = 14 * Lidepels) = 112 = WF {2 A deprly)

Let depeb(R) = the first tree depth that can accommodate 2n object of radius B

R<= leitrdf?.f!-'{m_.-l

Re= 12"Wi(2s aii‘_lﬁ.if.ﬂ"fﬂ.'}
depth(R) > = log2i W/ R} — 1
depth(R) == floor(log2(WJ R))

Umnee the deph is known, choosing the particular node ar a given depth is sim-
ple—just find the closcst node to the object’s cenrer. Assu ming the world is cenrered
at the coordinate system origin, the formula o compure the node indices is:

fndecx sl = floori{ebiect fo 2] + Wi2) 7 Sidepeh))

Note that this procedure is not quite ideal: ic does not actually find the tghtest
possible containing node for all cases (sec Figure 4.11.6). To get the lase bit of dght-
ness, first find the candidate node using the above formulas, and then check the child
node nearest 1o the object to see if the object fits inside it.

Performing spartial opemtons on lsase octrees is very similar o conventional
ocurees. For example, this is the pseudocode for rendering with frustum culling;

enum Wisibdlity { NOT_VISIBLE, PARTLY VISIBLE, FULLY VISIBLE };

wodd Hode: :Rendér [Frustum 1, Yisibility v)
{
if (v != FULLY_VISIBLE) {
v = Computevisibility({this.,BoundingBox, T):
if (v == MOT VISIBLE) return;
¥

this.ObjectlList.bender(f, ¥);

for (children) {

4.11 Loosa Octreas 451

FIGURE 4.11.6 The simple placemens formuls would put the drce in the node bounded by
thee large black square, bur duc 1o its paricular position, the cirde has a bemer fir in the
upper-left child node, bounded by the small back sguare.

child.Renderi(f, wv];
¥
}

The exact same algorithm works with conventional octrees; the only difference is
thar rhis . Beunding8ox would be smaller.

Comparison

To help in comparing loose ocrrees with regular ocirees, T wrote a test program based
on loose quadtrees and ordinary quadtress. The program pesis a 2D square virtual
world, 1000 units on a side. Some number of crcular objects are geaerated to popu-
late the world. Each object has a position and a bounding radivs, which are chosen
randomly to fit within the world beundarics. Then a cermin number of 20 frusea
(i.e., wedges) are generared, with a fixed field-of-view angle, and a random paostion
and direction. The objects are first partitioned using a conventional quadrree, and
then for each frusmum, the darasee is queried for visible objects. Staristics are pathered
on the number of objects thar are patentially within the frustum, and the number of
objects char are acrually within the frustum. Then, the objects are re-classified using a
loose quadiree, and the same frustum tests are run and the same staristics are col-

lected.

Results of some sample runs are summarized in Table 4.11.1.

-l-E-E Ewillnn 4 Polygonal Technigues

Table 4.11.1 Results of Some Sample Runs

Ta PR aars Ordinary Quadtres Loese Quadires

tree max depth = 5 Objects Objects Oblects Objects

100 frusta possibly actually Nodes paosasibly actually Nodes
FOW = 45° visibla visible checked visible vizibla

chechead

500 objects

obj min radius=30

ohj max radins=30 183859 G883 2976 o442 GE83 F024
1004 objects

obj min radie=15

ohj max radius=15 31133 15173 7265 22457 15173 8815
2004 objects

obj min radiws=3

obj max radigs=10d) 55451 29935 o102 4520/ 29935 7S

Note thar the frustum queries on the loose quadiree generally reurn fewer “pas-
sibly visible™ objects than the same queries on the ordinary quadtree. On the other
hand, the loose quadires querics usually have o check more nodes. So, for frustum
culling, the differences between the owo are noticeable, bur not terribly dramatic.

Things get more interesting when looking at inter-object queries, such ax colli-
sion detection. In my test program, I added a test in which each object is checked for
coneact with all the other objects in the daraser, and enllected statistcs on the cheels.
The results for the same darasets used previously are listed in Table 4.11.2.

Table 4.11.2 Test Results

Ordinary Cuadires Locsa Cusadtres

Test Parameters Interobject Objectto- Object-to- Inter-object Object-te- Object-to-
tre max depth =5 contacts object tests Hode tesis comiacts object tesls Mods tests
500 objects

obj min radius=30

obi max radius=30 3034 33469 7351 3034 9125 24839
1000 abjects :

obj min radius=15

obj max radis=15 2730 113989 L BO40 2730 246049 45658
2000 objecs

obj min radius=5

obj max madiws=100 T 345377 IR107 7084 39276 BO312

4.11 Loose Octrees 453

As you can see, for these datases, the loose quadtres needs o do far fewer object-
to-object tests for the same query. The loose quadires does require many maore object-
to-node tests, bur in aggregate, the loose quadsres is significandy more efficient for
this type of query.

Ceoneclusion

The ocuee is an extremely powerful toel, However, in certain circumstances, you may
want to modify the clasic ocree approach to beter fir your problem. The loose
octree is one such variaton, which avoids the sticky planes problem of the elasic
octree. In sinzations where you have a large number of interacting, dynamic objects
{such as a particle system with inees-particle collisions), the loose ocmee is 2 particu-
lardly good cheice over the ordinary actres, The loose ocres also performs well for
general sparial partitioning rasks such a5 frustum culling.

4.12

View-Independent Progressive
Meshing

Jan Svarovsky

A progressive mesh (PM) is a erangle-based mesh thar is able 1o vary its level of decail
in real-time, at the resolution of gaining or losing a couple of triangles at a time, while
preserving s original shape as much as possible. It can be drawn at any detail level
between the conventional mesh from which it was created and 2 lowest detail “base
mesh” as defined by the detail reduction heuristic, which may be as small as no paly-
gons ar all.

Typically, these meshes are rendered ar lower detail in the distance, so thar more
system resources are available to draw higher-resolution meshes in the foreground.
The global detail level of the graphics engine can also be based on the power of the
Computer it i running on,

First, 1 will introduce progressive meshing, working through some of the arpu-
ments for and against different varatons on the theme. Based on this discussion, 1
will describe an algorithm to convert conventional mesh data into progressive meshes.
and some efficient and simple code to render these.

FIEURE 4.12.1. A progrosive mesh varying in degail,

45«41

412 Wiew-Independent Progressive Mashing 455

Progressive Mesh Overview

The basic principle can be simply described as taking a mesh, repeatedly deciding
which i its least significant edge, and removing chis edge by maling the two vertex
positions ar its ends equal, This edge collapse operation typically makes rwo triangles
sharing the edge redundant. Derail is pur back into the mesh by reversing these col-
lapses through vertex splies,

Much work has done b}r P.cl:l‘]:'lf_' and documented in the Pn'h!iu domain,]Ja_rlicu—
larly [Hoppe96, Hopped7, Hopped8). Figure 4.12.2 summarizes the unit-reversible
operation and the common rerminalogpy.

Edge collapse (acol)

‘fertex split (vsplit)

FIGURE 4.12.2 A single step of mesh refinement (vertex split) or redocrion (edge collapse).

Variations on the Theme

Given this basic premise, there are various decisions thar can be made about the fines
implementation details. I will briefly touch on them here; see [Svarovsky99] for 2
more leisurely discussion,

When Vertices Collapse, Where Do They
Collapse To?

When two vertices collapse into one, there is a choice for where to put the venex. It
can be calculared w lie on the imaginary smooth surface that the palygon mesh is try-
ing to represent. Aliernatively, you can put the point juse halfway in between the rwo
it replaces, which you would think was cheaper, perhaps becsuse you wouldn't have to
store i pre-calculared new point. Last, you can just choose to preserve one or the other
of the original vertices thar are being collapsed (Figure 4.12.3).

The midpoint system has the disadvancage thar convex abjeces become smaller as
they lose dewil. The clever precalculared point syseem rales ug twice as much memory,
or takes up extra CPU time caleulating the new point online. Preserving one point or
the other is the simplest, takes the least memory, and objects do not lose apparent vol-

Section 4 Polygonal Technigues

Vertex

FIGURE 4.12.3 Chosces for position of verices produced by edge collapse. o Higher detail
mesh, b New point on hypocherical surface. o MMidpoint- mesh changes volume. 4 Pick one
of the points—simple.

ume as drastically. It is often 2 good representation of the original shape, particularly
when, for example, collapsing the corner of a cube-like object and a vertex somewhere
along one of the faces of the cube shape. Though it lacks the Aexdbility of caleulating a
new point, its strong advantage is thar it docs not reguire real-time changes to the ver-
tex dara or the ercation of new vertices. This is the system I will wse here.

View-Independent vs. View-Dependent Rendering

Each sequence of vertex splits, starting with a2 vertex in the base mesh, can be visual-
ized as a binary tree, each vertex splitting into two new ones (though, of course, in
this system | just add one new vertex to an onginal onc). The splits can either be left
in their tree form or can be given some fixed order (Figure 4.12.4).

View-independent meshes use one fixed order for the edge collapses, which can
therefore be caleulared offline, and this tree representation can be thrown away. If you
keep the tree form in some way, you can vary which nodes you expand. This effec-
Iﬂ"t]}" E,i'-ﬁl"_'i ¥ERL more Hﬂibilil.}" in Pﬂ.ij'l.i.-ll'll:i[rl.g the dashed line [I-In-ppq‘.-ﬂ?] . This wiew-
dependent PM cn be used 1o give mare detail on parts of the mesh thar are doser to
the viewer, er on silhouctte cdges.

View-dependent PM (VDPM) is able w0 use triangle counts more effectively,
because it has more Hexibility in the choice of edge collapse erder. In my opinion,
however, this is never justified in modern systems because of the larpe gap in cffi-

4.12 View-Indepandent Progressive Meshing 457

FIGURE 4.12.4 A forest of verrex split troes. The dashed line repeesents the vertices that will
be used when rendering a mesh ar detail level 5.

ciency berween the two types of renderers. A VDIPM renderer uses fewer wiangles for
a more visually pleasing scene, bur this thrifiiness is drowned out by the increased
processor time that must be pur into making more level of derail choices, and the data
handling invelved.

A view-independent PM's (VIPM) triangles and vertices in the mesh can be
ordered such thar the ones char disappear first are further woward the end of the list,
and therefore are not traversed or “in the way™ when the lower levels of detail are
being used, This can also lead to interesting progressive file formats where the more
you read, the higher detail mesh you get [Hoppe98].

Because there is only one collapse order, there is only one level of desil for the
whole mesh. If you are dlose wo onc pant of the mesh, and therefore wane that parr w0
be rendered 2t high decail, all the rest will have to be rendered ar high detail, too. In
practical game situations, however, 2 large object can be subdivided into independent
(but posibly mutually intersecting) parts that can be rendered view-independendy.
Now thar you have the pieces separate, you can assign some game code to them, so
they become a bit more interactive, such as windows, antennae, radar dishes on a
space station or individual huts, trees, and so on in a laindseape,

458 Section 4 Polygonal Technigues

Large sections of continuous mesh like rolling hills can be built using a custom
renderer thar uses fewer polypons in the distance in another way, such as the
"ROAM” algorithm [Duchaineau7], Discussion of these other view-dependenr sys-
tems that work on specific mesh topographics is our of scope of this ardde, which
concerns itself with the progresive meshing of general wriangle meshes,

Edge Choice Functions

I belicve thar once you have an edge choice system that gives fairly acceprable resules,
there is little o be gained in trying complex evaluation functions. I leave implemen-
tation of some of the many methods discussed in the literature as an exercise 1o the
inrerested reader. 1 have incduded some references to different works, particularly
[Lindsrom®9] for an everview. The best thing is 1o build an editor thar allows artist
intervenrion in your automared prneraton of the collapse sequence. In my cxperi-
ence, after having spent days building the mesh, artists are quite willing to spend
some ome rweaking how it looks ar lower levels of derail, particularly at the very low
derail levels where there are only a few polygons w adjust. Tt is at these low levels thar
auromared syscems have the most trouble anyway.

Here | have described a very simple function that is implemented in the example
code on the CD. Tt is based roughly on the amount of movement of the surrounding

Difficult Edges

It simplifies the algorithm to ban some special case edges. Thess cases stem from tri-
angles sharing the same point in 3D space, but not sharing some other vertex data,
such as verrex normals, texrure type, or texture coordinaces. It is an exira complication
to have rriangles pointing to shared texture coordinates and pointing 1o shered vertex
positions. To avoid this, and o be friendlicr toward current graphics hardware, our
verrices contain all vexmure coordinates, normal and position information. This way,
the mesh will contain mulriple vertices in the same position bur with different marer-
ial informarion.,

1f an edge being removed contains these duplicare vertices, and therefore the ri-
angles along the edge do not share vertices, it is handled as two edge collapses thar
happen simultancously. The problem arises when a nearby rriangle only refers to one
af the ends of a collapsed edge, and this is the one thar is o disappear (Figure 4.12.5).

An extra vertex could be creared for this material, which would remain redundane
until nesded for lower levels of derail. This inefficiency is only slight because these
vertices are created very infrequently. You can avoid this case by just banning these
collapses. This will reserice the lowest polygon count thar meshes will reduce 0. Typ-
ically, when these edges are a significant percentage of dhe remaining edges, the poly-
gon counts will be so low that the renderer call overhead means further detail loss

4.12 View-Independent Progressive Mashing 455

e
=

. .-""r.a""’

= X - 7
T .
-lr r'I. I
= — 1| E

FIGURE 4.12.5 When an extra vertex must be generated. o: Original shape. & Trivial
collapse. = Differenr, complicated collagse.

would not really speed up rendering. The abjects will also probably be so insignificant
(a5 determined by the decision function thar made them low detail anyway) that you
could just not deaw them ar all! Ar the fime of writing this anicle, most commercial
PM syszems disallow these types of collapses.

For the sake of conciseness, the system is simplified furcher here. The program
given contiing no workarounds for multiple edges that share the same position. This
way, we can remove all the code that checks for coincident edges, that bans cerrain
collapses, and thar makes some edge collapses happen simultaneousdy, This implics
thar all meshes must be smooth and continuously textured, bur, 2¢ can be seen in the
examples on the enclosed CD, careful constructinn of the meshes means many more
general shapes are stll possible.

Implementation

The Renderer

For the majority of frames, a mesh will nor change in desail, so i is essengial thar the
data structure being used 1o render from is as efficient as possible for the graphics sys-
tem. Here we can arrange the data much like we would for 2 standard mesh renderer:

Struct FAMesh

{
int Mumkaterials;

ftruct PAMaterial *Materials:
| H

The mesh is made of an array of materials:

struct FMMaterial

i
FTexture *Textura:
struct Pllertex “Vertices;
int *Indices;

Section 4 Polygonal Technigues

int HumVertices v NunIndicas -
| H

Each material has a texture (or perhaps several textures in a multi-pass syszem,
such as a bump map, a gloss map, and the actual base wexrure), and an armay of ver-
tices. Iralsa owns some riangles, which simply index into che verrex array. Mote thar
instead of having an array of PMTriangle’s, there is an array of three times as many
indices into the vertex array. This is done for efficiency in the EdgeCollapse scrucruee
later, and is trivial vo change back into an array of rriangles if you wish to record more
information with cach wiangle.

stiruct FMVertex

i
vectord Position, Mormal;

float U, v;
| H

Each verex contains position, lighting, and texmure information. In this way, the
marerials are quite independent of each ather, and the mesh looks like one continuous
object because the posidons of same of the vertices in different marerials are the same.

Morph the Vertices or Pop?

No vertex morphing will be done in this implementation—vertices pop in and out of
exastence. This is cheaper and, in my experience with game teams, acrually loaks bet-
ter than morphing. This surprising resulr is because, for 3 given polygon count. the
mesh is as close as it can be o its proper shape, rather than being blended somewhere
berween the current shape and the next lower detail level. The pops in pracuce are less
ﬂ'ra pmb]i:m im.lﬂl[:ﬁ fh.i.ﬂ Th.ll': EXITa CXPomss Dfd:j[n_g j'|'|u|:r_|hi|-|-g [FEIIJ.CLIJ.Q.!'].}" af hay-
ing 10 edit vervex dara).

Progressive Mesh Rendering Only Affects the
Triangle Lists

Because an edge collapse preserves one our of the two vertices involved, this renderer
modifies the rriangle lists only, with no effect on the vervex dara. This means thar the
vertex arrays can be lef alone (and in some modem hardware, pre-processed inro
some more efficient formar), and can also be shared between multiple insrances of the
same mesh. The triangle lists will be modified over time, and must be duplicated once
for each active instance of each mesh.

This also means thae vertex position medifiers, such as animarion, can happen
fairly independently of the progressive meshing, as long as you dont mind thar che
collapse order won't change even as the vertices move about against each other. The
animarion system only has to handle the facr thar vertices can come and go, rather

than be used continuously.

412 View-Independent Progressive Meshing 481

Lower Detall Triangles and Vertices First

A point of note for the renderer is that the vertices and triangles have been ordered
offline so thar it is always the triangles and the verrices at the end of a list thar are
made redundant by a collapse. The renderer will always be submitting triangle and
vertex lists starting in the same place, just of varying lengrhs. Discussion of the dara
structure generation will show hew this is possible.

This does mean that unless you create strips and fans of tianples in some other
way, you will be always presenting the graphics hardware with an indexed list of trian-
gles. Interestingly, adjacent triangles in the list aften share vertices, which in MEny 5ys-
rems is as good as having triangle strips and fans. This is because ar least pairs of

rriangles on cither side of an edge collapse will be next wo each other in the triangle st

The Reversible Edge Collapse List

The other renderer dara structure describes the reversible sequence of edge eollapses
thar changes the level of detail of the mesh. Fach edge collapse loses one vertex, one ar
more triangles, and changes which verrices some of the remaining triangles wse. There
is one edge collapse list for the whole object, though different individual collapses
affect different materials. Alternatively, there could be a collapse list per material, but
these would have o be tied together somehow so that the seams of the object don't

COME Apart,
Struct PMEdgeCollapse
{
float value;
PMtatarial *“Material;
int MunIndicesToLosa, MunVertioesTolLose,
HumIndicesToChanne;
int *Indexhanges:
int CollapseTo;
i

The collapseTo member says which vertex should replace all references to the
vertex that is being lost off the end of the list. All these changes are stored in the
IndexChanges array. This operation is simple to reverse for vertex splitting when the
level of dezail is being increased again.

When a collapse happens, some triangles disappear (MunlIndicesTolose), one aor
more vertices may be made redundant (MunverticesToloze—loss of some triangles
may leave vertices completely unused), and some indices in remaining triangles will be
changed (MunIndicesToChange). OF course, the reverse happens during 2 vertex splir.

Because the materials are so independent, sometmes two cdge collapees must be
performed at once, o preserve the mesh seams as much as possible. This is when, as
discussed earlier, the two edpes actually are the same edpe in space, so must collapse
together even though they refer to different vertices. The engine must continually
compare the value of the nexr edge collapse or verrex splic that could be performed

Section 4 Polygonal Techniques

against the level of detil required from the mesh based on its position and other
variahles.

In the simple system presented here, thees edges are nor mken in account, bux
they can be done quite well by simply giving all edges in the same place the same pri-
ority, even though they are unconnected in the dat structure.

Cffline Calculation

Here 1 will assume that the mesh dara has been loaded by some means into a friendly
formar. For the sake of readability, the algorithm will be the simplest rather than the
maost efficient, particularly since we are not so worried abour the expense of offline
calculations.

The procedure can be summarized s repeatedly deciding which is the next bit of
derail 1o be lost, and removing it from the mesh, while generating the edee collapse
dara thar will be needed by the renderer kater. When it is decided char a vervex should
be removed, all triangles thar refer to it must be changed, and any rriangles thar are
made degenerate swapped to the end of the list. Similarly, che verrex is moved o the
end of the remaining verrex lisc

Of course, swapping triangles and vertices to the ends of their lists changes all ref-
erences to them, in other edge collapse structures as well as in the mmaining mesh.
There may be other code (such as an animation system that is about to use the same
mesh) that nesds to know abour vertex reordering.

Suggested Offline Caleulation Optimizations

Loaking at the code, it is obvious that extra temporary connectivity informarion
would be useful in the mesh. For example, the code often looks for “all thangles thar
refesence this verrex” by brute force. Also, the code repearedly searches through all the
triangles for the next edge o collapse, Huge performance improvements are possible
if you put the edgr collapse candidares into a priority heap.

Edge Selection Improvements

The mast effective edge selection improvement i 1o make edges thar affect dis-
continuitics in the mesh less likely to collapse. This makes many more mesh shapes
possible, and also allows objects to be subdivided further into subobjecrs. Each mesh
subdivision gives an extra degres of freedom in level of detail choice—see the previ-
ous discussion abour making huts and trees separare from the landscape mesh under-
neath them. Sec Figurc £.12.6.

A Further Variation on Progressive Meshing

Instead of being able to change level of deail ar che resolution of one verrer ar a rime,
you could just store severul pre-calculared index lists ar various resolurions. The
changes berween these levels of detail of course will be morc obvious. This system

4.12 WView-lndependent Progressive Mashing 463

Push {he verie: indo the other object
2 bit - then malce Az collapse

lilesty Ewen though this is & seam i
L= can be made less Hiesly to
COfFLe SfEel

FIGURE 4.12.68 “Whar was one mesh becomes two subtly intersecting ones, or just owo
coincident onss.

becomes more useful if the polygon counes or frame rares are so high that the popping
is not a problem.

An advanrage is thar you can theow away the edge collapse list, which is acoually
quite a large data srructure, certainly comparable to the extra index lists you are stor-
i.l'.lg in this new method. You also lose the m1|n,psing,l'5p]il;‘ting code, and you don't
need a separate index list for cach active instance of cach objec. The renderer
becomes musch simples—you are back to 2 normal mesh renderer, but just with code
to sclece which index lisz o use for each object ar a given moment,

Source Code

Code for the progressive mesh generator and the rendecer is contained on the CD. It
is wrirten in 2 general manner with lirtle system dependency.

References

[Duchaineawd7] Duchzineau, M. ct al. ROAMing Temain: Real-ime Oprimally
Adapting Meshes, 1997, available online: hicp:fiwww.llnl govigraphics/ ROAM/
roarm. pdf.

[Garland97] Gardand, M., and Heckbert, PS., Surface Simplification Using Quadric
Error Metrics, Sipgraph 1997 Procesdings, pp. 209-216, Augus 1997

[Hoppe96] Hoppe, H., Progressive Meshes, Siggraph 1996 Proceedings, pp. 99-108,
Avrguse 19906,

[Hopped7] Hoppe., H., View-dependent refinement of Progressive Meshes, Siggraph
1997 Proceedings, pp. 99-108, August 1997.

[Hopped8] Hoppe, H., Efficdent implementation of progressive meshes, Compurers
& Graphics, Vol. 22(1), pp. 27-36, 1998.

Section 4 Polygonal Techniques

[Lindserom®9] Lindstrom, B, and Turk, G., Evaluation of Memoryless Simplifica-
tion, IEEE Transacions en Visualization and Computer Graphics, Vol.5(2),
April-June 1999.

[Ronfard96] Ronfard, K., and Rossignae, ., Full-Range Approximation of Triangu-
lated Polyhedra. Eurographics 1996 Proceedings, in Computer Graphics Forum,
15(3}, August 1996, pp. 67-76.

[Svarewsky99] Svarovsky, |., Exeremse Dietail Graphics, Game Developer’s Conference
1999 Proceedings, also available online: hope/iwww svarovsky. freeserve.could!
ExtremelD.

4.13

Interpolated 3D Keyframe
Animation

Herbert Marselas

Keyframing is 2 simple and effective way of animaring a 30 object. However, since
each keyframe only represents the extremes of the object’s moton, this can make the
abject appear to jump between positions.

Linear Interpolation

One solution is to add more keyframes ro make the rransition between keyframes less
jaming. Another more cconomical method is to programmatically create in-berween
animarion frames using fnrerpodaion.

Inrerpolarion—also known as blending, morphing, or tweening—is the process
of creating a new position berween rwo existing positions. In this case, we are inter-
pelating two known keyframe posidons gy and g, to create a new position ps).

The easicst interpolarion solution is linear interpolation. In this case, a line is
drawn beoween the same position in two adjacent keyframes py and gy, and then we
calculate where on this line the new posirion p(z} exists (Figure 4.13.1).

Given the desired time of the new animarion position, the total number of
keyframes, and the toeal time of the animation, the point between the two dosest
keyframes can be caloulared.

The funcion calculateFramefercentage demonstrates this, Given the total
number of keyframes in the animartion, the total tme of the animation, and the
deired dme, the keyframes on either side of the new position and the percentage
berween the rwo frames are calculared and remarned.

Pye -‘\ . P, P(1) = Po + Dy - Po)

FIGURE 4.13.1 Example linear interpolarion and formuls.

Section 4 Polygonal Techniques

vold calculateFranePercentage(long deTotalAninFranes,
float fTotalaninTime, float TOesiredTing,
lonp BdwFirstFrame, long SdwSecondFrane,
float &fParcentage)

{1 determine which frases are inwolved

float fTimaPerFramsé = fTotalaAninTime f
(flpat) deTotalAninSrames:

dwFirstFrame = §;

it (fDesiredTime = fTotalaninTime)
TlesiredTine -= fTotallninTime;

Tor {Tloat f = 0.0F; f <= fDesiredTinme; f += TTimePerFrase)
dwFirstFrane+4;

!l g8t Tirst frame

if (f = fDesiredTise)
dufFirstFrans—;

it [owFirstFrame < Q)
wFirstFrase = dwTotalAninFrames - 1;
alze
it [(faFirstFrame == dwTotalAninFrasgs)
dwFirstFrame = 0;

i1 88t =&cond frame
gwiecandFrane = deFirstFrame + 1:

1T [dwSecondFrane == dwTotalininfranes)
daSecondFrane = ;

{f calc the percentaga

TPercentaga = (fDesiredTime - ((#loat) owFirstFirane =
fTinePerFrame}) * fTimePerFrame;
b I caleulateFramePercentage

First, ealeulateFrancPercentage increments through each frame unal ic fnds
the keyframe that is right before the desired time. This assumes thar the keyframes
cach have the same duraton. IF the keyframes are not ser at uniform intervals, this
function will kave to be changed accordingly.

With dhe fiest keyframe found, it is checked against the number of keyframes in
the animation. Then, the second keyframe is determined by incremendng che frsc
keyframe number by one, The second keyframe number is alss checked against the
total number of keyframes in the animarion, This code assumes that the animation is
going to loop back to the star of the animation after displaying the last keyframe.

It should be noted thar the calsulateframePercen tage function, as with all of the

4.13 Interpolated 3D Keyframe Animation 46T

funerions in this article, are presented more for readability than performance. One
easy performance improvement is (o pre-compure values such as fTisePerFrame.

Iinterpolating Vertices and Normails

Wirch the two keyframes and the percenmage berween them identified, this dam can
now be used o generare the new animaron frame. The conbinevertices funcrion
demonstrates using these values to combine the vertices from the selecred keyframes.

void esabinsVertices{lang deversexCount, float fPercantage,
veotord *pFirstFrameVertices,
vectord *pSecondFrameVertices,
vectord fplLonbinedVertices)

for [(long i = O
i =« deVertexCount;
i++, pFirstFramsverticesss,
pEecondFrameVertices++, pCombinadVerticesss)

{

‘pﬂDﬂiﬂEﬂE[“TlGEE L "l]Fil"EtFl"ﬁl'lE'l.rEl'“[ll'.‘ES *
fPercentage * | *pSecondFraneVertices —
spFirstFransVertices) ;

}

}

The pementage t|'L:|tw1~; nlnl[:l.'e:l;l im calcolat eFramePercentage s wizdd to com-
hine the vertices from the tao I-Dq'fnmu ke 2 .':i:ngﬁc oW I]I:,:n.\ilin::ln betwreen them.

This same methed of cul:nlnin.i.ng the vertives of bath iq::rfh:nd ean alsa be
applied to combining the normals of the keyframes. IF the keyframe normals were
normalized before interpolating, the combined value won't need o be normalized
unless there is a large difference between the normal vectors,

There can also be a EI:I!-I;}I:H!:I.I'IEE SAvings il'-:u:p.'u-.l.l:: lists of Gce normals (for back-
face culling) and vertex normals (for lighting) are stored in wch keyframe. The face
normals must always be interpolated, but interpolating the vertex normals can be
skipped if you're tying to improve pedformance, This means that the veriex lighting
won't be correct, bur in many situations, the user won't notice the difference,

Hermite Spline Interpolation

One dawback to linear interpolation is that some interpolated animation frames may
have a tendency to deform o a greater or lesser extent. To sobve this, a slightly more
complicated interpolation system must be used, This next method, Hermite spline
interpolation, takes into account the two keyframes on cither side of the desired posi-
oon (Figure 4.13.2).

Similar to calculateFramePercentage, calculateFramePercentageSpline deter-
mines which keyframes are on cither side of the desired animadon dme. Additionally,

Sectlon 4 Polygonal Techniques

pit) based on lincar interpolation pit) based oo spline incerpolagion
FIBURE 4.13.2 Linearly interpolated pasition vs. spline interpolared position,
the frames immediately before and after these wo keyframes are zlso caleulared,
These additional keyframes are used to refine the caleulation for the new position.
wold caloulateFramePercentageSpline|long cwTotalAnimFranes,
float fTotalanieTime, float TDesiredTime,
long LdwFirstFrame, lenp AdwSecondFrame,
long EcwThirdFrame, long SdwFourthFrame,
flaat EfParcentaga)

M determine which frames are invalved

Tloat flimePerFrame = fTotalAninTing |
(float) dwTotalAninframes:

dwSecondFrana = 0;

if (fDesiredTime > fTotalanisTime)
flesirgdTine -= fTotalAniaTime;

Tor (float f = 0.0f; f <= fDesiredTime; f += TTimePerFrame)
dwSecondFraness

{7 =&t Segond Trame

if (f = fDesiredTima)
deSecondFrane --;

if (dwSecondFrame < 0)

dwlacondFrane = dwTotalAnisFranes - 1:
Blee

if (dwSecondFrame >= dwTotalAninFramas)
dwSacondFrame = 0;
{/ =8t frame before socond Trame
dwFirstFrana = dwSscondrframa - 1;

if (dwFirstFrame < 0)
gaFirsitFrane = dwTotalAninFrames - 1;

!l sot uppar frane

4.13 Interpolated 2D Kln?_fl_:mu Animation 468

deThirdFrane = dwSecondFrane + 13

if [dwThirdFrame >= dwTotalAnimFranes)
dwThirdFrame = 0;

{1 58t frane after the third fraoe
dwFourthFrane = dwThirdFrame + 1;

if [dwFourthFrame == dwTotalaAnimFranes)
gwFourthFrame = 0;

ff get the uppar percent

fPercentage = (fDesiredTime - ((Tloat) dwSecondFrame *
fTimePerFramg))] * fTimePerframa;
} {f caltulateFramePercentage

The positions from the four keyframes are used o calculate the new i) using the
following equarion:

ple)=(2" =3 +N)p, +{" — 26" +1hm, + (0" =" hm, +(=20° + 307 p,

s ['-_Tﬂ]({p.. ~)+ (e 1)

The first and fourth keyframes are used to calculate the tangents m; berween the
firsr and second keyframes, and the third and fourth keyframes, respectively.

Spline Interpolating Vertices

The cosbineVerticesSpline funcrion demonstrates calculating the mngents and then
the Hermite spline interpolared position plt)

viid eonbineVerticesSpline(long dwWertexCount, float fPercentage,
weotord *pfirstfransVertices,
weotord *pSscondFramsVertices,
wectord “pThirgFransVertices,
wectord “pfourthFramsVertices,
wveotord *pCombinadvertices)

float t = FFEFtﬂﬂt:gﬂ;
float 2 = £ = 1;
float t3 = t2 * §;

vectard nl, mi;

r

const Tloat alpha = 0.0F;

for (long 4 = 0,
i = dwVertexGount;
i++, pFirstFransVertices++, placondFramaVarticesss,

470 Section4 Polygonal Techniques

pThirdFraneVertices++, pFourthFramevertiops++)

nd = {{1 - alpha) [2.0f) *
[{*pSecondFrameVertices - *pFirstFrameVertices) #
*pThirdFramaVertices - *pSecondFrameVertices):

mi = ({1 - alpha) [2.0f) =
({*pThirdFrameVertices - *pSecondFraneVertices) =
"PRourthFrameVertices - *pThirdFrancVertices):

"plosbinedVertices = ({(2 * t3}) - (3 * £2) + 1] *
*pSecondFrameVerticos) +
(g2 - (2 * 12} + t) = md} +
({3 - T2) = mi) +
(LE-2 * L3) + (3 ® t2)) *
*pThirdFrameVartices);

}
}

Another new addition to this calculation is the variable alpra. alpha controls the
tension of the tangent to the spline that being calculated. While alpha can be changed
to make the tension higher (positive values), or lower (negative values), lezving alpha
at zero is good enough for most animations.

If you've determined that a fixed value for a1pha is sufficient for your animarion,
you can pre-calculare the first part of the tangent equation m, ((1 = alpha) / 2), and
replace it with a constane, (0.5 in this case.

Why Hermite Splines?

Az first glince, it may scem an odd choice of 2 Hermite spline over a better known
spline such as a B-spline. While B-splines offer additional continuiry, this comes ar
the cost of less control over the tendency of the interpolated curve,

Summary

Interpolating keyframe animations is an easy and incrpensive way of improving ani-
mation quality. Lincar interpolarion can be performed for very little cost PeT Verrex.
Hermite spline interpolation improves the qualisy of interpolated keyframes over lin-
car interpolation, bur comes ar a grearer per-vertex cost.

References

[Foley96] Foley, 1., van Dam, A., Feiner, 5., and Hughes, |. Computer Graphics: Prin-
ciples and Pracrice 2™ Edition. New York: Addison-Wesley Publishing Company,
Ine, 1996,

4.14

A Fast and Simple Skinning
Technique

Torgeir Hagland

This article describes a skinning method that is most beneficial for lower polygon
characrers {less than 500 polygons), where the artists and animators need 1008 con-
ol aver whar their versices are doing. The method can in short be described a5 2
dever way of modifying and sorring an object’s vertex list and re-mapping the face [is
accordingly.

Why Low-Polygon Count?

When dealing with low-pelygon count models, each vertex has a big visual impact on
how the models sithonemre looks. As an example, let’s look ar your ebow. The only
bones influencing it would be the upper and lower arms. When flexing your biceps,
the lower arm influences how the vertices on the inside of your elbow move. Ie pushes
those vertices up from the direction of your lower arm and averages it with the orien-
tation of your upper arm. The end result looks like you have a very thick dbow. This
rechnigue only takes into account one bone per vertex.

The Mathad

The antst creates a single skin model; for example, a space soldier. They then dupli-
cates this skin, scales it down fractionally, and proceeds to cur this smaller skin up into
even smaller bits (body pares), which are used as bones. Az each bone is creared, i is
given the same name as the skin with a number appended o ir, so it can easily be rec-
ognized as a bone by our program.

Once we have idenrified 2 skin and its bones, we mke the geometry of the bones
and store the verticss in one big list. Each entry in this list contains the vertex position
and the bone this verrex is a parr of.

MNow for each vertex in our skin, we find the verex in the bone list that is closest
to it. We cransform the skin vertex by the inverse marrix of the bone that the verzex
was closest to. This will bring the skin vertex inro the local coordinate system of che

471

472 Section 4 Polygonal Technigues

bone (in the draw loop, the verex is rransformed back again, so even though the
bane-skin is smaller, it has no impact on the end result sinee the position is relagive).
The transformed vertex is stored in a remporary list thar we accumulate, where we
also store the onginal vertex list index and 2 pointer w the bone thar influences it.
The influencing bone has a counter char keeps track of the number of vertices it rrans-
forms.

When all the verrices of the skin have a bone influencing them, we process the
tem porary list thar we created. This list is then sorted based on the order of the bones,
For each bone, the number of vertices it influences is stored in the original skin's ver-
tex list, and the faces must remap the vertices thar they reference since we just
changed all che vertex indices.

Listing 4.14.1 contains sample code that solves for bone influences and remaps
the faces accordingly, Even though this sample code wses the 3D Studio Max file
walkit, the rechnique cn easily be wsed with any 3D modeling package. [only wse it
1o keep the source size small, and to make sure the focus of this is on the influence
sobving and draw loop, not the model conversion, exc.

After executing the code in Listing 4.14,1 we have:

* Askin, with cach verrex tzansformed into the local coordinare system of the bone
influencing it. The vertex list is somed by the arder of the bones.
* Alist of bones, with 2 counter for how many vertices cach bone should rransform.

The draw loop for the skin can then be as simple as Listing 4.14.2.

sSummary

This method is fast and simple, and works especially well for low-polygon characters.
For higher-polygon characters, the edges are smoother, and you will need seversl
bones influencing each vertex. You will also then most likely store two or three peint-
ers for each vertex to the hones thar influence them. This means you can no longer
pre-store the inverse transformed vertices, and for each frame you need 1o apply the
inverse mansform and a percentage-based rowtion for esch bone thar influences it
This causes more of a problem for the tool thar creates the influence datz, Commer-
cial packages that export bone information do exist, and you no longer have to wOITy
about how the influencing is done, just how ro ersate your draw loop, If you do
decide to create the influence ool yourself, T highly secommend making a tool thar
allows the arist to “paint” influences directly onto the geometry. This way he does
not have to sccond guess a marhemarical algorichm.

Listing 4.14.1

vold SolveBonelInfluences (databasedds =db, Skin *skinptr)
.{
% Allscate a big workbuffer *f

4.14 A Fast and Simple Skinnling Technigue 473

BanePoint *bonepointpir=
{BonePoint® jmalloc 30000 sizenf (BonsPoint)) 3
BanePoint "curbmmepoint=tonepointptr;

long HrBaneverts=0;

f* Make 21l the bones® vertices into one big wertex
ligt with information on what bDone each point came from *)

MATRIX tmpmat;

Bone “baneptr=skinpir->BonePtr;

while[boneptr)

{
mesh3ds *bonsnesh=MHULL;
GetWeshByMNams3de (db, bonepir-=Name , Ebanenesh] |
assert{bonemash);

CopySdsatrix|tnpnat bonemesh-»locmetris) ;
InverseMatrix(tapmat,bonepir->Natrix);

peint3ds *boneneshpolnte=bonanesh->vertaxarray;

HroneVerte+=bonenaan->nvertices;
assart(Nr3onsVerts<310000) ;

for{int i=0;i<bonemesh-=nvertices;i+)

1
curbonepoint->Point . x=baneneshpoints->x;
curbonapaint-=Point . y=baneneshpaints-2y;
curtonapoint-=Foint . z=baneneshpoints->z;
curtonepolint ->BonePTr-banepte;
bonemashpolntss=;
curbonepoint++;

}

fplWashlbj3ds(dbonemesh) ;
bonaptretoneptr - »Nextier;
1

i

mash3ds *skinmazh
point3ds *skinmashpoints skimnmesh->vertexarray:
BonePoint *skimpointptr {Bongfoint*malloc
EtlnﬂEEﬂ-ﬁﬂfEPliﬁﬂE*SiLEDfiEnanﬁint]j;

BonePoint =~curskinpainmt = skimpointptr;

skinptr->MeshPir;

i* Find tThe closest bomg wertex to each skin wvertex *f
Tor (inT 1=0;i<skinmesh->mvertices;iss)

{
curskinpoint-=Point. = gkinseshpoints->x;
curskinpoint-=Foint.y = skimseshpoints-=y;
curskinpoint-=Point.z = skimseshpoints-=z;

/* naed to store eriginal vertex indox, for
face remapping */

curakinpoint-=Index =g

474 Saction 4 Polygonal Technigues

/* no bone is influencing this bone yet =/
curskinpoint-=Boneftr = MULL:

curbonepeint=bonepaintptr;
float mindist=1e6:

Tar{int j=0;1<NrBonaVerts;jss)
{
float dist=
GalcDistotSquared(skinseshpoints,
Sourbonepaint-»Point) ;
if(distemindizt)
{
mindist-dist;
curskinpoint - >BoneFtr=
curbonepoint - =BonePir;
3
curbonepointss;
}
surskinpoint++:
skinmeshpoints++:

}

f* Sort all the wertices of the skin by bone,
and rgmap the Teces accerdingly =/
skinmgshpoints = skinmesh->vartecarray;
face3ds *skinTeces = skinmesh->facearray;
long CurlIndex=0;
bonaptr=skinptr-=Bonedtr;
while(boneptr)
i

curskinpoint=3kinpaintptr;

for (i=0;i=<skinmesh->rAvertices;i++)

{

if {curskinpoint-»BanePtr==boneptr)

Transfora(baneptr-=datrix,
{float*}Ecurskinpoint - =Foint,
{float*}ekinneshpoints):
AzrapFacelist(skinmesh,
curskinpoint - =Index, Curlndexs+);
baneptr->Nriarts++:
skinmeshpodints++;
1
curskinpaint++;
}
beneptr=boneptr - =lextFtr;
}

/* Clean wup after the romapping =/
CleanUpFacelist(skinmesh);

fraa(skinpointpee)
free (bonepolatpir) ;

41_»!4 A Fast and Simple Skinning Technigue

475

Listing 4.14.2

void glhrawChar(}

{

nesh3ds *nashptr
Eona *haoneptr
pointads “yartpir
fagedds *faceptr

SkinPtr->MeshPtr;
SkinPtr->RonePtr;
megnptr->vartéxarray;
neshptr->facearray;

/= For Each bone in the skin, transforn X amount

of wvartices with the bone's gurrent aninmation matrix=f

poantids *skinptr=SkinPtr-=FointPtr;
while |bonepir)
i
MATRIX mat;
menRcpy {&mat, Eboneptr->AninPtr[GurFrasal,
Eizaat (WATRIX));
for {int i=0;i<boneptr-=HrVerts;it+)
Transform{mat, [Tloat*)vertptr++,
(float=]skinptre+];

ronaptr=poneptr - *RextPir;
}

f% Then Z2imply draw the objeot wsing the facelist+)
skinptr=SkinPtr->MfaintPtr;
glBegin({GL_TRIANGIES):
pleolordf(l,1,1);
for{int i={;i<npshptr->nfaces;i++)
1
pointdds =vi=fskinptr|faceptr-=vi]:
pointdds =v2=fskinpir|faceptr-=va2];
polntids *via-Eskinptr|faceptr->va]:

QLVErtaxdf (vl ->x, 1>y, v1->7);
PLVErEAXEF [v2.2x , w25y, vE->2);
glvertaxdf{vi->x, v3-oy vI->z):

faceptra4;

1
glEnd();

References

[Lander98] Lander, Jeff, Game Developer Magazine, May 1993

Defarsuzeion,

i Real-time Skelesal

4.15

a7g

Filling the Gaps—
Advanced Animation Using
Stitching and Skinning

Ryan Woodland

As hardware becomes faster and mose feanure-laden. game developers are searching for
ways to make characters look more compelling, OFf the many carepories that cn be
improved, character animation is perhaps one of the most imporrant.

Currently, most 3D games are starting to use some sort of skeletal representasion
for their characters as their wopology for animation. These systems attach geomesry to
“bones” in a characrer. The bones are then animated and, consequently, the attached
geometry inherits the morion creating adequare animation. Usually, however, the
geometry used o represent characters is fgid in namre, which i not the most useful
representation for modeling organie ereatures thar are definitely net rigid in nature,

Because the geomerry is completely sigid, any rwo picces that are suppased 1o be
connected 1o each other {an upper arm and a forcarm, for example) display blatant
discontinuities at the joint ar which they are connected. This obviously can become a
problem, since the characrers we are trying to represent are more ofien than not made
up of a continuous skin that does aot show any cracks or separarions.

In this article, T will discuss the topics of stitching and sbinming 25 ways to create
more realistic organic animation. Stitching &5 acueally just a less computationally
expensive subser of skinning and will therefore be discussed first. Both of these tech-
niques assume one continuows mesh that is arached o 2 bone structure for a charac-
ter a5 opposed o many meshes attached to a2 single bone in traditional rigid-body
animation. This continuows mesh is deformed relative to the character’s bone souc-
ture, yielding a character thar does not create visible (and often very annoving) EAPS at
joints when animaring.

In the following sections, [will be wsing the example of an arm to demonstrate
variows features of stirching and skinning, The basic mesh used is picture in Figure
4.15.1.

4.15 Filling the Gaps 477

FIGURE 4.15.1 Chur basic arm mesh,

Stitching

As mentioned earlier, stitching operates on a continuous mesh attached to 2 bone
structure. In ngid-body animation, 2 polygon is rransformed by one matrix represent-
ing the bone to which thar polygon is attached. With stitching, each vertex in a poly-
gon can be mansformed by a different matrix representing the bone to which che
individual vervex is artached. This means thar we can create polygons thar “sticch”
multple bones together simply by attaching different vertices in the polygon o dif-
ferent bones. When the bones are manipulaced, this pelygen should fill the #ap you
would see in rigid-body animation.

One of the major diffesences between stitching and rigid-body animation is the
data topology for representing a character. With rigid-body animation, a bone must
simply have a pointer to some geometry it is to animate. The matrix yielded by the
correspanding bone then transforms that gromerry. For stitching, it is necessary for
each pergex in the character's skin 10 keep track of the hone to which it is arrached.

ETruct Vertex

|
Tloat &, t;
Tloat x, ¥, Z;
uneigned long color;

uwnsigned lang boneIndex;
H

Before animating a character that has been correctly bound to this data opology,
we need to deal with the problem that our vertices are not in the comect space o be
properly transformed. The problem is this: a marrix wsed to transform a bone for ani-
marion assumes that the bone starts with its pivor point at the origin of the coordinate
space of the character, This makes sense if we consider 2 hand bone in 2 normal

478

Section 4 Polygonal Techniques

human. This bone should start with its pivor point at the origin of its coordinate
space so that we can easily rorrte the bone around thar peint. The bone is animared
{rotated) and then mansformed 1o the end of the forearm bone. This process repeils
for the forearm bone—the hand and the forearm are then animated and moved our
the end of the upper arm bone. This continues down through the hisrarchy unil the
entire skeleton has been properly ransformed.

Given the spatial relacionship between the skin's vertices and the bones of the
character, it is nocessary o tramsform the vertices of the skin into the local coordinate
space of the bones to which they are artached before transforming them by the bone's
animation mamix. To do this, we need to keep 2 marrix in each bone thar rells us how
to transform geometry back into the local space of the bone. This marrix should be
the inverse of the matrix used to transform the bone from its local space into the char-
acter’s mesh, given the oricntation of the mesh withour any animarion being applicd.
See Figure 4.15.2 for a depiction of the local spaces for each bone in our arm mesh.

Therefore, the data struersre of our bones should look like the Folloring:

struat Bone
{

Mtx arisntation;
Mtx animation;
Mtx invergsdrisntation;

Mtx final;

Bone *child;
Bane *sibling;
i

Once we have this data, we are ready to animate our character. To do this, we
must simply step through the vertex data and transform each vertex by the orientation
mitrix and then the animation matrix of the corresponding bone.

Eomee 1 Origin Bane 2 origin

FIEURE 4.15.2 A depiction of the bone in owur arm.

4.15 Filling the Gaps

478

Al of these transformations can be done faster by processing the bone hierarchy
and generating a final wansformadon matrix for each bonse concatenating a bone's
Inverse orientation, concatenated orientation, and concatenated animation matrices

together and then transforming geometry by the resulting matrx,

woid BuiloMatrices (SBene =bone, Mix forward, Mix orientaticn)

i

}

Wtx localForward;
Wtx localOrientation;

{ I concatenate the hierarchy's orientatlion matrices so
{f that we can generate the Lnversa

concatenate (bone-=orientation, orientation ,
localbriantation) ;

JI take the inverse of the arientation matrix for this bone
inverse{localOrientation, bone-=inversedrisntation);

§I concatanate this bone's orientation omto the Torward
S omatrix

concatenate(bone-=arientation, forward, LlocalForward);

Ji concatenate this bome's animation onto the forward matrix
concatenate(bane-ranimstion, localForward, localForward];

ff build the bone's final matrix

contatenate(bane->inverselrientation, localForward,
bone->final};

if(bone->child)
BuildMatrices(bone->child, localFarward,
localOrientatian] ;

if (bane-»sibling)
BuildMatrices(bone-=zikling, forward, erientatien);

Using, the preceding rechnique on the arm mesh, a bend of 45 degress and 90
degrecs to the forcarm bone produces the images in Figure 4,15.3.
Stitching is a very valid technique, since it easily takes advantage of any hardware
that provides a transform engine. It is necessary to generate the final stitching matrix
on the CPL, but the hardwame can easily use these matrices to transform any number
|:|!|'- 'I.'I:I.'!J-.-.'.I:': W F;L'-l ;t
As an optimization to this technique, I suggest breaking up the continuous skin
s that the vertices exist in the local space ol the bone ta which l]'u:_:.-' are attached, This

prevents us from having to do an extra matrix concatenation per bone per frame of
animation,

Section 4 Polygonal Techniques

FIGURE 4.15.3 a: Stirched arm mesh bent to €5 degrees. & Bent to 90 degress,

Skinning

While stirching is a valid technique, it has some problems. In cases of extreme joint
roration, geometry tends to shear massively and appear quite unnarural. Using the
rechniques discussed earlier, a forearm rotation of 120 degrees displays quite a nasty
shear effect ar the elbow. This results because we only have one polygon to span the
entire gap berween the upper arm and the forcarm. The karger this gap becomes, the
worse the solution looks, 25 shown in Figure £.15.4.

To prevent this, we can implemenc a full system of skinning where a vertex is not
limiced o being affected by a single bone; it can instead be influenced by multiple
bones. This males sense if we look at the behavior of the human body. The skin on a
person’s elbow is not affected by the oricnmdon of just ene bone, The movements of
both the upper and lower arm bones affect ic. Similarly, skin in the neck and shoulder
is affected by the orentations of the arm, neck, and chest.

To enable this, each vertex in a skinned mesh must contain a lisc of bones that
affect ir. Fach vertex must akso carry a weight per bone thar rells us how heavily
affecied the vertex is by the bone. For this example, we will assume linear skinning,
which means all of the weights of a vertex must add up to 1.0, Because of this, given
bones by which a vertex is affecied, we need w store n—1 weighes, since the remain-
ing weight should be 1.0 = (weighr; + weighs + .. + weighr,).

girust Vertex
float 5, t;

float x, v, T
unsigned long color;

4.15 Filling the Gaps 481

FIGURE 4.15.4 Ugly stirched arm mesh benr to 120 degrees.

unsigned long bonelndexi;
unsigned long bonglndex2;

float weight;
| H

As mentioned earlier, stitching is a subset of skinning, and therefore suffers from
the same local-space transform issues as stitching. Therefore, we should use the same
bone representation as shown previously.

In order to do full skinning, we need to transform each bone by each marrix
affecting it, then multiply the result by the corresponding weight, and, finally, accu-
mulate the resulis. The equation for skinning looks like:

(vertex: " matricd) * weightll) + (vertec ™ matrix] * weightl) + .. +
(vertex * matriclN * weigheN)

where the sum of all weights 0.4 = 1.0,
What we are cffectively doing is a linear interpolation berween transformed ver-
tices. The following is the code used to perform this operation on a given mesh.

Vector3D TransforaVertex | Vertex *vert, Bone *bonedrray)
i

YectordD tenp;

Vestarad final:

Section 4 Polygonal Techniguaes

temp = XForpVes (vert-=poaltion,
bane|vert-=bongIndex1] ->Tinal)

fimal.x = temp.X * vert->waight:
fimal.y = temp.y * vert-=waight;
fimal.z = temp.z * wert-swaight;

temp = XForaVeco{vert-=position,
bane| vert->bong Index2] ->Ffinal)
final.x #= tesp.x * (1.0F - wert-=weight):
finmal.y #= temp.y * [(1.0F - wert-=weight);
final.z #+= temp.z * (1.0F - wvert->weight);

return final;

}

Using the technique outlined previowsly, we were able to generare the following
autput for forearm rotations of 45 degrecs, 90 degrees, and 120 degrees, respecrively.
Note that even in the extreme 120-degree example (see Figure 4.15.5), the continuiry
of the dbow geometry is still mainined.

As you @n see, a major problem with skinning is that it is compurationally
expensive. Unfortunately, these compurarions are not well supported by roday’s hard-
ware transform engines. An alternartive way of performing the linear interpolation eal-
culations, which porentially make: advantage of some cument hardware
implementations, is to generare a skinning matrix t be passed to hardware to per-
form the fnal mansform. To calewlate the skin ning matrix, simply interpolate che
marrices linearly based on the weight:

(mearricl) * weightl) + (matricl = weightl) + . + { marrieN " weiehtN)

where the sum of all weights 0.V = 1.0,

This method s only useful if the same skinning matrix can be used for mulriple
vertices; in other words, different vertices are weighted identically berween the same
bones. The less this case is tree, the less the grain of this method will be.

FIGURE 4.15.5 o Skinned arm mesh bent wo 45 degrees. & Bent to 90 degrees, ¢ Benr o
120 -ﬂugn:t'.'_

4.15

Filling the Gaps 483

It is importane e nete that the skinning technique outlined previously is not a
completely machemarically correct technique. If nommals are mansformed using this
technique, the results are not guarantesd to be nommalized. If per-verrex lighting is
required for a character using this technique, post-transform normals must be re-nor-
malized before lighting calcularions.

Advanced Topics

The skinning example assumes all the weights influencing a vertex must add up w
1.0, It is a possibility, however, to arate some compelling special effects with weights
that do nor sum 1o 1.0, For instance, it is possible to place an extra bone in an arm
that simulates a bicep muscle. All of the vertices in the arm's skin should be weighted
normally berween the upper arm, lower arm, and shoulder. However, the vertices near
the bicep should aleo be wreighted based on their distance from the bicep bone—
closer vertices should have hfﬁu:r *n-':'ig]jt values. "When the arm]:u:nds, :].Pp!_!,l';l, Sﬁ!': 4]
the bicep bone to ereate the appearance of a muscle fexing.

The skinning techaique outlined is not mathemarically correct because we are
essentially lincarly interpolating marrices. Instead of representing bones as matrices, it
is possible 1o represent them as a quarernion. SLERP berween the quaternions based
on the per-vertex weights and then produce 2 marrix from the resule, This should
yield a somewhat better-looking skinned mesh.

Referances

[Landes98] Lander, Jeff, “Skin Them Bones: Game Programming for the Web Gen-
eration,” Game Developer Magazine (May 1998): pp. 11-16.

[TerzopoulasB7] Teropoulos, Demetri, cr al, “Elstically Deformable Models,”
Computer Graphics, Vol 21, nod (SIGGRAPH 1987): pp. 205-214.

4.16

Real-Time Realistic Terrain
Generation

Guy W. Lecky-Thompson

Terrain is the centerpiece of many games, an important backdrop in some, and just
something o fill the space in others. No matter how 7t is used, it will siill actract
unwanted arrention if it is badly represented and, by the same token, will add to the
armaosphere, playability, and long shelflife of the game if done well.

The use of the term zernain conjures up images of landforms, lakes, mountains, or
even desolate crarers in airless armespheres for most people. While this is an impor-
ant aspect of huilding, the game, the word fermam may be used in a much broader
sense. It ¢an cover objects, names and buildings, pares of the game universe thar the
player will interact with, and picces chat only give support 1o those parts.

The aim of this article is wo equip the reader with several algorithms thar enable 2
realistic termain to be created, within which the game may be played.

The emphasis here is on generation, and not storage. Thar is o say, the algo-
rithms are presented in 2 manner that leans toward using them 1o ereate terrsin in
real-time, and not generation for storage, with a view o replaying the contents ar 2
Later date, Used with the techniques defined in the Predionabile Random Nuntbers arti-
de in this book, a powerful near-infinite universe can be generated.

Landscaping

The first technique thar can be used to create basic terrain i frezzy Lendrcaping. Essen-
tially. it is simply creating topography in a completely random fashion, with scant
regard to the real world. Ir is presented here simply as a starting point upon which we
may build fumure algorithms that will prove of more use.

Here is some pseudocods that generates a finie grid:

yo= -1
while y < 100 {
X =0y
L T A I
srand(y) ;

418 FReal-Time Realistic Terrain Generation 485

}
while x < 100 {

map(x, ¥] = rand (3);
¥E=x+ 13

}

As can be seen,.this will simply popubare 2 100 x 100 grid with a series of random
numbers between 0 and 3. We can then assign colors to the numbers such thar 0 is
black (warer), 1 is dark gray (plains), 2 is light gray (land}, and 3 is white {mountin).
This effect is seen in Figure 4.16.1. Note also that the random number EETICIALOr is
sceded on part of the grid reference of the individual square. This cnsures thar we can
always recover the valie withour needing to go through the entire grid [Lecky99], bur
only through thar line,

This is slightly less perfect than one would hepe, since we would like to seed
based on a discrere square. To do this, we would need 1o ereate our own random nem-
ber penerator ro rid us of the annoying effect seen in Figure 4,16.1, which results from
using the ANSI srand function : srand (x + (x * ¥)) for each grid square,

Good-looking furzy terrain is mere realistic than that shown in Figure 4.16.1, 50
we need to perform some additional processing on the resulting “map,” The rech-
nique thar we shall use is one thar can be applied to any of the terrain-generaring algo-
rithms presented here, indeed ro any abstracr set of random figures thar require a
grouping trearment.

FIE“HE 4.16.1 'ﬂl_]flﬂ:l'lfllil ﬂl‘ll.‘lﬂ-ﬂ'l TF i b R B b R

Section 4 Polygonal Technlques

The driving philosophy is to ensure thar the randomness of the map is reduced by
ensuring thar neighboring squares hold a similar value, but at the ame fime allowing
differences berween specific sets or areas of squares. As ussal, it s Far easier to warch in
action than to explain. The pseudocode looks like this:

step = 4;
for ¥ = 0; y < 100; ¥ = ¥ + step {
for x =0 x = 100; x = x + atep {
total = 0;
for v _local = yi v loeal <= y + &tep;
¥_local = y local + 1
for x local = x; X local <= x + step;
¥ local = x lagal + 1
total = total 4 map (x local, y_local);
}
}
average = total [{step x step);
for y_local = y; y local <= y + step;
¥y local = y loeal + 1 |
for x_local = x; = locel <= x + step;
¥ local = x loeal + 1
map (¥ _local, ¥ local) = average;
k

}
}

The effect of applying this smoothing algorithm can be seen in Figure 4.16.2.

While the net result is far from perfect, the overriding feeling is thar the map has
become much less random rhan before.

It works by dividing che grid into a series of larger squares, and then subdividing
them. The average value of the subdivisions is then computed and propagated
throughout the subdivisions. The overall effect is one of smoothing.

The choice of subdivision size here is quite important also—rtoo large a subdivi-
sion will creare wide expanses of similar values, and too small 2 subdivision will not
produce the desired effect.

An improvement to this algorithm is to approach it from a slightdy different
direction. The end resule is the same, modifying discrete poines of the rerrain based
on the surrounding points. This time, however, we will selecr the four comer points
of the square for the averaging process, rather than use every point. Also, we will only
change the center points of cach of the four quarters of the chosen square, rather than
every poinc

The following code is snipped from the terrain-generation software thar appears
on the CD.

for { int square sire = width; square_size = 1; square size f= 2 }

1
int randes_range = square_size;

4.16 Real-Tima Realizlic Terrain Generatlon 48T

FIBURE 4.18.2 A smoathed version of our random terrain grd.

for [int x1 = row offset; x1 < width; x1 += square_size)

{
for { int y1 = row offset; yi < width; y1 += square_size)
{

1 Galculatea the four corner offsets
int x2 = [x1 + =zquare size] % width:
int y2 (¥l = square sire) % width;

f{ Gat the values

int 41 = this->terrain[x1]0vil:
ant 12 = this->terrain|[x2][vil:
int i3 = this->terrain[x1][y2]:
int i4 = this->terrain(x2][y2];

fi Create weighted averages, based on

imt pl o= {{i1 * 9) # {12 = 3) + (i3 * 3} + (i4)})}] 18;
int p& = {{£1 = 3) # (12 = B) * (i3) + (34 *= 3}} | 18;
int p3 = ((i1 * 3) + {12} + (13 * @) + (i4 * 3)] [16;
int pd = ((i1} + (42 * 3) + (13 * 3) + (i4 * 9)] [1B;

Il Galculate the center points of each guadrant
It x3 = [¥1 + =quare size/4] % width;

int y3 = [yl + square sizef4} % width;

x2 = (%3 + aquare_sizel/Z2) % width;

¥2 = (y3 + square_size/Z2) % width:

Ii Set the points 10 the averages calculated above

Section 4 Palygonal Technigues

this->tgrrain [x3][y3] = pi;
this->terrain [=2][y3] = p2;:
this->terrain [x3][y2] = pys
this->terrain [=2][y2] = pd;
H
}

/) For the npxt row, mowve in slightly
row_offset = square_sizel4;

}

Figure 4.16.3 shows the four comer points and the bounding rectangle of the

=" four center points used in the calculations above.

This technique was first introduced to me by James McNeill [McMeill95], and is
anc of the most reliable examples of “smoothing” I have seen 1o date. There are end-
less vasiations that involve adding random offsets o the caleulared points, amongst
others, which lead to more variable lindseapes.

As an enhancement to the two rechniques discussed here, we may introduce a
third mechanism, known as Faulr Line lindscape generation. Fault Line landscape
generation works by choosing two points at random and drawing a line at a given
height berween them. Nexr, two more points are chosen, and again, a line is drawn
berween chem. This is repeared until there are a certain number of lines on the screen,
as in Figure 4.16.4.

The next step is simply o apply the subdivision technique explained previously
ter smooth the differences between the poines. This results in a series of “islands” being
created as can be seen in Figure 4.16.5. Sec Jason Shankels article, Fromsd Terrain
Crenterasion—Fanlt Farmation, in this volume for further informarion on this tech-
niguee.

While this may seem simple ar first, the line drawing itself is in fact more com-
plex. As the discerning reader will have noticed in Figure 4.16.5, the lines are nor

A

FIGURE 4.16.3 Subdrdsion coordinates.

4.16 Real-Time Realistic Terraln Generation

FIGURE 4.16.4 Random fanlr limes.

FIGURE 4.16.5 Fault lines smoothed inro isdlands,

450 Section 4 Polygonal Techniques

drawn at 2 constant “height.” That is, the value arcribured 1o each point along the line
changes with respect 1o the distance from the starting point to the ending point.

The algosithm used to decide the “height”™ of each point is a sine curve, whose
amplirude is based on the distance between the two poins. The following code seg-
ment shows the core line-drawing algorithm ar work thar forms part of the terrain
penerator software an the CD.

da
1
this->terrain[{int)=_stert][(Lnt)y_start] =
nCurrentRandosialoe;
X _atart = x_start + x diff;
y_Start = y_start + y_oiff:

I Apply a sine function oscillating between 0 and 255
/! The sin function should be called with values from
) =pif2 to pif2

£f (X diff < y diff)
i

}
elsg
{
nfurrentRandonValue = [2in(y_start} * 123) + 128;

nCurrentfiandonValue = (sin(x stact) = 128) + 128;

}
} while ({i{y_start < {float)this->terrain_width} &&
{y_start > 0.0}) 2&
{{x_start < (Tloat)this->terrain_height) &&
{x_start > 0.0}}};

This is performed for cach line to achicve an effect akin to 2 mounmin range,
albeir with a very smooth oscillation.

The important point to note about all of the techniques discwssed is that the
landscape thar is generared is repearable. That is, using the same basic inpur values,
identical landscapes can be generared ar will, They do not need 1o be stored anywhere.
This is the underlying principle for creating termin in general, and is the core theme
to the remainder of this article.

Using these techniques along with the principle of generation, we can say thar
since in theory every time we seed the random number generator, we will get a differ-
ent set of random numbers, the possibilities for generating resain are infinite. Fur-
thermore, since we can re-generate or re-calculare ar will any point of any terrain, we
never need more than just ren-rime storage, which leaves us space on the delivery
media for much more than just level files.

One of the most common structures in the game-playing arena (if you'll pardon the
pun} is the maze. Dogmr wses several to good effect, for example. In addition, ladders

4.16 Real-Time Realistic Terrain Generation 494

and levels-type games also use a two-dimensional variation of the maze. These mazes
often increase in complexity according 1o the skill of the player, and may be littered
with all manner of rreasure,

Too often, though, these use up so much storage space (Doom WAD files for
example) thar you simply cannat puz enough of them on 2 CD to sarisfy the player. A
truly realistic terrain (in the broadest sense) requires the Musion of infinity, and so it
would be a grear boon if we could somchow creare these containers in real tme.

If no awention should be paid to the “shape™ of whar is being created, i is
extremely simple to create someching thar will contain passages and paths, but with
no rooms. [The author fondly remembers a few eardy arcade games like chat.. .} Basi-
cally, the aim is to imagine that the playing area is contained within a finice space,
which we will czll 2 bosx,

This box is then subdivided by drawing horizonal lines from the left-hand side ro
the right at andom intervals. Next, these sub-boxes are divided by drawing vertical
lines from the top of the box o the bowom, 2gain at random intervals. A possible
result is shown in Figure 4.16.6.

Seen from this angle, this is not very interesting ac all, but it is all a question of
represenmation. Imagine the black lines to be passageways, Wow imagine that the play-
ers only see the passageways from the fisst-pesson perspective; all they will know are
juncrions and passages.

In fact, it still wouldn't be especially convincing—it is still missing rooms and
dead-ends. Boch of these will increase the reality of the experience. Rooms are quite
easy, because all thar is required is that any space that has dimensions exceeding the

FIGURE 4.16.6 Fzndom lines dmvide our box

4s2

Saction 4 Palygonal Technigues

smalless box can be considersd a reom. Working out the dimensions of the smallest
box is almost too casy,

Since we know thar all the horizontal and vertical lines must meer ar some junc-
ture, it follows dyae the smallest box is the junction of the two vertical lines with the
smallest horizontal separation, and the two horizontal lines with the smallest vestical
separation. Anything larger than thac in Seek direcsions can be considered 4 room;
whatever is left is just passageway. Based on that, what emerges is shown in Figure
4.16.7 (here we have added a licte ro the sizes wsed 1o work our the passageways and
rooms).

By placing entryways on the walls at various places, we have creared 2 playing area
that can be generated emirely on the fly. Increasing the number of lines, or decreasing
the size used to determine what is 2 passageway and whar is 2 room, will affect the
complexiry and hence the case of play.

However, it is s¢ill not very realistic. In Fact, it looks more like the intessection of
a couple of streets, rather than a building. So ler us treat it like char, and determine
how we may urn the “rooms” into “buildings.” The passageways will remain streets.

Rarher than blindly chopping the “room” into pieces as we did previously, build-
ings can be made more realistic by subdivision. Taking a square, we divide it at a ran-
dom position into two picces, verically. Then we divide each of the tao picces into
two mere, horizontally. Next, we may choose to divide each of the resulting pieces
into two, again vertically. This can be repeated as many rimes as is required. In Figure
£.16.8, we have taken one of the larger squares from our previous cxample.

The algorithm for doing rhis is faidy complex; however, here is an accepuble
varant for vertical lines:

L. Stars at the lefrmost side, at 3 mndom height.
2. Count the number of squares to the fght uneil a wall is encounrered.

FIEURE 4.16.7 - Before line removal. b Afier line removal,

4.16 Real-Time Realistic Termain Generation 493

FIEURE 4.16.8 Rooms creared by subdivision.

3. Ararandem number of squares from the left, draw a line from the top ro the bot-

tm.

4, Repearseeps 1, 2, and 3 1o raste.
And its equivalent for drawing horizental lines:

p—

. Srart ar the topmost side, at a random widdh.

2. Counr the number of squares down until a wall is encountered,

Ar 2 random number of squares from the top, draw a line fram the left 1o the
right.

4. Repearsteps 1, 2, and 3 o taste.

ol

Of course, the algorithm needs wo ensure thar when counting from top o bomom
{or indeed left 1o rght), thae this is performed along a line, to avoid “floaring” lines
appearing that start in the middle of the square. All lines thac are drawn must have a
starting point and an ending point ar a wall.

The next step is to inserr doors in the walls. This can be done in 2 variety of ways,
but perhaps the easicsr is ro work, again from top o borrom, or left to righ, and
insert a door in internal walls such that sections of walls have a2 maximum of N doors
in them.

[f this is done completely at random, we run the risk of having some walls wich
no doors, and potentially some rooms wo which there is no direct access. Depending
on whether this creares a problem, the algorithm must be adapred.

Naming Algorithms

Giving objects, places, or fearures realistic names is a real chore when it comes to most
game design. Elize, by David Braben and lan Bell, came up with some classics (Lave,

Sectlon 4 Polygonal Technigues

Diso, Reidquat, Lecsti, Orevre, etc) for the first star system. The first of 2 sLagger-
ingly large galaxy, in a universe of near-infinite scale. Considering that the machine
thar the game was running on (with 16K RAM) was 2 limired-resource seoond-gener-
ation microcomputer, this was a huge achievement. Clearly, there was no way that
these could have been stored (diskerres had yet to be invented), so they must have
been generated.

We could begin by generating a word of six letters, cach one chosen ar random.
We might come up with something like “ndpghs,” which is not terribly convincing,
What is required is some method by which we can ensure chat letters thar are siext to
each other fir naturally. The fiest step is 1o create a mble of letrer-frequency pairs, so
that for a given lerer we can say thar there are a limired number of possible lerters that
can follow ir, and ealeulate the chance that each one may follow i,

The following listing is the key to a technique known as the Markovian List (ses
also [Dewdney90]):

wodd AddLettersichar * szWord, wnsigned long ulTable|282][28]1)

i
int nWordlength, nFirstletter, nLastlLetter, nLatter;

{! Decapitalise the word
for (Aletter = 0; nletter < {int)}strlen{szWard})-1;nLattere+)
tolower|szWgrd[nlatter]);

I/ Add the first, emd laszt to the table
nWordlength = (int)strlen|szword);

nFirstletter = (szWord[0] - *a') = 1
nLastletter = (szWord[AMordlength-1] - "a*) + 1;

ulTable[0] [nFirstLetter]++; [/ Space followed by latter
ulTable[nlastletter][27)++; // Letter follewed by space

Tor (nletter = 0; nletter < mWerdlongth-2; nletter++)

1
nFirztletter = (szWord[nLettar] S kY T
nlastletter = (szWord[alLettar+1] - 'a') i |

ulTable[nFirstLetter] [nLastletter]+;
¥
¥

The algorithm represented hese needs lirtle explanation, ather than 1o say thar for
a given word, we specify which leress are the starting and ending ones, and add them
to the ble. Then, for each pair, we update the table such that the position referenced
by the leteers is incremented, cementing a relationship berween the tweo thar we will
make use of Laer,

s can be seen, this requires storage space of the order of 28x28x4 byres (3,136),
which fulfills our eriteria of geming it into a 16K RAM machine. Indeed, removal of
all the blank entries will probably reduce the space requirements even more.

418 Real-Time Realistic Terrain Generation 495

e T et

Omce we have passed the algorithm over a selecred vexr, or texts, we will have a
table thar contains all passible lerer pair frequencies for those rexes. We should also
store the average word length, oo,

Using this table, we may now generare a word, starting with the fiese letter, To do
this, we should choose 2 mndom leter such thar it may begin a word; in other words,
it falls in a column of the mble referenced by Wil Table/0), such dhar wfTable/o]fx] is
greater than zero. In addition, we can use the values stored in this row o determine
the chance of a spexific cell being chosen

To do this, we simply add the values of all the eells referenced by wdTablef0)fif
(where 7 runs from 1 vo 26). Nexr, we call the random number generator 1o retrieve a
vilue between 1 and the value we have calcolated. We then pass through the row
again, summing the frequencies as before, unil the random number thar we have is
less than the running votal, This is our lemer; for example wfTablefaff4] is a *d.” The
following code shows a generic form of this algorithm, which can be applied 1o any
letter.

int GetletterPosition{unsigned long wlWordTable[3&][28), int
nEravious)
1
int nCounter;
ungigned long wlfFrequencyTotal, ulFrequencyRunningfotal,
ulRandamletter;

ulFrequencyTotal = 0

/) Get the Trequencies
for [(ACoumter = 1; afounter < 237; mCountarss)
i
ulfFraquencyTotal = ulFrequencyTotal +
piWgrdTablenPrevisus] [ACountsa F] H
h

{i Choose a 'target” Tregquancy
ulRandamlstter = ramd(} % (ulFrequencyTotal);

i/ Wowve through the table until we Bit the “target' freguency

ulFrequencyRunningTotal = 0;

nCounter = 1;

da

{
ulFrequencyRunningTotal = wlfreguencyfunningTotal +

ulordfable{nPFrevious] [nGounter] ;

r'IEI}uI'I.'[‘EI"F*';

+ while [ulFreguencyRunningTotal = ulRandomietter);

return nCounter;

¥
In arder oo build 2 word of six !-l‘:ttl:r:. in ||:|'|EI;]'|.I |;|1.|:: E;:'.n:ra]]J_E-I:I]'E[hm wiould be:

Ward(0] = GetLetterPosition (word_tabla,0)

Section 4 Polygonal Techniques

Xom

whilep x 2= 5 |
ward[x] = ({GetlLetterPesition (word_table, word[x-1] — 'a'})}
=) + *a’
bR oL B

k

This is the essence of the software NameGen thar appears on the CD, and for
which full source code is available, The NameGen code is also used in the demonstra-
tion program UniGen (for creating star maps, with named planers).

However, as it stands, the word-generation algorithm docsnt preclude sLrange
words such as “fleces” or "nooooo” creeping in. The problem is thar there are 3 certain
number of letters that can form chains, That is, an “o” can be followed by an “0,” and
another “o,” almost w infinity. The random number generator may prevent chis to a
certain extend, but even a reperition of three “o's” is a lirtle ugly.

So, our word-building alporithm should become:

Word[0] = GetLetterPosition (word_table,d)

X = 1
while x < & {

word[x] = ((GetLetterPosition (word_table, word[x-1] — *a‘))
1) + 'a’

x = RemoveChain|word,x)

}

Where the Resovethain funcion returns the current lecter index into word if it is the
third in 2 chain of iself. This could be coded a5 in the following lisring:

int RemocweChain{ char word[MAX_LENGTH], inmt lettar_position |

1
int nPos = 0;

imt nOccurances = 0;

while (nFas = strlén|ward))

{
if (word[nPos] == word[letter position])
ROCCUrENGEs+

}

if [ndcturences > 2) return lgptter_position — 13

return letter pasitipn = 1;
1

This will clean up the word, and if there is no excessive chain, increment the lee
LET POSIEG COUMEET.

The final step thar can be taken in ensuring that the word is authentic is to
address the last leteer, and make certain thar it is one that can commonly end a nanural
word, Some letters, for example, are commonly followed by a vowel in the English

4.16 Real-Time Realistio Terrain Genaration 407

language, such as *}." In erder thar words do not creep in that end in such lerters, we
must perform ar least two operations.

The first operation is to ensure char the letter may follow the one thar it is adja-
cent 10, and to ensure that the chosen lermer may end 2 word (be followed by a space).
In addition, we must also be careful thar such a letter exists; otherwise, we may end up

in an endless loop. To do all this, the following code is adapted from the GetLetter-
Position function already described.

imt GetEndletter (unsigned long ulWerdTable[28][281, int nPrevicus)
{
int aCountar;
ungigned long wlFreguencyAdjacentTatal,
ulfrequencyRunningTotal, ulRandealetier,
ulFregquencyErdingTotal:

ulFrequencyfdjacentTotal = O
ulFrequencyEndingTotal = O

I Gat the frequencies
far (nCowftar = 1; nCountar < 27: nCouster+s:)
{
ulfFrequencysdiacentTotal = wlFrequéencyddjacentTotal +
ulWprdTable[nFrevious] [nCaunter] ;

ulFrequencyEndingTotal = ulFrequencyEndingTotal +
ulWordTable|27] [nCountear] ;
1

ff Cheose a "target’ freguency
viRandomlatter = rand() % ulFrequenoyAdjacentTotal;

{/ Meve through the table wuntil we hit the ‘target’ freguency
ulFrequencyRunningTotal = 0
nCounter = 1;
da
{
WiFrgquencyRumningTotel = wlFrequencyfiunningTotal +

uligrdlable{nfrevious] [nCounter];
ncountar++;

if (ulFreguencyEndingTatal = g
it {(uvilFrequencyfunningTotal == ulRandomletter) &4
{elWordTable[27] [aCounter] != 0})
break;
elsg
if (ulFreguancyRunningTotal >= ulRandomletter)
braak;

} whila {1 == 1});

return nGoenter;

)

433 Sactlon 4 Polygonal Technigues

An improved version dhat seleces the letrer as a funcrion of the combined proba-
bilitics of the targer letrer being adjacent o the source lemer ard at the end of 2 word
is left a5 an exercise for the reader.

Additional points to note ase that this method is limired only by the use of alpha-

Bet (it must be Roman), and that no attempr has been made o capitalize the begin-
ning of words.

Referances

[Devedney90] Dewdney, A. K., The Tinkertoy Computer, W.H. Freeman, 1990,

[Lecky¥9] Lecky-Thompson, Guy W, Algorithms for An Infinite Universe, Gamasu-
kra, 1999,

[McINeill95] MeNeill, James, SubDiv Appler, mensja@wwe.edu.

4.17

Fractal Terrain Generation—
Fault Formation

Jason Shankel

In narure, forces such as the separarion of rectonic plates, mass-wasting, and shoreline
erosion creare terrain fearures like escarpments, mesas, and seaside cliffs. In chis arei-
de, 1 will show how we can use a fanlt formarion algorithm to generate these kinds of

[EffLin.

Fault Formation

Start with an empty height field. Draw a random line through ir and add an offser
valuc dHeight to cach value on one side of the line (See Figure 4.17.1):

Mext, decrease dHerphe, deaw a2 new line, and repear the process. Continue gener-
ating lines and decreasing AHefplr until a sufficient level of derail is generared.

Figure £.17.2 shows terrain heighe fields ar 4, 8, 32, and 64 irerarions (higher ele-
vations in white).

+dHeight

FIGURE 4.17.1 The first step of our heighe feld.

455

S00 Section 4 Polygonal Techniques

4 iterations 8 iterations

32 iterations B4 iterations
FIGURE 4.17.2 Tersain height fields ereated by this process,

Decreasing dHelight

We want o decreass dFeighe lineacly with cach iteration, bur we dont necessarily
want it to drop te zero.

Ler dHeights be the value of dfrighe at each iteration. The value of affefght at

icerarion #, is given as:

dHeight, = dHeighty + (ifm)dHeight,-dFeight,)

Generating Random Lines

We want our lines to intersect well with the height field, so generating purely random
values for a linear equation isnt desirable, since the vast majority of lines will contzin
the entire height field an 3 single side.

To generare a line, it is best to pick two random points within the heighr field and
wsz them to determine the line.

4.17 [Fractal Terrain Generation 501

Erosion

£z

}
FIBURE 4.17.3. llustration of cheosing a “random line,”

We can derermine which side of 2 line a point is on by caleulating the z compo-
nent of a three-dimensional cross product {Figure 4.17.3):

Let { be a line defined by the poines pl and p2

Let g be a vector in the direction p1 — p2

Let o be 2 point in the height field

Let vo be a vecror in the direction pl — 0

Treared as three-dimensional vecrors, #p and we have z-componens of zero.

Let s = op & vo

If 2.5 = O, the point ¢ lics on left side of the line. If rx.z < 0, the paint o lies on
the right. If .z = 0, 0 is on the line.

The faulr formarion rechnique creates dramarie differences between neighboring cells
in the heighr field. For a low number of iterations, this results in very unrealistic ter-
rain. Even ar high numbers of iterations, the termin still looks highly aliased, like a
picce of paper thar has been sliced multiple times with a mzor.

The problem is thar we have unrealisric high-frequency data in our height field.
In nature, the sharp divisions berween neighboring cells would be dulled by erosion.

To simulare erosion, pass the heighe field through a low-pas image filer,

Robert Kreen [Kreen94] suggesis a simple FIR filter. A FIR filter converts the
SSQUEIICT Xy, X2 X3..%, [0 the sequence ¥y, ¥, - 2ccording o the formula:

= dyy # (1-K)x
Where £ is a filtering constant berween 0 and 1. Low £ means less erosion, high £
means more. Typically, a £ of abour 0.5 works well for chis application.

502 Section 4 Polygonal Techniques

4 iterations 8 iterations

32 iterations 64 iterations
FIGURE 4.17.4 An sroded version of Figure 4.17.2.

Ifwe take the FIR filter funcrion and apply it across the rows and columns of the
height field in both directions, we will ges a nicely eroded landscape (Figure 4.17.4).

Figure 4.17.4 shows the same termin as Figure 4.17.2 after erosion. Color Place 1
isa 3D rendering of the eroded G4 iteration stage.

Sample Code

The algorithm in the sample code lets you ser different numbers of iterations, the
dHeight for iteration 0 and iteration #, the erosion factor (£), and the number of iter-
arions between erosion passes.

References

[Kreen34] Krten, Roberr, “Generaring Realistic Termin,” Dr. Dobbs Journal (July
199},

4.18

Fractal Terrain Generation—
Midpoint Displacement

Jason Shankel

Maountain ranges like the Rockies. Sierras, and Himalayas are formed by a geological
process called wplife. Lateral pressure from the movement of tectonic plates causes the
surlaee of the Earth to wrinkle like fabric, pushing up mountain ranges. In this ard-
cle, I will show how we can simulare uplifi with a recursive midpoine displacement
algorithm, also known as the plasma fracral or the diamond-square algorithm.

Midpoint Displacement in One Dimension

In onc dimension, midpoint displacement works like this. Start with a line segment
AB (Figure 4.18.1):

A B

FIGURE 4.18.1 Line scgment AB,

Take the midpoint € and displace it by a random value between —dHeipht’2 and
+dHeight/2, for some suitable dffeight (the length of A8 is a good candidate) (Figure
4.18.2):

a
1

FIGURE 4.18.2. Firsz displacement sage.

Reduce the value of dHeight and recurse o the segments AC and CB (Figure
4.18.3):

503

Section 4 Polygonal Techniques

FIGURE 4.18.3. Sccond desplacement stage.

Repear until you generate sufficient derail (Figure 4.18.4):

A

FIGURE 4.18.4. Nih displacement stage.

Ar each iteration, alleight is multiplied by 2, where ris the roughness conssant.

The magic value for ris 1. If r = 1, then dHeight is divided by 2 ar each iteration,
which is also the rate ar which the horizontal line segment length decreases. When r =
1, the generated terrain will be perfectly self-similar (small sections will resemble large
SOCTLONE).

When r> 1, dHeight decreases faster than the line segment length, so early itera-
tions have a disproportionately large effect on the terrain. » > 1 is geod for crearing
smaoth terrain with a few prominent features (mounins or valleys).

When r < 1, dffeighs decreases slower than the line segment lengzh, so late itera-
tions have a disproportonately large effect on the termin. r < 1 s good for creating
chaotic terrain,

Figure 4.18.5 shows thres termins with varying values of r (higher elevarions in
whire).

=1 r=1/4

FIGURE 4.18.5 Samples of rerrain with various rvalues,

4.18 Fractal Terrain Generation 508

Midpoint Displacement in Two Dimensions—
Diamond Square

Just as che line segment is the basic unit of one-dimensional midpoint displacement,
the rectangle is the basic unit of ewo-dimensional midpeine displacement.

Rectangles are a bit more complicared than ling segments, since we have to calou-
late not one but five midpoinis for cach rectangle, That is, we must calculate the mid-

point of the rectangle irsclf, as well a5 the midpoints of each of the four line sepments
that make up the sides of the recrangle,

In the diamond-square algorithm, the lculation of the recrangle’s midpein is
called the diamond step, and the caleulation of the side midpoins is called the square

slep.
Start with a rectangle {(ABCD), seeded with heighe values ar the four comers (Fig-
ure 4.18.6):
A Iy
C]

FIGURE 4.18.6 Square AL,

Calculate the heighrt ar the midpoint E by averaging the values at A, B, C, and D
and adding 2 random value berween -dHeighe2 and +dHeight/2 (diamond step) (Fig-

LL!'E#.]H.T}:
AT T B
|
P |
' l
|
L |

FIGURE 4.18.7 First displacement stage,

Section 4 Polygonal Technigues

E = (A« BeCalDitd + random(~dFieight!2, +dFHeight(2)

MNow, calculate the heights at the midpoin of the line segments (F, &, £, and 1)
by averaging the corner valuss and the midpoints of the adjacent rectangles, and
adding a random value berween -dHeight'2 and +dHeighe!2 (square step) (Figure
4.18.8)-

F
-]
G) H
c D
I

FIEURE 4.18.8. First displacement stagr, consinued.

Multiply dffesght by 27 and repeat the process for the squares AFGE, FREH,
GECY, and EFHID (Figure 4.18.9):

F
' § .E'
il E
G E i
e D
I

FIGURE 4.18.9 Second displacement stage.

Hepeat until you've reached a sufficient level of detail.
An important thing te note abour the square step is thar the square values rely on
the diamond values of neighboring squares.

4.18 Fractal Terraln Ganeration 507

For example:
L = (F+E+ [+ K}/ + randsm{-dFeighs'2, + dHeigha/2)

So, as the algorithm iterates through each level of derail, it must first perform the dia-
mond step for the entire grid before performing the square step.

To caleulate a square step value on the edge of the terrain (H, for example), treat
the cermain as though it wraps. In the case of H. take Eas being adjacent to H on both
the right and the lefi:

H = (Be D1 2ENS + random(-dFeight!2, +dlleighti2)

Diamond Square in Height Fields

When using the diamond square algorithm to fill in a heighe field, it is best 1o pick 2
square heighr fidld with width 2* for some integer #. This ensures that the recrangle
szze will have an integer value at each iteration.

See Color Plare 2 for a rendering of 2 termin generted ino a 256x256 height
ficld.

4.19

Fractal Terrain Generation—
Particle Deposition

Jason Shankel

In nature, volcanic mountain ranges and island systems like the Pacific Rims "Ring of
Fire” are generated by lava flow. In this article, I will use a paricle system borowed
from the field of molecular beam epitaxy to simulare lava flow.

MEE Models

Malecular beam epitaxy, or MBE, is a process for depositing thin layers of azoms on a
crysealline substrate. We can adapt the models used in MBE simulation o approxd-
mate lava flow. For an in-depth analysis of the mathematics of MBE, see [Barab£s95].

Particle Deposition

The idea is 1o drop sequences of particles and simulate their flow acsos 2 surface com-
posed of previously dropped particles. Dropping a sufficient number of particles will
produce structures that look like the flow pawerns of viscous Auid (lava).
Start with an empry heighs field and drop a single parvicle ono it (Figure 4.19.1),
MNow, drop a second particle on the first and agitate it uneil it comes o rest (that
is, unril none of its neighbors is ar 2 lower altinde) (Figure 4.19.2),

o

FIGURE 4.19.1 A single dropped particle,

4,19 Fraectal Terrain Generation : 500

FIGURE 4.18.2 Two dropped particles.

Continue dropping pardides (varying the drop point periodically) until you have
2 decent sized pile (Figure 4.19.3).

You can control the shape of the termain by controlling how the particle drop
point is moved. Keeping the drop point in a single place will create a large peale. Mov-
ing the drop point periodically will create chains of multiple small peaks.

Figure 4.19.4 shows different terraing generated with this technique (higher ali-
rudes in white),

Inverting the Caldera

Real-waorld volcanoes, especially active volcanoes, have very distinctive mountainrops.
Alter flow stops, the lava at the top of the volcano cools and recedes back into the
Earth, creating a familiar bowl-shaped region ar che top called a caldena.

FIGURE 4.18.3 A collection an:rl:ic'In;'s_

310

Section 4 Pelygonal Techniques

FIGURE 4.19.4 Some height helds generared wich this rechnique.

We can generate a caldera for our particle mounmin by inverting the height feld
values above a certain altitude about the horizontal plane defined by thar altitude.

Imagine a heighe field generated by particle deposition (Figure £.19.5).

Draw a line {or rather, 2 plane) through an arbitary alticude (Figure 4.19.6).

Then invere all the height field values above the line about the line (Figure 4.19.7).

Curring off the peak this way cn result in a highly aliased caldera edge. To make
the caldera look more realistic, apply an erosion filter (sce the “Frocea! Tomin Gener-
ation—Fault Fernarion” article) 1o blunt the sharp edges.

Applying the caldera cutoff to the entire height field can generate undesirable
resules. IF the termin has muldple peaks, the caldera line for one peak cn interfere
with other peaks.

e fiatte

FIBURE 4.19.5 A heighr fiedd penerated by particle deposition.

4.19 Fractal Terrain Generation 511

Sample

Caldera Line //\

E e

FIGURE 4.19.6 Thc calderz line,

-

Caldara Line ,

P

FIGURE 4.18.7 [nvert the heighr field walwes above the caldera line,

It is best to implement the caldera inversion using a flood-fill technique. Starting
from an inital poing, invert the point and check its neighbors. For each neighbor thar
is above the caldera line, invert it and check its neighbars, Continue until FOU run out
of neighbors.

Color Plare 3 is a 3D rendering of a volcanic idland system generated with parti-
cle depasirion.

Code

The sample code less you control the number of piles, the particles dropped per pile,
the movement of the particle drop locarion, and the caldera depth. Caldera depth is
expressed as a percentage of peak heighr [0..1]. Using a caldera depth elose o 1 will

generate sinkholes instead of mounrains.

References

[Barabdsi%5] Barabdsi, A. L., and Stanley, H. E., Fractal Concepts i1 Surface Grouth
(Cambridge University Press, 1995}

5.0

2D Lens Flare

Yossarian King

Lens flare is an oprical effect created by interreflection between elements of a lens
when the camera is pointed toward a bright light. The result is a shifting patern of
translucent shapes and colors emanarting from the light source. The effect is often seen
in TV broadcasts when the sun enters the video camera’s Beld of view.

In real life, lens flare is considered a defect, and camera manufaciurers go to great
lengths to climinare it through special lens coarings. Video games, however, like 1o
emphasize and exaggerate all the cooler aspects of reality, and lens flare & definitely
coal. Real lens flare is due to complex interactions of light with surfaces in the eptical
system of a camera. Video game lens flare is all about appearances. This article shows
how to implement an attractive lens flare effect using only a small amount of code and
artwork, without needing to know anything at all about physical opries.

Approach

Real lens flares are created in the lens system of the camera and so narusally appear
“on top of" the scene being viewed. Each element of a flare is a reflection of the light
bouncing off a secondary lens and onto the primary lens. Since the lenses are in pre-
cise vertical alignment, the reflections fall along a line in the final image, where the
distance of the reflection from the center of the image is proportional to the distance
of the corresponding secondary lens from the primary.

These observations justify the treatment of lens flare rendering as a 2D problem.
The flare &s rendered as an overlay on the 3D scene, and the elements of the flare are
rendered along a line intersecting the projected position of the light and the cenrer of
the screen, as shawn in Figure 5.0.1.

At this point, we sbandon all seference to physical oprics and focus enrirely on
aesthetics. The lens flare cffect is rendered with a small collecrion of textures, one for
cach sryle of fare element—dircles, rings, hexagons, sunburses, and so on—as shown
in Figure 5.0.2. The gray-scale texrures are combined with vertex colors to produce
subtle coloring, Alpha blending is used 10 make the effecr rramslucent. Elements are
rendered in a variety of sizes.

318

516

Sectlon S Pizel Effects

FIGURE 5.0.1. Lens flase rendesing is 2 203 problem. Elements of che lens flare are rendered
along a line berween the projected position of the light source and the cenver of the screen.

FIGURE 5.0.2. The kens flare effect is renclered using a small collecrion of gray-scale rexmires.

T be ouly effective, the lens flare effect must animate convincingly with camera
movement. The overall movement of the flare is determined by tracing the line from
the projected light position through the center of the screen. Varying the size and
manelucency of the flare elements produces additonal subdery. This variation is
achieved by scaling the size and alpha value of the flare elements based an the distance
berween the projected light position and the center of the screen; when the lighe is far-

5.0 2D Lens Flare Bi7

ther from the center, the clements are smaller and more ransparent, and when the
light is closer to the cenrer, they become largrer and more opague.
A sample of the resules of this approach are shown in Color Plate 4.

Implementation

Putting all this together boils down 1o performing the following steps for each ele-
ment of the lens fare:

1. Determine position and size of the flare element.
2. Determine texture, colorn, and mranslucency of the element.
3. Render the element a5 a 2ID sprite with the computed properties.

In this implementarion, a flare is 3 collecton of elements. Each element has the
fn]luwiug Staric properries:

* Texture. The available textures (shapes).

* Distance. Proportional distance along the line from the lighr source to the center
of the screen,

* Size. Normalized size of the clement (before scaling).

* Color. Red-green-blue (RGB) color used o shade the element while rendering.

* Alpha. Translucency of the element (before alpha scaling).

The flare also has an overall scale factor and 2 maximum size, used ro control the
clement sizes during rendering, These properties are all determined at inidalizarion
time. In the demo code, the properties can be determined randomly or loaded from a
Hare descripion file.

During rendering, the dynamic properdes of each lens flare element are com-
puted based on their static properties and the position of the light source on the
sereen. Texture and color of the flare are unaffecred, bur pesition, size, and alpha level
arc all dymamic, depending on the movement of the eamera relative to the light
SOUrCe.

In pseudocode, the lens flare effect is rendesed 25 Follows:

Tunction rendertlare:

flarg I flare chject to be renderod
[1x,1y) Il projected pozfition of light om scraan
[Ex,ey] M genter of Tlare (nornally cemter of screen)

fl Conpute how far off-center the Tlare source is.
mexflaredist = sqrij{cx 2 + cy*2)
Tlaredist = sqet((lx - cx}*2 + [1y - ey)=2)

{7 Detersine overall scaling based on off-center distance.
distancescale = (maxflaredist - flaredist)/saxflaredist

f/ Flare is rendered along & line froem (lx,ly) 10 a
f/ point opposite it across the center point,

518 Section 5 Pixel Effects

dx = ¢x = [gx - 1x)
dy = cy * (e¥ - 1y}

for each element in flare
1
f Position is interpolated between (lx,ly) and
Fi fdu,dy) .
pr = (1 - elesent.distance)}"lx + element.distance*dx
Py = (1 - glesent.distance) ly + element.distance*dy

ff Gize of element depends on itz scale, distance
{f =caling, and overall scale of the flare itgelf.
width = element,.s5ize * distancescale * Tlare.scaleg

{§ Width gets clasped, s¢ the off-axis Tlares keep a
ff good size without letting the centered elaments
/f get too big.
17 (width > flare.maxsize)

width = flar¢.maxsize

{f Flare elements arg sguare (round] so height is
{f just width scaled by aspect ratio.
height = width * aspectratio

{f Alpha is based on element alpha and distance scale.
alpha = element.alpha * distancescals

{f Draw the slement’s fexture with cosputed

{f properties.

drasrgctangle(olement.taxture, elenent.colour,
alpha, px, py, width, height)

Source Code

The lens flare demo incdudes OpenGL source code and 2 Windows executable. The
source code is separated into an APl and sample code thar uses the APL The API
includes structures thar define the properties of a flare as well as the following func-
nons:

* FLARE initialize. Initialize flare elements, given a list of properties by the caller.
* FLARE randomire. Generare 2 list of flare elements with random properties.
* FLARE render. Render the flare ar 2 given screen position.

The demo uses these funcrions o create a lens flare effect controlled by the mouse.
The mouse cursor is used as the soreen location of the lighe source, Lens flares can be
randomly generated or loaded from a file. See the README TXT file included with
the demo for additional decails on the demo interface.

Using 3D Hardware for 2D
Sprite Effects

Mason McCuskey

The past few years have seen an explosion in the 3D capabilities of graphics cards, In
the span of 2 few years, we've moved from 256 colors at 320 x 200 o fully 3D accel-
erated, 1,600 % 1,200, 32-bit color. Even though most of today’s cards rend o ignore
the 20 world and ship with feature lists railored to 3D, a phenomenal amount of pro-
cessing power is still available in them, which can be harnessed o achieve stunning
2D cffects,

This article sheds some light on how to use 3D hardware to achieve 2D effects.
Sp:uiﬁml!f.w take a look ar how to do :lph: chﬂjng., 5F|_']|:f SE“.IHH.E, and ;Pr]“: rota=

train.

Going 3D

The basis of this entire article is thar incvitably, a 3D scene must be rendered o a 2D
surface for display. This is as true in Direct3D's Immediare Mode (where a 300 ren-
dering device must be arached o a surface) as it is in OpenGL.

Everything you see in a 3D scene is made up of pﬁm!mﬁ (usually triangles or
quads), Groups of primitives are arranged together in various ways o form more
complex polygons. Any group of primitives can have a “texrure” :ppl:::ﬂ to it, which
geverns how the group looks. We don't need o ger into the many details of textures;
for the purposes of 2D effects, all we care abour is the facr thar we can load a rexture
inte Openi(sL and then assign thar texture to a quad (recrangle) primitive.

Setting Up the 3D Scene

The “wrick” to displaying sprites using 3D hardware involves how you set up your 3D
world. Even though the 3D card gives us the power to render pelygons in any rotation
and position in 3D space, the secret to achieving 2D effects is to set up our 3D scene
so that everything is directly facing the camera. After all, if we set up a real-life 3D
maodel of our 21} game, we'd realize that our 2D sprires are basically rigid pieces of

519

520 Sectlon 5 Pixel Effects

paper at which the camera is directly poinring. In ather words, in 3D, our 2D game
looks like a really complicated diorama. Fach sprite is 2 billboard, and the camera
always remains a fixed distance from the sprites and never moves (unless you wane it
w, which can produce some interesting effects).

Keep this paradigm in mind as you read the later sections on setting up texoures
and displaying sprites.

Setting Up the Textura

Serting up the texture requires several OpenGL calls:

glPixelStored (GL_UMFACK_ALTGNMENT, 1):
glGenTextures (1, (Gluint*)anTexturelD);
it (mTexturell == Q)

{ Glanum gle=glGetError{); /= handle errors! =/ }
glBindTexture (GL_TEXTURE_20, mTextureID);
QlTexParamsteri(GL_TEXTURE 20, GL_TEXTURE_WRAP &, OL_CLAMP);
glTexParameteri{GL_TEXTURE 2D, GL_TEXTURE_WRAP T, OL_CLAMP):
glTexParameteri(GL_TEXTURE 20, GL_TEXTURE_MAG_FILTEA, GL_LIMEAR):
gliexParameteri{BL_TEXTURE 20, GL_TEXTURE MIN FILTER, GL_LINEAR);
plTexInagesD(GL_TEXTURE_2D, 0, GL_RGBA, 128, 128, 0, GL_RAGEA,

GL_UNSIGRED BYTE, gpgtexture);

This secrion of code, part of the ca0sprite: :Init() method in the example program,
initializes our texture in OpenGL. gogtexture isa pointer to an array of RGBA pixel
values (4 bytes, one cach for red, green, blue, and alpha values). The eall e glTexin-
8ge2D() se1s up a texture using the ppgresture pixel army. The glTexParameteri()
calls ser various properties of the texture, induding our wrapping mode (6L_cLane,
which means “don't wrap the texture™), and our filters for growing and sheinking che
texture (in this case, we're using lincar filrers).

Drawing the 3D Sprite

Now that we've got the texmure ser up, we'ne all ready o draw the sprite. To use 2
sprite, the client application first sets up all the parameters for the sprite (position on
the screen, sze, transparency of alpha value, etc.). The client then ealls the pisplay()
method o render the sprite.

The tollowing code comes from the £aDgprite: :pisplay() method:

[f Zet up the rotation and trenslation matrices
plPushiatrix];

plTransiated{m_ix, m_1Y, 0);
glAatatef(m fRAotation, 0, O, 1);

The first thing this code does is ser up the rotton and rranslation (movement)
matrices. Open(GL uses 2 matrix stack, which allows us to apply global changes to our

8.1 Using 3D Hardware for 2D Sprite Effects ; 521

wertices as we create them. Any vertex that we creare is ransformed using the marrix
at the top of the stack. Before we create any vertices, we need 1o ser up a mattix thar
rotates the vertices and moves them o the position where the sprite is supposed o be
(m_iX, m_iT).

To get the marrix we need, we push a new identity macrix onto the modelview
stack, then muldply it by a translation matrix to the sprite’s position (the third argu-
ment to glTranslatef is the 2 coondinate) and a rowarion marrix wsing the m_fRoca-
tion variable. The second, third, and fourth arguments 10 glratates ell OpenGL
which axis we want to perform the rotation around—in this case, just the z-axis. The
z-axis is the one that’s perpendicular to your monires; it is “going into” and “coming
out of ™ the screen.

The next thing we need o do is ser our blending mode and texture mode. The
first several lines of code set up our blending mode. We alpha-blend our sprite with
whatever has already been rendered to the frame buffer. The equation used is sre-
Coler “medipba+desColor*{I-meAlpha). After that, we ser up the texture mode. Our
texture mode indicares thar the pixels we're going to render are the source color and
alpha modulated (multiplied) by the texture. After that, we call the gleingTaxtura()
command, which tells OpenGL that we want the fellowing primitives to be texmured
using aTexture10, the ID we got when we ser up the sprite’s rexture earlier.

Il Draw the sprite

glEnable (GL_BLEND) ;

glBlendFunc{GL_GRC ALPHA, OL_ONE_MINUS SRC ALPHA);

glEnable (GL_TEXTURE_ZD) ;

glTexEnvi (&L TEXTURE_ENY, OL_TEXTURE ENV_WODE, GL_WGOULATE) 5
glBindTexturs(GL_TEXTURE_FD, nTextwrsI0):

fiThis glBegin() functien call tells Opendl that we'ro starting oor
fivertex list and will bep working with guad primitives.
glBeqin(GL_OUADS)

Now we ser up our four vertices, one vertex for each of the four corners of our
quad primirive. Each vertex has:

1. A color, We're serring the color via the gléolorsub() function. In this eample,
the color of all our verrices is pure white, RGE (0xff, Oxff, 0xfT).

2. A comesponding rexture evordinate (set via the giTexCoord2f () function), which
tells OpenGL how the texture is stretched or shrunk on our quad primidve. A
texture coordinace of (0.0, 0.0) represents the upper-lefimoss rexture pixel {texel);
a texture coordinare of (1.0, 1.0) represents the lower-rightmest rexel. In effect,
what we're saying in this example is that the texture is strerched perfectly so thar
it exactly fits the quad. (Keep in mind that the quad itself can be any size, and the
texture grows and shrinks with i all we're scming here s how the texture is
attached o the quad)

3. A position in 3D space, set via the cll to glvertexar(). In this example, we're
putting the local origin of the sprite at its exacr cenrer, which puts the upper-left
comer of our quad ac (—m_iWidth/2, —m_iHeight/Z). The lower-right verex is

g2z 5!#1H?15 FHIHlEHﬁ!FtI

(me_i Wialel2, mr_iHeighe/Z), where n_iwiath and m_iHesght are the width and
height of the sprite. This effectively centers the sprite on s local origin, which is
needed so that when the sprite rotares, it spins asound local to its center,

gléolordub(0xff, OxfT, OXff, m_iAlpha);
olTexCGoord2f (0.0F, 0.0F):
glVertexsf{-m_iWidth/2, -m fHeight/2, 0):

glColordub({0xff, Oxff, Oxff, m_iAlpha);
QiTexCoordaf (1.0F, O.0F);
gl¥ertexaf(-n_iwidth/2, n_iHeight/Z, a);

gléolordub{Qafr, OxTF, Oudf, m_iAlpha);
glTexCaord2f(1.0F, 1.0F);
glVertexdf{m_IWidth/2, m_iHeight/2, 0);

plColordub(Oxff, Dxff, Oxff, m_1Alpha);
glTaxCoord2f (0.0F, 1.0F);
givartexaf(n_iwidthf2, -m_iMeight,2, aj;

And finally, chis bir of code ends our scene and puts the graphics stare and matrix
stack back the way they were when we entered:
plENA(} ;
glDissble (G _TEXTURE 200 ;
glDisable (GL_BLEND) :
ff Pop the matrix we set up above
glPopMatrix(} .

Adding Effects

Naw that we've got down the basics of drawing, we can 2dd some effects. Ir's a happy
coincidence that one of the mast soughr-after 20 cffeces—alpha blending—also hap-
pens to be very easy w do in 3D. To achicve alpha blending. we simply specify an
alpha value for each of the vertices that make up our sprire. Take anocher quick peck
at the code above; in the calls to gicolorsub iy, the fourth argument (in the example,
the m_ialpha variable) is the alpha value for the vertex. The alpha value is similar o
the red. green, or blue color values: it can be anything from 0 to 253, with 0 repre-
senting complere mransparency and 255 representing complete opacity. So, for cxam-
ple. to create a sprite that’s “halfway” wransparent, we simply need 1o scr the alpha
value of all four sprie vertices to 128,

OF course, if we want to create a different kind of special effect, we cn vary the
alpha value of each verrex independently. For example, if we sct the two left vertices wo
0 and the two right vertices 1o 255, we get a sprite that Gdes gradually from com-
pletely rransparent (on its left side) to eomplesely solid {on its righe side).

To create some colorful effects, we ean specify different colors for cach of the four
vertices in our quad primitive. We do this by purting different RGB values in the call

5.1 Using 3D Hardware f-ur_ﬂ[l- Eprite Efects 523

=

to gltalordut. OpenGL auromarically blends the colors wogether, so if we set the left
side of our quad blue (RGB(0,0,255)), and the fght side red (RGB(255,0.0)), we end
up with a nice pradienr of color going from blue to red across the sprite. In this way,
we can add quick highlights of color withourt having to go to all the mouble of seting
up an OpenGL light source. Please note that if you don’t want OpenGL 1o apply 2
smooth color/alpha gradient ro your polygon, you can change the behavior by alling
glShadeModel (GL_FLAT).

Scaling our 3D sprite is easy, wo. The good news is that the 3D hardware takes
care of strerching the texeure; all we need 1o do is ser up the vertices of our sprite.
Stretching or shrinking the sprite i a3 easy as increasing or decreasing the width or
height of our quad primitive. If we want to strerch the sprite along the x-axis by a fac-
wor of twao, we simply make the width of the sprite a_iWidth=2 instead of m_iwidth.
Similarly, to strerch the sprite by a facior of vwo along the y-axis, we make the height
of the sprite a_iHeight=2 instead of m_ieight. To shrink the sprire to half it size,
we divide width and height by two. Any possible sterching combination cn be
achieved, and the grear pare is thar you don’t have to worry abour the individual pix-
els of the sprite, Ir's all mken care of for you.

Rotating the sprite is simple, too. Again, ics just vertex position manipulation.
We can specify an angle {in degrees) and pass this angle to OpenGLs glAotatef func-
tion, which applies it to the current rransformarion marrix. Again, the individual pixel
locations are automatically caleulated by the 30 hardware.

To create anocher interesting effect, we might change the axis of rotation for our
sprice. glAotatef takes an angle and three parameters; these three vector paramerers,
at their simplest, allow us o tell OpenGL which axes we want o rotare abour, It
might be worthwhile o rotate about the x- or y-axes, effecrively flipping the sprite
horizontally and vertically in 30, rather than simply rowating abour the z-axis (spin-
ninp the sprite).

Conclusion

Ar first, this approach to 2D sprites might seem [like a lot of needless work; ic’s often
easier and more familiar to 2D programmers (o draw sprites via blindng fumcrions
{such as DirectDiraw’s B1t{) or Win32's Bitelt{1). However, leaming how o *blic”
wiing 30 hardware pays off in the long run, since it ultimarely becomes much easicr
1o implement advanced 3D effects, such as alpha blending or sprite scaling. [n addi-
tion, for the rypical computer system, offloading the graphics processing required for
alpha blending or scaling to the graphics card is a smart move, since ir frees the CPU
o concentrate on other tasks, which ultimately gives you maore room to make a becter

gAme.

9.2

Motif-Based Static Lighting

Steven Ranck

This article describes a way to introduce more dynamic propertics into precomputed
seatic lighting. The appreach produces sunning animated lighting ar 2 computational
cost that is only slighdly greater than conventional static lighting.

Maay games employ staric lighting by precomputing the lighe colors ar each ver-
tex. This results in convincing Gouraud lighting at almost no compuration cost. It
also produces very staric-looking lighe. This arricle describes an algorithm that adds
dynamic animarion to statie lighting bur still executes at nearly the same speed as con-
ventional static lighring. For example, two torches close together on a rock wall pro-
duce firelight on the wall thas fickers and interacts appropriately.

Conventional Static Lighting

o224

Conventional static lighting is simply precompured Gouraud RGE values stored with
cach vertex and used in a diffuse fashion during rendering. The precomputed RGB
values are generated by either a tool or the game’s initialization code. In either case, a
tool is used to place lights on an objecr and assign characreristics such as color, inten-
sity, radius, radial falloff, and light type (omni, directional, spot, and the like). Since
we're dealing with static lighting, the lights and all their properties are constane. In
addition, their positions are fixed in the object space of the object they are lighting;
that is, staric lights cannot move relarive to the object they are lighting. From the light
positions and properties, the effect of each light on each of the object’s verrices ean
easily be compured using any desired lighting equation. Figure 5.2.1 demonstrares a
simplified 2D representztion of this concept.

Figure 5.2.1 shows an object with six vertices being statically Jit by two lights.
Vertex 5 falls within only Light Al influence, Vertex 3 falls within only Lighr B
influence, Verrex 2 falls within both lights influences, and the remaining vertices fall
outside both lights” influences. Because Light A and Light B are static, they are fixed
in the object’s coordinate space; if the object moves and rotares in world space, Lights
A and B move and rotate along with the object. Therefore, the RGB lighting compu-
wation at cach vertex can be computed only once (because it never changes) and swored

52 Motif-Based Static Lighting 525

(g oF tefieme)
Light & : :
[dpisse of nfosoch L
I bjent Mesag \ 15
Sty It Comsios T B
af & wrrtices (V- iy | = '-I

ied LSyl \ -
-. L

.......

FIGURE 5.2.1. A statically-lic mesh objecr,

as part of the vertex stucture. For this reason, static lighring is useful for lighring
objects by lights thar are attached ro the object. Good examples of this concept are
streetlights lighting a streer and hull lighes illuminating the spacecraft o which they
are mounted.

In Figure 3.2.1, cthe stacic RGE for Vertex 5 is compured simply by using the vee-
texs position and normal with Light A in a conventional lighting equarion. Verrex 3
is similar, but with Light B. Vertex 2 is influenced by both lights, so the resulring
RGB is simply the sum of the owo lighting equations, The remaining vertices aren't
influenced by either light, so their RGB i (0,0,0), and it is then the sole responsibil-
ity of dynamic and ambienc lighting to light those vertices.

The lighting equarions used are completely up to the designer’s preference and
can be a5 complex and compurationally expensive as desired, since they are usad for
precalculation. Regardless of the actual equations used, we can wrire the lighting

function as:
fF=fL WV {5.2.17
Co=Tel, (5.2.2)
Co=lel;
EB = .Ir' Eﬁ-

where

L represents the light's propenies (position, intensity, radius, radial Glloff, light
type. and s0 on).

oz

Section 5 Pixel Effects

V¥ represents the venex's properties (position, normal).

AL V) is the lighting equation.

£ is the light's scalar incensity ar the verex, as compured by the lighting equation.
Ly i the lighe’s color (red component).

L. is the light's color (green component).

-lr-ﬂ is the [igh‘fﬁ color ﬂ.‘r]ul: COIMPONEnt).

Cgis the fnal red color component, ready 1o be stored in the vertex structure.
Cg bs the final green color eomponent, ready to be stoced in the vertex structure.

Cgis the final blue color component, ready 1o be stored in the vertex strucrure.

Here's an example of a lighting equation for a simplified omni-light:
AL V) = (D eN) (R_D) /R (3.2.3)
where-

£y is the unit vector from the vertex to the light
Ny s the vermex'’s unit aormal.

L2is the distance from the vertex to the lighe,

R is the lighcs influence radius.

An omni-light is 2 point light chat radiares light in all directions. The intensity
of the light rays diminishes (atcenuates) che farther the vertex is from the omni-
light's position. In the preceding equation, the (R — 1) / R term performs this dis-
tance attenuation. IF the verex lies on the light's posiden, D 0 and (R— D) / &
reduces to 1, which is the maximum brightness. If, on the ather hand, the vertex lics
on the outer boundary of the light's influence, D equals £ and (R = D) / R reduces 1o
0. If the vertex lies somewhere between the lighe's origin and its outer boundary, (&
— L} / R produces a number between 0 and 1. More sophisticated omni-lights use a
distance arcenuarion function thar models the physical world more dosely. However,
the lincar artenuation in our equartion is good enough for this example. OF course,
we also require that i, V7 recurn 0 if the vertex lies outside che light's influence
radius (¥ = R).

The first term in our omni-light equation, (£, e, performs another arrenua-
tion based on the det preduct of the light ray from the omni-light to the verrex being
lit and that verrex's normal vecor. This is called a diffiuse lighting facvor and is a very
common way of brightening vertices thar a light ray his direcztly head-on and dasle-
eming verrices thar a light ray hits more at an angle. We further imply thar if (1, #N)
is negative, we return 0 for I, V). Thar is, if a light ray is hitting our vertex from
behind, we prevent the ray from lighting the verrex.

Equanion 5.2.3 produces a decent looking omni-light, bur higher-quality results
could be obrained with more complex lighring equations. Tn any case, Equation 5.2.3

5.2 Motlf-Based Static Lighting 527

yields a single scalar, which is the overall intensiry of the light at the vertex. Equation
5.2.2 then multiplies cach component (red, geeen, and blue) of the light’s color by
this intensiry, producing the final three-color companents to be stored in the verrex
strucrure. Ar render time, these color compeoncents are simply retricved and used
directly o Gouraud lighs the object. Here's a possible vertex structure and the render-
tme OpenGL code fragment to draw a statically liv rriangle:

Fincliode "*mixlib.h"

typeded struct {
float fR, 6, TB; J/ Statie AGA color (0.0 -= 1.0)
¥ Color_t;

typoedef struect {
vector: Fos; [This vertex's 30 position in model-spacs
Galor_t StaticColor; {f RGE to be weed for this veriex
¥ Vertex_t;

vold DrawllyTrlangle(const Vertex_ t =pvi,
const Vertex_t *pV2, const Vertex t *pv3) {
glBegin(GL_TRIAWGLES):

glColor3f(pVi-=Statietolor. f&, pV¥1-2StaticColor.Td,
pYi-=StaticColar.fB };
pivertex3f(pVi-=Pos.x, pVi-=Pos.y, p¥Wi->Fos.Z };

glGolardt(pV2-=StaticCalor.fR, p¥Z->StaticColos. 13,
pv2->8taticColor.fB }:
plvertex3T(pVa-»Pos.x, pW2->Pos.y, p¥2->PFos.z)@

giCalar3t(p¥i-=StaticColor.fR, pV¥3-=5taticColor.tG,
p¥3-=StaticColor.f8 };
plvertex:f(pV3-=Pos.x, pVa-=Poas.y, pV3-=Fos.z)

glEnd{];
}

One drawback to convenrional static lighting is that it does produce seatic results.
That is, the RGB values for the vertices are constant from one rendered frame o the
next. They do norvary at all. For sunlight, moonlight, and many other non-changing
lighs sources, this kn't 2 problem. However, for more complex lipht sources such as
flickering ncon tubes, torch flames, campfires, and blinking hazard lights, conven-
tiomal static lights cannot be used because they require the RGB values 1o animate from
ene rendered frame 1o the next. Conventional static lighting cannor achieve this result,
as shown in the example code. This is where motif-based staric lighring comes in.

E28 Section 5 F'luIE_ﬂ'm:tu

Motif-Based Static Lighting

The advaneage of conventional static lighting over dynamic lighting is execurion
speed. There simply are no run-time computations performed; RGB values are
retrieved [rom the vertex structure and plugged direcdy inro the color values for the
rendering vertex, However, the drawback is thar static lighring produces staric results.
The RGB values for each vertex are precomputed, stored, and never change from
frame o frame. Motif-based seatic lighting provides a more dynamic look than con-
ventional static lighting at a negligible performance hir.

Matil-based staric lighting is still 2 form of static lighting. That is, the static lights
Lighting the objecr are fixed in the object’s coordinare space, as is the case with con-
ventional staric lighting. However, with modif staric lighring, we are able te animate
the RGB components of the lights in real time. The type of animation is completely
up 1o the designer. Seme animations, such as a light switch on the wall of 2 room that
turns on the room's light, might be under the players contol. Other animarions, such
as flames, flickering lights with electrical shoms, and blinking lights, mighr be algo-
rithmically controlled. Furthermore, some lights might have constanc RGB values.
Each of these animarions (including those that are constant) is called 2 fight miosif.

To implement motif-based scaric lighting, the game niceds a moof rable that con-
rains an RGB entry for every light morif. The motif rable acts s a palere, as we'll see
larer. Figure 5.2.2 shows an example of 2 ninc-entry mouf table. Each entry holds an
RGB colar, Depending on the type of mosif, the RGB color is cither precaleulared ar
game-initialization time or compured dynamically ance per frame. Regardless, the
RGE values stored in the motif rable arc full-ineensity, unattenuared light colors.
Instead of storing RGB colors directy in the vertex soructure (s we did before with
conventional stadc lighting), we now simply store an index in the vertex srrocnre thar
indexes into the morif rable, We'll go inte detail on this concepr soon.

For constant morif lights for which the color remains constant from frame o
frame, the RGB value of the light (that is, the light's raw, unactenuared colar) is sim-
ply stored in the motif table ar initialization time and left there for the duration of the
game or level. In Figure 5.2.2, rable entries 7 and 8 contain the RGEs for two con-
stant motifs: dark red and brighe blue,

For mouif lights for which the color is controlled by che player (e.g., a light
switch], the RGB value is updared when the event happens (the player flips the light
switch, for example). In Figure 5.2.2, table eniries 4 and 5 contain the RGBs for two
staric lights conmolled by light swirches. Initially, they might both conain
RGB=(0,0,0), set during initialization. When the player turns on Swirch 0, the game
code stores the color of the light in entry 4, For cxample, if the light is a bright green
light, we'd store RGB=(0,1,0) into entry 4. If the player rurned the light off again,
wed store RGB=(0,0,0) into encry 4. In Figure 5.2.2, entry 3 is for another swirch
that controls 2 different see of lights that could be located either in an entirely differ-
ent raom or in the same room. Tr is completely possible that the two lights are dose

52 Motif-Based Static Lighting 529

—— e

enotgh that they affect the same verticss in the same room (similar to the way both
Light A and Light B affect vertex V2 in Figure 5.2.1). If this s the case, the player
expects 1o see the owo lights interact and light the room properdy with the actions he
or she takes with the two light switches. We'll see a little later how motif static lighe-
ing handles cases like this one.

Entries 0 through 3 in Figure 5.2.7 contain an animated RGB color for a flicker-
ing torch. Motils such as thee are algorithmiclly implemented and updated onee per
frame. Here's a code fragment that generates a flickering flame medif, called ones per

fﬂ.l'l'l‘: =

#define FLAME SPEED 6.0f

M Constants determined via experimentation:
#define FLMI'E_H! (0.093f = FLANME SFEED})
#define FLAME K2 (0137 " FLAME_SFEED)
Fdatfing FLAME K3 (0.185f * FLANE_SFEED)
#define FLAME K (D 106f = FLANE SFEED)
gdefine FLAME K& (0.170f * FLAME SPEED)
Fdafine FLAME K& (0.287f * FLAME SPEED)

{f! Generates the RGB color for a particular frame of the flase

ff metif and stores it in *plelor. nGameframeCounter is simply

i the framg number of the game's currant frams and is

ff incremented once per frame.

void Generateflamelotis{ wnsigned int nGameFrameGounter,
Golor_t "pColor) {

g Birigh Blse
7 Dark Red
6 Lughte—g
5 Swilck: 1
4 Swnlzh 0
3 Tiweh 3
1 Teweh 2
1 Tarch |
| Torck 0

FIGURE 5.2.2. Example moil mblc,

Sectlon 5 Pixel Effects

double d5inEun;
float fIntensity, TAngle;

TAngle = (float)nSaneFramefaunter;

d5inSum =
sin{ TAngle * FLAME K1)
+ sin{ TAngle * FLAME K2)
+ sin{ TAngle * FLAME K3)
+ gin{ fAngle * FLAME K&)
+ gin{ fAngle * FLAME KS)
+ ein| fAngle * FLAME K&);

TIntenszity = (float)dSEinSum = 0,911
fInteneity 4= 0_7F;

if(fIntensity > 1.0T) {
fIntengity = 1.04;
)

pEolar-=fR = fIntensity;
pGolor-=1G = fIntensity = 0.4F;
piolor->1B = 0.0F;

1

At the wop of each game loop, the game ealls GenerateFlasemetit () o generate the
fame motif and then stores the resulting RGE into slot 0 of the morf rable. It's likely
that a reom has more than one torch, and if all the worches used the same matif, they
would all flicker in syne and would noticeably look bad. So, in our morif eable, we
offer a variery of torch maotifs so thar the designer can assign different rorch motifs to
ncighboring rorches. Often, it is not necessary to write different algorithms o have 2
vasiery for a particular motif. Instead, simply phase shifting the frame counter and
calling the same algorithem fanction suffices and provides stunning results for a frac-
rion of the work.

Mosif light algorithms are usually simple functions, but even if 2 more computa-
tionally expensive function were needed, it would still be executed only ones per
frame, and so the overall performance impact on the game is likely to be negligible. In
the preceding code, for example, the CPU overhead of calling sin() six times once per
frame is insignificant compared with the 1/60th of a second the game has to exconre 2
single frame. Even so, the overhead could he minimized by writing 1 cistom sin)
function that performed a table lookup at the sacrifice of precision, becauss precision
Lsaft very impartant for lighting computations. In any case, the beaury of matif-gen-
crator functions is that they're called only once per frame, as opposed 1o dynamic
lighting calcularions that are execured once per vertex per frame!

Mow thar we have established the maotif table, lers [uin Qur aoeenmon o the ver-
tex structure. For conventional static lighting, the precomputed RGB color was stored
directly in the vertex stracture. However, for morif-based static lighting, we need to
define the verrex structure differently, like chis=

5.2 Motif-Based Static Lighting 521

typedet struct {
vectord Pos; M This vertex's 30 positien in sodel-space
int nMatifIndex; i/ Index into the motif table
float fImtensity; J/f Intensity of the light motif's
i P08 at this wertax
} Wertex t;

The vertex structure removed the Statictolor field and replaced ic with the nia-
tifIndex and fIntensity [eclds. These fields tell the rendering engine which light
motif from the modif table to use as well a5 the intensicy of the light morifs RGB ar
that particular vervex. Both of these values are established ar either ool rime or game-
initialization time. The motif index simply replaces the light's color property; instead
of the designer placing a camptire light and assigning ir an orange color. 2 motif is
assigned instead. The designer positons the lighr and assigns the light properties such
as intensity, radius, radial falloff, and light cype as usnal. However, when assigning the
color, the designer can choose a morif from 2 set of possible morif values. For the
campfire example, the designer might selece the torch modf. This morif describes nor
only the color bur also the animation of the static lighe. The torch motif emulates a
flickering flame bath in color and animation of color.

The fIntensity ficld is simply I from Equarion 5.2.1, which is the lighring equa-
tion we used for convendonal startic lighting, applied to this vertex. The pesition of
the light and the light propertics thar the designer has st interace with the veriex posi-
tion and normal to produce I, which is simply the intensity of the lighe at that vertex.
Refer to Equarion 5.2.3 for an example of how all these parameters interact to yield 1
for an omni-ligh.

Mow that we have the intensity (from the fntensicy ficld in the verrex strucnure)
and the RGB color (from the motif table eniry indexed by the nwotitIndex ficddd in
the vertex structure), we have everything we need to compure Equarion 5.2.2 for our
vertex’s final run-time RGB values.

Here'’s an OpenGL code example thar renders a morif starically liv riangle:

typedet onum {
MITIF_FLANED,
MOTIF_FLAME1,
MOTIF_FLANEZ,
MOTIF_FLAMES,
MOTIF _SWNITCHO,
MOTLF_SWITCHT ,
MOTIF_LIGHTMING,
MOTIF_DARK_RED,
MOTIF_BRIGHT BLUE,

MOTIF_COUNT
} Motif a;

Color_t aMotifTehla[MOTIF_COUNT]:

vold DrawiyTriangle| const Vertex t "pvi,

Section 5 Pizel Effects

const Vertex_t *p¥2, const Yertex t *pVa) {
Golor_ t *pCalor;
float TR, f&, f8;

glEaging GL_TAIAMGLES }:

peolor = EaMotifTable| pV1-=nMotifindex 1i

Tk = pColor->fA * pVi->TIntensity;

T8 = pCalor->fG * pVi->TIntensity;

1B = pColer->f@ * pVi->fIntensity;

gléalordf| 8, 4, B):

glvertexaf| p¥i->Fos.x, pVi->Fos.y, pVi->Pos.z j:

pColor = &aMotifTable[pW2-=nMotifIndex |;

TH = pLolar-=fR * p¥2->FIntensity;

T3 = pLolor->fg * pv2->fIntensity;

TB = pLolor-»f8 * pV2-»fIntensity;

glColordf] R, 6, T6 }:

piVertex3f(pW2->Pos.x, pY2->Pos.¥, pY2-»Pas.z);

pholor = &aMotifTable] pv3->nMotifIndex];

1R = pColar->fR * pPYA->fIntensity;

TG = pLolar->#§ * pV3->fIntensity;

18 = pColor->f8 * p¥a->FIntensity;

glColordf{ fA, TG, TB);

glvertex3f(pv3->Pos.x, pva->Pos.y, p¥i->Pos.z);

glEnd(] ;
}

This implementation suppores only one morif per vertex, which isnt toa helpful
when a model has a vertex under the influence of more than ene static lighe (as in Fig-
ure 3.2.1). To support more than one motif, we need to extend the verzex structure so
that it has a moriffintensity pair for cach maorif light affecring i, A general solution s
shown here:

typadet struct {
int nkotiflndex; ff Indax into the matif tablse
Tloat flatensity; i Intensity of the light motif's
ff RGB at this vértex
} MotifEntry_t;

typedel struct {
vectord Posj fI This wertex's 3D positicn in nodel-space
int rMotifEntryCount; [/ Musber of motif entries
i pointed To by pMetifEntry
MOTITENTry_t "pMotifEntry; J/ Podnter o an array of

I MptiTEntry t Structures
} Vartex t;

This implemenration provides for any number of motifs, but it can be complex to
implement. Another solution is easier to work with bue is less flexible and could con-
sume more memary:

5.2 Motlf-Based Static Lighting 533

#datine MAX MOTIFS PER VT 1] 1t lsplesentation-specific value

typadaf Btruct {

vectard Poe; {f This vertex's 3 pﬂ!itiﬂhﬂ in :ltl!-ﬂl}l-$p;|l;e
int nMotifEntryCount; I Nunber of notif entries in

I aMotifEntey[]
MotifEntry_t aMotifEntry[MAX MOTIFS PER_VTX];

} vartex_t;

We'll work with this last implementation for darity, but advanced developers
should consider the more general implementation,

To supporr more than one light influencing a particular vertex, we amply per-
form rhe motilfamenvate computation described carlier and then sum the colors
together, like this:

vold ConputevertexColar| const Wertex_t *p¥, Color_t *“plolor) {

}

Coler_t *plorifColor:
Tleat TH, TG, TB;
int 1;

ff Zerp color COMPOnERTS:
fH = f& = fB = D.0F;

§f Step throogh all the motifs affacting this wertex
ir and sum their colors:
for| i=0; i<pV->*nifotifEntrylount; i++) {
pMotifColor = AalotifTable|
py->adotifEntry [i].nMotitIndex 13
fh += potifColor-=fA ® pV-=adotdfEntry[i].TIntensity;
f& += plotiflolor->f ® py->alotifEntry[i].fIntensity;
il += potiflolor=>fB * pY-zallotifEntry[i].-fIntensity;
}

I Make sure fipal calor is from O to 1:
if{ fR > 1.0F) fA = 1.0f;
if(G > 1.0F) & = 1.0f:
if(R = 1.0F) 8 = 1.0f:

M Store final colors &m return wariable:

pEolor->fA = fR;
plolor-=f = fG;
pColor-=f@&@ = fA;

vaid DrawiyTriangle{ const Vertex_t "pWi1, const Veriex_t *p¥2,

const Verte t Tpva) {
Colar_t Color;

plBaginf &SL_TRIANGLES j;
ComputeertexCalor| pVi, AColor §;

plGalardf [Color_ff, Color.f&, Golor.fB);
pivVertexif(pvi->Pos.x, pVi-*Pos.y, p¥1->Pos.z);

B34 Section 5 Pixel Effects

ComputevertexColor| p¥2, &Color);
glCalordf{ Calor.fA, Color.?d, Color. €8);
glvertexdf{ pV2-=fos.x, pV2-=Pos.y, p¥a-»Pas.z);

ComputeVertextolor| p¥3, &Color });
gléelordf | Celar_fR, Color.fd, Color.fB };
glvertexdf(pvl->Pos.x, pVa-=Pos.y, p¥i-=Pas.z J;

pLEnd({]);

Conclusion

For a perfarmance cost slightdy higher dan thar of conventional lighring and far less
expensive than dynamic lighting, motif-based statie lighting can help bring 2 scene 1o
lite by providing RGB animation for precomputed light data. Campfires, flickering
rorches, electrical shorts, beacon lights, and mere are now possible withour having 1o
use expensive dynamic lights,

Simulated Real-Time Lighting
Using Vertex Color
interpolation

Jorge Freitas

Real-rime lighting effecss arc an oxenidal pan of woday’s 30 gaming experience but
can be compurationally intense for systems with limited resources, On such systems,
the visual effect of real-time lighting can be simulated by interpolating between pre-
edleulated sets of vertex colors.

This technique was onginally developed for use with human figures in a spores
game, Twenty-three figures were w be drawn each frame, using skinned models wich
a multiple vertex weighted, skeleral hierarchy. The primary goal was to eliminare
costly lighting calculations from the rendering pipeline while retaining the look of
real-time lighting,

The lighting in the world consisted of either the sun or four static floodlights and
an ambient lighting value used to darken fipures running into shadow, There were
also several special lighting effects, including the reflection of the grass color on the
players’ socks and shors, projecred shadows under arms and between legs, and col-
ored lighting based on the current weather condition or time of day. In addition, dur-
ing a night game, the lighting "hot spac” needed to be positioned relative to the
clogest Aoodlighe.

An incxpensive way of caleularing changing lights on the figures nesded w be
found. Precalculation was the answer. As much information as possible regarding the
lighting was precalculated. Ideally, the lighting for every pose and each possible rora-
tion of the figure would have been precaleulated, but that was impractical due o the
amount of memory required o store the information.

Instead, the lighting was precalculared for 2 number of fixed rotations, and inter-
pelation was used to generate the vertex color values for the given figure’s rotation.

Lighting Methaod

Typically, the method for generating real-time vertex lighting goes like this:

D35

536 Seclion 5 Pixel Effects

Transform the normal for each vertex in the objecr.

Determine the angle at which the light is ficing the vertex normal,
Using the facing angle, determine the intensity of the ligh ar that vertex,
Repear for each light illuminaring the verrex.

Add the ambient light intensiny

T PP e

Real-time lighting using the above method requires many compurarions, whick
we reduce dramarieally using the interpolation method.

In order to fake the real-time method, we must set some constrainis on our 3D
scene:

* Determine how many light pesitions are needed for the interpolation.
* Dictermine the axis of rottion used to base the interpolation caleulation.

The verex color lists represent the lighting on the abject at distinet orientations of
the figure relarive to the lighting in the scene, whether the lighting is ene Lght source
or 100. A full 360-degree rotation is required, so we must determine how many verrex
color lisss we will use. A minimum of three positions is necessary, cach 120 degrees
apart. Note that by using more lists, we decrease the range of values we must interpo-
late berween, thereby increasing the accuracy of our faked lighting.

Artwork Creation

We assume that the vertex color lists are generated in a 3D content ereation applica-
tion. OF course, its possible to use a real-time lighting method o gencrate the vertex
color lists, bur the artistic sk of arcracrively lighting a 3D scene should be left w
those most qualified: the artists,

In cur crample of human figures, the axis of rotation used to determine the light-
ing angle was assumed 1o be the vertical axis {typically named Yin a lefi-handed coor-
dinate system) because the figures abways ran around on a flac plain (2 grassy field),

The example in Listing 5.3.1 uses four vertex color lists, cach penerated 90
degrees apart. Using a power of 2 number allows us to shortour some of the integer
math by replacing muldplics and divides by shifts, and MODs with ANDs. However,
for the sake of clarity, the example code does not use integer shorr cuts,

Lights are added to the 3D scene corresponding to the liphts in the game world.
Any number of lights can be used without impacting performance, since the resulting
dara will be lists of vertex colors.

The first vertex color list is assumed to represent the lighting when the object is at
a rotation of 0 degrees. The object is anistically lir at four rotarions, each 90 degrees
from the previous one, The lighting for exch rotation is saved as a verex color list, cre-
aning four lists of vertex colors thar will be wsed in real cime.

The vertex colors can be tuned by the artist in the 3D creadion application to pro-
duce some of the desired special effects. Green can be mixed into the lowes legs to rep-
resent the reflection of the grass color, the areas berween the figure’s legs and under

5.3 Simulated Real-Time Lighting Using Vertex Color Interpalation 537

the figure's arms can be darkened to give the impression of projected shadows, and the
figure’s skin can be tinted to indicare racial skin tones.

Interpolated Lighting

Here is an explanation of the steps necessary o generate the interpolated vertex light-
ing.

Calculate Facing Angle to Virtual Light Source

The vertex color lists represent the lighting on the object at distinet orientations rela-
tive to the light source. The position of the lighs source can be stored as a simple addi-
tive value, representing the direction of the light in the scene. The facing angle is
ealeulated by adding the offser to the object’s roration and using the remainder from
dividing by the number of degrees in one full rotation (360).

facing angle = (object rotation + edditiwe light position } % 360

Note that the light can be “rotated” around the object by cycling the additive
light pesition value berween 0 and the number of degrees in one full rotation.

Determine Which Two Vertex Light Sets to
Interpolate Between

Based on the facing angle, we must determine which two sets of vertex colors in our
table between which we should inrerpolare (the base color list and the rarget coler
list). Each ser of vertex colors was pre-generated wing the same delta, 90 degrees
aparr, in our example, We divide the current rotation by the delta value between cach
ser of verrex eolors, which becomes the base color lise. The rarget color list is the next
verrex color list in our table,

base color 1ist = facing engle [vertex colar delta

if (base color liat == lpat vertex color list)
target color list = Tirst vertex coler list

alse

target color list = maxt wertex color list

Calculate Interpolation Percentage

We need to determine how far becween the rwo vertex color lists to interpolate. This
percentage represents how closs to the targer color list we should interpolate. The per-
centage is calculated by dividing the remainder of the base color list calculation by the
vestex color delts, giving us a value berween 0.0 and 1.0,

percentage = (Tacing angle % wertex color delta) / vertex color delta

538 Section & Pixel Effects

For Each Vertex Color, Perform the Interpolation

We now calculare the vertex color list representing the currene lighting for the object.
Te calaulace cach vertex color. each color component (RGB) must be interpolated,
and we repear the process for each vertex in the object.

color = pld color + [new eoler - old color) * parcentage

For Each Vertex Color, Apply an Amblent Light RGE
Modifier and Clamp Resulting Values

Optionally, we can apply an ambient light modificr o the calculared vertex color list.
The modifier can ke the calculated color out of the acceprable range for each com-
poncnt {0 to 255}, so we must clamp each component separarely.

color component = ¢olar component + ambient color

if { color component < O)
color component = O
#lsa

if { coler component > 255)
color componBnt = 255
}

Note thar the precaleulated vertex color lists can be created 1o ensure the ambient
light modifier docsn' take the cilculated vertex colors our of the acceptable range. By
limiting the smallese and largest values for cach color component and by limiting the
size of the ambient color modifier, the dlamping becomes unnecessary.

Conclusion

This technique is effecrive for reducing the number of calculations necessary to repre-
sent real-time lighting and has been used on PCs and game consoles. To generate a
single vertex color requires enly three subtractions, three mulriplics, and three adds
(stx adds if an ambient color 5 used). Even if real-time lighting is necessary in your
3D game, interpalated vertex color lighting can be combined with real-time lighting
to help relieve some of the computational burden of rendering your scene.

To further decrease the number of compurations, you need not perform the lighe-
ing calculations for every rendered frame. By keeping 2 unique vertex color buffer for
each object, the lighting can be clculated once every two, three, or four frames,
depending on the rate ar which the object changes orienmation relative to the light
source. Further savings can be had by alternating the objects thar are being re-lit each
frame.

Although this methed is very simple, with it an extremely complex mathematical
model can be precaleulated, Remember, we're trying ro achieve the perception of real-
istic lighring effects in our 3D games. The viewer doesa’t care whar mathemarical

5.3 Simulated Real-Time Lighting Using Vertex Calor Interpolation 538

method has been employed 1o create the effect. just that it makes the game world look
cool.

Listing 5.3.1: Example Code

For this example code, we assume there is one vertex color per vertex in the object.
Mote rhar the data structures contain only the information necessary for the vertex

color interpolation. The divides and MOD: (%) can be replaced with shifis and
ANz, but these have been omied for clarity.

M
|
I dafines
I
I
I* number of vertex color lists *f

fidatine MWURESER_OF _ARGE LISTS 4 /* number of radians in 360 dagrees =/
Fdering MUMBER_OF _RADIANS 1024

M
) .
Il strectures
I -
H
typedef struct
{
float alpha;
float rad;
flogat green;
float blue;
JARGE DEF;
typedef stroct
1
i* angle used for simulated ligkting =/
int anpleddRotation;
I number of wvertices in objest =/
int nyertax;
/* poimters to wertex coler lists »f
ARGE_DEF *pARGB[MUMBER_OF_ARGS_LISTS 1;
}OEJECT_DEF; >
i

i
ff variables

O

i

f* pointer to buffer wsad to store the caloulated RGB's *f

AREE DEF *gpvartexColerBuffer; [+ global additive ambient light RGE */
ARER DEF gAnblentLight; /* additive walue to offset light “hot spot” =/
int ﬂLlﬂhthfEHt‘

i

S —_—

Section B

Pizel Effects

M functions
i
i

JrrTERasbass s ra kAR

Fungtien : interpalateVertexAGSs
Lingarly interpolates between two lists of vertex colors.

Input:
ARGE DEF *pEroA - podmter fo Tirst ssurce vertex color list
ARGE_DEF *pErcB - pointer to second source vertex

color list
ARGE DEF *pDest - pointer to storage for calculated

vertex colors

int NARGH - nunber of vertex colors to interpolate
float percentage - amount to interpolate between TWo vertex

tables (0.0 - 1.0)

Output:
Fills pDest with the talsulated vertex colars

*-l"l"!'!'!-Ili-i-l-r---i-----iiii---q-q"lr

viodd dimterpolateVertexBbBs(
ARGE DEF *piEreA, [* ppinter to souree vortex colar data =)
ARGE_DEF *pfraB, [* peinter to source vartex color data =J
ARGB_DEF *phést,/® pointer to dest wertex color data »)

int nARGE, i® number of wertex colors te interpolate)

float percentage) /* interpolation amgunt, O to 1 =

int index; /% index into arrays of ARGE DEF"s */
flaat red, /* temporary storage for calculated RGE
JrEsn,
blua;

for [index = 0 indéx < nARGE; indexs+ }
{
£
{f caleulate interpolated ARGE
i
rag = pércAl dndex J.red + [pSrcBl index J.red -
pErcAl dndex].red } * percentage;

'§ #f

green. = pEroAl dndex J.green + (pSrcBl index |.green -

pEroAl index J.green) * percentage:

blug = pSroAl index].blue + | pSrcB[index].blue -

pSroAl index].blue } * percantage;

i
fi add ambiemt Light
i

rad += pAnbientlight.red;

grean 4= gisbhientlight.green:

blus = pAsbientlight.blue:
i
{{ clamp RGE's
i

5.3 Simulated Real-Time Lighting Using Vertex Color Interpolation

541

if [red > 2550)
red = PEE_0;
aloe

if { red = 0.0 §
red = 0.0;

t

if [gresn > 255 0)
green = 255.0;

ales
{
if { green =< 0.0)
green = 0.0;
}
if [blue > 255.0)
Blus = 285_0;
elgs
if § Blue < 0.0)
blug = 0.0;
}
M
I store results
i

plest[dindex [.red = red;
phest[dndax].gresn = green;
phest[dndex J.blue = blue;

¥

fi-iiiiliii--'l‘! AENNASEN RN

Function @ ealculateSinulatedLlighting

Calculates the wvertex colors used to represent the lighting at the given

gngle af rotation.

Input:

OBJECT DEF =pObject - pointer to abject structurs

ol o R llliiil‘liiiiriﬂiﬂr{

void calculateSimulatedLighting(OBJECT_DEF *plbject)

{
float parcentage;
int guadrant;
int anglelfiotation;

ARGE OEF *pSrcA,
"pErcE;

angladffRotation = { plbject-=angledfiatation +

pLightdffset § % NUMBER OF RADTANS:

Section 5

Pixel Effects

percentage = (float)(angleOfRotation %
NUMBER_OF_ARGE_LISTS) [
(float){ NUMBER_OF_RADIANS / NUMBER_OF ARGH_LTSTS);

guadrant = angleOTRotation |/ | MUMBER OF RADIAMS [
WUMBER_OF_ARGE_LISTS): G

pErcA = phbject->pARGa[quadrant J;

if (quadrant == (MUMBER OF ARGB_LISTS - 1))
piroB = pObject-»piRGE] O 13

elsp
pSreB = pObject->pAAGE[quadrant + 1];

imterpolateVertexAGES] pSroA, pSrcE,
pevertexGolorBuffer,
plbject-=nVertex, percentage);

9.4

Attenuation Maps

Sim Dietrich

Vertex lighting is good for many applications and is well known and undesstood. Tt
has many benefits, including the benefit of properly handling surfaces not facing the
light, but vertex lighting can have artifacts when the size of the triangle is large with
respect 1o the range of a point or spotlighe.

Ligh maps are another approach to calcularing lighting that can avoid these oi-
angle tessellation-relared amifacts, but they require expensive CPU operations (o
update for dynamic lighes and require potentially slow upload to the video card. Sl
light maps are a good solution for static lighting and shadows.

This article introduces 2 novel technique known as artenasion maps. This cech-
nique can be used ro implement dynamic poin lights with proper quadratic arrenua-
tion usng multitexiure operations. In additon, the technique can be used for
spherical, ellipsoidal, eylindrical, and recrangular lighting or CSG operations, accu-
rate to 2 per-pixel level, witheut using the stendil buffer.

Explanation

The atenuation funcrion for lighting is gypically like so:

X

lightPositiom.X - vertexPosition.y;
¥ = lightPosition.¥ - vortexPosition.y:
£ = lightPesition.Z - vertexPosition.Z:

D= agqre(X=X & ¥*Y + FeF):

Att =1 J (GO ¢ C1*D + C2*D"0);

For our purposes, we assume thar we want only quadratic attenuation, so assume
that Cis 1 and C7 is 0. giving:

Att =1 [{1 + CE*0=0);

30 texrures provide a simple mechod of encoding this function. Dircetly store
the function in a 3 texture as a funcrion of X, ¥ and Z for the three rexture coordi-

543

SectionS Pizel Effects

nares. Then, simply set up texture coondinate generation to clculate £X, Y, and &7
refarive to the light position, use the texmure martrix to scale each &X, 4 and dZ by 1
over the light's range, and scale and bias so the center of the texture cormesponds 1o
(0,0,0.

The equartion that the texture matrix compures in this case is:

((Light.X — Wertex.X) / LightRamge) / 2.0F) + 0.5f;
[(Lipht.Y = Wertex.Y) / LightRasge) / 2.0F) + 0.5f:

L
T
R ((Light.Z - Vertex.Z) [/ LightRange) f 2.0f) + 0.57;

L

However, 31 textures aren’t yer widely available, 5o we must make do with 2D
and 10D textures. Even were 3D rexures available, it would be advanmageous to find a
less rexmure memory-intensive method of caleulating artenuation.

Well, first, since we have only 2D and 1D textures available, thar means thar we
can’t compute the funcrion with only a single texture because we can’t use all three
ooordinares X, ¥ and £ at once. This means that we have to break the funcrion into
TWD OF MO pares.

How can we express the attenuation function in such a way that we can imple-
ment it using 213 and 1D} texrures? Le's stare by breaking X and ¥ into a 2D texture
and Z into its own 1D texture.

If we break X and ¥ inw one texture and 2 into another, thar means that the
result of the function of X and ¥, which we call £(x,7), and the resulr of the funetion
based on Z, which we call gz}, must be expressible as colom.

I ather words, if we are storing the function as some combination of two rex-
tures, we must express the final funcrion as a sum or multiplicarion of two colors,
Since colors can hold only positive values from 0 to 1, this affecs which form of
attenuation funcion we can choose.

The previous attenuation funcrion is:

Att = 1 [(1 + c2*D*D);

Some samples of this funcrion follow:

Ar{0) ==
:'fllf..?j == 5
Ani Large D) approaches O

As I pets larger, the attenuarion approaches (.
Lets try to encode this funcrion in two textures, First, we expand D°0 into jts
COmponents:

D = sgri(K*X + Y'Y + Z*T)
D=0 = (X*X + Y*¥ + Z*Z)

Mow we restate the antenuation function in terms of X, ¥ and &

5.4 Attenuation Maps 45

At = 1/ (1 + C25{X*X + ¥=¥ + ZwZ})

Now it seems we are stuck because we can't express the A function as the sum or
producrt of the two Functions £(%,¥) and g{2} due to the Bcr thac X, ¥, and 7 are all
in the denominator. We have to find another function that we can separate.

We don’t have any way of summing rwo colors and then caking a reciprocal, so we
have to find a function that has the same effect but doesnt require a reciprocal,

Squasing numbers greater than one produces larger numbers, whereas squaring a
number in the range {0..1) produces a smaller number. For instance, 0,5 * 0.5 equals
0.25. This is why we had to set the constant in our artenuation function, €0, wo 1: It
prevents really close lights from becoming brigheer than they should.

Remember thar colors are always expressed in the range [0..1]. That means char
the resule of £{x,¥) and g(Z) must produce results in the same range [0..1].

Oine function that both does not require reciprocals and peaduces results within
the range [0.1] i

Atk = 1 = O*h
At = 1 = [X*X & ¥*Y¥ + 7*7)

We can encode £(X,Y) ina 2D texture as (XX + ¥*Vand g(2) in a 1D rexouse
as simply 7°F Figures 5.4.1 and 5.4.2 give examples of these two textures.

Neote how the edges of the rextures shown in Figure 5.4.1 arc clamped 1o be
cxactly one. By adding these two functions togesher via multitexturing, we can com-

FIGURE 5.4.1. 7X ¥ = iAX = F°}0

EfFﬁnW|! Pixel Effects

FGURE 5.4.2. z(Z) = 277

paags DD ona pcr—pix:] basis. Using inverse l'r!r.nu:jing, we can use the ;H_P]m-hlcnd_ing
unit to Anish the computation and compute 1 = 00,

Sa, one procedure for implementing point lights with attenuation maps is as fol-
lorws:

Draw asblent light and/or global illomination in the scens

For each Point Light in the scens |

For each Object that is approvimately nsar or within the

Light"s range |

For each Vertex im the Object {

Subtract the Vertex Position from the Point Light
Position

Scale the Pasition by 1 J the Point Light’s Range

Scale and Bias the rosolt te range from 0 to 1
for points inside the Light's Range

Store Ppoeition.X in the S texture codrdinate of
Textura 0

Store Position.Y in the T texture coordinete aof
Texture 0

Store Position.Z in the 5 texture coordingtie af
Texture 1

§

Set wp the moultitexture hardware to choose the Light Color
in the color unit

Sat up the multitexture hardware to cospute Texture 0 +
Taxture 1 in the alpha wunit

Sat wp the alpha-blender to compute SreColor = InvSrcAlpha
+ FrameBuffer

Optisnally =&t the alpha test to reject pixels with an
Alpha of 1. This avoids rendering pizels that are outside
aof the light range.

Draw the Object
}

£.4 Attenustion Maps 547

= -

Alrernarively, we can use wexture coordinate generation and the texcure marsix to
compaure all per-vertex operarions on the GPLU:

* Setup texture coordinate generation for the first multitexture stage to give cam-
£ra Space position.

® Set up the texrure marrix 1o suberace the light's X and ¥ position, dhus giving us
(X, a}), which are stored in 5 and Tof texture 0,

* Set up the second multitexture srtage to use texture coordinate generation to give
us camera space position, just like before,

* Setup the texture matrix ro rotate Z onto the X-axis, and then subtrace che light's
£ position, giving us &7, which is stored in 5 for texture 1.

This technique can be modified to fic a variety of light options. One option for
graphics hardware or AFls (such as OpenGL) that don't allow differing color and
alpha-texture blending modes is 1o facror the light eolor into the texture isell, This
modification also allows other blending modes, sueh as multiplicative frame buffer
blending, 1o be employed.

The arrenuation function we computed is:

LightGalor = {1 — [X*X + Yo% + 7=7))

Multiplying through by the LightCalor gives:
LightColor — LightColor ® [X*X & ¥*¥ + Z=7}) =
LightCalor — (Lightlolor ® (X*X + ¥Y*¥) + LightColor * (Z7Z))

This implies that we nced ro pre-multiply the light color into both arrenuarion
maps to get the right effect, but we really need only one map. It rurns out thar we can
just uise the center of the LightCalor * (0 + Y1) vexture for the LightColor * (Z°2)
computation. We can use the horzontal or vertical center, burt the horizontal center
requires one less texture coordinate to specify and might provide bemer texture cache
performance.

Comparing Attenuation Maps and Light Maps

Light maps are commonly employed to store static lighting dar, such as shadows and
light caleulated chrough a global illumination soluton. Updating light maps ar run
time for point lights is complicared and cosely. Poine lighs performed with arrenua-
tion maps complement light maps nicely by taking over the chores of dynamic point
lights, Instead of uploading new light maps to reflect a point lighe changing it color,
range, of location. the nearby scene can be simply rerendered wsing the amenuarion
map textures to blend the light into the scene.

CSG Effects

By using alpha test or stencil, we can rest for incdlusion in pesfectly spherical areac such
as the falloff range of a poine light. For each pixel thar would be drawn with a paint

Section 5 Pixel Effects

light, we can sct the stencil to 2 cenain value or blend into the frame buffer 2 constant
color, thus being able ro do other range-hased effects.

Range-Based Fog

Omne application of this concept is per-pixel range-based fog. Simply render the scene
as normal with no fog applied, and then render the scene with the amenuarion map,
treating the camera position as the “light position.” Set the rexmure marrix o identity,
and then scale the marrix by 1 over the light's range. This technique allows per-pixel,
perspectve-correct range fog,

The sat_coLor sent o the frame buffer blending unit should be the fog color
tumes fog density. This gives a fog density of zero at the viewer, and ar the maximum
fog range the density will be one.

When rendering the fop pass. set up the alpha blender to perform shc_covLoa » 4
+ DST_COLDR * [1 — SRE COLOR) .

Other Shapes

Semetimes a sphere is not what is needed; o make an oblong shape, such 25 a rectan-
gle or dlipse, simply select minor and major axes and align them o the world with the
rexture matrix. We then have to scale the major and minor axes separately.

Conclusion

By cleverly choasing our attenuation funcrion, we are able o perform a per-pixel
spherical range caleulation using two texmre maps. The resule of this clculation can
be used for per-pixel point lights, fog, or C5G effects.

5.5

Advanced Texturing Using
Texture Coordinate Generation

Ryan Woodland

Because today’s graphics processors are pushing mone and more polygons, arention is
starting to turn to the use of bandwidth to creare compelling texture effecs. With the
addition of multtexrure abilities 1o many processors, people are starting to wonder
how to creatvely use these fearures. OF course, artist-applied texrure is the technique
with which we're all the most Familias, but it's quickly being discovered thar mapping
textures at run time can produce same very interesting resules. Developers are starting
o use texture coordinare genesation to perform animartion, lighting, reflection, refrac-
ten, and bump mapping, to name a fow techniques. This arcicle discusses 2 few of the
most common rexiire coordinate generation techniques.

The method of texture eoordinate generation used most comfortably by most
people is thar of mansferming some datz (postion, normals, texiure coordinares) by
some matrix to yield a set of texture eoondinates, This method is fairdy casy to adopr
becauss most 3D programmess arc familiar with the concept of matrix transformarion
and because mawix tansformation is often accelerated by hardware. This aride
describes only rechniques thar can be performed using marrix mach.

Simple Texture Coordinate Animation

Quite often, games use a simple rotation or manslaton of rexrure coordinates to sim-
ulare simple effects such as reflection or ro give the appearance of water or some maoy-
ing marerial. The concept is simply chis: A texmure coordinate can be thought of a5 3
simple 2D point. Because programmers are accustomed o wransforming poines by
marrices, it is easy ro see that a texture coordinate can be rocared, translared, or scaled
simply by mransforming it into 2 3 x 3 matrix. Just as with geomenry, 2 homogenous
coordinare must be added ra the s, £ pair to make the trandformarion possible. There-
fore, the method of coordinate generation looks like this:

e D) "3 Imec =5t

Section 5 Pixe] Effecls

Texture

The illustrations in Figure 5.5.1 were generated using simple rotation and scale.
The first picrure shows a texoured quad with no cransformation applied. The second
shows 2 rotation of the texture coordinates by 45 degrees. The third shows a texnure
coordinare rranslarion of 0.5.

Projection

Texture projection is uscful for a number of effects. Most often it is used to simulare
lighting effects such as sporlights or shadows. The result of texture projection is fairly
straightforward: A texture is projecied onro some geometry from some point in space.
For example, we can define a spodighe ar some point in a scene and project a texture
{probably a light circle) onto the geometry, crearing the fllusion of a spotlight.

Again, the concepr of tomure projection has its roots in normal 3D geometry tech-
niques. When simularing a camera in 3D, a projection matrix is used to project vertices
in camera space onro the near clipping plane of the camera. These points are mapped
in the range of -1 1o 1 in both X and ¥ and then they are transformed into screen space
by a viewport transformarion, which wsually involves a translation and scale.

For texture projection, instead of modding a camera in space, we are wsurally
modeling a light. Light space vertices are projecred back ongo the near dipping plane
of the light, and the resulting X and ¥ valucs are used as 5 and T values to map a tex-
ture onto the projected geometry.

A light should be modeled juse as 2 camera usually would. The near clipping
plane should be st to reflect the dimensions of the texrure char is to be projecred. For
instance, a square near clipping plane should be used for projecting a square texture.

Mow, as mentioned, geomerry that is projected onto a texmure needs to be in ligh
space, just as geometry o be projected onro the screen needs to be in camera space. In
order to do this, we need 10 first ransform the geometry into world space. Onee this
is done, the light matrix (just like the camera matrix) must then transform the geom-
ctry. The geometry can then be projected by the light's projection matrix.

Onece geometry has been projecred, another problem arises. Projected geometry,
as mentoned previously, falls in the range of -1 1o 1 in both X and ¥, with (0, 0)

FIGURE 5.5.1. Framples of tesiure coordinate peneration through texoure matrix eransformations.

5.5 Advanced Texturing Using Texture Coordinate Generation 551

being ar the center of the plane of projection as ic relares o the light. Texture coordi-
nates usually run from 0 to 1 in both S and T with the origin of thar space being
locared ar the upper-left corner of the exmire. To map the projected coordinates inmo
texeure space, we must fisst scale chem by 0.5 to put them in the range from —0.5 o
0.5 and then eranslate them by 0.5 to pur them in the range from 0 1o 1.

All these marrices ean be concarenared rogether o form one final projection
matrix for & given piece of peomerry. The order is as follows:

M _obi * M_light *M_proj * M_scale *M_trans *fx, 5 0.2 = 5 5, 1 gl
where:

* M obj = the object’s world space marix,

* M_light = the light maerix used to rransform the geometry from world space into
lighr space.

* M _proj = the light’s projection marrix.

* W scale = (5 scale marrix,

* M_trans = 0.5 trmnslation matrx,

The resulr of this ealeulation is 2 four-dimensional point. For simple texture pro-
jection, the r coordinate should be completely ignored, yielding an (s, « q) triple. If
the hardware allows, pass these tliree coordinares dewn for rasterization, The g coor-
dinate is used to perform perspective cormection; however, this muse be done ar rasrer-
ization time for it to be correcr

Figure 5.5.2 was generated using texture projection. It shows the frustum of the
light thar was used to project the circular highlight oneo the sphere geomerry.

By projecting geometry in this manner, a few unexpected results ean occur. First,
textuce coordinates usually behave in 2 tiled manner. This means thar there is really no

FIGURE 5.5.2. Texwure projecrion example.

b5z

Section B Pixel Effects

—— e e e

difference berween a ser ol coonlinates that Fanges fram 0 to | and 3 ser tha rAnges
from =1 o 0. Therelome, textures thar are]!uu_[-Er_'l_Er.I: DRLG. Fenmerry shiould |,:|.1.1.|:|J|:|.I
behave in a clamped manner, meaning that the ourside border of the teure is repeated
and applied to any texmre coordinare less than O and grearer than 1. For this reason,
rexrure borders should be colored 1o behave correctly with the texture combine mode
of chaoice.

The second and more complex problem is that of whar 1 call shise-throngh, When
we project a texture onto a sphere, for instance, the texcture appears on both the frone
and back sides of the sphere a5 it relates o the light. This is because vertices on both
the front and back of the sphere project into the comrect texmure space.

The image in Figure 5.5.3 highlights this problem. You can see thar the spodight
texture projects correctly on the front of the sphere, but it also shines through w the
geometry on the back of the sphere.

There are a couple of ways to fix this problem of shine-through. The first is w
perfarm a dot product between the vertex normal and the light normal to determine
whether the vertex is back Gcing. IF the vertex is back Geing, simply set the texture
coordinate to something out of the range of 0 to 1.

Second, you can use the output of the standand lighting equarion to determine
whether o vertex is back facing, "lace 2 parallel light at the locamion of the wexoure pro-
jector. 1F the color outpur from this parallel lighe for a vervex is black, you know thar
the verrex 15 back facing, because the only way for this verrex to become black is if the
associared normal is facing away from the light.

FIGURE 5.5.3. Shine-through in texrure projection.

5.5 Advanced Texturing Using Texture Coordinsts Generation EB3

Reflection Mapping

To perform reflection mapping, [use a simple method called sofere mapping. The
basic idea for this method makes two ASFUM PHONS.

First, no maner the size and shape of the objecr being mapped, it is asumed to
reflect the surrounding environment like a sphere. This concept is important becauwse,
logically, a poine en a character’s hand should reflect something different than a point
on a characrer’s foor with the same normal. With sphere mapping, these owo points
reflect exactly the same thing because they have the sme normal.

Second, the reflective sphere like which the ohject will behave is assumed o be
infinitely small. This means thar all rays from the point of the eye in the scene o any
point on the infinitely small sphere are paralld to cach other.

Given these limitations, the sphere-mapping method operates on basic laws of
reflection. Take, for instance, a ray from the eye point in a scene to 2 poinc on the
reflective sphere. This my should hir the sphere and reflect around the normal ar the
point of contact. Whatever this reflected ray hits should be seen reflecred ar the poine
of contact on the sphere. Figure 53.5.4 illustrates this concepe,

Since it is not computationally frasible to perform one-bounce ry tracing for every
point on a sphere, we instead create 2 gexrure map that contains the necessary environ-
mental information. This map is called a spheriel reflecrion map, or a gphere map,

f———== Incideril Ray
P— Aefiscted Ray

Surface Mamal

FIGURE 5.5.4. Rays are reflected arnund the surface sormal at the point of contacron a
reflective abject.

554 Section 5 Pizel Effects

The basic definiton of a sphere map is a single texture map thar conrains a full
360-degree view of the environment surrounding a point in space. There is one big
drawback to using sphere mapping for reflection: The texture used as the reflection
map is viewpoint dependent. This means that to be complerely correcr, the rexrure
map must be dynamically created each rime the camera moves. T have found, how-
ever, that for some common effects such as generating a specular highlight on a car or
creating lighting effects on a character, refusing to update the sphere map based on
viewpoint is often not noticeable. (For an in-depth discassion of generaring sphere
maps sce [Blythe9].)

Once you have an adequare sphere map, texture coordinate generation is a snap.
simply rransform an object’s normals into world space using the inverse transform of
the object’s mode matsix. Then transform the normals into view space using the cam-
era marrix, Finally, assuming your amera is looking down the —Z axis, simply use the
Xand ¥ecomponents of 2 normal as the 5 and T coondinates, respectively, for the asso-
clared vertex

Obviously, using this echnigque, normals with 2 —-Z component generare the
same 5, T coordinare pair as the same normal with a +.Z component. This works out
fine because any vertex with a -2 component in it assodared normal is by definition
back facing and will not be seen, since this calculadon is done in view space.

Color Plare 5 was produced simply by mapping a roms with a spherical reflection
map of an eurdoor environment.

Using this technique, it is very casy to perform reflection, specular mapping, and
diffise lighting using the correcrt texmure maps.

For a view-independent method of generating these cffects, please see [Hei-
drich98], which describes dual-paraboloid mapping. In addition, cubic enviranment
mapping is 2 wonderful way to generate dynamic lighting and reflection effects if the
warger hardware provides suppore for it, Please see [Mvidia00] for more information,

References

[Blythe39)] Blythe, David, Adwarced Graphics Programnsing Technigues Using OpenGL,
Available online at heop:fireality.sgi.com/blythefsig99/advanced ¥/ notes/ node 80
Jheml, Apel 7, 2000.

[Wan92] Ware, Alan, and Warr, Mark, Advancad Animation and Rr.lmrﬂf_l.l;g' Tech-
nigues, ACM Press, 1992

[Heidrich98] Heidrich, "ﬂ"ulfgang, and Scidel, Hans-Peter, l’?m-fn.iflpnaim.r Enp=
rommtent Maps, EurographicsfACM Sigpraph Wotshop on Graphics Hardware
1998, available online ar wwwi.informank uni-crlangen defeng/rescarch/render-
ingfenvmap/, March 22 2000.

[MNvidia00] NVIDIA rechnical brief, Perfecr Beflections and Specular Lighting Effects
with Cube Environment Mapping, vailable online a0 www. nvidia.com/Market-
ing/Developer/DevRel nsf WhitcpapersFramelOpenPage, March 10, 2000.

5.6

Hardware Bump Mapping

Sim Dietrich

Bump mapping, firsc deseribed by Jim Blinn in [Blinn78], is 2 rechnique that simu-
lates the way light reacts to 2 rough or dimpled surface by applying a rexiure to an
othervise smooth polygonal susface. The applied texture is known as the Sump map,
hence the torm bump mapping.

Several mechods of bump mapping are available in hardware today. This article
concentrates en elucidating the common issuss around modern bump-mapping tech-
niques thar programmers encounter when moving from “bumpy sphere™ demos o
acrual game implementation. Since bump mapping is acoually a lighting compura-
tion, I discuss bump mapping in terms of illuminarion.

Bump-mapping techniques cither caloculate or approximare a dot product
berween the light vector £ and the surface normal Nin order to calculare diffuse light-
ing. For the sake of simplicity, | assume thar the dot product operation i calculated
on a per-pixel basis. This functionalicy is available from several hardware vendors at
the time of this writing and will likely remain available in the future.

Specular lighting can be achicved by calculating the doe product between the
half-angle vecror H and the surface normal N and then rising the result to some
power. We concentrate on diffuse illumination, bur bear in mind that all techniques
discussed ean be applied to specular bump mapping or lighting as well.

Dot product-based bump mapping and per-pixel lighting are huge subjects, so we
concentrate on explaining the problem ar hand and some practical solutions. Specifi-
cally, this article avoids discussing wexture blending modes, cube maps, texture for-
mats, and other things at that level of implementation detail, instead COnCenTraring
oft how to properly bump map or light an arbirrary model or mesh.

How Do | Apply a Bump Map to an Object?

The simple answer to this question is to simply texiure map the object with a texrure
representing the bump map. A more wseful answer requires more information on
whar effect we are trying to achieve on which platform. Various hardware bump-map-
ping techniques require different source data for the bump-map texture, from alpha-

12141

5568 Section5 Pizel Effects

height maps to RGB surface normal maps and RGB £U4V maps, Since both RGE
surface normal maps and RGB #UHV maps can be generated from alpha-height mags,
I assume thar the original source data for the bump map is an alpha or gray-scale
height map.

As stated, we assume that we have a per-pixel dot product operation, thus, 1
wsume we have a way of generating the appropriate texture formar thar directy
encodes surface normals in RGE formar. One such foerma maps the X, ¥, and Z vecror
components from [-1_.1] flozting point into the [0.-255] range of the RGB channels.

The facr thar we have normals stored in an RGB texture presents an interesting
question: In which space arc these normals defined? Model space? World space? Some
other space?

The fundamental bump-mapping or diffuse illumination operation, N [, does
not care in which space the vectors are defined; i is essential, however, to ensure that
Nand L are expressed in the same coordinate system.

We will see thar this seemingly innocuous issue is one of the most important con-
siderations when evaluating dot product-based bump-mapping techniques. The nexs
section describes each eption and where it might be most appropriare.

Choosing a Space for the Normals

Lets start with a simple example of a sphere thar we want to bump map in model
space. We assume for now thar the bump map is uniquely rexrured seross the sphere;
in other words, thar each poine on the sphete maps to its own section of the exture so
that no tiling or mirranng of the bump map cccurs.

In this case, we go through cach cexel in the bump map, find where it is mapped
on to the sphere in model space, and generate the surface normal for thar location.
Next we generate 2 3 % 3 coordinare system for that location on the sphere, using the
surface normal as the + axis. This is commonly known as rangent space because it
represents a space that lies cangent to the surface.

In ordes to generate tangent space, two unique vectors are required, and the third
vecror can be generated from the other two, In this case, however, there is no obvicus
choice for a second vector because there is an infinite number of tangent spaces with
the same .7 axis, =0 an arbirrary choice must be made.

We choose the + ¥ axis in model space as our second vecror. We then make a cross
product of + ¥ with our surface normal to generate the third veetor, which serves as
+&. We can then stop or take the cross produce of +Z with +X to generate a new 41
axis. Normalizing all three vecrtors gives us the three columns of our 3 % 3 matrix thar
represents tangent space at that point on the sphere surface.

MNow we have a basis marrix ar the appropriate point, and we can take the bump
vector from our bump map, expressed in world space, and rotate it into local mngent
space using our matrix. We now have a bump vector for thar particular point on the
sphere. We can now replace the world space bump vector in the texture with the ran-
gent space bump vecror.

5.6 Hardware Hih'l'l_-j:- Mapping 557

Now at run time we can ke a light vector £ expressed in world space and rocate
it through the world to model mamix, giving L' Since L' is now relative o model
space, we can perform L'e /W berween this lighe veetor and the bump-map vecrors.

L'is eonstant for a particular model space matrix, 5o it is valid in general only for
the current model hierarchy level. This is convenient in that it allows L to remain
constant for an entire portion of the model being bump mapped.

At run time, we can set up the wexoure-blending units to compure:

Tewure - ConstantColor

Where Toxture corresponds 1o the surface normal map with RGB encoded normals
and ConstantColor corresponds to our constant L vector, converred into RGE form,
This technique is known as object space or model space bump mapping. Its advanrage
lies in no run-time overhead other than a single vector romation per model hierarehy
level. Tts disadvantages include having o uniquely texrure objects, which rakes a baege
amount of texture memory. In addition, skinning or morphing ohjecrs need cheir sue-
face normal textures regenerated every frame.
The desire to overcome rthese disadvantages leads to the next technique.

Another Approach: Using Tangent Space Bump
Mapping

Since we have defined rangent space already for our sphere, thar means we have a
translation from model space to a local space defined at cach verex. We can leverage
thar information to eliminate the necessity of both unique texturing and of having to
regencrate the surface normal map in the case of animated models. Instead of regen-
erating the normal maps to be relarive 10 model space, we leave our normal maps as
they arc, instead generating a matrix to rotate the light vector from madel space into
tangent space.

We assume thar our original height map represents height “out from the surface.”
Mathemarically, the "our” direction of the height map corresponds 1o the +.7 axis of
OUr tangent space at every point on the surface of the sphere. We use this 1o create a
mathematical way of rranslating from the bump-map space ra the local tangent space
ar any point on the sphere.

One way ro accomplish this task is to calculare our rngent space exactly a5 in
muodel space bump-mapping described previously, bur only ar each vertex of the
sphere, and sore the tangent space matrix in a dara scructure corresponding to that
vertex. When lighting or bump mapping that verrex, we wse the 3 % 3 angent space
matrix to convert our light vector into local tangent space. So, rather than using che
tangent space marrix to convert the surface normals, as we did previously, we use the
matrix to convert the light vector instead. Remember that the space in which the dot
producs is performed is irrelevant, as long as both vecrors are defined in the same
ooordinare space.

Section 5 Pizel Effects

In model space bump mapping described previously, the generation of a tanpent
Space marrix occurred as a preprocessing step ar every point on the sphere in order 10
Eenerate a unique bump map across the sphere. In rangent space bump mapping, we
only generate a tangent space marrix ar esch verrex of the sphere.

At run time, we take our £ vector for each verrex of the sphere and rorare ir. first
through the world-to-model matrix and then through the local tangent space marrix
generated during preprocessing and srored ar thar vertex. This gives us L, the light
vecror in local rangent space. OF course, L' is correct on only a per-vertex basis. In
model space bump mapping, L' was constant for the whole maodel hierarchy level.
Mow L varies from vertex 1o vertex.

So, whereas before, we stored £ in a ennstant color, it now has to be interpolated
across a rriangle.

To perform rangent space bump mapping, we can sct up the exture-blending
units o perform:

Texmure - DiffuseCalor

Where Texture is our surface normal map and DiffuseColor is an iterated color
value represencing £

We leverage the hardware’s coloe interpolation capability to “rotate” our £ vector
from one space to another. We are actually performing a linear interpolation berween
local L vecrors ar each verrex. rather than true rotaton or sphenical interpolacion, but
for most pusposes this works well, Mote that pesspective-correct color interpolation is
a real help for thete cases.

On mulritexmure hardweare, it is desirable to use 2 cube map or paraboloid map
interpolare L' instead, bur char ropic is beyond the scope of this amicle, Suffice it o
say rthar using a linear interpolation of L vectors leads wo darkening artifacts when
bump mapping with respecr o local lights near large iriangles. This effect is caused by
almost opposite L' vectors being shortened when lincarly interpolated across the inte-
rice of a riangle. Cube maps can als asist with handling properly interpolated lighe
vectors across anisotropically scaled normal maps,

Tangent space bump mapping s much improved over model space bump map-
ping in that bump-map textures no longer must be unique and can be dled across a
surface. In addition, skinned or morphed models need only regenerate the 3 % 3 rn-
pent space matrix for each animated vertex and do not have wo recreare the surface
normal HAHTE each frame.

Tangent space bump ||I=Lppmg is less CP'Uefficient than model space bump map-
ping in thar it requires more rotations of L into local mngent space ar un dme. lralso
requirnes updaring of model dara ar run time, which may introduce GPU stalls or
addirional daa copying.

A more subtle disadvantage of tangent space bump mapping is not necessarily
apparent when creating a deme of a bumpy sphere, but thar can be a challenge when
incorporating bump mapping into an acmal game environment. The problem is char

5.6 Hardware Bump Mapping 558

rangent space bump mapping requires defining a relationship berween how the bump
map is applied and the surface of the object.

In order to generate the local anpgent space matrix, we need to know more than
the fact that the “out” direction of the height map corresponds w +Zin tangent space.
This is the same problem as in the model space bump mapping example. We must
have two unique vectors in order to define a three-dimensional coordinate system.
Most bump-mapping examples available on the Web today (circa 2000} have an arbi-
wrary, implicr mapping wherehy they simply choose a world or modedl space axis, such
as +Y, in order to generare the tangent space marric

Here is a descripdon of our problem. Ler’s say a programmer and arrist work
together o bump map our sphere using rhis bump map. Now say thar the arrist
comes in the next day and rorares the bump map 90 degrees on the model and
impaors it into the game. Instead of the light appearing o come from above, the light
now appears 1o come from the side! 5o, the programmer comes in, sees the problem,
and updares the rangenr space marrices by raking into account the $0-degree rotation
to fix the problem.

The fact that this problem could be fixed in chis way implies char the arrist is sup-
plving informarion thar che programmer is not auromarically raking inco accoune in
the mapping from mngent space 1o bump map space.

The artist knows how she wants the bump map applied, so the program should
roipoct her choice. The IJI'.II.'I.'I.P' Eip camn be slpp]il:-li like amy other texmure; thus it may
be stretched. w:ll.']r:.l, p-:m]l:unl and 50 on. Cher 5implisli|: LANZENL Space method Fuils
to Grke into account how the |!_:|Ll|11i_:| map i% il.'luill.l}' apl:r!i::l 1o 2 model and asumes
that there is a2 simple correspondence between the bump map and the underying sur-
face. Tangent space bump mapping requires knowing how the exoure was applied—
in other words, planar, box, spherical, or cylindrical mapping.

[t is this assumprion thar makes angent space bump mapping difficult to incor-
porare into 2 game, especially one with existing arowork thar we dont wanr to rerex-
mere with bump maps in a restricrive way.

A Solution: Texture Space Bump Mapping

Texture space bump mapping is similar 1o tangent space bump mappingand primar-
ily differs in the way that the local matrices are penerated for cach vertex.

Rather than generating tanpent space matrices at each vertex, texture space bump
mapping creates what [call 2 sectoe space matrix thar takes into account exactly how
the texture was applied to the surface by the artist,

To generate this maerix. we need 1o look ar each 1riangle and how it is rexoure
mapped. It may be rotated, scaled in S or T, flipped. or projected. Tt tums out that
what we nesd 10 know in order 1o mathematically account for how the texmure is
applied are the texture gradients. The texture gradients are nine scalar values that rep-
resent the direction of 5 and T with respect to the &, ¥, and 2 axes.

3

Sﬂcﬂmﬁ_ Pizel Effects

We calculate the texmure gradients as follows; let’s stam with the plane equarion of
our r_tia.ng|=:

J{J.'I-.B"_I'+'|:'Iiﬂ-:ﬂ

We can use any three independent variables in our plane equation, =0 | use X, £ and

T instead of X, ¥ and 7.
Ax s Br+ Cra D=1

Now we can use this equation to calculate our texture gradients with respect to X,
Let’s assume that we have two unique » and two unique s values and subtract one
from the other to give us dc and ab. For this step, we assume thas ¢ is held constant,

Axcl + Bl « x4 D=0

Axll « Bild + Cr+ D= (0

Axl + BsOl + Cr o+ D'm Axl + Bel + Cr o D

Axl + Bel + Cr+ D— (Al + Bl 4 Cr+ D)
Axl — Axf?) + Brf — Bil) = 0

AfdX) + BeS) = 0
Al } = —RB{dS)
XS = —BiA

The gradient of X with respect 1o §is thus —B/4. This gives us 2 measure of how
X changes with cach change in 5. The same can be compused for d¥/T. We can then
gemerate the gradients of Fand 2 similady. If A is found to be 0, we can safely set the
gradient to 0. That simply means that ¥ doesnt change at all with respect o 5,

We now have six scalar values thae represent hew X, ¥ and Z change in modcdl
space as we walk across the texture in §and 7o

We can use this informarion 1o derive 2 marrix between the 5, Tand 5 %7 axes,
and the X, ¥ and Z model space matrices:

§x Tx (SxTx
Sy Ty (SxThy
Sz Te [(5xT)=

At mun dime, we cin move the light vector into local madel space using the
model’s hierarchicsl matrix stack. Then we can pur the light vector through this
matrix for each vertex and store the resulting vecror in the diffuse or specular iterated
colors. Now the dot product can be computed berween the normal map and a lighe
vector defined in the same space as the normal map.

5.8 Hardware Bump Mapping 561

Texture Space Issues

Some of the issues that arise from generating a basis from textures are summanized.
T]:c imost .:.FPan:rlI! ixsne th:l! ACINES w|'|.|:|.1. i.m]:f-::mmting t['ti.s ‘i:.sﬂ: i: '|'-||]:|p|.-d texturnes,
Sinee textures don't have 3 “sdednes” and normals do, we need to detect this case by
comparing the face normal of the triangle to the texture’s 5 % Taxis, If the dot product
between them is negative, we can simply flip the 5= T axis. At times an artist mirrors
part of a texture on a symmetrical object. In this case, two triangles that straddle chis
boundary have opposite 5 % T axes. In this case, the programmer or artist must dupli-
cate the vertex,

At times programmers are forced to duplicate verdees for the sake of different tex-
ture coordinates, This situaton can indicare a discontinuicy in how the texmre is
applied to the surface. The way to solve this problem is to creare a texmure space basis
mattix for each triangle individually. Next find which vertices are gromemically
thared between triangle faces—in other words, which vertices share X, ¥, Z positions.
Now for each vertex, take the 5, T and 83T axes of each trangle that touches that
vertex and sum them. Now normalize the resulting 5, Tand 5% T azes, This action is
analogous to creating vertex normals from face normals, except that we are caloulating
three vectors ac a ime. The three resultant vecrors now make up a new “average ex-
ture space” to store at each vertex of the model.

The price of normalizing the resultant column vectors is that now anisotropically
scaled textures can't be handled propedy. If we have cube maps or some other way o
normalize the vectors, we can skip the normalizadien seep and thus handle anisorop-
ically scaled textures with ease,

Coneclusion

Dot product-based bump mapping and per-pixel lighting have arrived and along with
them some interesting parameterization issues. The need to interprer Har texcrures as
3D surface normal vectors necessitares either regenerating the surface normal textures
to maitch the model, as in model space bump mapping, or genecrating a basis macrix
for cach verex, as in tangent and texrure space bump mapping.

References

Here ars three great resources for more information on per-pixel lighting:

[Blinn78] Blinn, James, “Simulation of wrinkled surfaces,” Comprter Graphics (51G-
GRAPH 78 Proceedings), vol. 12, no. 3, pp. 286-292, August 197B.

[EverittD0] Everitt, Cass, “High-Quality, Hardware-Accelerated Per-Pixel lllumina-
tion for Consumer Class OpenGL Hardware,” master’s thesis, available online ar
www.rd.nuf -cass/thesis, May 2000.

INVIDIA] NVIDIAS Developer Relatons site ar wwwonvidia.com/Developer.nsf,
Moy 2000,

Ground-Plane Shadows

Yossarian King

Projecting shadows of arbitrary objects onto other objecs or arhitrary terrain is difh.
cule, However, if you are projecting shadows ento a flat ground plane, there is 2 sim.
ple solution. The “obvious™ approach is to draw a sprite of some sore at a charaerer’
feet, perhaps generated by rendering the characrer in profile 1o an off-screen bufer
This method suffers from misregistration effects between object and shadow. This
article presents a simple technique for ground-plane shadows that performs a physi-
cally correct projection with very little computational overhead.

One additional transform matrix is used 1o “squash” the vertices in an chject onto
a flar horizental surface of asbitrary height. The direction and height of the lighs
source relative to the object determine the shadow projection mauix. Given this
marrix, the object is rerendered with che additional rransform 1o draw the shadow,

Translucent gray polygons are used in place of the rexrured polygons of the chjec
to create the shadow effect. The object used for the shadow need not be the same as
the original ehject; typically you use an object with a lower pelygon count wo improve
performance. The polygons of the shadow object overlap after projection onmo the
ground, which produces artifacts in the mansucent rendering. These artifaces ean be
eliminated wsing a hardware Z-buffer.

The rechnigue can be extended to project shadows onto any 3D plane, not just a
plane aligned with the coordinate axes, Used twice, the technique can project shadows
into the corner berween 2 floor and a wall,

Shadow Math

Shadows result when a solid object comes between a light source and a surface. A
point on the surface is in shadow if a ray from the light to the poinr intersects che
object. In 4 rendering system, the object is represenred by a collection of polygons.
Casting rays from the light through each of the vertices of the model onro the surface
outlines the areas of the surface thar are in shadow. For 1 single polygon of the objecr,
this method gives a projected shadow polygon on the surface,

5.7 Ground-Plane Shadows BE3

Unformmnarely, this method does not lend iself directdy 1o pracrical real-time ren-
dering. It is cosdy to calculate the inrersection berween the ray and the surface. The
projected shadow palygon needs o be subdivided to conform accurately to the sur-
face, an operarion thar is arbimrarily complex, depending on the complexity of the sur-
face. An alternarive to rendering the projected shadow polygons is to modify the
vertex colors of the surface, darkening the vertices thar ane in shadow, bur this has the
drawback of reducing the precision of the shadow and making it dependent on the
veriex density of the surface. Dynamic shadow map rexrures can be used 1o compute
shading ar a higher and more uniform detail than allowed by vertex shading, but this
process is also expensive.

The problem can be simplified, however, if the shadews need be cast only on a
hotizontal ground plane. For many game applications such as sports simulations and
corridor games, horirontal surfaces are the norm, and the simplification can be wsed.

Figure 5.7.1 shows ground-plane projection in 2D, A light at point L casts the
shadow of a point £ onto the ground plane (the X-axis) ar some point 5. We want 1o
derermine o, the X coordinare of point 5.

Use of similsr trisngles shows char:
b — px) _ 2
[z = Iv) iy

Sy

FIGURE 5.7.1. A light ata poins L casts a shadow of poine P onro che ground plane ar
poine &

Section 5 Pixel Effects

solving for oo

= b — &)
y

But this expression for o includes rv, so we havent actually solved for the
unknown. However, the only use of i on the right side of the equadon is in (ar—),
which is the horizoneal distance from the shadow point 1o the light. By assuming char
the light is relarively far way from the object relative 10 the lengzh of the shadow, we
an approximare (s — &) with {ax — &), the distance from the object to the light. This
yields:

o= px+ py

. lox — k)
=gt ppt—
i
or simply:

=gtk py
where:

(ox — dx)
&

The distant light source assumption is equivalent to treating che lighr as a direc-
tional Light rather than a point light source,

Extending this to three dimensions and projecring the shadow point S onto the x-
£ plane, we ger:

w= pr+ kl" py
o =10 (5.7.1)

=

z=pe+ k2" py

where:
o=l
by
g ==l
&

By projecting cach of the vertices of the object onto the ground plane, we ger a
collection of projected polygons that can be rendered to creare the shadow of the
object. To do the projecton, we just need to caleulate the values of &7 and £2, which

5.7 Ground-Plans Shadows 565

arc completely determined by the relative position of the object and the light. Imple-
mentarion of this technigue i deseribed in further derail in the next section.

Implementation

In a rypical rendering pipeline, a model vertex # i3 rransformed inro a view space
point before projection inmo screen space. This operation is written as:

r=C"T*m

where T7is 2 marrix representing the model transformation that converts model vertex
mt into world space, and Cis the camera transformation that converts world space
eoordinates into view space. In order to render an object, we transform each of its ver-
[0S ARED VEEW spacc, then Fll:uji:L‘l. 1etke) SCrECn Space and render the rﬁulting FD-]_'!-'E-I:I]E.

To casily incorporate the shadow projection process into the rendering pipeline,
Equartion 5.7.1 can be rewritten in matrix form as

=5

where:
s = (g, 5y, 3z, 1} is the projected shadow point in word space.
p=(px. py, p=. 1) is the point on the object in world space.
S5 is the shadow projection matrix, written as

1 M 00
s_|0 0 00
0 k&2 1 D
0 O -0l

MNow 1o render the shadow of an object, we simply insert the shadow projection
mutrix into the vertex transformation:

w= L m

This cxpression makes use of the shadow projection marrix o transform the
points of an object into the projected shadow poinis on the ground plane. The
shadow projection marrix 5 depends only on the constants kf and &2, which arc
determined from the relarive position of the object and the light.

This technique can be used to rerender an object projected flar onvo the ground.
If the shadow matrix § is simply inserted into the pipeline and the object rerendered,
the result is 2 Aattened version of the object—complete with textures, shading, and so
on, To render the object as a shadow, we can render cach werrex as a fJar-shaded
translucent gray, ignonng the texmure informarion in the model. In pracrice, vsing a
model with fewer polygons than the original objecr reduces the cost of rendering a
shadow.

568 -':_‘rnﬁuns Pixel Effects

FIGURE 5.7.2. Projecting the teapot geometry onto the ground plane renders the shadow of the teapot
object. The zrifzces caused by overlapping eranshucent polypons are diminated with the hardware Z-
buffcr, as shown on the rghr,

One problem with this method is that the polygons projecred onto the ground
plane overlap, and when the overlapping polygons are drawn with translucency, the
overlapping areas show up darker than the non-overlapped areas. This artifact can be
climinated wing the hardware Z-buffer: After the first shadow polygon has been
drawn, the everlapping portion of subsequent polygons is remeved by the Z-buffer. If
Z-buffer imprecision causes amifacts, then as the shadow polygons are rendered, each
can be binsed further away in Z, so that the Z-compare eliminates the overlapping
areas.

Figure 5.7.2 shows a teapor rendered with a projected shadow, both with and
withour the use of the Z-buffer to remove artifacts.

Extensions

As presented, this article makes it éasy to projecrt shadow geometry onto 2 horizontal
ground plane. The method can essily be extended to ather axis-aligned verrical
planes. With a bit more work, it can also be extended o arbitrary planes. An arbirary
plane can be represented as a roration and translation of the herizontl ground planc.
Shadews are projected onto the arbitrary plane by rorating and translating it back ro
horizontal, projecing the shadow, and then mansforming back the plane position.
The light position must also be rransformed. By using the projection technique mul-
tiple times, shadows can be simulaneously cast onto multiple planes, such as the cor-
ner berween a wall and the floor.

9.8

Real-Time Shadows on
Complex Objects

Gabor Nagy
This aricle presents an efficient algorithm cpable of creating realistic shadows in

real-rime applications. The algorithm can ke advantage of today'’s fast texmre-map-
ping and 3D eransformation hardware,

Introduction

Shadows are among the most important depth cues in human vision. In computer
graphics, they can give an image the final rouch of realism. Withouwt shadews—even
with realistic lighting and rexruring effects—compurer-generared images look arifi-
cial; the objects appear to float in space, even when they are lying on a surface, This
inability for humans ro sense the relative position and depth in computer graphics is
especially apparent when the camer is not moving (no parallax information).

Uniil recently, only compurationally expensive algorithms such as ray tracing and
mdingiq.-' could produce accurate shadows, in which both the objects casLing the shad-
ows and the ones receiving them are of arbitrary complexiry.

The algorithm presented here is optimized for real-time applications. It provides
a very good balance berween realism and rendering performance while being easily
extendible o all sitvations. With the always performance-hungry game programmer
in mind, this artice highlights points at which significant optimization for perfor-
mance is possible wsing hardware features.

Some of the basic ideas in this articde have been around for 2 while, bur most
papers describing them dont deal with che impormant implementation details we
cover here.,

The Light Source, Blocker Object, and Receiver
Object

Consider the simple cample shown in Figure 5.8.1. The wrus (Bboker obfecr or
elacker) blocks some of the light coming from the light source, casting a shadow on

o867

Sectien 5 Pixel Effects

FIGURE 5.8.1. Shadow, recetver, blocker, and light source,

the wall. The wall receives the shadow, or “lack of light™; thesefore it is called the
receiver ofiject, or recerver,

If the light source is a poinc light (infinitely small), the blocker object blocks the
light of thar light source in a well-defined volume, usually referred 1o 2s a shadow val-
sme (sce Figure 5.8.2). A shadow is creared on 3 receiver object where its surface inter-
sects with the shadow volume. As Figure 5.8.2 shows, the shadow volume has a
truncated, cone-like shape, starring ar the blocker object and continuing to infinity.
Whereas the shadow volume really searts at the contours of the blocker objecr, its
cone-like shape orginates from the light source.

Let’s examine how the cress section of the shadow volume changes as we get fus-
ther from the light source. We call the point on the blocker’s surface that is nearest to
the light source P, and the one farthest from it £ia

We can divide the shadow velume into three regions:

1. Between the light source and P,
2. Beween P, and Py
3. From P infinicy

It's casy to see that in Region 3, the cross-section of the shadow volume has a con-
stant shape, but it increases in size as we get further from the light source.

5.8 Real-Time Shadews on Complex Objects 569

Shadowvolume

i

FIGURE 5.8.2. The shadow volume.

Because of this phenomenon, unless one or more receiver objects are in Region 2,
the shadow velume can be accurately modeled by projecting a two-dimensional mask
from the position of the point light source. Consequently, using che same projection,
we can map this 2D mask on the receiver objects to define the shadowed areas! This
2D mask is called the dhader map, and it can be simply derived by drawing che
blocker object’s silhouette as seen from the light source.

MNotice thar we cannot see the shadow cast by the torus in Figere 5.8.3a because
the rorus exactly obscures it! This isa good indication char indeed, we can simply use
a properly projected 2D image or mask (see Figure 5.8.3b) to define the shadow vol-
ume. This method is unally refemred to as projective shadow mapping.

The Objectives of This Article

To draw shadows wsing the method introduced, we need w do the following:

1. Create a shadow map for each light/blocker object pair.

2. Calculate the shadow map (texrure) coordinates to use on the receiver object’s
Vertices.

3. Render the receiver objects with the shadow map applicd as a 2D rexrure,

Sectlon 5 Pizel Effects

FIGURE 5.8.3. The blocker objecr as scen from a, the lighe source, and &, i silhouerre.

Creating the Shadow Map

The first th.i.ng to do in erder to render the shadow map 15 ==r Up d PESPEctive projoc-
tion originating ar the light source. This projection projects the blacker object onto a
virtual sereem plane hetveeen the light source and the blocker object, yiclding the

ﬂi::]u:m'map shown in Frgure 5.8.4.

Shadowvolume

}

A

shadowmap

FIGURE 5.8.4. The shadow map projection (ko Color Plare 6).

58 PReal-Time Shadsws on Complax Objects 571

The Light Coordinate System

First, we define a new coordinare system with its orgin ar the light source and its 2-
axis pointing at the blocker object. The Z-axis of this coordinate system determines
the center line of the perspective projection, while its XY-plane defines the onentation
of the screen plane on which we project the shadow map. If we mransform the blocker
object into this fighr coordinate system, illustrated in Figure 5.8.5., we can easily project
ir onro this plane.

To define an arbitrary coosdinate system, we need to know the position of its ori-
gin and its oricntation. We already know the position of the origin: It’s the position of
our light source. We can describe the orientation of the light coordinare system by the

direction of its three axes: X Yo and 2 . all 30 unit vecrors in werld coondi-
nalbes,

Finding Z

Starring with the Z, ;. 2xis, we can easily find ."q-l-;...md Yo Zggeeis a direction vector
thar stares from the light souree and points at the blocker object. Ler's assume thar the
blocker object is polygonal, and we have an array of all the polygon vertices that are
used in rendering this object. Now we have a set of “tasget” points in 3D space (the
vertices of the blocker) and another poin: the position of the light source. A fast and

FIGURE 5.8.5. The light coordinate-system {also Color Plare 7).

sT2

Section & Pixel Effects

efficient way to obtain 2 “good” dircction vecror is 1o average the vectors that start ar
the light source and point to each vertex. (We discuss a bester approach larer))
We call the vector we have computed the mean divection vector, or MDV:

NZ[V -‘Fiwh}

MDV = =

N

r

where IV, is the number of vertices considered in the blocker and Fg, is the position
of the light source.

Normalming MOV yields £
5 MDV
Ll =T =T
= = |pby

Optimization Tip #1

since we will normalize MOV, we don't have o divide the sum of light-to-vertex vec-
vors by NV, saving one divide operation. We can also caleulare P, * IV, in advance and
avoid the — Py, in the vertex loop, because:

> (V- 2 S,
izl !JF — 'F.'.:!i.--"l"‘r_, -r:':.r

Here is the C code o compute Zp .-

typadef struct

{
E3dType X,Y,Z;
short Flags;

} E3dvertex;

vold Shadowatrix{Matrix LBlockerlocalToWorldatrix)

{
ungigned long L¥n, LVG, LN, LG:
float MWx, My, Mz, LPlightX, LPlightY¥, LPlightZ,
float LMDVE, LMDVY, LMOVZ, JF Mean Direction Vector
float LIightX, L¥ight¥, LIlightZ, [/ Zlight wector

{f Tnitialize Wean Direction Wecter to (0.0, 0.0, 0.0)
iy
LEDYX = LMDYY = LMIWZ = L1 i

Lvertay = LMash->Vertices;

{{ Avarage vertex-to-lipht vectors
)

5.2 Real-Time Shadows on Complex Objects 573

LYn = LMesh->RundfVertices;

LEDYE
LuOYY
LHDYE = LPLightZ

LPLightX * LVn;
LPLEightY * LVn;
Lvni;

for{LVG = O:L WG < Lvin; LWG++, LVertax+)
{
We=LVartex-=»N; Wy=LVertex->Y; Mz=Lvertex-»2;
E3dM MatrixTransformdxs(LElockerLiocalToWorldiatrin, LX, LY, L7} ;

LMDVY, -= L¥;
LMDVY -= LY:
LMVZ -= LZ;

}

ff Hormalize Mean Direction Yactor [MDV)

i

LVF = =gt | LMY LIBDATY + LD = LD+ LMDVZ * LMDVZ) 3

LVF = 1.0 § LNF; fF We can sawve 2 divisions by doing this im
IF advanco. ..

LZlightX = LMWK = LVF;
LZ1ighty = LMOWY * LVF;
LZ1ightZ = LMENI * LVF;

¥

E3dd_MatrixTransforn3x4 is a macro funcrion thar transforms a 3D vector given by
Mo, My, and Mz with a 3 % § matrix (acually the rop-left part of 2 4 % 4 marrix).

For the rest of the source codde, please refer 1o the example program on this boalk’s
companion CD-ROM.

Finding Xy, and ¥, .,

The projection to map the shadow-map texture on the receiver object is the same as
the one used to draw the shadow map; therefore, the orientation of the shadow map
(rotation around the Z, ., axis) does not matrer. In other words, rotating the X¥light
phine around 7, does not make any difference. This means that for the X, axs, we
can use any unit vector that is perpendicular to 7, (refer back ro Figure 5.8.5). We
can ger that vector as the cross-product m"ﬁm_:m any other vector thart is not paral-
lel with 2 Let’s call this “helper” vecror V.

We know thar ar least two of the X, ¥ or Z-axes of the wonld coordinare system
meet these criteria, so for simplicity, we use a unir veetar Wix,y,2), with one coordinare
being 1. the athers 0.

A wvectors largest component (X, ¥ or Z) dewermines jts dominant direcrion;
theretore, to get a vector thar points far enough away from Z e We st 10 1 the com-
ponent of Vithat has the mrallese absolure value in £ . This eliminares floating-point
precision worries when performing 2 vector cross-product operation on Zg, and V,

Section 5 Pixel Effects

For example;

If Z50~(0.381, 0.889, 0.254), Vwill be: (0.0, 0.0, 1.0) =2,

IF Zyp=(—0.889, 0.254, 0.381), Vwill be= (0.0, 1.0, 0.0) = ¥,_ .
and 50 on.

The cross-product of £, and V' yields a chird vector thar is perpendicular to
both of them. After normalization, this vector yields Xy, the X-axis of the light coor-
dinare system:

" _ iy 2
R
| k=

]|

J

With X, and 2, given, the F ., axis is just another cross producr away:

Note thar this step gives us a unit vector, so we dont have o normalize Yo,
since:

Ko = 120d|Z,] = 120d % 17, < |7 %2, |1

With Xy Yisr and Zy . and Pe, known, we can create the matrix that trans-
forms a point from world coordinares ro fght coordinates by simply filling in thess
values:
rl:l‘f.i.”r: Iﬂ:l'- ﬁ_‘:ﬁr XﬂFEﬁF 0.0

Yof Xy, YofF, YofZ, o0
Zof Xy, ZofVey, ZofZ, 00
—Xof P, —YofF,, -ZofF, 10

M“rb'?'i.'.!ﬁr =

This is why we used X¢ o, Yoo and Zi ., vo describe the orientation of the light
coordinate system.

The next step is to pre-multiply this marrix with the blocker object’s fonalto-
werid matrix. This step gives us the feal-to-light matrix for the blocker.

M.Eud-rr]’.-.u'ﬁn'dp"r = M koL acal T 00d -‘Hﬁrﬂw

As the name implics, the matrix ransforms a point defined in the focaf coordinate
system of the blocker into the light coordinate system. Such ransformed X and ¥
coordinates define the parailel or erthogoral projection of the blocker object onto the
shadow-map plane (which is parallel with the XV plane of the light coordinate sys-

1|:r|'|].

5.8 Real-Time Shadows on Complex Objects 575

Defining the Perspective Projection

To make this a perspective projection, we need a field of view, or the Xand ¥ “projec-
tion ratios.” We can find the projection rarios (By and B} for each vertex of the
blocker object by transforming the verrex with M et ocattitighe and dividing the resul-
tant Xand Y coordinates by the Z coordinare:

Adaptive Projection

We could always wse the same rano for the projection, but that would lead o the
blocker object’s silhouente changing size in the shadow map if we move the light
source closer or farther away from it. The same problem arises if we change the size of
the blocker or if the light source looked ac it from a different angle. These chanpes
could result in a tiny image of the blocker in the middle of the shadow map or an
oversized image thar doesn't fit in the shadow map (see Figure 5.8.6). In the first case
(Figure 5.8.6a), we get a low-resoludon shadow map with bad artifaces on the receiver
objects. This is a waste nFshadnw—n.up oy,

The larter (Figure 5.8.6b) causes incorrect shadow shapes and possibly “shadow
leaking™ (see the section “Texure Coordinates and Shadow-Map Coordinates™). In
this case, the shadow-map size is not large enough.

Instead of ane fixed valus, we use the largest £y (Ry...) a5 the horizoneal ratio for
the projection, whereas the largest By, (#y,..) gives the verdcal ratio. This makes the
perspective projection adaprive for both the X and ¥ direcrion, meaning that che

blocker's silhouctte always properdy fills the shadow map, making the best use of all
the pixels in ir.

7

4

FIGURE 5.8.6. Mon-sdaptive (& and & and adaprive blocker sroiection (ol

Section & Pixel Effects

This concept is very important because we want to use the minimum necessary
wexture size, for the following reasons:

» Texture memory is always a scarce resolircs, and the maximum tecoure size mipght
be limived by ather facrors.

* On some hardware, after drawing the shadow map image, we have o ransfer i
from the frame buffer 1o a dedicated texture memory, and the speed of this trans-
fer is limited by bus and memory bandwidth.

Now we can fill our a standard perspective projection matrix for the blocker
ohject:

D98 o My Wideh 0 0 0
X m=x
0 098~ obuap Heigh 0 0
F mas

M i Prgicsion. = FR7
] o e —— 1

E_-""'-_ = E_:Tr

PR

1] 0 F PR [

"?:mr i zd:'r

where St ap Widsh and SMapHeight are the horizonmal and vertical resolutions of the
shadow map in pixels. Z,, and Z¢, are the distances of the near and far elipping planes
af the viewing frustum from the lighs source.

Pre-multiplying this mamix wich M gttt seatiirighe Yields the 4 % 4 marrix char per-
forms a perspective projection from blocker local coordinares 1o shadow-map coordi-
pares:

Mottt Bt = MptsortocetTitigs * Misectertroeerion

In OpenGL, we can simply load an identty marrix ingo the PROJECTION matrx
and M bt sea T Stz INEO the MODELVIEW marrix and starc drawing the shadow map
using the blocker's local coordinares.

Optimization Tip #2

To decrzase the time it rakes 1o create the shadow map, we can wse two or three differ-
ent versions of the blocker object geometry for the various rendering stages:

* To set up the shadow map projection, use blocker gromerry with 2 minimum
number of vertices. We won't need econnectivity dam (.., polygons) or normal
vecrors here, All thar marters is that no polygons of the blocker should be ourside
the projected shape of this volume, no matrer the angle from which we look at ir,
because that would draw on the one-pixel edge of the shadow map, ruining texwure

5.8 Heal-Tima Shadows on Complex Objects

=T

clamping and causing “shadow leaking.” We might even use a “good” bounding
volume such as the blocker's bounding-box, which could eliminate the need 10
compute MOV (just use a vector from the light source 1o the center of the bound-

ing hox).

* To draw the shadow map, use blocker geometry with 2 minimum or no surfice de-

sl bt MCCCSEAry confour detasl

= And, of course, o draw the blocker object, we need the geameery wich all the sus-
face dewil and surface properties (e.g., normal vectors) to make the objeet look

spiffy.

Optimization Tip #3

If the rendering engine is programmable, we can use a very simple (and possibly fast)

renderer code to draw the shadow map:

* Mo lighting needed; a simple “flat-color” renderer will da.
* No clipping needed (the blocker's image always fits in the shadow map!).

* No depth testing (Z-buffering) needed.

Projecting the Shadow Map on a Receiver Object

Now we have a shadow map associated with a blocker object and a light source. This
shadow map can be projected on any number of receiver objects, and because it is ap-
plied 25 2 texture, the receiver objects can have any complex shape (curves, holes,

ridges, and so0 on).

As mentioned before, we use the sume projection o project the shadow map on a
receiver as we used to creare the shadow map. The only differences are the image offser
and :ﬂ.‘-i|i4'|g fctors, because we use the [0..1] coordinate range as opposed o the

[0..5map Wideh] or [0, SmapHeighd mnges.
This is the appropriate projection matrix:

[
043 . My Wideh
X s
: 049
JIM'I’B_[&WI = G
-5
i

SMapHeighe

—0.5

i

L L

ZE

E:‘ag.u.v
s b=
= zrlf

F =

Elhﬂl

The next thing to do is 1o pre-multiply chis macsix with Mg,

578

Sections Pixel Effects

MutimssubirtansT = Misairige ™ Mo P

The resulting mawrix ansforms a point from world coordinates to shadow-map
rexture coordinares {the resuling Xand ¥give §and T respeciively).

Pre-mulriplying Mz o pmneesr with the receiver’s local-to-world mateix yiclds
the marrix that we need to go from receiver local space directly 1o shadow-map wexoure
space.

Mﬁrﬂiﬁi&uﬂ'mﬁ:?jl’ =M‘H’En'd'ﬁi|;ﬁ?) -‘Hﬂ\'-ﬁ'.l-#fhfﬂ'.'ui

Texture Coordinates and Shadow-Map Coordinates

The shadow map is an image wirh a finite number of pixels and integer coordinate val-
ues—for example, 256 » 256, However, rexmure ooordinares are usually normalized
floating-point values, meaning thar the range [0..1] refers wo pivel coordinares [0..255]
horizontally and [0..235] vertically. So whart happens ourside the [0..1] range? We have
1o make sure thar the rexel used on the receiver is the color used for “no shadow”™ (black
in Figure 5.8.7).

On most 310 hardware with rexture mapping, you have ar least two options:

* Texture repeat. Ourside the [0..1] range. the texture is simply repeated—sao, for
example, in the [-1..0] range of texture coordinates, the texture produces the same
image a5 the [0..1] range.

= Texture clamping. The pixel on the edge of the texmure image s repeated every-
where ourside the [0..1] range, or you can define a specific “border colos™ thar is re-
peared ourside the normal range.

It’s easy to ses that we have (o we texure clamping because we wanc a uniform of-
fect on the receiver object outside the [0..1] rexrure coordinare range.

Texture clamping effectively saves us from testing the receiver objects for intersec-
rion with the shadow volume. Because not all 300 hardware and APls provide a separate
rexture border color, we have to leave a one-pixel-thick border on the shadew map. If
we accidentally draw in this border, that pattern would be repeared on the receiver, pro-
ducing a leaking effect (“shadow leaking”). To make sure thar nothing is drawn in this
barder, we have to slighdy decrease the Xand Fscling factors in the projection marri-
ces (elements (0, 0} and (1,1)). This is the reason for using the value 0.98 (instead of
1.0} in Ma o, and 0.49 {instead of 0,5) in Mmoo Note thar these values
depend on the resolurion of the shadow map. (See the example program on the CD for
the proper formulas to calculate them.)

Rendering the Receiver Objects

There are many differenc ways to draw the object receiving the shadew. The rwo most
common methods are

5.8 Real-Time Shadows on Complex Objects 579

* Single-pass rendering, If there is no other texture on the receiver object, we can

draw it in one pass, applying a black-on-white shadow map as 3 texture and using
the light source o illuminate the object.

* Multipass rendering with subtractive blending, If a receiver already has a revmure

on it and the hardware docsn’t support multitexturing, we need multiple passes:

1. Draw the receiver object normeally.

2. Draw the shadow pass with subtractive pixel blending, using a white-on-black
shadow map. This successively decreases the surface color intensity where
there is a shadow cast. Use *“GREATER-OR-EQUAL” or “LESS-THAN-OR-
EQUAL" Z comparisen funcrions for drawing multiple pases, This way, if
you pass the same primicive, it overwrites or blends the current pass with the
previous one,

For a brief descripion of pixel blending, please refer to the “Convincing-Looking

Glass for Games™ amicle elsewhere in this book.

Extensions and Enhancements to the Basic

Algorithm

Simplicity and high performance wsually come ar a price. This projective shadow-map-
ping algorithm is no cxception to that rule: Ir has some limirarions. However, most of
these limitations are very easy to overcome, and the algorithm can be extended to han-
dle these cacs.

Back-face Shadow Elimination

One side effect of projective shadow mapping is that it normally maps 2 shadow on the
side of the receiver facing away from the light source.

It

We can correct this problem by either:

- Determining wherther a triangle is facing away from the light source and, if it is,

assigning our-of-range shadow map coordinates for all its vertices. {The example
code on the CD-ROM that acocompanies this book does this.)

Setting up the rendering of the receiver in such a way thar the recetver is com-
plerely black on the side facing away from the light source (no ambient lighting).
This is the proper method because it is closer to what happens in reality, How-
ever, if there is more than one light source in the scene, the "hack” fee of the
blocker can be Lit by another light. In this case, we have to use multipass render-
ing and add the ambient light and light coming from other light sourees in sepa-
ratc :lran']ng priEscs.

Receiver Is Behind the Light Source
You have to explicitly eheck for this case and not map a shadow on the receiver object.

sa0 Section 5 Pizel Effects

Multiple Light Sources

This case requires multipass rendering with subtractive blending on the receiver object.
LUise a receiver rendering pass for each shadow map. The multiple passes successively de-
creass the intensity (RGE values) in the shadowed areas on che sucface of the receiver,

making even the shadow intersections look correct.

Multiple Blockers

This case also needs mulriple passes. There is one difference, though: The cumuolarive
effect of shadow inrersections i« incorrect hecause the two blockers block the light of
the same light source. Use the stencil buffer to net dnawe in the screen area where there

is already a shadow drawn.

References

[Blinn&8] Blinn, James, “Me and My (Fake) Shadow,” Jim Blfrms Corner, pages 53-61,
January 1988,

[Foley90] Foley, etal., Compurer Graphies Priseciples and Praceice, second edition, pages
745-753, Addison-Wesley. 1990,

|Blythe96] Blythe, David, and MecReynolds, Tom, Programming with OpenGL: Ad-
vanced Rendering, SIGGRAPH "26 Course Notes, August 1996.

[Heckbert26] Heckbern, Paul, and Herf, Michael, Fast Soff Shadows, SIGGRAPH "96
Visual Proceedings, page 145, August 1996.

[Heckbert97] Heckberr, Paul, and Herf, Michael, Simulating Soff Shadots with Graph-
ier Hardware, CMU-C5-97-104, Computer Science Depanmment, Carnegic Mel-
lon Universiry, January 1997.

[Wool7] Woo, Mason, Neider, Jackic, and Davis, Tom, OpenGL Programming Guide,
second edition, Addison-Wesley Dievelopers Press, Silicon Graphics, 1997,

9.9

Improving Environment-
Mapped Reflection Using
Glossy Prefiltering and the
Fresnel Term

Anis Ahmad

In order to render a realistic scene, we must be able o handle surfaces thar can reflect
the environment around them. Environment mapping [Blinn76] has been used o
smplement approximare reflections in real time. View-independent implementations
{such as dual parabolic maps [Heidrich?9] for older hardware or cube maps on newer
hardware} are a recent enhancement to environment maps.

Environment maps map the scene around a particular point (the map’s origin)
one or more texture maps. This is accomplished by associating each texel 1o a vector
on the unit sphere. The value of cach texel is the amount of lighe arriving ar the map’s
ongin through the texel’s associated unit vector. Consequently, the environment map
can be indexed by generating and converting unit vectors 1o texture coordinares os, in
the case of cube maps, by using the vector itself as a texture coordinare. Thus, by con-
verting reflected view vectors o texture coordinates, one can index the correct points
on the environment map to allow for simulared reflections.

Although simple and clegant, these environment maps only simulare the appear-
ance of shiny surfaces—surfaces whose reflecrions behave like petfect mirrors, regard-
less of the viewing angle. A common enhancement to this approach is 1o combine the
covironment map with a diffuse texrure map. Although this enhancement does
tmprove the quality of the image, it does nor address the undedying problem of an
overly simplified reflection model. This arricle diseusses the assumptions thar lead o
this simplified model and deseribes two techniques. glossy prefilering and Fresnel
term weighting, which improve and extend existing appraaches wo using environment
maps.

£a1

582 _ R Section 5 Pixel Effects

The First Incorrect Assumption

The primary Baulr with rradirional environment maps is the assumprion dhar all sur-
faces dhar reflect light do so perfectdy—rhar is, the assumprion thar every incoming
photon thar hits a surface has all its energy reflected in one pamicular direction. This
simplified view of reflection is appropriate only for mirrors or for other highly specu-
lar surfaces. For other types of reflective surfaces {dull merals, organic surfaces, and
the like), 1 more general view of reflection is needed.

Az shown in Figure 5.9.1, surfaces gu::lzl‘:u].' scatter]ig_hl; IR Ly directions. The
amount of enerpy reflected in a particular direction depends on properries of the sur-
face involved, particularly its roughness. The resulr is a somewhar blurrier reflection
(since the light contributing to the image you see did not travel along a single, simple
path from the light source 10 your eye).

In order 1o help describe how light scamers on reflection, compurer graphics
researchers have introduced the bidfrecrional nefleceance distriburion funcrion (BRDF)
thar serves a5 an abarracrion thar models surface reflecrion. A BRDF compures che
probability thar a phoron ariving ar the surface in a given (incoming) direcrion will
be reflected in a particular (outgoing) direction. Whereas a BRDF can rake an arbi-
ATy numbier of PRrAMCIErS H_i:m:| |:|r]Eng surface zttributes, the mw:|-r:ngt|! -|:|I-|'Ig]:|I, and

Yo v

/4

s 4

FIGURE 5.9.1. a: Simplified view of the reflection of light. &: A more realistic view of the
reflection of Fght.

5.9

Improving Environment-Mappad Reflection 583

so on}, the two mecersary paramerers are the light's incoming direction and the desired
ourgoing direction. BRDFs are usually used to model reflectance in global illumina-
tion solvers, Now, we see how they can be used ro improve environmene magps.

Wolfgang Heidrich and Hans-Peter Seidel describe a technique, called glacy pre-
filtering, that uses the Phong BRDF to apply appropriate blurring o covironment
maps. Each texel of the filtered environment map is produced by finding its corre-
sponding unit vector (used as the outgoing direction) and computing the color ar thar
texe] with the following integral:

1
pref (o) = :-:-‘[F{n i) - arie(i) - deoli)
L

1-‘-"'-":I"..":

erig is the original texture map.

prefis the prefiltered rexture map.

r iz the roughness parameter (reciprocal of the Phong exponent).
5 is the coefficient of speculariry.

¢ is the Phong correction facor, (re1) /1T

iand o are the incoming and outgoing directions (respecrively).
£(x) is a function thar renurmns x if x >= 0 and returns 0 otherwise.
L1 is the domain of the inregral, the unic sphere.

(i) is the measure of the solid angle in the direcrion of i.

In order to be practical, glossy prefiliering requires an input texture with a high
dynamic range, that iz, 2 texmure whose values extend beyond the [0..1] range. This
range is needed to model the relatvely high incensity of energy coming from light
sources compared with the intensiry of energy reflecred off non-emitting surfaces, A
normal texture can be converted ro one with a high dynamic range by multiplying all
texels corresponding to 2 light source by a large-scale factor. Note that the preceding
equation is wsed to apply the Phong BRDF to environment maps. Jan Kautz and
Michael McCool [Kaurz00] describe a rechnique that allows for the use of any iso-
tropic BRDF to prefilter environment maps.

Glossy prefiltering has many advantages: The prefiliering need be done only
once, ir's flexible, it's fairy easy 1o implement, and it requires no change 1o the ren-
dering pipeline, since it merely filiess traditional environment maps a5 a pre-process,
The disadvaniages of glossy prefiltering are thar ir's slow to compute {and can’t be
used for dynamic environment maps), it increases the emory requirements for rex-
tures (since each surface type requires an entircly new set of maps), it requires inpur
eextures with 2 high dynamic sange, and it requires integrating over a sphere, which is
non-trivial,

Ea4 Section 5 Pixel Effects

The Second Incorrect Assumption

Another assumption made when using environment maps is that the reflecting sur-
face is metallic. When non-metallic surfaces reflect, the reflecance depends on the
angle berween incoming direction and the surfice normal. The Fresnel term
[Foley90] is used to simulate this dependency by modulating the reflectance. Tt uses
the incoming light's angle and the surface’s index of refraction o compute the appro-
priating weighting. The formula for the Fresnel term is:

- [ﬁ'_-‘-'-]': l+iﬂl‘{g+ﬁ.‘]—1r
g +87 | [He-b+1]

where:
k= cosf
B is the anple berween the incoming direction and the surface normal
= ni+£-1

1. is the index of refraction of the surface divided by the index of refraction of the
mransmining medium, as a function of wavelength, Since the index of refraction
for air is 1, you can usually simply supply the index of refraction of the surface.

Because in games you typically deal with surfaces and atmospheres thar have a
constant index of refraction, the only variable in the above equation is b Thus, the
Fresnel term can be written as a function of £, which is a variable in the range [0..1].
Thus, a5 noted by Heidrich and Seidel, we can precompure the Fresnel rerm and store
it a5 2 one-dimensional texiure. By n:l'ldl:ting_ the Fresnel term oo the ;]]]:IEI'.I. channel,
we can incorporate it into the rendering pipeline wsing cither of the following meth-
ods:

Cr=Co*F+ Gy or C=C " F+C " 1-F)
where:

Cz €, Cyare the final (output), mirror, and diffuse color values, respecrively.
F iz the Fresnel verm.

Using the Fresnel term in this way provides a more realistic reflection while con-
suming very litte memory. The disadvantage is thar using it could require an addi-
tional pass.

Conclusion

With the high performance of texmire-mapping hardware and the increasing size of
rexmure memory, it makes sense o use texture-mapping techniques to improve the

5.9 Improving Envirenment-Mapped Reflection 585

quality of rendered images. In this asticle, two such techniques were presented. Each
15 simple and requires very linle work o incorporate into existing rendering pipelines.

Acknowledgments

I would like to thank Michael McCool, Michael Anttila, Sim Dierrich, and Mark
DeLoura for reviewing this aricle.

Referances

[Blinn76] Blinn, J., and Newell, M., "Texture and Beflection in Computer-
Generated Images,” Communications of the ACM, 19:542-546, 1976,

|Heidrich99] Heidrich, W., and Seidel, H.-F, = Realistic, Hardware-Accelerated Shad-
ing and Lighting,” SIGGRAFPH 09 Proceedings, pages 171-178, Aupust 1999,

[Foley90] Foley,], van Dam, A., Feiner, S., and Hughes, J., Computer Graphic: Prin-
cipler and Practice, pp- 766-770, 1990,

[Kauz] Kaut, J., and McCool, M., “Approximation of Glossy Reflection with Pre-
filtered Environment Maps," Proceeding: Graphicr Tnterface

5.10

Convincing-Looking Glass for
Games

Gabor Nagy

This article presenes a few exrensions 1o the algorithms most widely used o render
glass objects in real time.

Introduction

Rendering good-looking glass objects at interactive frame rates has long been a chal-

lenge. Unuil we bave computer hasdware thar is fast enough for real-time ray tracing,
we must compromise somewhere.

Transparent Objects

There are three main visual properties of glass. A glass object is usually:

* Transparent. It lets through some of the Light hirting it, making objecs behind i
partly visible.

* Refractive. It refracts light going through it and distoms the environmenr thar
shows through.

* Reflective. It reflects some of the lighr hitting ir, making the environment show
on ics surface.

This article mainly deals with the wansparent and reflective propertics of glass.

Rasterizer, Frame Buffer, Z-Buffer, and Pixel
Blending

To draw a transparent object with today’s 3D hardware, we usually use che fearure
cilled pixel blewding, or simply blemding, Pixel blending is implemented in the last
stage of a rendering pipeline, in the pexel renderer, after rasterization.

The rasterizer does the conversion of a primitive (triangle, line, and 5o on) inro
pixels with X'and ¥ screen coordinares and a deprh (£) value.

E.'H_:_I Convinelng-Looking Glass for Games GaT

A simple pixel rendered with Z-buffering enabled will:

* Compute the Z (deprh) value of 2 pixel o be drawn.

* Compare thar value with the Z value stored at the corresponding pasition in the
Z-bulfer.

* Ificis determined that the pixel to be drawn is closer to the viewer (it is in font
of the object or objects already drawn ar thar location), it simply overwrites the
pixel color and Z value in their respective buffers; if nor, it does not change the
frame buffer or Z-buffer at all.

In OpenGL, a smaller Z value means that a pieel is closer to the viewer, Before
drawing a scene, the Z-buffer is initialized (cleared) to the maximum Z value at each
pixel. This value depends an the bit-depth of the Z-buffer. Mote thar this value might
be the exact oppasite, depending on your 30 API and hardware.

Opaque Objects vs. Transparent Objects

Because the standard Z-buffer rechnique simply overwrites 2 pixel if it belongs w a
surface that is closer to the viewer than the one already drawn, it is only capable of
drawing perfectly opaque surfaces. To draw a ransparent surface, instead of overwrit-
ing the pixel color in the frame buffer with the incoming (source) color, we need to
somehow blend the owo coloss.

In OpenGL, we can use the blending function to perform this sk, We can
define the blending funcrion by calling:

glBlendFunc(stactor, dfactor);

The color to put in the frame buffer is usually determined by:
RGB, . = RGB,., " sfactor + RGB, ... * dfactor

where RGE, , represents the red, green, and blue components o be put in the frame
buffer, RGE,____ is the incoming pixel components, and RGB, ... is the walue
already in the frame buffer ar the corresponding pixel.

Diepending on the OpenGL version, sfactor and dfactor can have many different
predefined constants. For example:

glBlendFunc (EL_OHE, GL_ZERD);
does a simple overwrire, because:
RGB, = RGB, _ *1+RGB, .. *0

For another example, if we want to add dhe current pixel color to the one already
in the frame buffer, we can cll:

piBlandFunt(GL_ONE, GL_ONE);

&88 it Section 5 Pixel Effects

This gives us the following blending formula:
Rﬁ:ﬂnﬂhﬁ = RGB e * 1 # RGB pyivsiien " 1
To make pixel blending work in OpenGL. we have 1o enable it by calling:

plEnable (GL_BLERD] ;

For a full description of pixel blending. please refer o your OpenGL manual

Since we have 1o consider the Z values, we refer to pixels as RGEZ.

When rendering a 30 scene with transparent objects, we can have one of the fol-
lowing cases. The pixel currently being rendered (RGEZ) belongs o either an
opaque object or a transparent one and:

* Tz 7 value indicates thart it is doser o the viewer than the corresponding pixel
(RGBZ ;4 umive) already in the frame buffer (i is in front of the object or objects
alreandy drawn at that location).

* It is further from the viewer than RGBS, .

= Jtisat the same distance as REES, ...

Drawing Opague Objacts

Let’s examine what happens when we draw an opaque object. IFRGRZ_ s doser to
the viewer than RGBZ, ., ... we can simply overwrite the frame buffer with it. How-
over, if RGBZ, . is funther than RGBZ,,.... we might still have o draw ic if it is
“behind™ a ransparent object! Usually, we can simply avoid this problem by drawing
all the opaque objects first.

Drawing Transparent Objects

We use the value A, (Alphs or Opacity value) to define how opaque the currendy
drawmn pixel &5, A, =0.0 means that the pixel is completcly transparent; 1.0 means it's
completely opaque. If the pixel being drawn (RGEZ,) is in fronr of the one in the
frame buffer (RGBZ ;. 1i.)s we need this formula o determine the resulting color:

Blend Formala &: RGB.., = RGBo. *Aure + RGB s (1.0A)
If RGBZ, ., is behind RGBZ, . . . we need this formula:
Blend Formala B: RGB, ., = RGByus 1.0~ insen)+ R iarrion “itomiamian

This formula uses the presence of alpha-bitplanes in the frame buffer to keep
track of the opadty of cach pixcl; see [Woo97] for more derails. We alsa have o
update the alpha values of the pixels drawn.

5.10 Convincing-Looking Glass for Gamas 589

Clearly, we have two different blending functions, or two different courses of
action o take, depending on whether RGEZ,__ is in front of RGEZ._. . _or behind
it. Since we can define only one blending function at a time, we have to find 3 work-
around for this problem.

Depth Complexity

The core of the problem is depeh complesity: the possibly multiple pixeds (belonging w
different primitives) occupying the same sereen position but with different depth values.

A depth complexity of 1 means that there are no primitives averlapping on the
screen. We would not even need Z-buflesing in this case, When drawing a transparent
primitive, we only have to blend it with the background eolos, using Blend Formula A.

A deprh complexity of 2 means that the number of overlapping primitives ar each
pixel is 2. In this case, an opaque pixel cither obscures the background or a transpar-
ent pixel or it is behind only ome opague or transparent pixel.

MNote chat the depth complexity of 2 30 scene can change when the camera
moves.

Fortunately, OpenGL gives us some control over how the Z-buffering is per-
tormed. Specifically, we can disable £ pverwriting, so when a pixel is drawn, only the
RGB values are changed in the frame buffer, Combined with some other features, this
allows us to find solutions for most cases,

A Simple Solution

To draw opaque and transparent objects in the same image, we can take 2 nor pet-
fectly correee but simple approach:

* Clear the Z-buffer,

* Draw all the opaque primitives (rriangles, lines, and the like) with Z-testing and
Z-overwriting enabled.

* Draw transparent primitives with back-face culling cnabled (ro minimize depth
complexiry between transparent pixels), Z-overwriting disabled, and wsing Blend
Formula A.

This method makes sure that opaque surfaces always obscure wansparent ones
and that opaque surfaces behind transparent ones show through, Ir also guarantees
that two transparent surfaces always blend correctly if both surfaces have an alpha
value of 0,5, because (1.5 = 1.0 — 0.5, so Blend Formula A and Blend Formula B are
equivalent. Therefore, it daes not matcer if the currently drawn transparent pixel is
behind or in front of the one in the frame buffer. For alpha values other than 0.5 or
more than two transparent objects behind each ather. the results are not accurate but
are still acceprable in many cases.

Section 5 Pixel Effects

“Simple™ Solution #2

This method is designed o solve the problems mentioned in the provious section by

making sure that the currently drawn primirive is always in front of the one already in
the frame buffer;

* Clear Zbuffer.

* Draw all the opaque primitives (triangles, lines, and so on).

* Sort all transparent primitives by depth and draw them in firthest-ro-nearest
order,

This way we need only Blend Formula A

The major caveat of this approach is thar the depth sorting mighe cause a signifi-
cant performance hit, especially if there are many transparent objects in different hier-
archy nodes. There are also cases in which a primitive is neither complerely in frone
nor completely behind another (as in Figure 5.10.1}. 50 we nced a per-pixel depeh
sorct, which would be extremely computationally expensive.

As long as the depth sorting works correctly, there is no limit to the depth com-
plexity this method can handle. Note thar with this method, we don't have to draw
the opaque objects fiest, but doing so could simplify the process.

A Slightly Different Approach

OpenGL lers us choose a depel funcrion for Z-buffering. The depth function deter-
mincs which £ values pass the Z-comparison. In OpenGL, it is usually less-than,
which means that if a pixel’s Z value is less than the value in the Z-buifer, the pixel is

FIGURE 5.10.1. Indeterminate depth order of mriangles.

510 Convincing-Loaking Glass for Games 501

drawn. This allows us o split the drawing of a primirive into two steps, using two dif-
ferene blending formulas. We need the presence of alpha valies in the frame buffer for
this method.

The process is shown below:
1. Clear Zbuffer.

2. Clear the alpha-buffer with value 0 (ranspareni).

3. Ser£ funcdon to gregrer-than (draw behind), use Blend Formula A, and draw the
first transparent primicive with Z overwriting disabled. In addition, write the
alpha value of the primitive into the frame buffer so thar subsequent pixels
behind it are blended correctly.

4. Sct Z function to fes-than-or-equal (draw in front), use Blend Formula A, and
draw this primitive again with Z overwriting enabled. Write the alpha value of the
primitive in the frame buffer so thar subsequent pixels behind it are blended cor-
recily.

5. Repeat the last owo steps for cach transparent primitive.

6. Set & function to greaser-ohan (draw behind), use Blend Formula B, and draw all
opaque primitves wicth & overwriting disabled. The alpha value to write in the
frame buffer &= 1.0 {or the maximum integer value).

7. Set Z function ro few-than-ar-sgual (deaw in front) and draw all opague primi-
tives with £ overwriting enabled and blending disabled.

Unforounacely, if more than one pixel is drawn in any given position of the frame
buffer (with different deprhs), the opacity of this pixel can no longer be represented
by a single value. It depends on the depch or how many pixels theee are in front of che
one being drawn. This s caused by the height-field-like namre of the Z-buffer: It can
store only one depth value on a pixel, with subsequent pixels overwriting the old val-
ues. In orher words, the Z-buffer has a fived-depth complexity of 1.

Take the example in Figures 5.10.2a and 5.10.2b. Assuming that there are two
surfaces deawn in the frame buffer:

* Surface, — Alpha- A, = 0.5
¥ EH?_']<E—.-{@.EW:A} = .75

If F, the pixel being drawn, is bevween Surface; and Surfices, Ay inis 0.5 (only
Surface, is in front of F). However, if P is behind both Surfaee; and Surfacen At
is the camiulative opacity of Surface; and Surfaces, which is A;*A;=0.375.

This approach i slightly more fexible than the one deseribed in our simple solu-
tion, without having to depth-sort the transparent primitives, but it has more limira-
tions and is more complicated than Solution #2. Furthermore, the frequent changing
of the depth funciion at each primizive mighr cause 2 noticeable performance hic. A
slight “muning” of this method is reccommended, depending on the application (espe-
cially regarding the modificarion of the alpha values in the frame buffer).

552 J 3 Section 5 Pizel Etfects

P

FIGURE 5.10.2. 4 Effecrofa ﬁn_g;]n transpament surface on a pizel bohind ie. & Comulative effecy of
rmatleiple transparent surfaces.

Mon-Planar Glass Objects

If we look az 2 glass bontle or cup, we notice thar it appears darker at the edges, where
the surface normal starts o point away from the viewer. This is becanse light coming
through the object is refracted at higher angles, so less of it reaches the viewes. We can
simullate chis effect by illuminating the object with a light source thar is always ar the
SAImiE pﬂ-Ei[il.‘l-:I‘.l A5 [I'II'E CAmMEra l::i _hl'.‘id.-li:Eh.["]'. Such a |E|__r||'|l: SOLIICE Pj:udu{.—_l;. [ess E[lumi.
nation the more the surface normal poins away from the viewer. A simple diffuse
head-lighe is very easy ro implement and is computationally inexpensive.,

Reflactions

For simulatng reflections, we can use sphere- or cube-environmenr mapping.
OpenGL supports the use of spherical environment maps (with fish-eye images as
environment mups). After initializing a texture, we can enable sphere mapping with
the following calle

glTexBeni(GL_§, GL_TEXTURE GEN MODE, GL_SFHERE MAF);

plTexBeni(6L_T, GL_TEXTURE_GEN_MODE, GL_SPHERE MAP):

plEnable (GL_TEXTURE_GEN 5):
plEnable (GL TEXTURME GEN T);

There are LLHE b excellent articles on this .'iul'.rji:d, E1s) p]ca,si: refer o them for ﬁ;“-.
ther details (see References),

Colored Glass

Until now, we referred to the opadty of a surface as a single value. If a surface is
behind a eransparent one, the surface in front evenly decreased the R, G, and B color

3.10 Convincing-Looking Glass for Games _ 593

components of the one behind. We can use different opacity values for the R, G, and
B components to describe the pigmenr in a piece of colored glass. This might require
the use of multiple drawing passes as described in the following scctions,

Putting It All Together

Single-pass Rendering
We can render the glass object in a single pass with:

* An environment map applied as a 2D cexture, the texture coordinates computed
by a sphere-mapping algorithm

* "MODULATE" texturing algorithm and a head-light

* The proper pixel blending and Z testing ser up to draw it 25 a transparent object
(s described in our earlier solutions)

Multipass Rendering

To gain more control over the final appearance, we can perform two rendering passes:
1. Pixel blending and £ resting ser up to deaw it as a transparent object (as described
previously), We can also apply lighting on the object 1o simulare a diffuse surface

on the glass,

2. Render the reflections on top, wsing additive blending (as in the single-pass case).

With two passes, we can define both the opacity and the reflectivity of an object
by changing the blending factors at each pass. We can also apply more complex for-
mulas with multiple passes.

Implementation

For implementarion details with OpenGL, please refer to the sample program and the
comments in the source code on the induded CI that accompanies this boak,

To see what this technique looks like in action, take a look ar Color Plates 8-11.
These images were rendered on a Sony PlaySarion 2.

Referancas

[Greenel6] Greens, Ned, *Environment Mapping and Other Applicarions of Waorld
Projections,” [EEE Comnputer Graphics and Applications, volume 6. number 11,
pp. 21-29 November 1986,

[Weo97] Woo, Mason, Neider, Jackie, and Davis, Tom, OpenGL Prograniming Guide,
second edition, Addison-Wesley Developers Press, Silicon Graphics, 1997,

S5.11

Refraction Mapping for
Liquids in Containers

Alex Viachos and Jason L. Mitchell

In chis article, we present a concite and praciical method of refraction-mapping lig-
uids in opaque containers on real-time consumer 3D accelerators. Refraction, seflec-
tion, and Fresnel terms are compured for warer simulations ar interacrive sates,
Methods for enhancing realism, including caustic effects and particulare marer are
also addressed,

Introduction

The goal of this article is 1o present a rendering solution only. We are not eonstrained
by the water simulation used. For the sample code provided, however, we have chosen
o use surface simulations based on Erik Larsen's newave sample (available online ar
hirp:/freality.sgi.com/opengliglut3fglutd.himi).

The illumination equation computed by this rendesing method is fairly rypical in
that it incorporates refractive, seflective, and Fresnel rerms. The Fresnel rerm is essens
tially wsed as a blend factor between the refractive and reflective terms [Tea87):

Reslt = Fresmel * Refracrion + (1-Fremel) * Reflecrion

This is also 2 common practice in RenderMan shaders [Apodaca99].

Additionally, we address techniques for illuminating the interior of the conminer
2= well as compuring caustic effecrs. For all these techniques, we assume thar the
viewer is outside the container and thar the container is opaque.

Refraction Term

Snell's Law

A ray from the eye to cach vertex in the warer simulation is compured. This is the eye
zay in Figure 3.11.1. Snell’s Law is cthen used to refract the eye my for each of these
vertices. This mesh of polygons represents the interface berween the air and warer.

E.11 Rofraction Mapping for Liguids in Containers 545

Eye Ray

S SR Watar Mormal

FIGURE 5.11.1. Smnall’s Lzw in Fﬂ.n:l:ii.‘f.

Since the ratio of indices of refraction of water to air is 1.33, we use this value o com-
pute the refracted my as a function of the water normal ar the given veniex, as chown
in Figure 5.11.1.

Referring to Figure 5.11.1, the angle between the water normal and the eye ray
(€ is known as the angle of fncidenice. The angle berween the refracted ray and the
negared warer normal (8,) is known as the augle of refraction. Snell’s Law expresses the
relationship between these two angles and the ratio of the indices of refraction of the
rwo media (air and warer) z=

w ain(B) = n_ein{B) or (mf n) dn(E) = geE)

For the air-to-water interface, o, f 0, is 1.333, which gives us a simple formula for
computing 8, from ©;

B, = arinf1.333 sin(GY

From here it is a simple matter to compute the refracted my from the eye sy 0
thar we can then decermine the interseotion with the container.

Intersecting with the Contalner

Once the refracted ray is compured, it is necessary to determine the point of intersec-
tion of the refracted ray with the continer. This step is the key to giving the visual
impression of a container of a particular shape. Paraboloid or hemisphere intersection
tests, although simple and efficient, invariably give the impression of a dish-shaped
conuainer, particulary if the viewer can move interactively in the scene. The water
demo used at the Microsoft X-Box launch is an example of this [McQuad=2000], To
give the impression of 2 more complex and realistic container, we have experimented
with 2 number of gromerrically simple conminers, and the results have been quite
convincing. In this ardde, we stick with a simple paralldepiped container for brevity.

FIGURE 5.11.2. The refraction map (also see Calor Plate 12).

Referring back to Figure 5.11.1, we are now interested in intersecting the
refracred ray with the walls of the conrainer. In this case, our container is made up of
five rectangular faces. Ray-plane intersections are compured for each Face until the
intersection with the conmainer is found. Once this poin is knewn, we convert this
position on the inside of the container to 3 texture coordinate in a single refraction
map, which shows all five faces of the container, as in Figure 5.11.2,

In Figure 5.11.1, the refracted ray intersects the bowom face of the pool. This
generares A texture coordinate in the corresponding region of the refraction map
shown in Figure 5.11.2,

Mumination of the Container Interior

It is possible 1o pre-light the interior of the container to further integrate the con-
tiner into the rest of the scene. This is an importane visual cue 1o consider when
using your water smularton in a larger scene, The source code included on the CD

5.11 Refraction Mapping for Liquids in Containers 587

that accompanics this book demonstrates the technique withour additional geomerry
surrounding the water pool, but the same technique, with the pre-lit refraction map
shown in Figure 5.11.2, has been incorporated into the nididTfon graphics engine
and is shown in Color Plates 13-16.

Reflection Term

Any typical paramererization can be used for the reflecove term of the illuminarion.
We chose to use 2 single-paraboloid environment map [Heidrich98] for our static
scenes because this is supporred on a wide array of hardware. A cube map could casily
be used For dynamie scenes. A dynamically updared planar reflection map can abso be

;]_l:lpmpna.t: iy S CIRCUTSTANOES.

Freznel Term

Now that the reflection and refraction terms have been computed, they must be com-
bined using a Fresnel term. For details on the Fresnel cquarions, see the aricle
“Improving Environment-Mapped Reflection Using Glossy Prefileering and the Fres-
nel Term” ebsewhere in this book. For the purposss of this armicle, the Fresnel equa-
rions derermine the rario of refleceed light 1o refracted light ar a point on the water
surface as a function of the viewer’s angle to the surface. In computer graphics, this
term is usually created as simply a blend factor between the refractive and reflective
terms, bur it can also work well when multiplied only with the reflection map
[T5'087], [Apodaca9].

Additionally, the funcrion itself can be modeled as a simple sinusoid or sinusoid-
squared falloff in the range of zero to one and wned o wste. The sample program on
the accompanying CD compures the dot product berween the water normal and the
cye ray at each vertex. This gives the cosine between the vectors, which can be used
directy as the Fresnel term or squared for a different look

This equation can be cvaluared directly at each verrex and lineardy interpolated
across each polygon, as in the sample on the CI, or it can be compured per pixel as 2
rexrure lookup [Bascos99].

Rendering with Hardware

All these computations have generated texture coordinates for the vertices in the mesh
representing the interface berareen the air and water. The vexrure maps used are static,
and the mesh can be rendered in a single pass on consumer-level hardware that sup-
ports at least two-texture multitexruring, the EXT_texture_snv_cosbine extension
and the EXT_texgen_reflection cxrension, for a single paraboloid environment map.
The Fresnel term serves as the blend factror berween the two maps and is stored in the

Sag Section 5 Pizel Effects

primary color interpolator’s alpha channel. Recall thar our goal is to compute the fol-
lowing equartian:

Rerule = Fresnel * Refraction + (1-Fremel) ® Reflection

With the reflection map in texture zero, the refraction map in texeure 1, and the
Fresnel term in the primary color’s alpha channel. we can do this blend using
ARS multitexture and EXT_texture_env_combine:

glActiveTexture (GL_TEXTURED ARE)
glTexEnvf (GL_TEXTURE_ENV, GL TEXTURE ENV MODE, GL_COMBINE_EXT):
glTexEnvf (GL_TEXTURE_ENV, GL_SOURCEQ RGB_EXT, GL_TEXTURE);
glTexEnvf (GL_TEXTURE_EWV, GL_OPERAMDO RGE_EXT, GL_SAC COLOA);
glTexEnvf (GL_TEXTURE_ENV, GL_SOURCE1_RGE_EXT,

GL_PRIMARY COLOR_EXT) ;
glTexEnvf (GL_TEXTURE_EWV, GL_DPERANDY_RGE_EXT, GL_SAC_ALPHA);
glTexEnvf (GL_TEXTURE_EMY, GL_COMBINE RGE_EXT, GL_MODULATE):
glTexEnvf (BL TEXTURE EMV, GL_RGB SCALE EXT, 1.07]1:
glTexEnvf (GL_TEXTURE_EMV, GL_SOURCED ALPHA EXT,

GL_PRIMARY GOLOR_EXT);
gliexEnvf (GL_TEXTURE _ENV, GL_OPERANDO ALPHA EXT, GL_SRC_ALPHA);
glTexEnvf {GL_TEXTURE_ENV, GL_COMBINE ALPHA_EXT, GL_REFLACE):
glTexEnvf (GL_TEXTURE_EMV, GL_ALPHA SCALE, 1.01);

glactivaTexture (GL TENTUREL ARE);

glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV MODE, GL_COMBINE EXT);
glTexEnvf (GL_TEXTURE_EMV, GL_SOURGED_RGE EXT, GL_TEXTURE):
glTaxEnvT (GL_TEXTURE EMV, &L_OFERANDD RGE EXT, GL SR GOLOA);
glTexEnvf (GL_TEXTURE_EMV, GL_SOURCE1_RGE EXT, GL_PREVIOUS EXT):
glTexEnvf (GL_TEXTURE EMNV, GL_OFERANDI_RAGS_EXT, GL_SRC COLOA);
glTexEnvt (GL_TEXTURE_ENV, GL_COMBINE_RGS _EXT, GL_ADD);
glTexEnvt (GL_TEXTURE_ENV, GL_RGS SCALE EXT, 1.01);

glTaxEnv{ (GL_TEXTURE EMY, GL_S0URCED_ALPHA EXT, GL_PREVIOUS_EXT);
glTexEnvt (GL_TEXTURE_ENY, GL_OPERANDD ALFHA EXT, GL SRC ALPHA);
glTexEnvf (GL_TEXTURE_ENY, GL_COMBINE_ALPHA EXT, GL_REPLACE):
glTexEnvf (GL_TEXTURE_ENY, GL_ALPHA_SCALE, 1.07);

Since this is just 2 blend berween (wo static texmures, the sress pur on the render-

ing system is minimal; this technique is so far just a method for computing texture
coordinates. In spite of this simplicity, the visual results are surprisingly realiseic.

Future Extensions to This Technigue

We have outined a simple equation for warer thar includes reflection, refraction, and
Fresnel serms. Oicher visual ph:m:mcna., such a5 caustics and scattering due to pan:ic-
ulate marter, can be modeled a5 well.

Caustics Inside the Gontainer

One of the most imporant extensions to this rechnique is the use of caustic effeas an
the interior of the conminer. One way o incorporate custics into the scene is 1o

5.11 Refraction Mapping for Liquids in Containers 508

model the refraction of light rays from a given light source and their intersection with
the container in much the same way cthat we are modeling this for the viewer's posi-
tion, Light transported along these rays could then be accumulated into a dynamic
“canstic map,” which would be compasited with the refraction map using multitex-
ture [Stam96]. Then again, for some applications, it might suffice 1o simply use a sta-
tic caustic map thar scrolls along the interior of the pool over fime. See the aricle
“Advanced Texturing Using Texture Coordinate Generation” for a discussion of how
to use the texture matrix (o scroll texture coordinares frame to frame. This inexpen-
sive technique was used in the Zoras Domain level of The Legend of Zelda: The Oca-
rina of Time to give the impresion of caustics reflecred off the surface of 2 lake onte
the surrounding cave walls.

Modeling Particulate Matter

Modeling the particulate matter present in the warer is an important visual cue thar
can casily be added co this system. In fact, the distance thar the refracted ray travels
through the medium in the container is compured as a by-product of the intersecrion
test, Using, this term, it is possible to blend in a “water colos” at the vertices in much
the same way thar terrain engines and Highe simulators blend in a fog color o simu-
late atmospheric effects. It should be nored thar only the refractive torm is affeceed by
particulare marter in the water.

Conclusion

We have presented a concise method of simulating refractive, reflective, and Fresnel
effects of liquids in simple geometric containers in real time on consumer 3D hard-
ware. The rechnique was designed from the outset to run efficiendy on consumer
graphics acceleratoes. As such, the technique in its current state mercly compures new
texture coordinares for the reflection and refraction maps and does no updates o the
textures themselves.

We have also presented some areas for extending the technique o include eaustics
and particulate matter as well as ideas for implementing these exrensions.

References

[Apodaca99] Apodaca, A., and Grirz, L, Advanced RemderMdan: Creating CGI for
Maorion Piettres, Morgan Kaufmann, 1999,

[Baseos99)] Bastos, R., Hoff, K., Wymn, Wi, and Lastra, A., "Increased Photorealism
for Interactive Architecrural Walkthroughs,” ACM Symposiume on fitertetive 3D
Crmgpieics, pp. 183=190, 1999,

[Heidrich®8] Hedrich, W, and Seidd, H..P, © 'tew-independent Enviconment
Maps," Eurographics/ ACM SIGGRAPH Workshop on Graphics Hardware,
15998,

Ear.'liunﬁ_ Pixal Effects

3

IMcQuade00] McQuade, L., Personal Communication, 2000,

[T5'e87] Tso, P, and Barsky, B., “Modeling and Rendering Waves: Wave Tracing
Using Beta-Splines and Reflecsive and Refracrive Tixture Mapping,” ACM Truns-
actrotis om Graphics (6), pp. 191-214, 1987,

[Stam96] Sam, J.. “Random Caustics- Narural Texmures and Wave Theory Revis-
ired,” SIGGRAPH | available online ar www.syntim.ineia. fofsyntim/research/
stam/caustics heml, 1996,

APPENDIX

6.0

The Matrix Utility Library

Dante Treglia Il and Mark A. DeLoura

Marrix libraries are an integral part of game programming, and essential in a wide
variety of applications such as advanced graphics, physics, collision detection, cte, It
was inevitable that many of the articles would need to use some marrix operations
ourside of the OpenGL matrix funcrions. Therefore, with the inpur of many contrib-
utors, 2 C++ matrix library was written for all accompanying demo software to utilize.
It was intentionally designed o be an instructional wol, casy 1w read, and general pur-
pose, s very few optimizations have been added. We encourage you to customize the
library for your game, and optimize it for your environment.

Specification

The libraries contain five main dasses: vector?, vectord, vectors, matrinad, and
matrined. These represent vectors and mamices of the coresponding size (eg.,
matrixed 15 a x4 matrx), Vectors have public members called x, 3, = and w, and
matrices are composed of armays of vecrors. This library was designed to provide the
same functionality and formar as the OpenGL marrix funcrions; therefore, matrices
are maintained in column-row order. Most of the standard muatrix and vector opera-
tors have been overloaded; however, the cross product and dot product operations are
provided as utilicy funcrens for a more coherene notation.

vootord vec;
wegtord vec1({0.0, 1.0, D.0);
weotor3 vec2(1.0, 0.0, D.0);
matrix4d mtx = RotateRaddatrixd4('x’, DegTofad(46.0)):
wes = mitx * anFEF'I'WUEtI;“'-BE‘l. WBC2):
LISTING B.0.1. Answer; vec = [0L0, 0.707107, -0.707107]

There are a [ew things to keep in mind when using these libraries. Firss of all, the
default constructors do not initalize members of each elass, This diminares redun-

&0

B02 Appendix 6.0 The Matrix Utility Library

dant operations for instances of vecrors or marmices whose members are immediarely
set. The classes provide appropriate initalizaton construcrors and set methods. Sec-
ond, a point class is not provided. You will need o ensure thar a homogenous com-
pencnt is sct {usually to 1.0) for vectors that are treated as points. Finally, if you need
to load 3 marrix onto the OpenGL matrix stack, it is safe to cast a pointer-o-matrixss
to a pointer-to-floar. Enjoy!

vecterd pointd;
natrixdd tranMtx = TranslateMatrixdd4(-10.0, 0.0, &_.0};

point3.set{0.0, 0.0, 0.0, 1.0);
pointd = tranMtx ¥ point3;

LISTING 6.0.2. Answer; point3d = [-10.0, (L0, 5.0, 1.0]

Source Gode

The code for the entire matrix library &= on the CD. Please refer to the library for

more informarion on how 1o use It

Acknowledgments

Special thanks 1o everyone who contributed 1o this library, especially Stan Melax,
Miguel Gomez, Pete Isensce, Gabor MNagy, Scorr Bilas, James Boer, and Eric Lengyel.

APPENDIX

6.1

The Text Utility Library

Dante Treglia i

There comes a point in every game’s development when outpur is necessary. For such
purposes, it i very conveniens to have this outpur displayed on the sereen, especially
if your game uses hull sereen mode. Many games today have “console” modes, which
in inest cases were used by the programmer during the development of the game., You
may find it beneficial wo write such a library and incorporate it into your game. This
text library is a basic implementation of an ourpur rext library written for OpenGL. It
is small, easy 1o use, and most imporandy, easy 1o hack! The rexture used to creare
each 8xB character is only 16KBytes, so this libeary is perfect for debugging and pro-
filing.

Specification

The text wtility library is composed of one class named TextBox. Tt provides two
methods for drawing text to the screen. The fiese is by providing a screen coordinate
and a string. The library auromarically pushes the necesary arthographic projection
to draw the text in screen space. It also pops the matrix, which preserves the previous
matrix state. The second method is a customized version of the i, It requires thar
you initialize an area of the screen to be the “text box.” Then, all the text prinied
this box (there can be mulople boxes) will wrap and scroll within the box, much like
a standard shell. A convenient printf () function, similar to the standard C funcrion,
15 usced to prine text. Unlike the first method, the text is stored in memory undil the
next screen is drawn, so the printf () functien can be used ar any point during the
game. Text can be printed in any color with a rrnsparent or opaque background.

Source Code

The enrire source code for the rexr utility libeary is contained on the CD, along with
a demo. Please see the code for mose detzils on how to use it

APPENDIX

6.2

About the CD-ROM

Mark A. DeLoura

Enclosed with this book you will find a CD-ROM thar is filled with all of the code
from this volume and more! We feel very strongly dhar for this boole to really be of use

o you, you need to have the source code in a form that you can use.
Here are a few of the things you'll find on the CD-ROM:

* Al the source code listed in each article.

Complets demos of many of the technologies described in this book. The demos
run under Windows and Linux.

The glSerup Monolichic version.

The GLUT (OpenGL Usilicy Toolkir) dismibutdon.

The Matrix Unlicy Library.

The Texe Unlicy Library.

Links to groovy game programming sites.

Complete installation and wsage instructons are included on the CO-ROM in the
AbourThisCD hem file. Please read this firse.

Akso, be sure to check out the Website, www.gameprogramminggems.com/ for
more information about the book and about game programming in general!

index

A" alpomthm
aesthetic opaimizations, 264-371
Master Mods List and Priorivy Quese Open Lin

implemensarion, 285184
na.vi.g:.r.iun meches znd, 194105
pachfinding, 294
path plinning wath, 254=-262
priociny queses for speed, 281-282, 283246
speed optimzations for, 272-187
wealmerses af, 261162

AL See Amifical [clligence [Al}

Aligincne, 305-3006

Alpha-bera pring, 251-253

Alpha blerling, 195, 522-523

Animarons
keylraming for, 465470
EHJ:I: moaf, 528534
fexuge coandznite animanon, 549-550

Array Loy dam, 103

.-’I.rr.'i].'.s
bie armys, 100-103
Caomgpiled Verter Ammyrs [CVA), 356-358, 359-360
Ser alse Voomrs

Asrificial Inecllzgenes (Al)

Engine d.:si-_q:n, 230336

finkte-state maching, 237-248
fuery logic, 319-329

newtal nets and, 330-350

scriprrg behavior ourslde cede, 234
th Sempts, &

Ayt macros, 109-114
copy-and-pate, 113-114
m'rrnrni:l:ing, TH1=102 113114
i bedding and, 110-111
“Ignoae Always” opoicn, 112-113
siporzmcnt implommeanon, 113

Aszacianon
aislo- andl heterommecrition, 335
Hapiield nees for, 346-350
ocwrad nety and, 332, 336

Arrenagion maps, 343348

Autonpmous 2zenis, 305
Avnidance, 506

Barefrsesree clis. 9083
Basic objoct memory manager, GB
Bell, Tan, 133
Birary tmx, wavclcts princaple and, 162=184
BieArray class, 101-102
Bradrrapdl class, 102-103
Bizdrray20 class, 102-103
L5 Proxy class, 102
Birwise eperations, 101-103
Bli.r.r.h'l.g funcisans, 523
Baids, 305
Cltoid class, 311=312 314-317
conassint on, 306304
percepian range of, M4
Bapes, Sor Skcletal poprescniations
Bt creazion, 6
Bounding volumss, 580
mctroes and, $40, 445=146
spleste caollissan deteetion slgosithm, 390-3493
Braben, David, 133
Branchisg insruction in swopt languages, 5
B-splines
camets contiel e, 374-376
ex. hermire splines. 470
Bayzs, Ser Dichagging
Buildings, 40024
1|gl:|riﬂ1ms for, 492493
Bump mapping
JHll}inE (113 l-"'l-i:r.‘.l:l.':.. '55'5—5'55
normals, d'hn-n:liJl.g space for, 556557
Exivgst dpace bimp mappmg, 557=559
texture space bump mapping, 559-56]
Bocyancy, smmakiting, 191-193

Calderss, invening, $09-510
Calling convensions, G1-62
Calls

pmﬁiﬂ, 128

B05S

B06

Appandiz 6.0 The Mabrix Utility Library

reimots procsdure calls (RPCs), 56-58
Cameras
E—ﬁ"ﬂ.lrht curves hor congrod, 374376
control techniques for, 371-379
damping, 377-378
exposed functionadioy of, 3
eye space and depah value, 363364
first-person cameras, 371-373
lens flare simulations, $15-518
level of derzil and, 433434
arcmtation of, 366, 373
quarernions and comcrel of, 379
seripa] cameras, 373377
third-pemmon cameszas, 378
Wi calnens, 256-370
1n-u|:|1.'|.11|;. LT
Camnull-Rom splines. 266, 267, 376377
Caumics, imaliting, 590=599
CBoid class, 311-312 5143517
Ao dlass, A09=310
CEarefnOntlnirrpalazn cam, 149
CEre Ourilividefrrerpolarion class, 147
CEaveiTueSbufilmterpoletion dass, 147-148
ChRfock cless, 300-311, 312-314
Chaus, adding via mesaging, 223
Clhsses, Tt
coupling, svniding, 1516

desipming in Objecs-Oriented Programmdng (OOTF),

11=12
finirz-stare maching class, 257-248
handle clas, 70
ITLATLER T clases, 151G
proey dlamo, 102-103
See also Specific clawer
Climearimterpedision, 148
Conids
me-gamne profding, 120-130
reusing, 8
Cohesion, 305-306
Callision deteceman, 390402
bounding sphere, 390-3593
line-plane istcrsoomzon, 394395
oorres constmucrion for cuﬂ]ing., F10-447%
prximt-En-trianple tost, 306597
rriangle “Hamening,” 395-396
eerangle-to-granhs, 3040, 393397
Compiled Verer Armays {CVA), 356358, 350340
l.-.':ll"llira;l'.-..
calling canventions af, &1-62
limitagions of, 24, 31

remplares 25 wirrual, 20-33
Caoniposztion, 12
Compression methods

umape compression, 185=184
wavelss, 1B2-186G
Caonsole game syt
darz Jmn:'ling,. an-9]
debugsng, 115119
depth-of-play rechnique, 133-140
Canstants, In data-dmven dozgn, 34
Concainers
ATLOCLARIVE COA CAINETS, 42
:;l.lhl::Ell:r HI.L'IFIlﬂ'Iu -'i-f:, 53—5—'53 ZBI—EEI'."
maps, 30=53
STL, 4142
Containment, 17
Cosrs
arrival costs, 295
e cong, 276-278
pash funcricn cost, 25%-260, 264=205
Coupling of dases, sveiding, 15-16
Crisp sets, 319-320
Crossralie, 336537
Calling
Forld o View Cullisg Code, 425429
Frismum culling, 422423
ecclusion culling, 421431
DOres consmecrion for, 439443
Cylinder-Frusinm iniesection test, 380-357
i|gnr'||:|1.n'|5, R2-384
radiz, clculzoon of effecve, 2EZ, 3R3
Crlinders, generalized, 258
Cylinder toats, 3H0-359

Dhamping, 377-378
Dhaca
big asrays fos, 101-103
duplicare dasz syndrame, 6-7
winlicnmaives, -7
junk dara and securiry, 107
hadics quickly, 83-91
preprocessing, &
ﬂ'rirbg, o]
toods for crmting, 7
wavekers a5 analyst rood, 185=186
Dragalaascs, handlo-bass] rooures manager for, 6579
Dara-drven design, 3-7
|:||IF|'|E|"_"L1|.- d.'l:l:l. f:—_'r'
cdining toods i, 7
hard coding ard, 3-5
pext files and., 3
Debiapging
console game sywwems, 115=119
logs and, 235
miessIges amd, 122
real-timc im-gamc profiling, 120-130

Indeax

Stars syseem for, 115119
Drefumificstion medhods, 327-328
Dhepids values of vernex, 381-364
Dogues, 4142
Suambard Templste Liboary (STL), 48-50
Dicxigning, 11-12
Drerail, levels of, 432—43R
view-independen: Pragromive meghes, 454664
Diagonalizing, 156
Diamond-sguare algarithm, 505-507
Dijkema’s algarithm, 294
i > compuring, 412-420
DLLs peneric Rinction-binding, 56
Do, 490491
Diouble-endsd ajuemes, 4 1—§2 $8-50
Duplicars dag syndenime, 6-7
Dryramic Link Libtaries {T4.1s), BEIETis Filibction-
binding, 56, &6

Edpes

difficulr, 458459

edpe choice funcions, 438

edp collapic, 455, 461462

selestion improvements, 462
Edieing roals

iri Il'lh'lilﬂ'l"ﬂ'l. 'd-"-'ﬁ.'gll T

Fame lewel, 7

Stati syseem for data-cdiring, 115119
Emgonvaliees and vigenvectons, 156
Elice, 133, 493495
Embedding, 12

assET macro and isformamon embedding, 110-111

Encryptan
online games and, 104-108
fevemse engincering and, 107
Enemy Mations, 307
Engines, Al
evend-driven pr, pelling ofsjects, 221-3¥3
ides] characeeristics of, 221
mcsage objscs, 2222273
stre machines, 225 775
Engines, physics, 390402
Engines. scripting, 5667
Enviroament mapping, 193194
iansg
Mewton-Ecler aquarions, 150-160
for smulating rigid body metien, 190-160
Exasion, corraing, S01-502
Ealer angles, 196, 307-308, 371-372
Enler mcthod
accerscy of, 130181
Euler angles, 196, 307-308, 371-372
explicit, 178=179

gimbal bock and Euler anples, 196
implicir, 179-181
nusnerical smbilicy and, 177-151
rigid bady mution, 150-160
Event-driven objecy, 221-222
Exclusmee-ar DUOR) opersors, 107, 108
Extersinng, OpenGL, 357-358
Eye space, 363-364

Fagade parvem, 15-16
Factonal rensplites, 2273
Factory pateoms, 1819
Faults, fracal rwerain generstion, 459502
Feedhack, in Hopfiddd s, 346—347
Feet, for game abjeces, 404
Fihonseci numbers, 2072
Field-of-view culling, 423423, 425429
Finite-srate machines (FSMs), 237-248
cressing sorey fiog, 242-243
wsing FSMidar, 243
Fire, lighe modif, 528-534
FIR filrers, 501-502

Floating ahjects, waser simulation and, 191-193

Flocking, 305-318

alignment, 305-306

avendance, 306

cohesion, 305-306

meenory and, 306

scparuion, 305-306

steening behaviore, 305306
Fop, range-haed, 548
Fracul rerrain genersson

Exult formation, 499-502

midpoing displacement, $03-507
Fragmentarios, memary, 92-100
Frames

as handles, 95

mermory allocation, frame-based, 92100
Fresnel e=rim

for reflections, 581-585

refraction mapping. 594
Fessrisns

cylindaz-frasom imrerseomion e, 350-389

frusam culling, 422423

view fustums, 381-382
F5M (fnite-state machines), 237-248
Fancrionality, exporing, $6-67
Function objecss, 52
Functicn averbead, 353-354
Functioas

calling Rincions, 5364

domains and ranges of, 163166
Funcrions, exporting, $6-67

e08

Funcrors, 52

Fuezy loge, 319324
defumificasion methesds, 327528
Fuzzy contnal, 322-328
Furzy bindscaping, 434485
Fuzzy sees, 530-321
li:'l.gu.im'.n: varishles of, 523
operons, 321-322
e ersdinional lagic, 319-320

Gameguth plamning, 254-262
Lrame mrees, T49-253
alphabcta pruning, 251-253
move-ordering methods, 232-253%
pepasmey alForitluin, 250-251
et Profilelin HII:IE.I:,'. 129- | 30
Gimbal leck, 196
Ghex, rendering, 586-593%
colaned plass, 592593
mulopass, 593
reflections om, 592
single-pass, 593
Glahal chijcety
T, :i.nﬁj.emru, 37
Crricds
cabcubiring nephbaring smaes, 259
tectaneular grid space parcitions, 258
search space aprimistions, 173
st I mapping, 403
Ciroups
Aecking behaviars, 305-318
mn'l.ﬁng, 27
Gaiieled misiles, shoros anc quacemion and, 214-215

Haar wavelees, 184-186
Huckers, cnline gume pretocols, 104-108
Hali=Life, 307
HandleMgr claw, 71-72
Handles
frames 4nd memory, 15-96
handle das, 70
Fandelfpr dass, 71-72
b H:n\]"armgrr; E5-86
resoasee mamapers ard, G9-70
Hard coding, awiding, 3=4
Hardware
I:ump mapng, 3553-541
rendssing refesction with, 557-598
Hash eables, 280-2H1
Headere, 104
Hebb, Donald, 345
Hebbian aets, 345-346
Hebh nees, 345346

Herding, 305-318

Hemmie splines, keyfaming and, 467=470
Heuristic coss .l]gnrirl'inj, aTE-2TH
Eierarchical pathfinding, 275-276
Hierarchy design, 12

Haphicld, John, 346

anﬁ'd-cl ners, HG-330

Harizon effcct, 253

]{ungnr'tm mspeatson, 911

Hysterews thresbolding, 435

].-hu:i.'l.}'m_u'rin:l. 2637
“lgmore Always” optien o asers, 112-113
Imagpes

recopmition and neural nees, 341-344
wavelerss for compression, 185-186

Tmmexdisre msde funchions, 353—354

Infinice universes, algerchms for, 136—1 39

Inheritasce, 6, 12

Initial value pr'uHﬂm. 177178

Imsrahilicy, explicit s imp it methods, 177-178

Interacton derscion, multi-resolution neags o,

H05—£11

Inrerface=
geivitie function-bmnding inrerface, 5667
Smoes symrem wied dusing protatypang, 119

Interpolazions, 141-149
Claielnlutlnterpolecon, 149
OBt D frtarpolarion, 147
ClaeOutShiftfnterpolaion. 147-148
Cléncarinterpolation, 148
E-u:l:ing-p-uh: mach im, 141-142
frame-sste-dependone ease-cur, 141-144
frame. cate-independent cxie-in and -out, 144-146
frame-rate-independent linear inmerpalagion. 144
inceper magh in, 142-144
lisitztrons of, 146
linear interpelition Oerpl, 206, 209—211
spherical cubic inrerpolarion (qusd), 207—205
spherical line mecrpolation (slerp), HHG-207
spline inrerpolariars, 208, 211-213

Libancls, = beusslary sondigons, 190

ferared deepening, 252-153

[rzezroes, feveris, 449-50

Keyframimg

hermite spline, 467469

inrerpolared 300, 465470

linear inrerpolarian, 465467

apline inmeepolating vertioo, 469470

verrices and normals, interpolstion of, 467
Kircematio, tramslation and rocron, 150-154
Eline, D‘I.Ii.-llnpl:-:l'. F17-318

Kren, Boherr, 501

Lagrange serics, 162=176, 172175
ex, Taylor seriss, 174-175

Landscaping, 45450
algorithms for, 4854590
Faule Line generasion, 485450
firery landscaping, 484485
Ser #lia Tiomain

Lava flows, simsulating, 508-511

Laering, 12

Learning algorthis, 345-350

Lers flase simuslaricns, 515518

Lerp, 106, 209-211

Levels of dewmil (LOTY), 4372438
algraichm for selection, 435437
hysreresls threshodding, 435
implemenurion, 435437
magnification facrors, 434, 437
selecmon of, 431434
threshold sdecrion, 437
vicw-independent progresive mehes, 454464

[.if‘hl:ins
ambdznr, 419420
areensmtion mape, $43-548
bump mapping for, 555-561
changess, 419420
of conesiner interiors, 5965497
convention stagic Behting, 534-537
diffues liphting facors, 526, 555556
!an. range based, 548
bight coordinate symems, 571-574
marif-based swaric lghting, 528-534
omnidights, $26-527
real-tzme simulacions, $35-542
reflections, $53-554, 581-985, 552
refraction chrouph water, 193-194
ARSpArEly, rendering, S86-553
vertex enlor inperpolacian for, 537542
Ser ol Shadomes

Linear incespolation, 206, 200-211

Lime-plame intorecrion in collision derecrion, 394-395

Linguistic varishles, 323

Liguids. refraction maps for, §94-£00
caustic effecrs inside conminer, 598-599
congaisers and, 595-597
Fresmcd rerm, 594, 597
particalite marer, modeling, 599
Snclls Law, 594595
See alie Whaper

Ligts
Open e, PRI-205
polypon overdap, 442

Standard Templaze Libiessy (STL), d6—48

STL conmimers, 4142
Loads, oprimizing, B8-91
Locationy, path scarch statec, 257250
Legic

scripting, 4-6

in scrips, 56

o, dhara i dary driven design, 3
Logic fiencrions

AMD. 338-341

R, 355-341

HOE. 338-341

of messages and state transitons, 232-233

Laak-ar urilitis, 371

Macros
aszerT macros, 109-1 14
Costyle for stue machine 215 317
Magnificwrion Bctore, 434, 437
Manapor classss, 15-18
Maps
baimp maps for toomring, 555561
environment maps. 193, 581
grid-based maps, 403
light coordinare sysems for, 571-574
light maps, 543548
mult-respluzian gy, 405411
reflection, environment mapped, 581-585
refraction mapping, 594-600
thadow mags, $67-580, 570
size variation problems, 403404
sphenical reflection maps. 553554
Soandsrd Templare Library, 50-53
Master node ligg, 202
Alarrices
efficiency of templarized, 29-30
identity marrices, 2627
mirialixation of, 27
lescal-toewoeld mater, 36E-371
marriz-based camerss, 365-370
multiplicatien of, 28-29
projection marrix, 35]-362
quatermions = feplacements for, 195—196
szae mansition marrix, 234
eralposition of, 27-28
Martrix-quarernion comversons, 200-204
Moy, 490193
alporithms, 492-493
MBE (moleculsr beam epiaxy), 508
MoCullosk-Pirs nes, 338541
Memony
A® alpocithm and, 272, 278-280
corrupsian of, 9539

&10

Memory (Cower)

flocking and, 344

:I'r:lgu'h:nﬂ.r.i-:n. Frﬁ:nrjm ak, 92100

frame-based allocatson of, 92-100

heaps, 94-96

Iberatree aulcEsOciivg menorny, 347, 350

leakes, Pr-EIEDIiDrI. of, B

manzgement af, 80-87

maieal pets a, 332, 336

OpeniL extensions and, 357-358

releansng, 95100

spoTEp, avaiding, =51

vocton, 43, 35
Mleshes

oavigation meshes, J98-504

progressive, 438, 434464

verrex collapse and splic, 435455

view-deprodent and stdepenident, 456454
Messape objecs, 223225
Mesrape Router, 135-236
Messagng

delayed sending, 229-230, 236

bogging activity and state transitons, 231233

rourisg, 227-229, 135236

scope defimtion, 231-232

sendimg, 125130

snpaping, smitfing, or peeking, 722

iamigue 1Tk in, 234
Menpogramming, templaes, 20-35
Mlerhaods, -"J«lxll'l' {7 and e (L 4243
Microsoft Dievelaper Metwoedk Libeary, 664
MHpu:\'lm: di;.ph.:-nmml:. rerTaan gemnrin'rr, S03-507
Molecular heam opigaxy (MBE), 504
MMomentmm, Enear znd m:p.l]'.:r. 154
Motion

Flr_u,]eiﬂE jm?]:nb:hm'mn. 07304

stmubzing mgid body mption, 150160
Moumains

calderas, im\u'lins_. F09-511

fracial terram peneratian, $05-507
Movemenr, nevigation meshes and 313, ZBE-304
Movc-ondering methisks, 252253
Mulricresalurion maps, 405411

Mame-mangling facilicy of Cr+, 65
Mamcs and naming, 10-11
alppaichm for realiszic names, 493-498
Hlun,p.riml patation canvenliong, 9-11
nzms-mangling Galiy of Cas, 65
MNavrgarsenCell 292
Mavigation mesh
consruceion of, 290

MisigazionMesh, 292-293

Mavigarion meshes, 288-3H4
i,:lrll:n"q'ps-rﬁjqd_:] Y oincaiE, m—iﬂs
Navimeshy, THI
N-U;qu,: el FERE MO 0E 4 FYIaTY) A :|H:|li|:||!|l.. 250-251
Hevwocks, provocals for online ganes, 104-108
Meural ners, SH0350
alyporichm for, 345350
biolgical analops for, 330-531
classificasion and recopmimion, F41-344
game applications for, 331-332
Hebbtan newral nes, 3453406
Hogphdsl nosral nos, 346350
ncianedes, 3521138
plasicity of, 330
smabilsy, 336
wnporal topes, 3353346
Menrods=s, 332-3348
Mewton-Eular equations, 150160
incegraring,. 158159
N Obgecs, 283
Mades, pashfinding, 278280
decoapling, 2Z7H-I177
stz nende Bar foe sporags, 280281

Dhjnq,.‘l-‘:l:;rhln:l. F'Il:FJII:‘":nEhE {{MIF), B=19
classss, desipning, 11-12
coding stybes in, 9-11
desipn techniques and, B-19
Exgade pattein in. 1516
Ezctory parcem in, 18=19
Hungzarian maration, 9-11
sinplemn pamems, 1315
samglatens, 360
AL ParreTms in, 1618
Ohhpects, evena~driven s, polling, 221-132
Cheelior Culling Cods, 479431
D lussons, £33
cuilliog, 421431

bounding velumes of, 445446
cansmmuactiomn af, 439-443
diana conrainsd in., 440
lonse occtress, 446453
ryesiphars, 442
pilrpon overlap |oa, 442
Fog raw collisan rems, 43
repalar . loose ocmees, 451453
wsed 1o |u.1|E|i.:m ohijecis, 446448
CHHine cbkubkoon, progresae mohes and, 462
Chmi-lighes, 526-527
Oaline games, necwodk prococe] for, 104-108
Owpaciey ey, Lrand pahescy, SE7T-598
Open felds, hierarchical pashfinding, 269-270

Index

G811

OperGL
expEmEi ons for, 357-356
optismnizing verex subminion for, 3533460
aprice effecrs, 5194523

Open fists, 2R2-256

Oricnmrion, H7-308

Dirthegonalisy, 337-338

Packens, 104
relay arracks, 105-106
Gumnpering. 105

Paralle proceding, inowarer simulisiong, 190-191
Particle deposition, frictal torrain generaton, 508-511

Famirioning
looss octrees used fos, £46—448
neurs pets as, 336-337
space, 257-259
Pachfinding,
with navigazion msshes, 2575
navigarion meshes for, 288-304
Parh planning, 254-263
A" for, 254-2062
cost funcrions for paths, 259-260
Funcrion coss, 259260
rlu_gi:.bm‘mg.lul'ﬁ‘ 254
Pt ning space for, 157259
Fachs
acsthetic oprimizations for, 204-271
B-spline curves, 374376
Catmmull-Rom spline, 266-267, 376-377
decoupling pathfinding data, 278-279
hiersrchical pathing, 268-270, 375-276
FIEEEmE e PO, 270-171
raviguEon meshes, 288=304
rude dara, 278-280
pauses, 270, 276
smoach pachs, 265265
straighe paths, 264-165
visibilsry 1oating, 294
See aleo Iachfinding: Path planning
Parrodling, 233
Patterns, designing, 12-19
Tauz=s, 270, 276
Payloads, 104-105
Perception ramges, 303
Fhvyaics engines, 390-402
Fizch, 307-308, 371-372
Phisma fractal alporichen, 305507
Plasticity, neusal nicts and, 336
Painters, 69
in preprocoadng daa, 88
reyouce maragement and. B
used is saving dam, 89

ex. enique 1D in messaging, 230
Paint-m-triangle rem, 3965597
Falling objects, 221222
Paolypan foors, 273-274
Polypon averdsps algorithm, 442
Polymsmzl, 162-163

ApproLimaton o tripenomerric Eum:mrn.

160176

disconrinuities and., 175-176

doaing and ranges of, 163166

even amd odd. 166-167

Lagmange series, 172-175

Taylor serics, 167-171
Papping

reduceng, 332438

pr. morphing venios, 460
'I."‘n:ﬁlmins, gloasy, 581-585
FPrsarety uesr Olljecr, 283
Priariry guoucs, 54

A* speed opdmizsions, 281-282, 283-2586

ProfileBegin, 124-125, 126
ProfileDisanp Oscrprass ToBtn for. 128-129
ProfifeEnd, 124-125, 127-128
Profiles

calls, sddling, 123

implementation, 123-124

real-time in-game peofiling, 120-130
Projecion matricos, 361=36F
Proxiemary toses, redudng number of, 403-411
rooy classes, 102-1035
FreneloRenclom daes, 136

Chralymens, 444445
space paminoning, 254
Chevermons, 195199
caloahes functions of, 205=206
carner conmaol and, 379
as exmensian of complex numben, 197-198
mh:rpnl.:l:Lng;ln:.'lmiqum 205-313
lincas evterpolacion (=rp), 206, 209-211
A0 ItSMEND conyendons, 2= 204
as enaeriy peplacemenes, 195104

numerical soabilivy and shortes arc, 214-217
physical sipaificance of numbers in, 196197

tutations represented by, 199
shartesr are quaternion, 214-218

spherical cubic interpolation (squad), 207-208
spherical linear inoerpalacion {d=p), 206-207,

20-211
spline intcrpolations, 208, 211-213
Cruaternion-to-selis comvesiom, J00-201
Cusues, 54
of star= mackines, 233

612

Rand function. 106
Randomoess
fractals, pansdem line generarion, S0-501
Random numbers
alporichm for, 135-1306
prediceable, 133140
prediceable, algorhm for generating, 135-136
rand s=arch, 134-135
srand, 134-135
Ray collision e, ocrrees for, 443
Receiver abjedts, sladow maps, 578573
Reflecions
environmont mapped, 538 1=585
Feessel rerm and, S81-585, %97
on E;hs:. Sy
m.tpping, 533-55%
Refrascsion
mapping,. 193
Sncdl’s Law, 594595
Remocs procedure calls (RPCs), 5654
Beplay, packss avacks, 105-106
Ferldemager dass, B3-86
Pesohmion, macto- and micro-infinie, 133-134
imfisire universes, 137
Resoumee mamagers
hasic abjecs memeory manager, 688
handle-based, GH-79
hamdles, 6970
memary mEnigsmsnl snd, 40-87
p-ninn:r:, &9
Besoues, locking snd unlecking, 86
Responsiveness, comtrmoller, Z70-271
Beynolds, Craig, 305306
Ripid bodies, special properties of, 135138
Rigid body mation
dymamics of, 154
kincmatics, 150-154
quascriien rpation, 214-218
raceman, 151594
simulating, 150-160
Ruoll, 307308, 371-372
Borassewdre () rousine, 214=218
Faorndons
QUALETICS Foragkans, 200
quacernions for cepresenting, 153
Routers, spare machine mesage rousing, TI7-229,
235-234
Fungs-Kisna merhed, 177=178

Scaling 523
Scripring langnages, 5
Scripas, 46

Al engines and, 234

branching imstrucsens i, 5

34 Fimies sraze machines, 5

scripeed camsras, 573377

SCripting engines, 56-G7

s ,

Search slporithms, 354262
anling gaming feamares, 104-108
reverse enginerring bor, 107

Sendling randoe generator, algorichm For, 138

Separazion, 305305

Sequenes contsiners, 42

Shadows
adaptive projecrions, 575577
an complex objecs, 567500
proumd-plane shadows, S62-566
lighs coardinate systems for maps, ST1=574
lighs sonsrce, bloders, and reccrvers, 367-5689,

ST7=579

rathemarics of, 562565
mll.ﬁ'iple]i.g;ht somiptes, H0
penpetive pEojecrions, 575
rendering implemenmtion, 365-360
vilumes af, 508569

Shine-through, 552

Shoreines, a boundary condinons, 190

Simonyi, Chares, 9

Sinplemmns, 3640
auromaric singleron by, 2640
simgletaln parmerns, 13-15

Size of game objects, 403304
magnification facoars, 434

Sleelesad re 3
Fazt akinieg methed, 471-472
CiEatzTninas 00 sTone matnees 1. 193-196
sptching, 77480

Skinning, dBl-1H3
fasz and sample method e, 471475
sticching and, d76-4E3

Slerp, 206-207

Smell’s Law, 594595

Bonds, :ulli.u.g-. 42%

Space
A1 movement, 2553504
Nacking and ol space, 37
lol spacT nptimﬁlilﬂh SGE-3T0
inads] spsce, H63
neural oot as parationang, 336-337
panitioning, 257-259
sezrch space optimizatioss, 272176
gamplified movemsnc in 300, 288-304
rangent space, 536-559
world space, 368369

Index

Speed. oprimazing for
A* optimumoons, 371257
daa boseling, BH-91
Fist math templare mecsproprimming, 20
memory allecarion, 92-100
and vizual gealicy, 194
Sphese mapping, $53-554
Spherical cubic inrespolation {squad), 207-208
Spherical line mterpolacion {derp), 206-307
Spinning ohjes, shostodt asc quaremion, 21 1-214
Splasheoy, simularing, 191
Lpline imrerpolstions, HM, 211-213
Speilc cffects, 515-523
alphz blending, 522-523
drawing 3D, 530-521
rotising, 523
scalimg, 523
texmares far, 5240
Squad, 207208
Smnd, 134-135
Seackes, 5354
Smndand Tomplate Librry, Car (STL), 41-55%
:53m'n]:|r.r|.'|:,. 43
conainer adaprens, 53-54
contuners, 4142
dlequs, 4550
pterarncs, 42
lisrs, 648
maps, #0=53
pricnty qisiec, 54, 281-182
g, 54
ranges, methads to derermine, 42-43
atacks, 53-54
vecross, 434%
Seatc machines, 2232335
C-sryle macios for, 225-227
deleting game ohjems within, 230
eveni-driven using messapes, 223-225
Finice Stare Machines (FSM), 237-248
fibizdage rounng, 227-129
multiple stare machines, 233
pscusdocode for, 224
quenes af, 233
rwapping, 133
Stare pamerns, 16-18
Srares, 257
A* algorithem for pash planaing, 254-255
creating [FAM, 242243
F3hd stare, 739740
eciphboring states, 259
ransan matrices, 238
S gl Stare machines
Soargerics. real-time and in-game debugging, 115-119

Seeering Belunsary, 305-306

Sticky planc problem, lomse cetroes for, $44-453
Suirchieg, 477480

STL. Ser Standard Templare Librany, Cos (ST1)
Siwre Prafileln Mivrary, 120-130

Swarmmg, 305-318

Tangens space, 536-559
Taylar, Chris, 7
Taylar series, 161-162, 167-171
truncarcd, 171
. Lagranes scricy, 174=175
Templatzs
Co+ srandaredy compliznee, 15
Eactoamal, 2223
Fibonsood mumben, 20-22
maltiE operatons. 2530
for mecxprogramming, 20-35
far trmanometny, 23-25
as virmual compilers, 20-22
Templaces, Cos, M35, 4155
Temparal topics and neural nees, 335336
Termin
i'.l.lilc'lénp._. SM—4UE
crosion smuligiga, S01-502
faiele lne pemeration, 485400, $99-502
fracua! cerrzin generation, 499511
fuzzy bndscaping, 484483
landezping. 484490
mazsz, 490493
mounezing, #5=511
parmiche deponation, S0E-511
real-timee, realisric, $94—498
varlcamas, S08-511
T files in pames dovlopmens, 3
Texearm
bumgp mapping far, $55-561
projection of, 550552
reflection mapping, 553-554
shadow maps and. 578
shine-thorough problem, 552
texlure coordinace gencration, 549-554
Threcholds
hrvsterosis thresholding, 435
selecrion, 437
Tomue, 154
Tomzl Annikilages, 7
Trackhally, vicomal, 217
Trathic, furzy logic for modeling, 322328
Transparency
ghizs, 586593
rendeing, 193

Tres

614

Index

binzry, 182154
game tiees, 249-353
quoderess, 258, 444445
Jee adie Oorees
Triangle-to-mianple collision detecion algerithm, 390,
385397
Trigonomerric fasmans
polynomia approsimstioss for, 161=176
TwoBsedrray class, 105
Two-dimensoml sprive offerrs, 519423

Unreal, 307
Uglift, simulasing, $03-507

Victors, 4142, 4345
asserty pacee for normalizing, 109-111
ergenvecrors., 156
flacking implemensation, 307302
imcmary of, 45
orthegenaliey of, 337-338
representing finite retation wich, 151-154
used by vector cameras, 367-378
Wertices
compilad vertex amays, 356-357
darz formar for submission, 158350
intechmved dara, 354555
opsimizing subminsan for OpenGl, 353-360
popping £ morpising, 460
projecred depeh valucs, 361-365
rendering porformance, 359
strided and sreamad da, 335-356
veries collapse and splic, 435456
Video game cossnles
data leading, 90-91
debugging for, 115-11%
depth of play rechniques, 133-140

Vicwpounts, 296
Visibiliny
eoclasion mlL"lrng, 421—4%]
poinm of, 254, 274-275
vizibillity teming, 296
Wisual gualiry
levels of detil, 432438
poapping, 431438
Wolcanos, verrain pemseation, 508-311
Vaxels, £42

Warsr émulasan
alpha blending for transparency, 193
beusdary condidgons, 1940
buayzns abjects, 191-193
instability of integrarion method, 190
interactive Smulasens, 167—194
lighs refraction, 193194
prurallel processing, 190—191
pamicidite matter in, 599
rendering, 193-194
spessd and visuml qualicy, 194
splashes, 19
WiAVE exuations, 187-| 89
See ako Liquids, nefraction maps foe
Wave oquations. 1A7=149
Wavelesy, 152-156
Hiar waveles, 184186

imzpe compeemion, 185-186

XOR {exclusiveor operator), 107, 108
nesieal mcts and, 338341

Yaw, H7—308, 371-372

Lepo-sum e, 240
Zooming, cameras, 377

