
Other Development Tools

A

DEVELOPING CORRECT, FAST C OR C++ GNU/LINUX PROGRAMS requires more
than just understanding the GNU/Linux operating system and its system calls. In this
appendix, we discuss development tools to find runtime errors such as illegal use of
dynamically allocated memory and to determine which parts of a program are taking
most of the execution time.Analyzing a program’s source code can reveal some of this
information; by using these runtime tools and actually executing the program, you can
find out much more.

A.1 Static Program Analysis
Some programming errors can be detected using static analysis tools that analyze the
program’s source code. If you invoke GCC with -Wall and -pedantic, the compiler
issues warnings about risky or possibly erroneous programming constructions. By
eliminating such constructions, you’ll reduce the risk of program bugs, and you’ll find
it easier to compile your programs on different GNU/Linux variants and even on
other operating systems.

15 0430 APPA 5/22/01 10:53 AM Page 259

260 Appendix A Other Development Tools

Using various command options, you can cause GCC to issue warnings about
many different types of questionable programming constructs.The -Wall option
enables most of these checks. For example, the compiler will produce a warning
about a comment that begins within another comment, about an incorrect return type
specified for main, and about a non void function omitting a return statement. If you
specify the -pedantic option, GCC emits warnings demanded by strict ANSI C and
ISO C++ compliance. For example, use of the GNU asm extension causes a warning
using this option.A few GNU extensions, such as using alternate keywords beginning
with __ (two underscores), will not trigger warning messages.Although the GCC
info pages deprecate use of this option, we recommend that you use it anyway and
avoid most GNU language extensions because GCC extensions tend to change
through time and frequently interact poorly with code optimization.

Listing A.1 (hello.c) Hello World Program

main ()
{
printf (“Hello, world.\n”);

}

Consider compiling the “Hello World” program shown in Listing A.1.Though GCC
compiles the program without complaint, the source code does not obey ANSI C
rules. If you enable warnings by compiling with the -Wall -pedantic, GCC reveals
three questionable constructs.

% gcc -Wall -pedantic hello.c
hello.c:2: warning: return type defaults to ‘int’
hello.c: In function ‘main’:
hello.c:3: warning: implicit declaration of function ‘printf’
hello.c:4: warning: control reaches end of non-void function

These warnings indicate that the following problems occurred:
n The return type for main was not specified.
n The function printf is implicitly declared because <stdio.h> is not included.
n The function, implicitly declared to return an int, actually returns no value.

Analyzing a program’s source code cannot find all programming mistakes and ineffi-
ciencies. In the next section, we present four tools to find mistakes in using dynami-
cally allocated memory. In the subsequent section, we show how to analyze the
program’s execution time using the gprof profiler.

15 0430 APPA 5/22/01 2:40 PM Page 260

261A.2 Finding Dynamic Memory Errors

A.2 Finding Dynamic Memory Errors
When writing a program, you frequently can’t know how much memory the program
will need when it runs. For example, a line read from a file at runtime might have any
finite length. C and C++ programs use malloc, free, and their variants to dynamically
allocate memory while the program is running.The rules for dynamic memory use
include these:

n The number of allocation calls (calls to malloc) must exactly match the number
of deallocation calls (calls to free).

n Reads and writes to the allocated memory must occur within the memory, not
outside its range.

n The allocated memory cannot be used before it is allocated or after it is
deallocated.

Because dynamic memory allocation and deallocation occur at runtime, static program
analysis rarely find violations. Instead, memory-checking tools run the program, col-
lecting data to determine if any of these rules have been violated.The violations a tool
may find include the following:

n Reading from memory before allocating it
n Writing to memory before allocating it
n Reading before the beginning of allocated memory
n Writing before the beginning of allocated memory
n Reading after the end of allocated memory
n Writing after the end of allocated memory
n Reading from memory after its deallocation
n Writing to memory after its deallocation
n Failing to deallocate allocated memory
n Deallocating the same memory twice
n Deallocating memory that is not allocated

It is also useful to warn about requesting an allocation with 0 bytes, which probably
indicates programmer error.

Table A.1 indicates four different tools’ diagnostic capabilities. Unfortunately, no
single tool diagnoses all the memory use errors.Also, no tool claims to detect reading
or writing before allocating memory, but doing so will probably cause a segmentation
fault. Deallocating memory twice will probably also cause a segmentation fault.These
tools diagnose only errors that actually occur while the program is running. If you run
the program with inputs that cause no memory to be allocated, the tools will indicate
no memory errors.To test a program thoroughly, you must run the program using dif-
ferent inputs to ensure that every possible path through the program occurs.Also, you
may use only one tool at a time, so you’ll have to repeat testing with several tools to
get the best error checking.

15 0430 APPA 5/22/01 10:53 AM Page 261

262 Appendix A Other Development Tools

Table A.1 Capabilities of Dynamic Memory-Checking Tools (X Indicates
Detection, and O Indicates Detection for Some Cases)

Erroneous Behavior malloc mtrace ccmalloc Electric
Checking Fence

Read before allocating memory

Write before allocating memory

Read before beginning of allocation X

Write before beginning of allocation O O X

Read after end of allocation X

Write after end of allocation X X

Read after deallocation X

Write after deallocation X

Failure to deallocate memory X X

Deallocating memory twice X X

Deallocating nonallocated memory X X

Zero-size memory allocation X X

In the sections that follow, we first describe how to use the more easily used malloc
checking and mtrace, and then ccmalloc and Electric Fence.

A.2.1 A Program to Test Memory Allocation and
Deallocation
We’ll use the malloc-use program in Listing A.2 to illustrate memory allocation, deal-
location, and use.To begin running it, specify the maximum number of allocated
memory regions as its only command-line argument. For example, malloc-use 12
creates an array A with 12 character pointers that do not point to anything.The
program accepts five different commands:

n To allocate b bytes pointed to by array entry A[i], enter a i b.The array index i
can be any non-negative number smaller than the command-line argument.The
number of bytes must be non-negative.

n To deallocate memory at array index i, enter d i.
n To read the pth character from the allocated memory at index i (as in A[i][p]),

enter r i p. Here, p can have an integral value.
n To write a character to the pth position in the allocated memory at index i,

enter w i p.
n When finished, enter q.

We’ll present the program’s code later, in Section A.2.7, and illustrate how to use it.

15 0430 APPA 5/22/01 10:53 AM Page 262

263A.2 Finding Dynamic Memory Errors

A.2.2 malloc Checking
The memory allocation functions provided by the GNU C library can detect writing
before the beginning of an allocation and deallocating the same allocation twice.
Defining the environment variable MALLOC_CHECK_ to the value 2 causes a program to
halt when such an error is detected. (Note the environment variable’s ending under-
score.) There is no need to recompile the program.

We illustrate diagnosing a write to memory to a position just before the beginning
of an allocation.

% export MALLOC_CHECK_=2
% ./malloc-use 12
Please enter a command: a 0 10
Please enter a command: w 0 -1
Please enter a command: d 0
Aborted (core dumped)

export turns on malloc checking. Specifying the value 2 causes the program to halt as
soon as an error is detected.

Using malloc checking is advantageous because the program need not be recom-
piled, but its capability to diagnose errors is limited. Basically, it checks that the alloca-
tor data structures have not been corrupted.Thus, it can detect double deallocation of
the same allocation.Also, writing just before the beginning of a memory allocation
can usually be detected because the allocator stores the size of each memory allocation
just before the allocated region.Thus, writing just before the allocated memory will
corrupt this number. Unfortunately, consistency checking can occur only when your
program calls allocation routines, not when it accesses memory, so many illegal reads
and writes can occur before an error is detected. In the previous example, the illegal
write was detected only when the allocated memory was deallocated.

A.2.3 Finding Memory Leaks Using mtrace
The mtrace tool helps diagnose the most common error when using dynamic
memory: failure to match allocations and deallocations.There are four steps to using
mtrace, which is available with the GNU C library:

1. Modify the source code to include <mcheck.h> and to invoke mtrace () as soon
as the program starts, at the beginning of main.The call to mtrace turns on
tracking of memory allocations and deallocations.

2. Specify the name of a file to store information about all memory allocations and
deallocations:
% export MALLOC_TRACE=memory.log

3. Run the program.All memory allocations and deallocations are stored in the
logging file.

15 0430 APPA 5/22/01 10:53 AM Page 263

264 Appendix A Other Development Tools

4. Using the mtrace command, analyze the memory allocations and deallocations
to ensure that they match.
% mtrace my_program $MALLOC_TRACE

The messages produced by mtrace are relatively easy to understand. For example, for
our malloc-use example, the output would look like this:

- 0000000000 Free 3 was never alloc’d malloc-use.c:39

Memory not freed:

Address Size Caller
0x08049d48 0xc at malloc-use.c:30

These messages indicate an attempt on line 39 of malloc-use.c to free memory that
was never allocated, and an allocation of memory on line 30 that was never freed.

mtrace diagnoses errors by having the executable record all memory allocations
and deallocations in the file specified by the MALLOC_TRACE environment variable.The
executable must terminate normally for the data to be written.The mtrace command
analyzes this file and lists unmatched allocations and deallocations.

A.2.4 Using ccmalloc
The ccmalloc library diagnoses dynamic memory errors by replacing malloc and free
with code tracing their use. If the program terminates gracefully, it produces a report
of memory leaks and other errors.The ccmalloc library was written by Armin Bierce.

You’ll probably have to download and install the ccmalloc library yourself.
Download it from http://www.inf.ethz.ch/personal/biere/projects/ccmalloc/,
unpack the code, and run configure. Run make and make install, copy the
ccmalloc.cfg file to the directory where you’ll run the program you want to check,
and rename the copy to .ccmalloc. Now you are ready to use the tool.

The program’s object files must be linked with ccmalloc’s library and the dynamic
linking library.Append -lccmalloc -ldl to your link command, for instance.

% gcc -g -Wall -pedantic malloc-use.o -o ccmalloc-use -lccmalloc –ldl

Execute the program to produce a report. For example, running our malloc-use pro-
gram to allocate but not deallocate memory produces the following report:

% ./ccmalloc-use 12
file-name=a.out does not contain valid symbols
trying to find executable in current directory ...
using symbols from ‘ccmalloc-use’
(to speed up this search specify ‘file ccmalloc-use’
in the startup file ‘.ccmalloc’)
Please enter a command: a 0 12
Please enter a command: q

15 0430 APPA 5/22/01 10:53 AM Page 264

265A.2 Finding Dynamic Memory Errors

.---------------.
|ccmalloc report|
==
| total # of| allocated | deallocated | garbage |
+-----------+-------------+-------------+---------------+
| bytes| 60 | 48 | 12 |
+-----------+-------------+-------------+---------------+
|allocations| 2 | 1 | 1 |
+---+
| number of checks: 1 |
| number of counts: 3 |
| retrieving function names for addresses ... done. |
| reading file info from gdb ... done. |
| sorting by number of not reclaimed bytes ... done. |
| number of call chains: 1 |
| number of ignored call chains: 0 |
| number of reported call chains: 1 |
| number of internal call chains: 1 |
| number of library call chains: 0 |
==
|
*100.0% = 12 Bytes of garbage allocated in 1 allocation
| |
| | 0x400389cb in <???>
| |
| | 0x08049198 in <main>
| | at malloc-use.c:89
| |
| | 0x08048fdc in <allocate>
| | at malloc-use.c:30
| |
| ‘-----> 0x08049647 in <malloc>
| at src/wrapper.c:284
|
‘--

The last few lines indicate the chain of function calls that allocated memory that was
not deallocated.

To use ccmalloc to diagnose writes before the beginning or after the end of the
allocated region, you’ll have to modify the .ccmalloc file in the current directory.This
file is read when the program starts execution.

A.2.5 Electric Fence
Written by Bruce Perens, Electric Fence halts executing programs on the exact
line where a write or a read outside an allocation occurs.This is the only tool that
discovers illegal reads. It is included in most GNU/Linux distributions, but the source
code can be found at http://www.perens.com/FreeSoftware/.

15 0430 APPA 5/22/01 10:53 AM Page 265

266 Appendix A Other Development Tools

As with ccmalloc, your program’s object files must be linked with Electric Fence’s
library by appending -lefence to the linking command, for instance:

% gcc -g -Wall -pedantic malloc-use.o -o emalloc-use –lefence

As the program runs, allocated memory uses are checked for correctness.A violation
causes a segmentation fault:

% ./emalloc-use 12
Electric Fence 2.0.5 Copyright (C) 1987-1998 Bruce Perens.

Please enter a command: a 0 12
Please enter a command: r 0 12
Segmentation fault

Using a debugger, you can determine the context of the illegal action.
By default, Electric Fence diagnoses only accesses beyond the ends of allocations.To

find accesses before the beginning of allocations instead of accesses beyond the end of
allocations, use this code:

% export EF_PROTECT_BELOW=1

To find accesses to deallocated memory, set EF_PROTECT_FREE to 1. More capabilities
are described in the libefence manual page.

Electric Fence diagnoses illegal memory accesses by storing each allocation on at
least two memory pages. It places the allocation at the end of the first page; any access
beyond the end of the allocation, on the second page, causes a segmentation fault. If
you set EF_PROTECT_BELOW to 1, it places the allocation at the beginning of the second
page instead. Because it allocates two memory pages per call to malloc, Electric Fence
can use an enormous amount of memory. Use this library for debugging only.

A.2.6 Choosing Among the Different Memory-Debugging
Tools
We have discussed four separate, incompatible tools to diagnose erroneous use of
dynamic memory. How does a GNU/Linux programmer ensure that dynamic mem-
ory is correctly used? No tool guarantees diagnosing all errors, but using any of them
does increase the probability of finding errors.To ease finding dynamically allocated
memory errors, separately develop and test the code that deals with dynamic memory.
This reduces the amount of code that you must search for errors. If you are using
C++, write a class that handles all dynamic memory use. If you are using C, minimize
the number of functions using allocation and deallocation.When testing this code, be
sure to use only one tool at a one time because they are incompatible.When testing a
program, be sure to vary how the program executes, to test the most commonly exe-
cuted portions of the code.

Which of the four tools should you use? Because failing to match allocations and
deallocations is the most common dynamic memory error, use mtrace during initial
development.The program is available on all GNU/Linux systems and has been well
tested.After ensuring that the number of allocations and deallocations match, use

15 0430 APPA 5/22/01 10:53 AM Page 266

267A.2 Finding Dynamic Memory Errors

Electric Fence to find illegal memory accesses.This will eliminate almost all memory
errors.When using Electric Fence, you will need to be careful to not perform too
many allocations and deallocations because each allocation requires at least two pages
of memory. Using these two tools will reveal most memory errors.

A.2.7 Source Code for the Dynamic Memory Program
Listing A.2 shows the source code for a program illustrating dynamic memory alloca-
tion, deallocation, and use. See Section A.2.1,“A Program to Test Memory Allocation
and Deallocation,” for a description of how to use it.

Listing A.2 (malloc-use.c) Dynamic Memory Allocation Checking Example

/* Use C’s dynamic memory allocation functions. */

/* Invoke the program using one command-line argument specifying the
size of an array. This array consists of pointers to (possibly)
allocated arrays.

When the programming is running, select among the following
commands:

o allocate memory: a <index> <memory-size>
o deallocate memory: d <index>
o read from memory: r <index> <position-within-allocation>
o write to memory: w <index> <position-within-allocation>
o quit: q

The user is responsible for obeying (or disobeying) the rules on dynamic
memory use. */

#ifdef MTRACE
#include <mcheck.h>
#endif /* MTRACE */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

/* Allocate memory with the specified size, returning nonzero upon
success. */

void allocate (char** array, size_t size)
{
*array = malloc (size);

}

/* Deallocate memory. */

void deallocate (char** array)

continues

15 0430 APPA 5/22/01 10:53 AM Page 267

268 Appendix A Other Development Tools

{
free ((void*) *array);

}

/* Read from a position in memory. */

void read_from_memory (char* array, int position)
{
char character = array[position];

}

/* Write to a position in memory. */

void write_to_memory (char* array, int position)
{
array[position] = ‘a’;

}

int main (int argc, char* argv[])
{
char** array;
unsigned array_size;
char command[32];
unsigned array_index;
char command_letter;
int size_or_position;
int error = 0;

#ifdef MTRACE
mtrace ();

#endif /* MTRACE */

if (argc != 2) {
fprintf (stderr, “%s: array-size\n”, argv[0]);
return 1;

}

array_size = strtoul (argv[1], 0, 0);
array = (char **) calloc (array_size, sizeof (char *));
assert (array != 0);

/* Follow the user’s commands. */
while (!error) {
printf (“Please enter a command: “);
command_letter = getchar ();
assert (command_letter != EOF);
switch (command_letter) {

case ‘a’:
fgets (command, sizeof (command), stdin);
if (sscanf (command, “%u %i”, &array_index, &size_or_position) == 2

&& array_index < array_size)

Listing A.2 Continued

15 0430 APPA 5/22/01 10:53 AM Page 268

269A.2 Finding Dynamic Memory Errors

allocate (&(array[array_index]), size_or_position);
else
error = 1;

break;

case ‘d’:
fgets (command, sizeof (command), stdin);
if (sscanf (command, “%u”, &array_index) == 1

&& array_index < array_size)
deallocate (&(array[array_index]));

else
error = 1;

break;

case ‘r’:
fgets (command, sizeof (command), stdin);
if (sscanf (command, “%u %i”, &array_index, &size_or_position) == 2

&& array_index < array_size)
read_from_memory (array[array_index], size_or_position);

else
error = 1;

break;

case ‘w’:
fgets (command, sizeof (command), stdin);
if (sscanf (command, “%u %i”, &array_index, &size_or_position) == 2

&& array_index < array_size)
write_to_memory (array[array_index], size_or_position);

else
error = 1;

break;

case ‘q’:
free ((void *) array);
return 0;

default:
error = 1;

}
}

free ((void *) array);
return 1;

}

A.3 Profiling
Now that your program is (hopefully) correct, we turn to speeding its execution.
Using the profiler gprof, you can determine which functions require the most execu-
tion time.This can help you determine which parts of the program to optimize or
rewrite to execute more quickly. It can also help you find errors. For example, you
may find that a particular function is called many more times than you expect.

15 0430 APPA 5/22/01 10:53 AM Page 269

270 Appendix A Other Development Tools

In this section, we describe how to use gprof. Rewriting code to run more quickly
requires creativity and careful choice of algorithms.

Obtaining profiling information requires three steps:

1. Compile and link your program to enable profiling.

2. Execute your program to generate profiling data.

3. Use gprof to analyze and display the profiling data.

Before we illustrate these steps, we introduce a large enough program to make
profiling interesting.

A.3.1 A Simple Calculator
To illustrate profiling, we’ll use a simple calculator program.To ensure that the calcula-
tor takes a nontrivial amount of time, we’ll use unary numbers for calculations, some-
thing we would definitely not want to do in a real-world program. Code for this
program appears at the end of this chapter.

A unary number is represented by as many symbols as its value. For example, the
number 1 is represented by “x,” 2 by “xx,” and 3 by “xxx.” Instead of using x’s, our
program represents a non-negative number using a linked list with as many elements
as the number’s value.The number.c file contains routines to create the number 0, add
1 to a number, subtract 1 from a number, and add, subtract, and multiply numbers.
Another function converts a string holding a non-negative decimal number to a unary
number, and a function converts from a unary number to an int.Addition is imple-
mented using repeated addition of 1s, while subtraction uses repeated removal of 1s.
Multiplication is defined using repeated addition.The unary predicates even and odd
each return the unary number for 1 if and only if its one operand is even or odd,
respectively; otherwise they return the unary number for 0.The two predicates are
mutually recursive. For example, a number is even if it is zero, or if one less than the
number is odd.

The calculator accepts one-line postfix expressions1 and prints each expression’s
value—for example:

% ./calculator
Please enter a postfix expression:
2 3 +
5
Please enter a postfix expression:
2 3 + 4 -
1

1. In postfix notation, a binary operator is placed after its operands instead of between them.
So, for example, to multiply 6 and 8, you would use 6 8 ×.To multiply 6 and 8 and then add 5
to the result, you would use 6 8 × 5 +.

15 0430 APPA 5/22/01 10:53 AM Page 270

271A.3 Profiling

The calculator, defined in calculator.c, reads each expression, storing intermediate
values on a stack of unary numbers, defined in stack.c.The stack stores its unary
numbers in a linked list.

A.3.2 Collecting Profiling Information
The first step in profiling a program is to annotate its executable to collect profiling
information.To do so, use the -pg compiler flag when both compiling the object files
and linking. For example, consider this code:

% gcc -pg -c -o calculator.o calculator.c
% gcc -pg -c -o stack.o stack.c
% gcc -pg -c -o number.o number.c
% gcc -pg calculator.o stack.o number.o -o calculator

This enables collecting information about function calls and timing information.To
collect line-by-line use information, also specify the debugging flag -g.To count basic
block executions, such as the number of do-loop iterations, use -a.

The second step is to run the program.While it is running, profiling data is col-
lected into a file named gmon.out, only for those portions of the code that are exer-
cised.You must vary the program’s input or commands to exercise the code sections
that you want to profile.The program must terminate normally for the profiling file to
be written.

A.3.3 Displaying Profiling Data
Given the name of an executable, gprof analyzes the gmon.out file to display informa-
tion about how much time each function required. For example, consider the “flat”
profiling data for computing 1787 × 13 – 1918 using our calculator program, which is
produced by executing gprof ./calculator:

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
26.07 1.76 1.76 20795463 0.00 0.00 decrement_number
24.44 3.41 1.65 1787 0.92 1.72 add
19.85 4.75 1.34 62413059 0.00 0.00 zerop
15.11 5.77 1.02 1792 0.57 2.05 destroy_number
14.37 6.74 0.97 20795463 0.00 0.00 add_one
0.15 6.75 0.01 1788 0.01 0.01 copy_number
0.00 6.75 0.00 1792 0.00 0.00 make_zero
0.00 6.75 0.00 11 0.00 0.00 empty_stack

Computing the function decrement_number and all the functions it calls required
26.07% of the program’s total execution time. It was called 20,795,463 times. Each
individual execution required 0.0 seconds—namely, a time too small to measure.The
add function was invoked 1,787 times, presumably to compute the product. Each call

15 0430 APPA 5/22/01 10:53 AM Page 271

272 Appendix A Other Development Tools

required 0.92 seconds.The copy_number function was invoked only 1,788 times, while
it and the functions it calls required only 0.15% of the total execution time.
Sometimes the mcount and profil functions used by profiling appear in the data.

In addition to the flat profile data, which indicates the total time spent within each
function, gprof produces call graph data showing the time spent in each function and
its children within the context of a function call chain:

index % time self children called name
<spontaneous>

[1] 100.0 0.00 6.75 main [1]
0.00 6.75 2/2 apply_binary_function [2]
0.00 0.00 1/1792 destroy_number [4]
0.00 0.00 1/1 number_to_unsigned_int [10]
0.00 0.00 3/3 string_to_number [12]
0.00 0.00 3/5 push_stack [16]
0.00 0.00 1/1 create_stack [18]
0.00 0.00 1/11 empty_stack [14]
0.00 0.00 1/5 pop_stack [15]
0.00 0.00 1/1 clear_stack [17]

0.00 6.75 2/2 main [1]

[2] 100.0 0.00 6.75 2 apply_binary_function [2]
0.00 6.74 1/1 product [3]
0.00 0.01 4/1792 destroy_number [4]
0.00 0.00 1/1 subtract [11]
0.00 0.00 4/11 empty_stack [14]
0.00 0.00 4/5 pop_stack [15]
0.00 0.00 2/5 push_stack [16]

0.00 6.74 1/1 apply_binary_function [2]

[3] 99.8 0.00 6.74 1 product [3]
1.02 2.65 1787/1792 destroy_number [4]
1.65 1.43 1787/1787 add [5]
0.00 0.00 1788/62413059 zerop [7]
0.00 0.00 1/1792 make_zero [13]

The first frame shows that executing main and its children required 100% of the pro-
gram’s 6.75 seconds. It called apply_binary_function twice, which was called a total
of two times throughout the entire program. Its caller was <spontaneous>; this indi-
cates that the profiler was not capable of determining who called main.This first frame
also shows that string_to_number called push_stack three times but was called five
times throughout the program.The third frame shows that executing product and the
functions it calls required 99.8% of the program’s total execution time. It was invoked
once by apply_binary_function.

The call graph data displays the total time spent executing a function and its chil-
dren. If the function call graph is a tree, this number is easy to compute, but recur-
sively defined functions must be treated specially. For example, the even function calls
odd, which calls even. Each largest such call cycle is given its own number and is dis-

15 0430 APPA 5/22/01 10:53 AM Page 272

273A.3 Profiling

played individually in the call graph data. Consider this profiling data from determin-
ing whether 1787 × 13 × 3 is even:

0.00 0.02 1/1 main [1]

[9] 0.1 0.00 0.02 1 apply_unary_function [9]
0.01 0.00 1/1 even <cycle 1> [13]
0.00 0.00 1/1806 destroy_number [5]
0.00 0.00 1/13 empty_stack [17]
0.00 0.00 1/6 pop_stack [18]
0.00 0.00 1/6 push_stack [19]

[10] 0.1 0.01 0.00 1+69693 <cycle 1 as a whole> [10]

0.00 0.00 34847 even <cycle 1> [13]

34847 even <cycle 1> [13]
[11] 0.1 0.01 0.00 34847 odd <cycle 1> [11]

0.00 0.00 34847/186997954 zerop [7]
0.00 0.00 1/1806 make_zero [16]

34846 even <cycle 1> [13]

The 1+69693 in the [10] frame indicates that cycle 1 was called once, while the func-
tions in the cycle were called 69,693 times.The cycle called the even function.The
next entry shows that odd was called 34,847 times by even.

In this section, we have briefly discussed only some of gprof’s features. Its info
pages contain information about other useful features:

n Use the -s option to sum the execution results from several different runs.
n Use the -c option to identify children that could have been called but were not.
n Use the -l option to display line-by-line profiling information.
n Use the -A option to display source code annotated with percentage execution

numbers.

The info pages also provide more information about the interpretation of the
analyzed data.

A.3.4 How gprof Collects Data
When a profiled executable runs, every time a function is called its count is also incre-
mented.Also, gprof periodically interrupts the executable to determine the currently
executing function.These samples determine function execution times. Because
Linux’s clock ticks are 0.01 seconds apart, these interruptions occur, at most, every
0.01 seconds.Thus, profiles for quickly executing programs or for quickly executing
infrequently called functions may be inaccurate.To avoid these inaccuracies, run the
executable for longer periods of time, or sum together profile data from several execu-
tions. Read about the -s option to sum profiling data in gprof’s info pages.

15 0430 APPA 5/22/01 10:53 AM Page 273

274 Appendix A Other Development Tools

A.3.5 Source Code for the Calculator Program
Listing A.3 presents a program that calculates the value of postfix expressions.

Listing A.3 (calculator.c) Main Calculator Program

/* Calculate using unary numbers. */

/* Enter one-line expressions using reverse postfix notation, e.g.,
602 7 5 - 3 * +

Nonnegative numbers are entered using decimal notation. The
operators “+”, “-”, and “*” are supported. The unary operators
“even” and “odd” return the number 1 if its one operand is even
or odd, respectively. Spaces must separate all words. Negative
numbers are not supported. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include “definitions.h”

/* Apply the binary function with operands obtained from the stack,
pushing the answer on the stack. Return nonzero upon success. */

int apply_binary_function (number (*function) (number, number),
Stack* stack)

{
number operand1, operand2;
if (empty_stack (*stack))
return 0;

operand2 = pop_stack (stack);
if (empty_stack (*stack))
return 0;

operand1 = pop_stack (stack);
push_stack (stack, (*function) (operand1, operand2));
destroy_number (operand1);
destroy_number (operand2);
return 1;

}

/* Apply the unary function with an operand obtained from the stack,
pushing the answer on the stack. Return nonzero upon success. */

int apply_unary_function (number (*function) (number),
Stack* stack)

{
number operand;
if (empty_stack (*stack))
return 0;

15 0430 APPA 5/22/01 10:53 AM Page 274

275A.3 Profiling

operand = pop_stack (stack);
push_stack (stack, (*function) (operand));
destroy_number (operand);
return 1;

}

int main ()
{
char command_line[1000];
char* command_to_parse;
char* token;
Stack number_stack = create_stack ();

while (1) {
printf (“Please enter a postfix expression:\n”);
command_to_parse = fgets (command_line, sizeof (command_line), stdin);
if (command_to_parse == NULL)
return 0;

token = strtok (command_to_parse, “ \t\n”);
command_to_parse = 0;
while (token != 0) {
if (isdigit (token[0]))
push_stack (&number_stack, string_to_number (token));

else if (((strcmp (token, “+”) == 0) &&
!apply_binary_function (&add, &number_stack)) ||
((strcmp (token, “-”) == 0) &&
!apply_binary_function (&subtract, &number_stack)) ||
((strcmp (token, “*”) == 0) &&
!apply_binary_function (&product, &number_stack)) ||
((strcmp (token, “even”) == 0) &&
!apply_unary_function (&even, &number_stack)) ||
((strcmp (token, “odd”) == 0) &&
!apply_unary_function (&odd, &number_stack)))

return 1;
token = strtok (command_to_parse, “ \t\n”);

}
if (empty_stack (number_stack))
return 1;

else {
number answer = pop_stack (&number_stack);
printf (“%u\n”, number_to_unsigned_int (answer));
destroy_number (answer);
clear_stack (&number_stack);

}
}

return 0;
}

15 0430 APPA 5/22/01 10:53 AM Page 275

276 Appendix A Other Development Tools

The functions in Listing A.4 implement unary numbers using empty linked lists.

Listing A.4 (number.c) Unary Number Implementation

/* Operate on unary numbers. */

#include <assert.h>
#include <stdlib.h>
#include <limits.h>
#include “definitions.h”

/* Create a number representing zero. */

number make_zero ()
{
return 0;

}

/* Return nonzero if the number represents zero. */

int zerop (number n)
{
return n == 0;

}

/* Decrease a positive number by 1. */

number decrement_number (number n)
{
number answer;
assert (!zerop (n));
answer = n->one_less_;
free (n);
return answer;

}

/* Add 1 to a number. */

number add_one (number n)
{
number answer = malloc (sizeof (struct LinkedListNumber));
answer->one_less_ = n;
return answer;

}

/* Destroying a number. */

void destroy_number (number n)
{
while (!zerop (n))
n = decrement_number (n);

15 0430 APPA 5/22/01 10:53 AM Page 276

277A.3 Profiling

}

/* Copy a number. This function is needed only because of memory
allocation. */

number copy_number (number n)
{
number answer = make_zero ();
while (!zerop (n)) {
answer = add_one (answer);
n = n->one_less_;

}
return answer;

}

/* Add two numbers. */

number add (number n1, number n2)
{
number answer = copy_number (n2);
number addend = n1;
while (!zerop (addend)) {
answer = add_one (answer);
addend = addend->one_less_;

}
return answer;

}

/* Subtract a number from another. */

number subtract (number n1, number n2)
{
number answer = copy_number (n1);
number subtrahend = n2;
while (!zerop (subtrahend)) {
assert (!zerop (answer));
answer = decrement_number (answer);
subtrahend = subtrahend->one_less_;

}
return answer;

}

/* Return the product of two numbers. */

number product (number n1, number n2)
{
number answer = make_zero ();
number multiplicand = n1;
while (!zerop (multiplicand)) {
number answer2 = add (answer, n2);
destroy_number (answer);

continues

15 0430 APPA 5/22/01 10:53 AM Page 277

278 Appendix A Other Development Tools

answer = answer2;
multiplicand = multiplicand->one_less_;

}
return answer;

}

/* Return nonzero if number is even. */

number even (number n)
{
if (zerop (n))
return add_one (make_zero ());

else
return odd (n->one_less_);

}

/* Return nonzero if number is odd. */

number odd (number n)
{
if (zerop (n))
return make_zero ();

else
return even (n->one_less_);

}

/* Convert a string representing a decimal integer into a “number”. */

number string_to_number (char * char_number)
{
number answer = make_zero ();
int num = strtoul (char_number, (char **) 0, 0);
while (num != 0) {
answer = add_one (answer);
--num;

}
return answer;

}

/* Convert a “number” into an “unsigned int”. */

unsigned number_to_unsigned_int (number n)
{
unsigned answer = 0;
while (!zerop (n)) {
n = n->one_less_;
++answer;

}
return answer;

}

Listing A.4 Continued

15 0430 APPA 5/22/01 10:53 AM Page 278

279A.3 Profiling

The functions in Listing A.5 implement a stack of unary numbers using a linked list.

Listing A.5 (stack.c) Unary Number Stack

/* Provide a stack of “number”s. */

#include <assert.h>
#include <stdlib.h>
#include “definitions.h”

/* Create an empty stack. */

Stack create_stack ()
{
return 0;

}

/* Return nonzero if the stack is empty. */

int empty_stack (Stack stack)
{
return stack == 0;

}

/* Remove the number at the top of a nonempty stack. If the stack is
empty, abort. */

number pop_stack (Stack* stack)
{
number answer;
Stack rest_of_stack;

assert (!empty_stack (*stack));
answer = (*stack)->element_;
rest_of_stack = (*stack)->next_;
free (*stack);
*stack = rest_of_stack;
return answer;

}

/* Add a number to the beginning of a stack. */

void push_stack (Stack* stack, number n)
{
Stack new_stack = malloc (sizeof (struct StackElement));
new_stack->element_ = n;
new_stack->next_ = *stack;
*stack = new_stack;

}

/* Remove all the stack’s elements. */

continues

15 0430 APPA 5/22/01 10:53 AM Page 279

280 Appendix A Other Development Tools

void clear_stack (Stack* stack)
{
while (!empty_stack (*stack)) {
number top = pop_stack (stack);
destroy_number (top);

}
}

Listing A.6 contains declarations for stacks and numbers.

Listing A.6 (definitions.h) Header File for number.c and stack.c

#ifndef DEFINITIONS_H
#define DEFINITIONS_H 1

/* Implement a number using a linked list. */
struct LinkedListNumber
{
struct LinkedListNumber*

one_less_;
};
typedef struct LinkedListNumber* number;

/* Implement a stack of numbers as a linked list. Use 0 to represent
an empty stack. */

struct StackElement
{
number element_;
struct StackElement* next_;

};
typedef struct StackElement* Stack;

/* Operate on the stack of numbers. */
Stack create_stack ();
int empty_stack (Stack stack);
number pop_stack (Stack* stack);
void push_stack (Stack* stack, number n);
void clear_stack (Stack* stack);

/* Operations on numbers. */
number make_zero ();
void destroy_number (number n);
number add (number n1, number n2);
number subtract (number n1, number n2);
number product (number n1, number n2);
number even (number n);
number odd (number n);
number string_to_number (char* char_number);
unsigned number_to_unsigned_int (number n);

#endif /* DEFINITIONS_H */

Listing A.5 Continued

15 0430 APPA 5/22/01 10:53 AM Page 280

