
349
This is the Title of the Book, eMatter Edition

Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Appendix Aa

A
Conversion from Berkeley

Mail Format to Cyrus: Tools

The procedure for converting a set of users from traditional Unix (Berkeley for-
mat) mail to Cyrus was outlined in Chapter 9, Cyrus System Administration. In this
appendix, source code for the tools used in such a conversion is provided.

bsd2cyrus
bsd2cyrus is a Perl script, introduced in Chapter 9, that maps a set of users’
Berkeley-format mail folders into the Cyrus namespace. The output of the
bsd2cyrus script is used as input to other scripts that are used in converting users
from a Berkeley-style mail system to a Cyrus system. bsd2cyrus takes as input the
filename of a text file that contains a list of usernames. Example A-1 shows the
bsd2cyrus script.

For each user, get the user’s home directory from the passwd file and search for
the pathnames of all files under the user’s ~/mail directory. The find subroutine
pushes those files onto an array. Note that the files are all pushed onto a single
array, not an array per user—this is because we’re assuming that you’re convert-
ing a large batch of users all at one time and don’t need to do anything special on
a per-user basis.

Example A-1. bsd2cyrus

#!/usr/local/bin/perl
 eval 'exec /usr/local/bin/perl -S $0 ${1+"$@"}'
 if $running_under_some_shell;

require "find.pl";

$inputfile = "$ARGV[0]";
if (! $inputfile) { die "Usage: $0 inputfile\n"; }

350 Appendix A: Conversion from Berkeley Mail Format to Cyrus: Tools

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

open (DATA, $inputfile) || die "can't open $inputfile";
while (<DATA>) {
 chop;
 ($name,$pw,$uid,$gid,$quota,$cmnt,$gcos,$home) = getpwnam $_;
 next if $home eq "";
 &find("$home/mail");
}

close DATA;

The next lines narrow the list of files under the ~/mail subdirectory to folders that
contain mail content only. If your users store mail in directories named something
other than ~/mail, you should modify the script to look at those directories:

foreach (@folders) {

 ($user,$folder) = split(/:/,$_,2);

Before creating a mailbox on the Cyrus server, we have to check and make sure
that the BSD folder on the old system has RFC 822 content. In the bsd2cyrus
script, we assume that if the folder is any of the following:

• Directory

• Executable file

• Binary file

• Archive

• Empty file

then its content is not RFC 822. If you wish to use more or less stringent criteria—
we chose to keep this example simple to illustrate the concept—in practice, you
could also modify bsd2cyrus to log the skipped files, then go back and examine
them more closely at a later time. Speaking from our own experience converting
20,000 accounts from Berkeley format on a UW IMAP system to Cyrus IMAP, the
heuristic used in this example will handle 99.9% of “problem” mail folders. The
more common problem we encountered was users who stored their mail folders
in a non-standard place on the system, such as in their home directory, in system
“scratch” space, or in a hidden subdirectory.

 if (! rfc822($folder)) { next; }

 @tokens = split(/\//, $folder);
 $mailbox = $tokens[$#tokens];

 ## Sanity checks - earlier tests should have caught these.

 next if ($mailbox =~ /\.gz$/); # Skip gzipped files
 next if ($mailbox =~ /\.Z$/); # Skip compressed files
 next if ($mailbox =~ /^\./); # Skip hidden files

createfolders 351

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

You may recall from Chapter 6, Introduction to the Cyrus IMAP Server, that Cyrus
IMAP does not allow special characters, such as Unix shell metacharacters and
non-ASCII characters, in mailbox names. The rm_badchars subroutine handles
special characters by converting them into their ASCII representation in the new
mailbox name, preceded by an underscore:

 ## Replace "bad" characters with an underscore followed by
 ## the ASCII representation of the "bad" character.

 $mailbox = rm_badchars($mailbox);
 print "$user:user.$user.$mailbox:$folder\n";
}

sub wanted {
 (($dev,$ino,$mode,$nlink,$uid,$gid) = lstat($_)) &&
 -f _;
 if ($_ ne '.') { push @folders, "$user:$dir/$_"; }
}

sub rfc822 {

 my ($file) = @_;
 my ($rc) = 1;
 if (-d $file || -z $file || -B $file || -x $file) {
 $rc = 0;
 }
 return $rc;
}

sub rm_badchars {

 my ($mailbox) = @_;
 $mailbox =~ s/ /_040/g;
 $mailbox =~ s/\!/_041/g;
 $mailbox =~ s/\"/_042/g;
 $mailbox =~ s/\#/_043/g;

In this example, we omitted the remainder of the character translations, but in the
actual script, each character that is not allowed should have a statement in the rm_
badchars subroutine that translates it into its ASCII representation. After perform-
ing the translations, the new mailbox name is returned to the main program:

 return $mailbox;
}

createfolders
createfolders (shown in Example A-2) is a Tcl script that was used in Chapter 9 to
create empty Cyrus mailboxes. It takes bsd2cyrus ’s output as input. bsd2cyrus ’s
output contains the username, the pathname to a Berkeley-style mail folder, and

352 Appendix A: Conversion from Berkeley Mail Format to Cyrus: Tools

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

its mapping into the Cyrus namespace (i.e., the Cyrus mailbox name), but create-
folders uses only the Cyrus mailbox name.

inboxfer
inboxfer is a Perl script that was used in Chapter 9 to move messages from a Ber-
keley format inbox (e.g., /var/mail/johndoe) into a Cyrus inbox. The script (shown
in Example A-3) assumes that the Cyrus mailbox already exists and that formail is

Example A-2. createfolders

#!/usr/local/bin/cyradm -file
set inputfile [lindex $argv 0]

eval cyradm connect cyr_conn localhost imap
puts stdout "Connected to IMAP server. Authenticating..."

if [catch {eval cyr_conn authenticate -pwcommand {{
 set adminid cyrusadm
 set adminpw xxxxxxxx
 list $adminid $adminpw
}} } result] {
 puts stderr "$result (cleartext)"
 return -code error $result
} else {
 puts "Authentication successful."
}

$inputfile is a text file containing username, path to
Berkeley format folder, and corresponding Cyrus mailbox

if [catch {open $inputfile r} fileId] {
 puts stderr "Error: cannot open $inputfile"
} else {

 while {[gets $fileId line] >= 0} {

 ## The Cyrus mailbox is the second field in the input
 ## line (arrays are indexed starting with 0).

 set mailbox [lindex [split $line ":"] 1]

 if [catch {cyr_conn createmailbox $mailbox} result] {
 puts stderr $result
 } else {
 puts "Created mailbox $mailbox"
 }
 }
}

inboxfer 353

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

available on the machine where the script runs.* inboxfer takes the name of the
file containing usernames, one per line, as input.

The system call pipes the contents of the incoming mail folder into a formail com-
mand. The formail command splits the folder up into separate mail messages and,
in turn, pipes each mail message into another Perl script, cpmsg, for processing.
cpmsg is the script that actually copies the message into the Cyrus mailbox. cpmsg
is shown in Example A-4.

formail increments an environment variable, FILENO, each time it finds a new
message in the Berkeley folder. cpmsg takes advantage of the FILENO variable to
come up with a unique numbering scheme for the messages within a single Berke-
ley mail folder. The FILENO numbers are of the format NNN, padded with leading
0’s. Because Cyrus works with ordinal numbers followed by a “.”, cpmsg must
remove leading 0’s and add the “.” to make a valid Cyrus message filename.

Do not use inboxfer to copy mail into Cyrus mailboxes that already
contain mail!

* formail is part of the procmail distribution, available from http://www.procmail.org.

Example A-3. inboxfer

#!/usr/local/bin/perl

Purpose: Extract messages from /var/mail mailbox
and populate the Cyrus INBOX.

$scripts = "/home/cyrus/bin"; # Location of this script
$mailstore = "/var/spool/imap/user"; # Cyrus mailstore
$oldspool = "/var/oldmail"; # Old mail spool

$cmd = "/usr/local/bin/formail -n 20 -s $scripts/cpmsg";

$users = "$ARGV[0]";
if (!$users) { die "Usage: $0 $users\n"; }

open(USERS,"$users") || die "can't open $users";

while (<USERS>) {
 chop;
 $inbox = "$oldspool/$_";
 system("/usr/bin/cat $inbox | $cmd $mailstore/$_");
}

354 Appendix A: Conversion from Berkeley Mail Format to Cyrus: Tools

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

inboxfer always starts its numbering with “1.”. If messages in the mailboxes have
numbers between “1.” and the number of messages being copied, they will be
overwritten.

cpmsg takes the full path of the Cyrus mailbox as an argument (for example, the
full path to johndoe ’s INBOX on most Cyrus systems would be /var/spool/imap/
user/johndoe).

folderxfer
folderxfer is very similar to inboxfer except that, instead of a list of usernames, it
takes the output of bsd2cyrus as input and copies messages from Berkeley-format
mail folders into the corresponding Cyrus mailboxes. The folderxfer script is
shown in Example A-5.

Example A-4. cpmsg

#!/usr/local/bin/perl

This is to be called by formail. Formail calls this program
once for each mail message when called with the -s option.
E.g.:
cat mailbox.txt | formail -s thisscript.pl
##
maildir - Directory where the mail message is to be written.

$maildir = "$ARGV[0]";
if (!$maildir) { die "Usage: $0 $maildir"; }

Formail increments this number for each message.
The leading "0"'s must be removed (e.g. 001 becomes 1).

$filenum = ($ENV{FILENO} - 0) + 1;

open (OUTFILE,">$maildir/$filenum.");
while (<STDIN>) {
 chop;
 print OUTFILE "$_\015\012"; ## Add CRLF to each line!
}
close OUTFILE;

Example A-5. folderxfer

#!/usr/local/bin/perl

Purpose: Converts contents of Berkeley-format mail folders
to Cyrus mailboxes
##
Assumptions: (1) The root mailbox and empty Cyrus folder must
exist before conversion takes place.
##

batchreconstruct 355

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

batchreconstruct
batchreconstruct is a Perl script that runs the Cyrus reconstruct command on each
newly created Cyrus mailbox. It takes a filename or a list of usernames as input.
The batchreconstruct script is shown in Example A-6.

(2) Input has been checked for illegal characters
and files that do not contain mail content.
##
Input: A list containing the following information on each
line:
##
<username>:<cyrus-format folder name>:<BSD folder path>

$scripts = "/home/cyrus/bin"; # Location of this script
$mailstore = "/var/spool/imap/user"; # Cyrus mailstore
$cmd = "/usr/local/bin/formail -n 20 -s $scripts/cpmsg";

$folders = "$ARGV[0]";
if (!$folders) { die "Usage: $0 filename"; }

open (MB,"$folders") || die "can't open $folders";
while (<MB>) {

 chop;

 ## Be careful with this split - the last token might have
 ## whitespace we want to preserve.

 ($user,$cyrusfolder,$folder) = split(/:/,$_,3);
 @fields = split(/\./,$cyrusfolder);
 $cyrfol = $fields[$#fields];

 $cat = "/usr/bin/cat \"$folder\"";
 system ("$cat | $cmd '$mailstore/$user/$cyrfol'");
}
close MB;

Example A-6. batchreconstruct

#!/usr/local/bin/perl

chop ($whoami = `/usr/ucb/whoami`);
if ($whoami ne "cyrus") {
 die "You must be cyrus to run this script!\n";
}

$cmd = "/usr/cyrus/bin/reconstruct -r";
$users = "$ARGV[0]";
if (!$users) { die "Usage: $0 input_file\n"; }

Example A-5. folderxfer (continued)

356 Appendix A: Conversion from Berkeley Mail Format to Cyrus: Tools

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

open(MB,"$users") || die "can't open $users";
while (<MB>) {
 chop;
 system("$cmd user.$_");
}
close MB;

Example A-6. batchreconstruct (continued)

