In this chapter:

e What Is the Internet
Mail Model?

o Why Follow the
Internet Mail Model?

o Examples

The Internet
Mail Model

IMAP stands for Internet Mail Access Protocol. For much of the Internet email sys-
tem administrator community, it also stands for flexibility, speed, and power.
These attributes come from abilities like being able to store all a user’s mail cen-
trally, not demand that she store copies of it on each workstation from which she
wants to access her mail. IMAP users also store their mail in an arbitrary number
of server-side mailboxes, each of which they can move messages into or out of
with any IMAP client. When an IMAP user checks her mail, her client need only
download some of the header for each message, not the entire message. When
she sees messages in her index she wants to retrieve, she can decide which parts
of the 13-part message she wants to download, and which she doesn’t. These are
capabilities that no other standardized mail access protocol permits.

Before we dive into a more detailed discussion of IMAP, though, let’s talk about
Internet mail in general. Much of this discussion is a definition of terms. In defin-
ing those terms, however, we're discussing the language that is the bedrock of
Internet electronic mail.

What Is the Internet Mail Model?

The Internet Mail Model, like the Internet itself, is a collection of standardized
components all acting with a common goal. In the case of email, the goal is to
provide the framework for carrying electronic messages between one user and
another. Each of the end users may be on very different platforms. Their respec-
tive sites may have vast geographic, technological, and social differences. Those
differences demand that the framework be at once both robust and flexible. The
Internet’s email framework consists of agents, mailstores, and standards. It may
help you to reference Figure 1-1 as you read the chapter. The figure shows how
the agents, mailstores, and standards work together.

4 Chapter 1: The Internet Mail Model

Mail Server
-sj Mail Access (retrieve,
‘ Mail Transfer MTA ser‘l\';ﬁ:me L) l
| [7 (popd, imapd) Mail Access (store) “Se—"
MDA

MUA Mailstore MUA
Compose and
Encode Mail

Figure 1-1. Email cycle of life

The Agents (MUA, MTA, MDA)

The software programs that handle Internet messages are called agents. There are
three types of Internet messaging agents: the Mail Transport Agent (MTA), Mail
Delivery Agent (MDA), and Mail User Agent (MUA).

MTA

An MTA (Figure 1-2) is a program that transmits and receives messages between
messaging sites. The sending MTA accepts messages from end user client software
and transmits it to a receiving MTA. The receiving MTA receives messages from
the sending MTA, determines whether or not the recipient resides locally on the
receiving MTA (server) system, and then hands off the message for delivery. If the
message is destined for a user on the receiving MTA’s system, then the receiving
MTA hands the message off to a Message Delivery Agent (MDA) such as /bin/mail.
If the user is not on the local system, then the receiving MTA acts as a sending
MTA to pass the message on to the MTA on the remote system.

Figure 1-3 shows typical Internet message headers. Fach “Received” header line
represents transit through a separate MTA. MTAs do not touch the mailstore. They
delegate that work to the MDA.

MDA

The MDA is the trench soldier: the grunt of Internet messaging. All the MDA
knows is how to determine which local user the message is destined for and how
to put the message in the correct place in the mailstore. Actually, that's not quite
all the MDA knows. Some super-charged MDAs, such as Procmail, have vast delu-
sions of grandeur, but we’ll cover that later in the book. All that’s essential to
know right now is that the MTA hands the MDA each Internet message destined
for a local user and that the MDA is responsible for knowing where to place it in
the mailstore.

What Is the Internet Mail Model?

To anon9876@dragonslayer.org MTA

I
'
'
'
'
'
'
'
'
'
'
'
'
'
'

dragonslayer.org

anon9876@dragonslayer.com

*\ is not a local account on mailhost,

1 50 the message is handed off to
a remote MTA for delivery.

To johndoe@mailhost.rooster.net

f

MTA
johndoe has a local
account on mailhost, so
the MTA makes a local
delivery to johndoe's Mailstore
mailbox. /var/mail/johndoe

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
1

mailhost.rooster.net (MTA server host)

Figure 1-2. The MTA

From janedoe@acme.com Tue Jan 27 23:06:24 2000
Return-Path: <janedoe@acme.com>
Received: from mailhost.widget.com (mailhost.widget.com [12.9.120.1.1])
by workstation1.widget.com (8.8.7/8.8.7) with ESMTP id XAA25079
for <gpublic@workstation1.widget.com>; Tue, 27 Jan 2000 23:06:23 -0600 (CST)
Received: from acme.com (janedoe@fohnix.acme.com [192.245.137.2])
by mailhost.widget.com (8.8.8/.8.8.8) with SMTP id XAA09696
for <gpublic@widget.com>; Tue, 27 Jan 2000 23:10:53 -0600 (CST)
Received: by acme.com id AA27837
(5.67a/IDA1.5hp for gpublic@widget.com); Tue, 27 Jan 2000 23:10:49 -0600
From: janedoe <janedoe@acme.com>
Message-Id: <200001280510.AA27837@acme.com>
Subject: Re: 1/26/00 Meeting Notes
To: gpublic@widget.com
Date: Tue, 27 Jan 2000 23:10:48 -0600 (CST)
In-Reply-To: <200001271545.JAA24165@workstation1.widget.com> frOm "J.Q. Public" at Jan 27,
98 09:45:11 am
Reply-To: janedoe@acme.com
Return-Receipt-To: janedoe@acme.com
X-Mailer: ELM [version2.4 PL24]
Mime-Version: 1.0
Content-Type: text/plain; charset=US-ASCII

Content-Transfer-Encoding: 7bit

Figure 1-3. Typical Internet email message header

6 Chapter 1: The Internet Mail Model

MUA

As we've seen, the MTA, responsible for knowing how to route every conceivable
type of legitimate Internet message, is by far the most educated part of the mes-
saging model. The MDA is the hardest-working component. The MUA, on the
other hand, is charged with being the most glamorous part of the IMM frame-
work. The MUA is the interface between the MTA and the most unpredictable
component of the IMM: the user himself. Strictly speaking, the MUA retrieves mail
from the mailstore and sends new messages upstream to the MTA.

The MUA typically retrieves messages from the mailstore in one of three ways: by
using a mail access protocol like IMAP or POP, by using a remote file access pro-
tocol, or by accessing local files. In the case of IMAP and POP, the MUA function
is split between two pieces of software: the mail client and a corresponding server
process that mediates between the client and the mailstore using POP or IMAP
(see Figure 1-4).

The MUA functionality is frequently split up between the client and server

Mail Server

\
'
'
'
'
'
'
'
'

{ IMAP Server

Mailstore

N

Figure 1-4. MUA function

The Mailstore

The mailstore is the filing cabinet of the mail system. When a user receives a piece
of emalil, it’s deposited into his portion of the mailstore. To retrieve his email, he
uses an MUA to peer into the mailstore and view his messages. Not too long ago,
most mailstores consisted of a single text file per user containing the user’s mes-
sages concatenated together within that file. Today, mailstores are implemented in
a great variety of ways. The volume of email crossing the Internet has grown
meteorically, increasing the demand for more efficient and accessible ways of stor-
ing mail. Technologies like IMAP that permit hierarchical organization of the user’s
mail within his part of the server mailstore have resulted in products that abandon

What Is the Internet Mail Model? 7

the traditional flat file mailstore. Depending on your messaging product, your mail-
store may consist of a single file per message, or all the users at your site may
share a single high-performance database in which their messages are stored. The
Internet standards don’t address implementation details of the mailstore—its con-
cern is primarily with transport and format.

The Standards (RFC 822, MIME,
SMTP/ESMTP. POE IMAP)

Internet standards are defined in documents called Requests for Comments (RFCs).
The Internet Engineering Task Force (IETF) is a collection of working groups, each
of which is a collection of volunteers collaborating to define new RFCs for the
Internet or to revise existing ones. RFCs are the deliverable produced by the IETF
working groups. All IETF standards are RFCs, but not all RFCs are standards. Some
RFCs are experimental protocols, and some are commentaries on existing prac-
tices. Some are somewhat transparent attempts to publish proprietary methods and
convince the Internet community to embrace them as standards, and some (usu-
ally the ones published on April 1st) are wry bits of geek humor.

In this chapter, though, we skim through the standards that are germane to Inter-
net mail. We group these standards into several categories: formatting and encod-
ing mail, mail transfer, and mail access.

Formatting and encoding mail

RFC 822 (Standard)—Standard for the format of Internet text messages
This is the big kahuna. This RFC lies at the core of all Internet-based messag-
ing. It defines plaintext messages, which themselves consist of a header in a
common format, a single blank line, and a body. If ASCII is the DNA of Inter-
net messaging, RFC 822 messages are the chromosomes...or maybe the
cells...oh well.

RFC 2076 (Informational)—Common Internet Message Headers
RFC 822 defines a standard format Internet message header. RFC 2076 goes
into greater detail about the specific header lines, their purpose, and their indi-
vidual contents.

Multi-Purpose Internet Mail Extensions

The primary motivator for the creation of the working group that created
MIME was to support non-ASCII character sets necessary for email in lan-
guages other than English. A secondary motivator was a requirement for a
standard way to send attachments. Less important, but also a motivating fac-
tor, was the need for a standard way to send multimedia content. MIME came
about through the realization that a single solution could address all three
needs.

8 Chapter 1: The Internet Mail Model

Figure 1-5 shows how a graphics file might have been conveyed in days of yore,
alongside how it would probably be transported via MIME today. The figure
doesn’t really do justice to the benefits of MIME. With manual encoding, users
were usually stuck to just sending single files in their messages. With MIME, users
can send attachments containing any kind of data, of arbitrary length. MIME mes-
sages can point to files or other data outside the mail message. The only func-
tional limitation is that the MUA on each end must know how to handle the
particular MIME type. If you send an attachment to a colleague of type
application/postscript, and her mail client doesn’t know how to handle that type,
you’'ve gained little over manual encoding.

The core of MIME itself is set forth in five RFCs:

e RFC 2045 (Draft standard)—MIME Part 1: Format of Internet Message Bodies
e RFC 2046 (Draft standard)—MIME Part 2: Media Types

e RFC 2047 (Draft standard)—MIME Part 3: Message Header Extensions for Non-
ASCII Text

e RFC 2048 (Draft standard)—MIME Part 4: Registration Procedures
e RFC 2049 (Draft standard)—MIME Part 5: Conformance Criteria and Examples

Together, these RFCs define the mail headers, message structure, and data charac-
terization that should permit any computer file or data stream to be conveyed via
email without extraordinary demands on the intermediate mail gateways or the
receiving client.

MIME appeared on the scene before use of HTTP was widespread. Shortly after
MIME began being used, the Web became popular, and suddenly, people needed
to send URLs via email. Sending the URL to a file instead of the file itself is popu-
lar—instead of sending the file as an attachment, the user sends a pointer to the
file instead. Large mail attachments can be problematic. Many ISPs still use only
POP service and implement it in such a way that forces users to download all new
email without picking and choosing particular messages. Messages with large
attachments make downloading POP mail painfully time consuming. SMTP servers
often have size limits on messages they’ll accept (typically 10-20 MB per mes-
sage). If a message has a large attachment, it could be rejected by the SMTP
server. Sending the URL instead of the file itself gets around those problems. It’s
no wonder URLs are a popular way of conveying information stored in large files.

A common (much to the consternation of traditionalists) use for MIME nowadays is
to send two versions of your message: a lext/plain version and a text/btml version
with more formatting.

What Is the Internet Mail Model?

In the older unencoded message style, binary

content was converted to text using uuencode

or a similar utility. Frequently, encoding and

decoding was done manually and was usually

E:“J‘:‘SK‘L':”: ﬁmﬁ?gﬂ;;g’“‘ -0500 (CDT) limited to one binary attachment per message.

Message-Id: <200004021604.LAAO7441@mail.somepl\ USErS who exchanged files like this usually had
to be well acquainted with encoding and

To: kwm A L
Subject: Here's that random jpeg you wante decoding mechanics.

begin 600 randomfile.jpg
M_]C_X 02D9)1@ ! 0$!+ L #_ VPI#@&I@<&'0 IP<) '0@*#10-

M#ID28P\4'1H?'AT: 'IP@)"XG(" R<Y/3@R/'XS-
MVP'$ 0D)”0P+#'@ #1@ X

l--;--manv Iines of " MIME-capable mail clients
M "BBBBDILKILKY" aytomatically define unique
boundaries between disparate
attachments to multipart

<B@ HHHH ***

messages. MIME permits and
encourages attachments of /{ Ty

arbitrary number, content, and -G'u9 L -(CDT)
size.

end

.org>

Mime- Versmn 1.0
Content-Type: MULTIPART/MIXED; BOUNDARY="-559023410-851401618-954691569=:7451"
Staus: RO

MIME users would typically
only see this plaintext
message and an indication
that there was a binary
attachment to the message.

This message is in MIME format. The first part should be readable text,
while the remaining parts are likely unreadable without MIME-aware tools.
Send mail to mime@someSoftwarePlace.org for more info.

<559023410-851401618-954691569=: 7451
Qut-Type: TEXT/PLAIN; charset=US-ASCII

You did want this 1024x768x16M, right?
-KwM-

---559023410-851401618-954691569=: 7451

Content-Type: IMAGE/JPEG; name="randomfile.jpg"
Content-Transfer-Encoding: BASE64

-1D: <Pine.GS4.4.10.10004021106090.7451@somehost.somewhere.org>
tent-Description: This is the file, dude!

ent-Disposition: attachment; filename="randomfile.jpg"

A big strength of MIME is that
each attachment has a wealth of
attributes, including specific
details about file type and subtype
(IMAGE/JPEG), comments
from the sender, and other
attributes not used here. MIME
even permits you to send a
pointer to a file without sending
the file itself. Today, it's just as
easy to send someone a URL
pointing to a file, though, so that
feature isn't used much anymore.

\8#DA/4@804h32khsdgh8@3546556%434#" &askahhejhr
3#43@"127&*(&dshjkk&970dhj"jlk;/&98ZGjhg087D*//A
(*GDJKY8"&%""&$Dghh7896&689fgF* &62%fgh6&Z
hHjk8978HZ*)67GG7676hghj6("hghj686" gjhk$564Ws#
its of lines of base64 encoding deleted ---]
HGhgjooooAcKKKKKgggggHJJJjjhgGgggffFFHFJfihghGG
jkjkjjjahhddd KJKAGiiiiihh/jkjLLdIdjiyYYYYBHHHH/?JJjkjh

[

©559023410-851401618-954691569=: 7451--

Figure 1-5. Transport using MIME

10 Chapter 1: The Internet Mail Model

Mail transfer

The RFCs mentioned in the previous section provide the framework for the con-
struction of an email message. Now we need some standards for describing how
that message is conveyed upstream to other hosts on the Internet. The most
important of these is RFC 821: Simple Mail Transfer Protocol (SMTP). SMTP defines
how mail is transported from one place to another, whether that transport is from
your MUA to the MTA or between two MTAs. Figure 1-6 shows an example of a
typical SMTP conversation between an MUA and an adjacent MTA. There are addi-
tional RFCs that augment SMTP into what is frequently called Extended SMTP, but
RFC 821 remains the core standard defining Internet mail transport. A list of addi-
tional RFCs may be found at the Internet Mail Consortium site (bttp://www.imc.org).

Mail access

We've looked at standards for conveying mail to a server. We've seen yet other
standards specifying how the email should be formatted. It only stands to reason
that we now need standards for accessing and managing the mail in a mailstore.
POP and IMAP are two of those standards. Later, we’ll go into vivid detail about
the differences between IMAP and POP. A mail access protocol is a means by
which the mail client software may perform operations on messages that have
already made it to the mailstore. Note that we don’t just say “read” messages that
are in the mailstore. Although POP is a “read-heavy” protocol, IMAP permits users
to add messages to the mailstore, move them around, and change their attributes
or the degree of access other users have to them.

Why Follow the Internet Mail Model?

Unlike closed commercial mail systems, Internet messaging is defined by a series
of specifications that are free and open for all. Consequently, an Internet messag-
ing system can be built using a variety of products from several vendors, with
assuring that each product will interoperate with all the other products. This is
especially important because the open standards defining the Internet itself make
for a highly complex environment in which each component of a messaging
model must know what to expect of the others. Communication standardization is
the soul of the Internet.

The Internet repeatedly proves the fact that there is no problem so large that it
cannot be solved by the principle of “divide and conquer.” A browse through
some of the messaging-related RFCs from the early 1970s shows how early ARPA-
net” engineers struggled to send email back and forth. Early on, they relied on the

* Advanced Research Projects Agency network (R.I.P. 1970-1990).

Why Follow the Internet Mail Model?

The SMTP Client says: The SMTP Server says:

I've got some mail to send.
I'll connect to the SMTP

Say! Someone's talking to
server on port TCP/25.

me! | guess I'll say hello.

o ” | 220 server.somwhere.org SMTP
| =g Sendmail 8.9.3/8.9.3: Mon. 3 Apr2000 06:58:08 -0500

Hello back at you! My name is
client.somewhere.org.

HELLO client.somewhere.com

250-server. here.org Hello client. h
[10.11.210.4], pleased to meet you

1'd like to deliver a message from
kwm@client.somewhere.com
through you.

MAIL From:<kwm@client.somewhere.com>

Please deliver this message to
two addresses: kwm and
....... ‘secretrecipient’.

I'll accept mail for
RCPT To:<kwm@server.somewhere.org>>
RCPT To:<secretrecipie ver. here.org> both addresses.
250 <K ver. e.org>...R
250 <secretrecipit ver.

Cool! Let me know
when you're done.

354 Enter mail, end with "." on line by itself

Date: Sun, 2 Apr 2000 20:21:36 -0500 (CDT)

From: Kevin Mullet<kwm@client.somewhere.com>
Message-1d:<200004030121.UAA08102@client.somewhere.com>
To: kwm@server.somewhere.org

Subject: have some mail

Got it! I'll deliver it
as soon as | can.
Wahoo!

Gotta go now.

Figure 1-6. Under the hood with SMTP

12 Chapter 1: The Internet Mail Model

weak model embraced by many modern-day closed-source solutions: email as a
file-copying program. RFC 469 (circa 1973) kicks around the idea of an email infra-
structure based on passing files around using FTP. Even in those early discus-
sions, innovative ideas were alluded to, such as active links to other documents,
redirection to central document repositories,” permanent email archives, and con-
tent from arbitrary non-textual sources. Those ideas suggested the need for a hier-
archy of standards and protocols.

Before too long, however, the problem of how to best implement email was
divided and conquered. As we've seen, a special-purpose protocol (SMTP) was
developed exclusively for transport of the messages from one place to another.
Other protocols were developed for accessing the mail once it arrived at the desti-
nation mailstore (IMAP and POP). Standards were developed for the format of
messages themselves and for encapsulating the payload of those messages
(MIME). With the standards in hand, it was an entirely manageable task for the
various parts that make up Internet email to interoperate, because the means of
doing so was a widely discussed and published set of industry standards. System
administrators no longer needed to worry about whether or not the sendmail,
QMail, and Postfix MTAs would talk to each other. Nor did they need to concern
themselves with whether any IMAP-compliant client would be able to retrieve mail
from their UW IMAP, Cyrus, or proprietary IMAP server.

Now that we have a fair idea of what are the major components of Internet email
and why we have that model in the first place, let’s look a bit closer at some real-
world email transactions.

Examples

The stage is set, and now we’re ready to introduce the players.

Mail Routing

Think about what happens when mail is sent by a user on a PC using Netscape to
someone who uses the text-mode, Unix-based MUA, PINE. As seen in Figure 1-7,
the sender (Netscape user) sends the message by SMTP to the MTA running on the
sender’s ISP’s mail server. Once the mail arrives at the mail server, the MTA asks
the MDA to store the message in the local message store. When the recipient reads
his mail, he runs PINE on the mail server itself, which views his INBOX as a local
file. Although in the example, no network mail access protocol is involved while
reading the mail, you might think of the mail access protocol in this case as a way

* Sixteen years before the Web and 18 years before Gopher!

Examples 13

of converting the mail into something the client can understand. In those terms,
the mail access protocol can be thought of as being hardcoded in the client.

Netscape
Messenger

Mailstore

1
'
'
1

0O
o
\/

_________________ UW-PINE
! ISP Mail Server Mall Cllent

SMTP Session | ; Local File
: Q Access
, ' Methods

Figure 1-7. Mail routing example

Examples of Agents

An agent is a program that performs a task on behalf of a human user, either
directly at the human’s behest or indirectly under instruction from another agent.
Usually, a chain of agents work in concert to get the information from its point of
origin to its intended destination. Unlike the previous examples, Internet email
agents perform their duties in the open and usually with the full consent and sup-
port of all the participants. Here are some examples of some of the more popular
Internet email agents. We’'ll go into more detail about some of these later, but it’s
always good to solidify theory with some real-world examples as soon as possible.

MTAs

Any discussion of Internet MTAs could also easily be entitled “Sendmail and some
alternatives.” The old slogan that “nobody ever got fired for buying IBM” could be
adapted equally well to sendmail. Leave it to the Internet community, though, not
to leave well enough alone. Recently, viable contenders have come onto the
scene, such as Qmail and Postfix.

sendmail is to email what the Internet is to networking. The genesis of sendmail
was Eric Allman’s Delivermail, which he wrote to connect ARPAnet email to
numerous other networks’ email. As demands for routing more types of email

14 Chapter 1: The Internet Mail Model

were made of Delivermail, Allman rewrote it to be much more flexible and user-
configurable, and sendmail was born. The ever-increasing flexibility acquired in the
twenty-plus-year history of sendmail has come at the price of a complex interface.

Both Qmail and Postfix represent the strategy of performing the MTA mission with
many smaller utilities, each of which carries out a narrow part of the MTA func-
tion rather than using one larger piece of software. Each has arguably resulted in a
system with more straightforward configuration at the expense of a greater degree
of process complexity. Both lay claim to being able to transit a bodacious number
of messages using a ridiculously small amount of hardware. Which one you’re
likely to prefer is probably one of those coffee or tea propositions where you’ll
just have to try each and see which you like better.

We'll go into more detail about MDAs and MUAs later, but let’s briefly touch on
some of them.

MDAs

As the agent that actually places the email in the user’s mailbox, the MDA is prob-
ably one of the most often used programs on your mail server. While a single MTA
process could handle a large amount of mail bound for one site or a large num-
ber of messages from one process, each MDA process usually lives and dies for
the processing of a single message.

Examples of MDAs include /bin/mail, /usr/lib/mail.local, procmail, and Cyrus
deliver. Fach of these programs takes an RFC 822—formatted message on standard
input and delivers it to a mailbox. In the case of procmail, however, a mailbox
could be local or remote, so procmail is one of those examples that could be
either an MDA, an MUA, or both, depending on the nuances of how it's used.

MUAs

As the frontend to the mail system, the MUA is the highest-profile element in the
chain of elements between each Internet email sender and recipient. Ironically, the
failure of the MTA or MDA has much greater impact than the failure of a single
MUA.

PINE, Eudora, Microsoft Outlook, Netscape Messenger, and Mulberry are all MUAs.
Additionally, even sendmail and imapd can be considered MUAs. sendmail is fre-
quently used as an MUA to generate messages programmatically. If you were to
fire off a sendmail process as shown below, you would be running sendmail as an
MTA. The following command starts sendmail running as a daemon and tells it to
process the queue every 15 minutes:

% /usr/lib/sendmail -bd -gl5m

Examples 15

If, however, you fired off a sendmail process as follows, you would be using
sendsmail as an MUA:

% echo "Subject: Hey you!"|/usr/lib/sendmail -v kwmullet@yahoo.com
kwmullet@yahoo.com... Connecting to mxl1.mail.yahoo.com. via esmtp...
220 mta220.mail.yahoo.com ESMTP

>>> EHLO security.unt.edu

250-mta220.mail.yahoo.com

250-PIPELINING

250 8BITMIME

>>> MAIL From:<kwm@security.unt.edu>

250 ok

>>> RCPT To:<kwmullet@yahoo.com>

250 ok

>>> DATA

354 go ahead dd

>>> .,

250 ok dirdel

kwmullet@yahoo.com... Sent (ok dirdel)

Closing connection to mx1.mail.yahoo.com.

>>> QUIT

221 mta220.mail.yahoo.com

%

In addition, each time you use your MUA to connect to an IMAP server, you cre-
ate an IMAP process on the server exclusively to service the IMAP requests
between your MUA and the mailstore. That process is also considered part of the
MUA—a server-side MUA. To further distinguish between the server and the client
side of the MUA, let’s refer to the client side as the MUA and the server side as the
Mail Access Agent.

We'll have plenty of details later about MUAs and MDAs. We won’t have so much

information about MTAs, because they’re “SMTP plumbing” in the scope of this
book.

