In this chapter:

o Why Store Client
Configurations
on a Server?

o IMSP, ACAP, or

LDAP?
o IMSP
* ACAP

Remote
Configuration
Storage

Two protocols that complement IMAP, both with roots in the academic world, are
the Application Configuration Access Protocol (ACAP) and the Internet Message
Support Protocol (IMSP). Both protocols are used for storing user preference and
address book information on a remote server, encouraging Internet desktop
ubiquity.

Web sites that were once search engines are now calling themselves “portals.”
What makes a search engine a portal is that what used to present the same
resources to all users is now personalized with customized email, scheduling,
remote bookmarks, and address book functions.

Remote configuration is all part of a push to make the Internet less tied to a spe-
cific physical location, whether to your desk at work, your PC at home, or the
notebook in your briefcase. As personalization spreads to more Internet applica-
tions, the ponderousness of Internet software and operating systems should
decrease. The piece that makes thin client computing work is the ability to do any-
thing anywhere. Remote configuration and personalization make that possible.

Why Store Client Configurations
on a Server?

Your site may benefit from centralized configuration management. It certainly
makes sense for users who want to access their email from more than one place,
especially those who use shared computers. Finally, because we’ve all learned the
hard lessons of the total cost of ownership for the PC on the desktop, centralized
configuration management makes fiscal sense, too.

307

308 Chapter 17: Remote Configuration Storage

Benefits of Centralized Configuration Storage

The lighter Internet applications become, the more likely they are to depend on
having preferences stored in a central location. Here are some examples of envi-
ronments that benefit from centralized user preference management:

General access computer labs
Users who read email in general access computer labs want the same email
preferences regardless of which workstation they happen to be using on a
given day. Those users probably don’t want the hassle of carrying their email
preferences around on a floppy disk.

Mobile computing environments
Mobile users have more than one computer, usually an office computer, a
home computer, and a laptop. Sometimes the laptop is checked out at ran-
dom from a pool of laptops. Mobile users don’t have the time to change pref-
erences every time they change computers, nor do they want to carry the
preferences around on a disk and risk losing the disk.

In-bouse computer hardware shops and value-added resellers

Shops that distribute large numbers of machines could set up machines to
grab a generic email client configuration over the network. That configuration
would customize the email client for the site, cutting down on the amount of
work required on the part of the end user. DHCP is used in the same way,
permitting many sites to release end users from having to configure their
machine for a particular set of IP parameters. ACAP and IMSP permit users to
instantly become familiar and comfortable with a possibly unfamiliar MUA.

Environments that have a centralized backup strategy
By storing user preferences in a central location, it’s easy to back up and
restore your users’ preferences without any complex changes to your infra-
structure.

Environments that support use of PDAs

Users often want the same email options on their PDAs (Personal Digital Assis-
tants) as on their full-size computers. PDAs and sub-notebooks usually have
no floppy drive, and alternatives to floppies (such as flash ROM) are very
small (easy to lose) and expensive. Such devices do have the ability to con-
nect to the network and download preferences from an Internet-accessible
database. The ability to download preferences is also a very attractive option,
given the limited local storage on PDAs.

Essentially, remote profile storage with IMSP or ACAP adds even more value to the
enterprise infrastructure than it does to an individual’s productivity. The amount of
individual effort saved by central profile storage is a convenience at best. The

IMSP, ACAP, or LDAP? 309

amount of effort saved by central IT support facilities is potentially huge. As the
amount of hands-on support required for each machine diminishes, so does the
total cost of ownership.

Much to the amusement of longtime central computing types, the desktop com-
puter has proved to be one of the most expensive means of getting computing to
the people. Although the entry cost might be low, the sluggishness of some desk-
top operating systems has exponentially increased the amount of legwork and
end-user machine customization necessary to support each application, as well as
baseline system stability.

IMSE ACAR or LDAP?

If centralized user preference management were thought of as a nail, not every-
one would agree what kind of hammer is needed. Two come to mind: IMSP and
ACAP. One doesn’t: LDAP.

There are a couple of reasons why LDAP doesn’t really fit here. The lesser of the
two is that LDAP is tuned to perform best in a read-intensive environment. ACAP,
on the other hand, is designed to work in a mixed read/write environment, such
as one where users are constantly updating preferences.

But the greater of the two reasons is that the structure of a user’s configuration
information, such as bookmarks and addresses, is defined by the administrator
under LDAP and is static. Under ACAP, the ordering is determined by the user and
can be changed on the fly. LDAP is a good fit for enterprise-wide information; it’s
not necessarily a good fit for email preferences storage, because each user tends to
cultivate a very personalized directory of their own.

Users are likely to use LDAP-based services for tasks like finding someone’s email
address. Once they find it, however, they're likely to want to store it in their own
address book, so they can make it meaningful in ways that are not supported in
LDAP, such as:

e Tying the address to an easier-to-type nickname
e Taking advantage of auto-completion in their client
¢ Adding additional information that wouldn’t necessarily be germane to a cen-

tral directory, such as notes from the last meeting, private telephone numbers,
names of spouse and children, etc.

Briefly put, ACAP is remote configuration management for the people. Table 17-1 is
a brief comparison of the features of IMSP, ACAP, and LDAP. The table boils down
many of the issues central to choosing a user preference management protocol.

310 Chapter 17: Remote Configuration Storage

LDAP is weak in the area of per-user attribute storage and client-defined attributes,
but IMSP and ACAP are strong in this regard. With its server-side searching and
large datasets, ACAP seems much more scalable and flexible than its earlier coun-
terpart, IMSP.

Table 17-1. Comparison of IMSP, ACAP, and LDAP

Feature IMSP | ACAP | LDAP
Optimized for read and write performance v v X
Data can be written by the client v v v
Server-side searching X v v
Supports large datasets X v

Supports disconnected use v v Xa
Supports client-defined attributes v v X
Open standard (non-proprietary) v v v
Supports ACLs (access control lists) Ve v v
Supports per-user authentication v v v
Supports per-user storage of information v v v
Supports hierarchical organization of information by the user X v X

a LDAP doesn’t support disconnected mode in the sense that we're using in this book, but LDAP does
nicely support the multitier equivalent of disconnected mode, where subsets of a directory/database are
delegated to second- or third-tier LDAP servers. If those servers become disconnected from the top-level
LDAP server, they queue up their transactions until the connection is restored.

Keep in mind also that, with traditional directory services, the protocols are
designed to give the administrator a great amount of control. In IMSP and ACAP,
the data is usually owned by the user, and the protocol is designed to give the
control to the user. Users have the freedom not only to edit their data directly via
their client, but to create hierarchies and move data around in the hierarchy, much
the way they do when the data is stored on the local hard drive.

To quote Matt Wall, former manager of Project Cyrus and co-founder of Cyrusoft,
Inc., on IMSP and ACAP: “We believe in the concept of ‘the right tool for the right
job’. We have no love for reinventing the wheel, but in researching the available
options in the context of Project Cyrus, we discovered this particular type of preci-
sion screwdriver. Trying to get one of these other protocols [to work for remote
preference storage] is like using a heavy-duty hammer or a wrench to get this par-
ticular screw attached.”

Having narrowed our choices down to IMSP and ACAP, let’s look at each in more
detail.

IMSP 311

IMSP

IMSP is an Internet protocol that allows application programs to store program
options and user information—such as personal and shared address books—on a
remote network server. IMSP thus provides retrieval of client configuration infor-
mation, which is traditionally stored on local disk, from anywhere on the network.

The original IMSP specification was written by members of the Project Cyrus team
at CMU. The first IMSP server was released in 1994, also by CMU. Development of
IMSP ceased in 1995, when it became evident that there was a need for a protocol
to store client preferences that applied to other types of Internet applications, not
just email. At that point, IMSP was reengineered and renamed Application Config-
uration Access Protocol (ACAP). ACAP is discussed later in this chapter. IMSP
never made it into the standards track; its status is that of “experimental draft.”
Despite its experimental status, IMSP is still alive and well, in use in production
environments at over 1,000 sites, with more than one million end users. Because
there are still very few ACAP-capable MUAs and ACAP servers, IMSP is still a good
option for email client configuration storage. There are both stable IMSP clients
and servers, and the protocol has been proven to work.

IMSP Specification

The IMSP Internet Draft is available from CMU at bttp.//asg.web.cmu.edu/cyrus/rfc/
imsp.btml.

Cyrus IMSP Server

The recommended IMSP server is the CMU'’s freely available Cyrus IMSP server,
Version 1.6al. Despite the alpha release number, that release of the server has
been tested over time and proven stable.

Where to get IMSP

The location of the server source distribution is fip:/fip.andrew.cmu.edu/pub/
cyrus-mail/cyrus-imspd-v1.5a6.tar.gz.

How to install and configure IMSP

In an appropriate directory, unpack the source distribution:

% zcat cyrus-imspd-vl.5a6.tar.gz | tar xvf -

312 Chapter 17: Remote Configuration Storage

Next, compile the sources and install the software. IMSP installs under /usr/local
by default. There are configuration options, such as authentication method, that
you may want to specify explicitly. To see the possible options, run configure
——help:

% ./configure -with-login=unix shadow
% make all
make install

Once IMSP is built and installed, there is some post-installation configuration you’ll
need to complete. First, create a directory where IMSP will store its data files:

mkdir /var/imsp

Next, edit /etc/services and add an entry for IMSP. The line in /etc/services should
look like this:

imsp 406/tcp # Internet Message Support Protocol

IMSP has a single global configuration file (Vvar/imsp/options) and an individual
user options file for each user. User options are stored under /var/imsp/user/
username/.

Set up a global IMSP options file. As a start, copy the options.sample that is pro-
vided with the IMSP distribution to the data directory:

cp options.sample /var/imsp/options
IMSP options are specified as attribute-value pairs with optional flags: attribute
[flag] value. Possible flags include:
R Read-only attribute

N Read-only attribute; invisible to users, and used for options that pertain to
administrators only

W Writable attribute; the value can be changed by the client and saved in the
user’s personal options file

Add the following line to allow users to automatically create a new personal
options directory, if the directory does not already exist:

imsp.create.new.users N +

The following lines are other entries that are commonly found in the global IMSP
options file:

common.date R Current date and time
common.delivery.hosts R smtp.blah.edu Local SMTP host
common.sent.mailbox R (INBOX.sentmail) Default sent mail folder name
common.domain R yourdomain.edu Local mail domain
imsp.admin.all N (johndoe) IMSP administrative user
imsp.user.quota r 2048 Quota on user options

With all that done, you’re now ready to run IMSP.

IMSP 313

How to run IMSP

The Cyrus IMSP server runs as a standalone daemon and listens for requests on
port 406. To start the IMSP server, type the command:

./imspd

To test IMSP, telnet to the IMSP port and type in the commands shown in the fol-
lowing example session. If you get the response OK at startup and on login, then
everything’s working fine:

% telnet localhost imsp

Trying 127.0.0.1...

Connected to localhost.

Escape character is '"]'.

* OK Cyrus IMSP version 1.5a6 ready

001 login johndoe ooooook

001 OK user johndoe logged in

001 logout

Getting belp

The Cyrus IMSP server is supported on the info-cyrus mailing list. To subscribe to
the list, send a message with the text “subscribe info-cyrus” to info-cyrus-
request@andrew.cmu.edu. An archive of the info-cyrus list is also available, and
it's a good idea to check the archive before posting questions to the list. To view
the archive, point your IMAP client to cyrus.andrew.cmu.edu. Use anonymous as
the username and your email address as your password. The name of the folder is
archive.info-cyrus.

Cyrusoft’'s “The Cyrusoft Guide to IMSP” is useful to refer to when configuring
IMSP options, and it has information on how to serve up global address books via
IMSP. To retrieve a copy of the Guide, visit bttp://www.cyrusoft.com/suppori/faq/
mulbpapers.html.

IMSP Clients

Two IMAP clients support IMSP: Cyrusoft’s Mulberry and MessagingDirect’s Exec-
mail. Cyrusoft’s SilkyMail, a webmail IMAP client, also supports IMSP. IMSP sup-
port is planned for a future release of MessagingDirect’'s Webmail client: Execmail
Web. In fact, the combined popularity of IMSP and web-based email has driven
the development of an IMSP client library to be released soon as part of the PHP
distribution.”

* PHP (bttp://www.pbp.net/) is a server-side scripting language for creating dynamic web pages and is
used in several popular web-based IMAP clients.

314 Chapter 17: Remote Configuration Storage

ACAP

ACAP is an Internet protocol used by client programs to store and retrieve client
program information, such as bookmarks, address books, and program prefer-
ences. ACAP provides more than just access to preferences from many locations; it
can also provide access from any Internet application—not just email clients.

Like IMSP, ACAP is not a directory service, but rather, a protocol with a different
purpose. ACAP is intended to work in harmony with directory services, not in
competition with them. ACAP fills the niche between a directory service, like
LDAP, and a limited-service support protocol like IMSP. ACAP, in fact, offers some
specialized functions that directory services do not support:

Remote storage of email account data
It's becoming more and more common for Internet email users to have more
than one mail account (e.g., an account at work and an account at home on
an ISP). Users access multiple accounts from the same machine and/or access
the same accounts from different machines. They may also use more than one
program that requires email account configuration information. ACAP sup-
ports the storage of email account data.

Remote storage of bookmarks
Storing bookmark URLs is common in Internet applications such as web
browser and FTP clients. Users need to access the same bookmarks from dif-
ferent client programs and from different machines. ACAP supports synchroni-
zation of bookmarks between multiple applications and systems, and even
allows sharing a single bookmarks list between users.

Remote storage of roles
It has become common for Internet mail users to receive and compose email
in the capacity of different roles, or “personalities.” For example, a user might
use one email personality at work to communicate with colleagues and a dif-
ferent identity at home to communicate with friends and family. ACAP pro-
vides a way to store email composition preferences.”

Remote storage of a common MOTD
ACAP supports remote storage and access of a “Message of the Day” greeting,
used by system administrators to communicate important information to all
users when they begin to use a system. This is particularly useful to system
administrators who manage black box systems where users do not log in
directly to a shell account, and thus do not see the traditional Unix “motd.”

* We've seen a case where LDAP was used to support several “roles” per user, and the workaround (or
more accurately, “kludge”) was to assign each user a username to go with each identity.

ACAP 315

Remote storage of the mailboxes dataset
This use lets you separate the information about the mailboxes from the mail-
boxes themselves. Clients and servers that used ACAP in this manner would
keep lists of mailboxes, their new message and other status, and even infor-
mation about which server on which they exist in a dedicated database,
wholly separate from the mailboxes themselves.

ACAP, part of CMU’s Project Cyrus initiative, evolved from IMSP. IMSP is very suc-
cessful in its purpose, which is to store limited email client configuration options.
It became evident once IMSP achieved widespread use, however, that there was a
need to apply the underlying fundamentals of IMSP to other types of Internet cli-
ents, rather than just email. More generalized Internet preference storage was an
idea whose time had come. In January 1998, the ACAP RFC was published, fol-
lowed quickly by the initial release of the Cyrus ACAP server two months later.

Like IMAP itself, anyone implementing ACAP will find it's quite a moving target.
The Cyrus ACAP server, for example, is the grand dame of ACAP servers, and has
undergone a multiplicity of face-lifts since its initial release.

ACAP Specification

The ACAP specification is available from the IETF in RFC 2244 (btip.//ietf-org/rfc/
rfc2244.txt).

ACAP-related RFCs and drafts

The strength of a good Internet protocol lies not only it its evolution as a stan-
dard, defined in an RFC, but also in its extensibility. Like Telnet, IMAP, and SNMP
MIBs, ACAP is a popular standard for which to write and implement useful exten-
sions. Here’s an overview of some of the more important ones.

The ACAP Dataset Model Internet Draft (http.//ietf.org/internet-drafts/drafi-ietf-
acap-dataset-model-01.tx0), primarily intended for developers of ACAP clients,
provides guidelines on how to design and access ACAP datasets and explains the
relationship between ACAP attributes, entries, datasets, and dataset classes.

The ACAP Bookmarks Dataset Class Internet Draft (hip.//ietf.org/internet-drafts/
drafi-ietf-acap-book-02.tx1) defines a standard ACAP dataset class for storing book-
mark URLs.

The ACAP Email Account Dataset Class Internet Draft (hiip.//ietf.org/internet-drafits/

draft-ietf-acap-email-02.txt) defines a standard ACAP dataset class for email
accounts and a common option for indicating a default email account.

The ACAP Email Personality Dataset Class Internet Draft (btip://ietf.org/
internet-drafts/drafi-ietf-acap-pers-02.ixt) defines a standard ACAP dataset class for

316 Chapter 17: Remote Configuration Storage

outgoing email identities (also known as roles or personalities) and a common
option for indicating a default.

The ACAP Message of the Day Dataset Class (bttp.//ietf.org/internet-drafts/drafi-
ietf-acap-motd-dataset-00.txt) describes a common format for storing MOTD infor-
mation in ACAP. It explains how site administrators may configure their ACAP
MOTD service to allow multiple groups within the site to provide custom MOTD
information and how a client should access and use this information.

Cyrus ACAP Server

The CMU developed the first, and the first free, ACAP server. It continues to be the
benchmark ACAP server and is a great choice for those who want to dive into
ACAP.

Where to get ACAP

The latest version of CMU’s Cyrus ACAP server is available at fip./fip.andrew.cmu.
edu/pub/cyrus-mail/. At the time of this writing, the latest version is Version 0.3.
Cyrus ACAP is available in both source and binary (Solaris and Linux) distributions.

Cyrus ACAP 0.3 has several dependencies:

CMU SASL
CMU acapd requires CMU’s SASL library (fip./fip.andrew.cmu.edu/pub/cyrus-
mail/cyrus-sasi-1.5.5.tar.gz) for authentication.

SML/NJ
The backend of the Cyrus ACAP server is written in SML, a high-level pro-
gramming language. SML/NJ (Standard ML/New Jersey implementation) is Bell
Labs’ SML compiler. Version 110.0.6 of SML/N]J is recommended. SML/NJ is
available at fip.//fip.research.bell-labs.com/dist/sminj/velease/110/. Note that if
you're installing a binary distribution of Cyrus ACAP, you don’t have to install
SML/NJ.

GNU Make
The ACAP documentation recommends using GNU Make (fip:/fip.gnu.org/
gnu/make/).

How to install and configure ACAP

The instructions outlined here are for installation from the source distribution.

You should have GNU Make, SML/NJ, and SASL installed on your system before
installing ACAP. Make sure the sm/ binary is in your path so that the configure
script will detect it. Unpack the ACAP source distribution.

% zcat cyrus-sml-acapd-0.3.tar.gz | tar xvf -

ACAP 317

Run the configure script, make, and make install to install acapd on your system.”
The default install prefix is /us/local/.

% ./configure
% make
make install

If ACAP is not defined in your /etc/services file, then add the following line:
acap 674/tcp # Application Configuration Access Protocol

Add the following line to /etc/inetd.conf, then restart inetd:
acap stream tcp nowait root /usr/cyrus/bin/frontend frontend

Create the ACAP directories:

mkdir /var/acap
mkdir /var/spool/acap

Then finally, start the backend ACAP process:

cd backend
backend-acapd &

How to use ACAP

The Cyrus ACAP server runs as a standalone daemon and listens for requests on
port 674. To start the ACAP server, type the command:

cd backend
backend-acapd &

To test ACAP, telnet to the ACAP port and type in a few commands, as shown in
the following example session. If you get the response * at startup, then every-
thing’s working fine:

% telnet localhost acap

Trying 127.0.0.1...

Connected to localhost.

Escape character is '"]'.

* Acap (Implementation "SML Frontend, Carnegie Mellon Project Cyrus") (Context
Limit "100") (Sasl "PLAIN" "ANONYMOUS")
0 AUTHENTICATE "ANONYMOUS" "johndoe"

0 Ok "Welcome"

1 LOGOUT

* BYE "have a nice day"

1 OK "LOGOUT completed"

Connection closed by foreign host.

* We found an error in the Makefile. After running configure, you may need to add the following line to
the beginning of the “install” target: @for d in $(SUBDIRS); \.

318 Chapter 17: Remote Configuration Storage

Where to get belp

The info-cyrus mailing list is the best place to go for technical questions about the
Cyrus ACAP server. To subscribe to the list, send a message with the text “sub-
scribe info-cyrus” to info-cyrus-request@andrew.cmu.edu. An archive of the info-
cyrus list is also available, and it’s a good idea to check the archive before posting
questions to the list. To view the archive, point your IMAP client to cyrus.andrew.
cmu.edu. Use “anonymous” as the username and your email address as your pass-
word. The name of the folder is archive.info-cyrus.

ACAP Clients

The following clients currently include support for ACAP:
e Cyrusoft’s Mulberry
e MessagingDirect’s Execmail 5.0

e Qualcomm’s Eudora Pro

University of Washington plans to add ACAP support to a 4.x release of the popu-
lar PINE email client, but it had not been added as of Version 4.20.

