
261
This is the Title of the Book, eMatter Edition

Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 14

In this chapter:
• What’s a Dedicated

Server?
• Account Provisioning
• Mission Restriction
• The Ultimate in

Dedicated Servers

14
Running a

Dedicated Server

In this chapter, we’ll discuss some of the motivations and challenges associated
with running a dedicated IMAP server.

What’s a Dedicated Server?
One of Unix’s greatest strengths can also turn into a weakness. Just because you
can provide a multitude of dissimilar services on a single server doesn’t mean you
should. Reduce the total number of services you offer on one server to one or
two, and you may increase manageability, robustness, and security several-fold.
On your mail server, this could directly translate to happier end users.

The goal of a dedicated server is to minimize administration and maintenance
overhead while maximizing the performance of the service to which the server is
dedicated. Then what is a dedicated server? It’s a host tuned to provide a single
service. A dedicated IMAP server, for example, would provide only IMAP services.
It would not provide shell accounts (other than accounts required for system main-
tenance), IRC, Usenet, or any other service that is not directly required to provide
IMAP service. Simply put, a dedicated IMAP server receives mail, deposits it in the
mailstore, and provides access to the mailstore exclusively by way of IMAP.

Account Provisioning
Without shell accounts on a dedicated server, how does a user perform routine
tasks such as changing her password or setting up mail forwarding? Dedicated
servers, by definition, have no non-administrative shell accounts. Once you’ve
done away with shell accounts, you’re presented with the challenge of finding a

262 Chapter 14: Running a Dedicated Server

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

way to provide the shell services by other means. Your solution should be both
user-friendly and ubiquitous, and it should use your available resources responsibly.

If you’re confident that all your users are on the same platform, you could employ
various platform-specific provisioning solutions, such as an X-based or Windows
application, Microsoft Exchange form, or your own home-brew application. Trust
us, though—long-term maintenance costs of those solutions far outweigh the
immediate gratification you’ll receive.

A Web Solution

A good way to handle provisioning on a dedicated server is to bring up a provi-
sioning web site.

There is a web of distractions out there, ranging from reliance on browser-specific
features to various early attempts at standardized client-side scripting. Administra-
tors should remain vigilant against developing a provisioning site that becomes
arcane and proprietary. Stick to your guns and develop a straightforward, simple
site that permits the user to perform simple actions (e.g., a password change or
quota check). Even with such a simple web site, you’ll find that you’ve eliminated
nearly all of the need for users to have shell accounts. The remainder of your rea-
sons for having user shell accounts, assuming those reasons are not IMAP related,
could subsequently be addressed by bringing up a modest shell account host, such
as a commodity PC running Linux.

There are five issues at the core of any provisioning web site: security, authentica-
tion, ease of use, system load, and permanence.

Security

You are your own best judge of what security issues are relevant to your particu-
lar provisioning site. Common critical issues include security of the data stream
between the browser and server, security of the data on the provisioning system
itself, and the security of the implementation.

Right now, the most practical way to secure your data stream is by using SSL
(Secure Sockets Layer). If you require all users to use an SSL-enabled browser with
encryption using 128-bit or larger keys, you’ve secured your data stream suffi-
ciently. The Herculean effort required to compromise your data stream outweighs
the value of the information reward to be gained. By using SSL you have the
added benefit of encrypting password strings sent from the browser to the server.
If you opt not to use SSL, your users should be appropriately warned that their
passwords will be transmitted over the network in cleartext.

Account Provisioning 263

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

With all the secure plumbing in place, it’s equally important that the provisioning
data on your server be secure as well. One well-known national ISP gained notori-
ety a few years ago when a hacker was able to retrieve a cleartext file containing
hundreds of customer names and credit card numbers.

When developing HTML forms, something you’ll want to be attentive to is using
the POST instead of GET method in your forms. The GET method conveys form
variables on the URL command line, making them easy to retrieve by paging
through the browser’s URL history. The POST method, on the other hand, con-
veys those variables in the input stream to the server. If you use the POST method,
subsequent users of the customer’s machine can’t go through the browser history
and collect information useful in gaining access to the customer’s account.

Some sites may decide to use HTTP cookies to allow a user to log in to the provi-
sioning system and perform tasks without having to authenticate for each task. If
you employ HTTP cookies, the cookie should expire after a brief period. Although
it’s possible to do so, subsequent users of a workstation will find it more difficult
to masquerade as a user using someone else’s cookie if that cookie has expired.
HTTP cookies have a secure flag that, when set, will send the cookie to the server
only if the CGI request is occurring on an SSL channel. You’ll probably want to set
the cookie’s secure flag, although it’s not necessary if your provisioning system is
exclusively available via SSL.

We advise that you try to have as many levels of security as practical. It’s always a
good thing, in the planning, to assume that one or two levels of your security will
be compromised. Ask yourself “what if” questions. If you don’t have any shell
accounts on your standalone server, but someone manages to get shell access any-
way, are the permissions on critical directories and files closed down far enough
that someone with non-root access would find such access useless?

Authentication

A provisioning web site must be able to authenticate its users. There are numer-
ous ways to authenticate users of web sites, such as HTTP cookies, HTML form
variables, or truly distasteful methods like assuming a user always logs in from a
particular IP address. Ultimately, the correct method of authentication for your site
would be the one that provides you with the most security and is most consistent
with your existing authentication environment. What we’re trying to get at here is
that users are most likely to embrace an interface that’s easy for them to use. With
regard to authentication, that frequently means avoiding multiple passwords per
user whenever possible.

264 Chapter 14: Running a Dedicated Server

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CGI Scripts for Common Tasks

As a starting point, here are some Perl CGI scripts that will do some of the tasks
we’ve mentioned. The examples in this section require you to install a web server,
Perl 5 (http://www.perl.com/), and the CGI.pm Perl module (http://www.cpan.org/
modules/by-module/CGI/CGI.pm-2.56.tar.gz). CGI.pm is a Perl library used to
make writing CGI scripts easier. You’ll find documentation on CGI.pm at http://
stein.cshl.org/WWW/software/CGI/.

It’s highly recommended that the web server be SSL-enabled. Details on how to
set up an SSL-enabled web server are beyond the scope of this book, but a quick,
simple, and free way is to use Apache-SSL (http://www.apache-ssl.org/) and
OpenSSL (http://www.openssl.org/).

Changing a password

The password change utility described in this section uses a freely available pass-
word-changing CGI program called chpasswd. chpasswd is available for download
from the chpasswd author’s site (http://sic.popnet.pl/~mlody/chpasswd/chpasswd-1.
3.tar.gz) or from FreshMeat (http://freshmeat.net/appindex/web/tools.html).

There is a multitude of free web-based password-changing utilities available on
the Net. chpasswd is mentioned here because it’s a utility that’s used to change
standard Unix and shadow passwords, and thus it fills the needs of sites that rely
on Unix authentication. Many of the utilities we found employ a setuid Perl or
shell script to perform the password change. chpasswd, on the other hand, is a
compiled executable. Although the executable is setuid, setuid executables don’t
pose as many risks as suid scripts because scripts depend on external programs
that can be replaced, for example, with copies of bash to provide easy root access
to malevolent users. chpasswd has the added security of consulting a deny file
(/etc/www.deny) before processing any request. Users listed in the /etc/www.deny
(root, for example) are not allowed to change their password using the CGI.
chpasswd logs the results of every password change request to syslog.

chpasswd was written for Linux, but we installed it and ran it successfully under
Solaris with no problems. Since the chpasswd program uses the operating sys-
tem’s native crypt function, it should work equally well with other flavors of Unix.
Keep in mind that crypt supports weak cryptography and thus provides only mini-
mal security.

To build chpasswd, download and unpack the source distribution and run the
configure.sh script. The script will ask you for the path to your cgi-bin directory
and the HTTP path to the chpasswd CGI script. After running the configure.sh
script, run make and make install. make install will copy the chpasswd.cgi
program into your cgi-bin directory and will install in the source directory a

Account Provisioning 265

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

rudimentary password change HTML form that submits input to the CGI.
Example 14-1 is a slightly modified version of that form.

Checking disk quota

Sites that run the UW IMAP server often configure the server to store personal mail
folders under a user’s home directory. Because UW doesn’t explicitly support the
IMAP quota extension, UW sites usually fall back on operating-system disk quo-
tas. In those circumstances, it’s frequently handy to give the user a tool to check
his quota. Example 14-2 and Example 14-3 are a CGI form and handler that allow
the user to check his disk quota.

Example 14-1. Change Password Form

<HTML>
<BODY>
<TITLE>Password Change</TITLE>

<H1>Change Your Password</H1>

<form method="POST" action="https://themullets.net/cgi-bin/chpasswd.cgi">

<PRE>
Username: <input type="text" name="login">
Current password: <input type="password" name="password">
New password: <input type="password" name="newpassword">
Confirm new password: <input type="password" name="newpassword2">
<PRE>

<P>
<input type="submit" value="OK"> <input type="reset" value="RESET">

</FORM>
</BODY>
</HTML>

Example 14-2. Quota Check CGI Form

#!/usr/local/bin/perl

use CGI;

$query = new CGI;

print $query->header;
print $query->start_html(-title=>'Check Quota');
print $query->startform(-action=>"quota_results.cgi");

print $query->h1($query->center("Check Quota"));
print $query->hr;
print <<EOM;
<p>Enter your username and password and click the Check Quota button.<p>
EOM

266 Chapter 14: Running a Dedicated Server

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Example 14-3, the form handler, authenticates the user based on the username and
password entered on the previous form, then calls an external program to get the
user’s quota information. We leave out the details of the password authentication
for the sake of generality.

The program that does the actual quota check within the CGI is a compiled C
setuid program that calls the Unix quota command. CGI scripts run as the owner of
the web server process, typically the user nobody. nobody is an unprivileged user
and, as such, cannot gather data on other users using Unix commands like quota.
The setuid program, referred to as a wrapper, changes its process ownership to a

print "Username: ", $query->textfield(-name=>'user'), $query->br;
print "Password: ", $query->password_field(-name=>'password'), $query->p;
print $query->center($query->submit('action','Check Quota'));
print $query->hr;

print $query->endform;
print $query->end_html;

Example 14-3. Quota Check CGI Form Handler

#!/usr/local/bin/perl

use CGI qw(:standard);

$query = new CGI;
$user = $query->param('user');
$password = $query->param('password');

print $query->header;
print $query->start_html(-title=>'Check Quota');
print $query->center($query->h1("Disk Quota Results"));
print $query->hr;

if (correct_pass("$user","$password") == 1) {

 $quota = `/opt/apache/cgi-bin/quota $user`;

 print <<EOF;
 Disk quota and usage for $user:<p>

 <pre>$quota</pre>
EOF
} else {
 print "Login incorrect. Go back and try again."
}

print $query->p,$query->hr;
print $query->end_html;

Example 14-2. Quota Check CGI Form (continued)

Account Provisioning 267

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

privileged user before executing the Unix command, then switches its ownership
back to the original owner once the work is done.

There are other solutions to the challenges that arise from running your web
server as an unprivileged user, some of them acceptable (carefully written setuid
wrappers) and some truly dangerous (giving up and running the web server as
root). Setuid programs have their own set of security problems, but the dangers
are limited compared to other solutions. The GNU C Library documentation (http://
www.gnu.org/manual/glibc-2.0.6/html_mono/libc.html) has an excellent set of
guidelines for writing good setuid programs, with examples.

quota.c, the setuid wrapper source code, is shown in Example 14-4. It’s important
to note that the permissions on the compiled executable must have the setuid bit
set, and the executable must be owned by root. If both conditions are not met, the
program will not be able to change ownership of the process to the root and will
not have sufficient permissions to run the quota command:

gcc –o quota quota.c
chown root:other quota
chmod 4755 quota
ls –l quota
-rwsr-xr-x 1 root other 8660 Jan 2 20:54 quota*

Example 14-4. Quota Command Setuid Wrapper Program

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>

static uid_t euid, ruid;

/* Restore the effective UID to its original value. */

void
do_setuid (void)
{
 int status;

 status = setreuid (ruid, euid);
 if (status < 0) {
 fprintf (stderr, "Couldn't set uid.\n");
 exit (status);
 }
}

/* Set the effective UID to the real UID. */

void
undo_setuid (void)
{

268 Chapter 14: Running a Dedicated Server

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

 int status;

 status = setreuid (euid, ruid);
 if (status < 0) {
 fprintf (stderr, "Couldn't set uid.\n");
 exit (status);
 }
}

/* Main program. */

int
main(int argc, char **argv)
{
 FILE *fp;
 int pid, pipefds[2];
 char *user = argv[1];
 static uid_t euid, ruid;

 if (argc != 2) { printf("Usage: %s user\n", *argv); exit(1); }

 /* Save the real and effective user IDs. */
 ruid = getuid (); euid = geteuid ();

 if (pipe(pipefds) < 0) {
 perror("pipe"); exit(1);
 }

 if ((pid = fork()) < 0) {
 perror("fork"); exit(1);
 }

 if (pid == 0) {
 close(0);
 dup(pipefds[0]);
 close(pipefds[0]);
 close(pipefds[1]);

 /* Set user to real userid (file owner) */

 do_setuid();
 execl("/usr/sbin/quota", "quota", "-v", user, (char *) 0);

 perror("exec");
 exit(1);
 }

 close (pipefds[0]);
 exit(0);
}

Example 14-4. Quota Command Setuid Wrapper Program (continued)

Account Provisioning 269

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Figure 14-1 and Figure 14-2 are screen shots of the CGI form and handler results.

Checking IMAP quotas

Sites that run the Cyrus IMAP server use quotas specific to the IMAP server, not
the Unix operating system. Those sites will use either IMAP itself or the cyradm
administration utility to report quotas. The next examples show how to check a
user’s quota using IMAP. The CGI form is shown in Example 14-5.

Figure 14-1. Quota CGI form

Figure 14-2. Quota CGI form handler results

270 Chapter 14: Running a Dedicated Server

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Example 14-6 is the CGI form handler. After authenticating the user, the CGI script
connects the user to the IMAP port and issues the IMAP getquotaroot directive to
get the user’s quota. Note that the handler relies on the Telnet.pm module; you
may need to install the Net::Telnet module because it is not included with the
standard Perl distribution.*

Example 14-5. CGI Form to Check IMAP Quota

#!/usr/local/bin/perl

use CGI;

$query = new CGI;

print $query->header;
print $query->start_html(-title=>'Check IMAP Quota');
print $query->startform(-action=>"imapquota_results.cgi");

print $query->h1($query->center("Check IMAP Quota"));
print $query->hr;
print <<EOM;
<p>Enter your username and password and click the Check Quota button.<p>
EOM
print "Username: ", $query->textfield(-name=>'user'), $query->br;
print "Password: ", $query->password_field(-name=>'password'), $query->p;
print $query->center($query->submit('action','Check Quota'));
print $query->hr;

print $query->endform;
print $query->end_html;

* As of Perl 5.005_03.

Example 14-6. CGI Form Handler to Check IMAP Quota

#!/usr/local/bin/perl

use CGI qw(:standard);
unshift (@INC, '/usr/local/lib/perl5/site_perl/5.005/Net');
use Telnet;

$query = new CGI;
$user = $query->param('user');
$password = $query->param('password');

print $query->header;
print $query->start_html(-title=>'Check IMAP Quota');
print $query->center($query->h1("IMAP Quota Results"));
print $query->hr;

if (correct_pass("$user","$password") == 1) {

 $quotainfo = check_quota($user,$password);

Account Provisioning 271

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

 print <<EOF;
 IMAP quota and usage for $user:<p>

 <pre>$quotainfo</pre>
EOF
} else {
 print "Login incorrect. Go back and try again."
}

print $query->p,$query->hr;
print $query->end_html;
Function: check_quota
##
Purpose: Logs user in to IMAP, runs GETQUOTAROOT,
returns usage and limit
##
sub check_quota {

 my ($username, $passwd) = @_;
 my $hostname = "imap.unt.edu";

 my $imap = new Net::Telnet (Telnetmode => 0);
 $imap->open(Host => $hostname, Port => 143);

 ## Read the connection message for status

 $line = $imap->getline;
 die $line unless $line =~ /OK/;

 ## Log the user in

 $imap->print("0 login $username $passwd");
 $line = $imap->getline;
 die $line unless $line =~ /OK/;

 ## Get the quota and usage

 $imap->print("0 getquotaroot inbox");
 @lines = $imap->getlines(Timeout => 30);

 foreach $line (@lines) {
 chop $line;

 if ($line =~ /STORAGE/) {
 ($junk, $remainder) = split (/\(/, $line);
 $remainder = substr ($remainder, 0, -1);
 ($resource, $usage, $quota) = split (' ', $remainder);
 last;
 }
 }

 return "Your IMAP quota is $quota Kbytes: usage is $usage Kbytes.\n";
 exit;
}

Example 14-6. CGI Form Handler to Check IMAP Quota (continued)

272 Chapter 14: Running a Dedicated Server

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Figure 14-3 and Figure 14-4 are screen shots of the IMAP quota check form and
handler results.

Mission Restriction
If you decide to bring up dedicated IMAP servers, there’s a short list of things you
can do to help prepare your host and help focus its activities on the task at hand:
IMAP. Primarily, these activities can be grouped together as limiting the number of
server processes, eliminating or restricting non-administrative accounts, and reduc-
ing non-essential workload on the host.

Figure 14-3. IMAP quota CGI form

Figure 14-4. IMAP quota CGI form handler results

Mission Restriction 273

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Reducing Server Processes

Out of the box, your operating system probably supports a variety of services
through the inetd superserver. None of those services is essential to the IMAP mis-
sion. In most cases, you can reduce your inetd services down to a single line in
your configuration file that supports your particular IMAP service. If non-privileged
users never log on to your mail host, you are somewhat freer to make assump-
tions about what kind of client software those users have. For example, assuming
that:

• Interactive logins, if allowed, are done via Secure Shell (SSH), and SSH runs as
a standalone daemon, and

• The MTA runs as standalone daemon, as does sendmail

then there’s little reason to have anything but a one-line inetd.conf file.

Once you’ve shaved down your inetd.conf file, send a HUP signal to it to refresh
the active configuration. Then, use netstat to get a picture of what kinds of “lis-
tens” are still active on your machine. Here’s an example from a machine that
hasn’t completely reduced its inetd.conf file yet (the output has been trimmed
down with some filtering from egrep):

% netstat -a | egrep -i '(tcp|udp|listen|*|local)'

UDP
 Local Address State
 *.sunrpc Idle
 . Unbound
 *.32771 Idle
 *.32773 Idle
 *.32774 Idle
 *.tftp Idle
 *.32776 Idle
 *.lockd Idle
 *.32779 Idle
 *.syslog Idle
 *.22370 Idle
 *.nfsd Idle
 *.32800 Idle
 *.32801 Idle
 *.snmp Idle
 . Unbound
 *.erpc Idle
 *.37407 Idle
 *.36161 Idle
 *.36629 Idle
 *.36798 Idle
 *.36799 Idle
 *.36805 Idle
 *.762 Idle

274 Chapter 14: Running a Dedicated Server

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

TCP
 Local Address Remote Address Swind Send-Q Rwind Recv-Q State
 *.sunrpc *.* 0 0 0 0 LISTEN
 *.32771 *.* 0 0 0 0 LISTEN
 *.imap *.* 0 0 0 0 LISTEN
 *.cyrus *.* 0 0 0 0 LISTEN
 *.ftp *.* 0 0 0 0 LISTEN
 *.echo *.* 0 0 0 0 LISTEN
 *.lockd *.* 0 0 0 0 LISTEN
 *.32772 *.* 0 0 0 0 LISTEN
 *.22370 *.* 0 0 0 0 LISTEN
 *.nfsd *.* 0 0 0 0 LISTEN
 *.32774 *.* 0 0 0 0 LISTEN
 *.32775 *.* 0 0 0 0 LISTEN
 *.pop-3 *.* 0 0 0 0 LISTEN
 *.7937 *.* 0 0 0 0 LISTEN
 *.3306 *.* 0 0 0 0 LISTEN
 *.80 *.* 0 0 0 0 LISTEN
 *.smtp *.* 0 0 0 0 LISTEN
 *.22 *.* 0 0 0 0 LISTEN

Notice that although several of the services are named using the tags from the /etc/
services file, several are not. Also note that netstat doesn’t tell you which process
(for example, httpd or inetd) is acting as a server in each case.

A much better tool for generating a comprehensive list of services and associated
processes running on your host is the lsof (list open files) utility. If you’ve ever
used IRIX, you’re probably familiar with a similar utility called fuser, which has
much the same functionality as lsof. In addition to showing you the processes that
have a given file open, lsof can also show you which processes have given TCP
and UDP sockets open. The following command produces a comprehensive list of
services running on the host, as did the previous netstat command, but it also
identifies the process and user associated with each service:

% lsof -i | egrep -i '(command|listen|idle)' | sort

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
automount 162 root 9u inet 0xf5c4e968 0t0 UDP *:762 (Idle)
erpcd 284 root 3u inet 0xf5f5e650 0t0 UDP *:erpc (Idle)
hpnpd 227 root 3u inet 0xf5e0f1a0 0t0 UDP *:22370 (Idle)
hpnpd 227 root 4u inet 0xf5e0f130 0t0 TCP *:22370 (LISTEN)
httpd 2934 root 20u inet 0xf5e0f2f0 0t0 TCP *:80 (LISTEN)
httpd 4136 www 20u inet 0xf5e0f2f0 0t0 TCP *:80 (LISTEN)
httpd 17981 www 5u inet 0xf5e0f280 0t4051 TCP *:57651 (IDLE)
httpd 17981 www 20u inet 0xf5e0f2f0 0t0 TCP *:80 (LISTEN)
httpd 21277 www 20u inet 0xf5e0f2f0 0t0 TCP *:80 (LISTEN)
httpd 21425 www 20u inet 0xf5e0f2f0 0t0 TCP *:80 (LISTEN)
httpd 23094 www 20u inet 0xf5e0f2f0 0t0 TCP *:80 (LISTEN)
httpd 25665 www 20u inet 0xf5e0f2f0 0t0 TCP *:80 (LISTEN)
httpd 26498 www 20u inet 0xf5e0f2f0 0t0 TCP *:80 (LISTEN)
imapd 19062 kwm 6u inet 0xf5f5e3b0 0t0 UDP *:36798 (Idle)
imapd 19069 kwm 6u inet 0xf5f5e030 0t0 UDP *:36799 (Idle)

Mission Restriction 275

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

inetd 136 root 5u inet 0xf5b302e8 0t0 TCP *:imap (LISTEN)
inetd 136 root 6u inet 0xf5b30278 0t0 TCP *:cyrus (LISTEN)
inetd 136 root 7u inet 0xf5b30208 0t0 TCP *:ftp (LISTEN)
inetd 136 root 8u inet 0xf5b30198 0t0 UDP *:tftp (Idle)
inetd 136 root 12u inet 0xf5b300b8 0t0 TCP *:echo (LISTEN)
inetd 136 root 21u inet 0xf5e0f7c0 0t0 TCP *:pop-3 (LISTEN)
lockd 141 root 4u inet 0xf5e0fc90 0t0 UDP *:lockd (Idle)
lockd 141 root 5u inet 0xf5e0fc20 0t0 TCP *:lockd (LISTEN)
micq 17882 kwm 5u inet 0xf5f5e1f0 0t81531 UDP *:36629 (Idle)
mountd 271 root 4u inet 0xf5f5eb90 0t0 UDP *:32800 (Idle)
mountd 271 root 6u inet 0xf5f5eab0 0t0 TCP *:32774 (LISTEN)
mysqld 8265 root 3u inet 0xf5f5e500 0t0 TCP *:3306 (LISTEN)
nfsd 269 root 4u inet 0xf5f5ed50 0t0 UDP *:nfsd (Idle)
nfsd 269 root 5u inet 0xf5f5ece0 0t0 TCP *:nfsd (LISTEN)
nscd 5334 root 10u inet 0xf5e0f3d0 0t0 UDP *:36161 (Idle)
nsrexecd 1377 root 3u inet 0xf5f5ef10 0t0 TCP *:7937 (LISTEN)
rpc.bootp 276 root 0u inet 0xf5f5e960 0t0 UDP *:32801 (Idle)
rpc.bootp 276 root 1u inet 0xf5f5e8f0 0t0 TCP *:32775 (LISTEN)
rpcbind 112 root 3u inet 0xf5b30d68 0t0 UDP *:sunrpc (Idle)
rpcbind 112 root 5u inet 0xf5b30c88 0t0 UDP *:32771 (Idle)
rpcbind 112 root 6u inet 0xf5b30c18 0t0 TCP *:sunrpc (LISTEN)
rpcbind 112 root 7u inet 0xf5b30ba8 0t0 TCP *:61409 (IDLE)
sendmail 22010 root 7u inet 0xf5e0f440 0t0 TCP *:smtp (LISTEN)
snmpd 279 root 0u inet 0xf5f5e730 0t0 UDP *:snmp (Idle)
sshd 370 root 3u inet 0xf5c4e658 0t0 TCP *:22 (LISTEN)
sshd 19112 root 8u inet 0xf5f5e180 0t0 UDP *:36805 (Idle)
statd 139 root 3u inet 0xf5e0fe50 0t0 UDP *:32776 (Idle)
statd 139 root 4u inet 0xf5e0fd00 0t0 TCP *:32772 (LISTEN)
statd 139 root 9u inet 0xf5e0f670 0t0 UDP *:32779 (Idle)
statd 139 root 10u inet 0xf5c4ef18 0t0 UDP *:37407 (Idle)
syslogd 166 root 4u inet 0xf5e0f4b0 0t0 UDP *:syslog (Idle)
ypbind 120 root 4u inet 0xf5b30518 0t0 UDP *:32773 (Idle)
ypbind 120 root 6u inet 0xf5b30588 0t0 UDP *:32774 (Idle)
ypbind 120 root 10u inet 0xf5b304a8 0t0 TCP *:32771 (LISTEN)

This listing shows the actual command, process ID, user, and TCP or UDP port
associated with each service running on the current host. Once you have the
actual command and user name, you can find out how the service gets started and
whom to contact about moving a service to another machine, if necessary.

The next order of business would be to examine the users on your host and elimi-
nate as many as possible, or at least remove the ability to log in interactively. With
the increasing popularity of NIS, Kerberos, and the variety of authentication meth-
ods usable with the PAM interface, it’s possible that there are many more users of
your mail host than those explicitly listed in your /etc/passwd file. Users may be
listed in a number of places, including a NIS password map or a CRAM password
database. PAM configuration files (on many systems, under /etc/pam.d/) may also
have clues as to where authentication credentials are defined for your users.

Finally, run the ps command on your machine, audit the crontabs, at queues (usu-
ally in /var/spool/cron), and /etc/rc?.d/* files to get a good handle on not only what

276 Chapter 14: Running a Dedicated Server

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

is currently running on your host, but what is likely to run each time you start it
and at any arbitrary point in the future. Your first reaction to this recommendation
might be to dismiss it because, after all, you’re the system administrator of your
mail server and you ought to know everything that goes on. If more than one per-
son has root access to your server, however, no matter how finely tuned your
workflow is, you’re likely to find at least a few subtle surprises when you do an
audit of your host.

The Ultimate in Dedicated Servers
We want to briefly mention the concept of separating SMTP from IMAP; that is,
using separate machines to perform IMAP access to the mailstore and SMTP rout-
ing. In this separate server scheme, the SMTP router uses Local Mail Transport Pro-
tocol (LMTP) to talk to the IMAP server, as shown in Figure 14-5.

That way, the IMAP server doesn’t spend cycles and I/O bandwidth on managing
an SMTP queue. This scheme is already being used successfully by a few early
adopters and is beginning to be used more widely.

Figure 14-5. Separate SMTP and IMAP servers

SMTP outgoing

CLIENT

SMTP
SERVER

IMAP
SERVER

SMTP LMTP

