
37
This is the Title of the Book, eMatter Edition

Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 3

In this chapter:
• IMAP Session

Concepts
• IMAP Components
• An IMAP Session

Play-by-Play
3

Anatomy of an
IMAP Session

This chapter covers the conceptual middle ground between a layman’s under-
standing of the IMAP protocol and complete coverage, as contained in RFC 2060
(IMAP4rev1). This chapter will provide enough information to arm you to trouble-
shoot most IMAP problems and evaluate most clients, but not enough to write
your own client or troubleshoot some of the stickiest dilemmas. For those situa-
tions, you would be much better off using the RFC 2060 documentation and the
RFCs for the extensions your server professes to use.

IMAP Session Concepts
This section covers how a client talks to a server, the details of what an IMAP ses-
sion looks like, and how we captured that information on our network.

IMAP Is Line-Oriented

You may occasionally see IMAP referred to as a “line-oriented” protocol. All this
means is that the conversation between the IMAP client and server is transmitted
in the form of character strings that end with CRLF. Line-oriented protocol ses-
sions are easy to follow: a command is sent as a line of text to the server, and the
server returns its response as a line of text. Line-oriented protocols are easy to
learn and understand for the very same reason.

In fact, commands that make up a line-oriented protocol are frequently so under-
standable that a user can use the commands to masquerade as an IMAP client. As
an example, consider just about anyone with access to a version of telnet that lets
you specify the target port. The Telnet protocol, by definition, uses TCP port 23,
but most Telnet software can usually be directed at alternative ports. This means
that a user can telnet to TCP port 25 and trick an SMTP server into interacting with

38 Chapter 3: Anatomy of an IMAP Session

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

him as if she were an SMTP client. It’s just as easy to for a user to telnet to TCP
port 143 (IMAP) and interact with an IMAP server as if he were an IMAP client.

Why do we bother telling you this? Line-oriented protocol spoofing, apart from
being a common hacking tool, is a helpful troubleshooting tool. If you’re having
difficulty getting a given client and server to talk, one approach is to take the cli-
ent out of the equation. If you spoof IMAP from a telnet session, you can observe
the commands being sent to and from the server and classify problems as either
client or server problems.

The primary difference between IMAP and other line-oriented TCP protocols like
SMTP, NNTP, and POP3 is that each command from the client is preceded by a
short alphanumeric string, called a tag. The purpose of the tag is to help the IMAP
client keep track of which response goes with which command. Once a connec-
tion is opened, all tags generated by the client must be unique until the connec-
tion is closed. When the server responds to a command, it attaches the tag that the
client sent to its response, as illustrated in Figure 3-1.

We mentioned that only the server’s completion result is tagged. There are actu-
ally two classes of server response: tagged response and untagged response.
Untagged responses convey data. They may or may not be in reaction to a com-
mand from the client. An untagged response can be thought of as a type of com-
mand from the server to the client to update state on the client. An untagged
response, like its name implies, is not preceded by a tag. Instead, it is preceded by
the “*” character.

Story of an IMAP Session

inetd listens for IMAP requests on TCP port 143.* Strictly speaking, until the first
time a client connects to your server on the IMAP port, the IMAP server isn’t run-
ning at all. An IMAP server daemon (imapd) is spawned by inetd to respond to
each new connection from an IMAP client. inetd accepts the client’s request for a

Figure 3-1. Tagged commands and responses

* The upcoming release, Version 2.0, of the Cyrus IMAP server does not use inetd, but instead, runs as a
daemon.

Client Server

TAG001 NOOP

TAG001 OK NOOP completed

IMAP Components 39

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

connection, then passes the I/O stream off to the IMAP server. The client contin-
ues to send commands though port 143 to the IMAP server.

The IMAP server, it should be noted, knows nothing about IP, TCP, or network-
ing. All it knows is how to communicate through STDIN and STDOUT and how to
access local mailboxes. From the beginning to the end of each connection, the
IMAP server will respond to an arbitrary set of commands. While it may be per-
fectly legitimate for the client to connect, perform one command, disconnect, con-
nect, perform one command, etc., it’s terribly inefficient. We know of no clients
that wasteful. Typically (at least during online modes) clients will connect, per-
form whatever business they need to perform, then disconnect, either when the
user shuts down the client or when the server’s timeout limit is reached.

Disconnected mode is slightly different. In disconnected mode, the client con-
nects to the server, retrieves new mail that has arrived, moves mail around to vari-
ous mailboxes if the user so desires, then disconnects as soon as possible,
minimizing the amount of time spent online.

IMAP Components
Here we discuss the components of IMAP to prepare us for our blow-by-blow pro-
tocol trace later in the chapter.

Modes

As we saw in Chapter 2, What Is IMAP?, IMAP clients can operate in one of three
modes: offline mode, online mode, or disconnected mode. While you’re not likely
to see any IMAP operations take place between the client and server that say, “I’m
an online session” or “I’m on offline session,” these modes are quite an important
part of IMAP.

States

First of all, the session can be in one of four states. Commands and responses are,
in most cases, valid only in certain states (e.g., you can’t issue the command to
select a mailbox unless you’re in the authenticated state). Although two or more
sessions with a given mailbox can each be in different states, no single session can
be in more than one state simultaneously. For example, when your client initially
connects to the server and you’re in the non-authenticated state, you authenticate
successfully, leave the non-authenticated state, and enter the authenticated state.
Here’s a description of the four states. A diagram of the relationship between the
states is shown in Figure 3-2.

40 Chapter 3: Anatomy of an IMAP Session

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Non-authenticated state
The non-authenticated state begins immediately when a connection starts.

Authenticated state
The authenticated state begins when the client authenticates successfully. It
may also begin after an error in selecting a mailbox.

Selected state
The selected state begins once a mailbox has been selected successfully.

Logout state
The logout state begins when the client sends the LOGOUT command or the
server unilaterally decides to close the connection (e.g., when the session
reaches the inactivity time-out limit). The logout state lasts only long enough
for the server to close the TCP connection.

Mailboxes

Although there are extensions to provide attributes to mailboxes (such as access
control lists), in the core IMAP protocol all the interesting attributes are associated
with the messages themselves, not the mailboxes.

Figure 3-2. IMAP state diagram

Initial connection
and greeting

Non-authenticated
state

Authenticated
state

Selected
state

Logout
state

IMAP Components 41

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Messages

There’s much more to an email message than the body content. Attributes can
range from core values like message numbers and headers to a road map of the
MIME contents contained in the message.

Message sequence number
Message sequence numbers begin with 1 and continue sequentially up to the
number of messages in the mailbox. Sequence numbers can be reassigned
during a session. For example, when a message is deleted and expunged,
each message with a higher sequence number than the deleted message is
decremented by 1.

UIDs
The UID (Unique Identifier) is a 32-bit message identifier that is guaranteed to
be unique within a mailbox. UIDs are preserved across sessions and are used
to allow a client that operates in disconnected or offline mode to synchronize
its state with the server. Message UIDs are assigned to messages in ascending
order, but are different from message sequence numbers in that UIDs do not
necessarily ascend contiguously. Although UIDs are mentioned for complete-
ness, message sequence numbers are what you’ll actually use when testing
and troubleshooting IMAP sessions. You’ll see mention of UIDVALIDITY later
in this chapter. UIDVALIDITY is the unique identifier associated with a mail-
box, not with a message. UID is associated with a message.

Flags
Each message in an IMAP mailbox may have zero or more flags. Flags are
tokens that carry information about the message and are usually used to pre-
serve message attributes between IMAP sessions. Several flags are defined.
The message flags defined by IMAP are shown in Table 3-1.

Table 3-1. IMAP Message Flags

Flag Meaning When Flag Is Set

\Answered The message has been answered.

\Deleted The message has been marked for deletion.

\Draft The message is partially composed and being saved for later revision
before sending.

\Recent The message is “recent”—the current session is the first session to see
it. It will not be flagged as “recent” in subsequent sessions.

\Flagged The message has been marked as “important.”

42 Chapter 3: Anatomy of an IMAP Session

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Internal date
The internal date reflects the date and time the message was received by the
IMAP server. It is not the same attribute as the date value in the RFC 822
header.

Size
The message size expressed in number of octets (8-bit bytes) in the message,
expressed in RFC 822 format.

Envelope structure
The envelope structure contains a condensed representation of the RFC 822
header.

Body structure
The body structure contains a condensed representation of the MIME informa-
tion contained in the message.

An IMAP Session Play-by-Play
In this section we show and describe an actual IMAP session play-by-play. Our
goal is to familiarize you with the most common IMAP operations. Knowing the
operations will help you quickly troubleshoot problems independently of the cli-
ent or server you’re working with.

In our examples, we use the tcpflow program (see Chapter 18, IMAP Tools, for
information on where to obtain tcpflow) to examine the IMAP client-server interac-
tions. tcpflow is a special protocol-analysis program that permits you to watch a
conversation take place between a TCP-based client and server. tcpdump or your
favorite protocol analysis program would work equally well.

Our session was generated in a Telnet session to the IMAP port on the server:

% telnet localhost imap

Commands are shown in bold, responses from the server are shown in plaintext:

A00001 CAPABILITY
* CAPABILITY IMAP4REV1 MAILBOX-REFERRALS LOGIN-REFERRALS AUTH=CRAM-MD5
A00001 OK Completed

Each command is preceded by an arbitrary tag. As we mentioned earlier, the tag is
an arbitrary string that the server “tags” its responses with. The purpose is to help
the client keep track of which response goes with which command. Appendix C,
IMAP Commands, provides a complete list of IMAP commands. The commands
used in the sample session are, for the most part, self-explanatory. In any case,
they’re discussed in the explanation following Example 3-1, which shows the cli-
ent/server conversation during an actual IMAP session and discusses each request
and response.

An IMAP Session Play-by-Play 43

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Example 3-1. Simple IMAP Session

ROOT@Server # tcpflow -c 'host Client and port 143'
tcpflow[3000]: listening on le0
Server: * OK Server Cyrus IMAP4 v1.5.19 server ready

Client: 00000000 CAPABILITY007
Server: * CAPABILITY IMAP4 IMAP4rev1 ACL QUOTA LITERAL+ NAMESPACE UIDPLUS \
 X-NON-HIERARCHICAL-RENAME NO_ATOMIC_RENAME UNSELECT
 00000000 OK Completed

Client: 00000001 LOGIN dianna "xxxxxxxx"
Server: 00000001 OK User logged in

Client: 00000002 SELECT INBOX
Server: * FLAGS (\Answered \Flagged \Draft \Deleted \Seen)
 * OK [PERMANENTFLAGS (\Answered \Flagged \Draft \Deleted \Seen *)]
 * 1 EXISTS
 * 0 RECENT
 * OK [UNSEEN 1]
 * OK [UIDVALIDITY 929804083]
 00000002 OK Completed

Client: 00000003 NOOP
Server: 00000003 OK Completed

Client: 00000004 FETCH 1 FLAGS
Server: * 1 FETCH (FLAGS ())
 00000004 OK Completed

Client: 00000005 FETCH 1 UID
Server: * 1 FETCH (UID 26888)
 00000005 OK Completed

Client: 00000006 FETCH 1 (ENVELOPE BODY.PEEK[HEADER.FIELDS \
 (Path Message-ID Newsgroups Followup-To References)] INTERNALDATE \
 RFC822.SIZE FLAGS)
Server: * 1 FETCH (FLAGS () INTERNALDATE "5-Mar-2000 10:58:50 -0600" \
 RFC822.SIZE 853 ENVELOPE ("Sun, 5 Mar 2000 11:00:52 -0600 (CST)" \
 "Testing" ((NIL NIL "drm" "nec.unt.edu")) \
 ((NIL NIL "drm" "nec.unt.edu")) ((NIL NIL "drm" "nec.unt.edu")) \
 ((NIL NIL "dianna" "europa.acs.unt.edu")) NIL NIL NIL \
 "<Pine.GS4.4.10.10003051100260.3034-100000@nec.unt.edu>") \
 BODY[HEADER.FIELDS (Path Message-ID Newsgroups Followup-To References)] \
 {70} Message-ID: Pine.GS4.4.10.10003051100260.3034-100000@nec.unt.edu

)
 00000006 OK Completed

Client: 00000007 FETCH 1 (BODYSTRUCTURE FLAGS)
Server: * 1 FETCH (FLAGS () BODYSTRUCTURE ("TEXT" "PLAIN" \
 ("CHARSET" "US-ASCII") NIL NIL "7BIT" 29 2 NIL NIL NIL))
 00000007 OK Completed

44 Chapter 3: Anatomy of an IMAP Session

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

What follows is a description of the play-by-play in the previous example. We’ll
use the IMAP command tags to refer to different parts of the listing:

Tag 00000000
The client asks the server for its capabilities using the CAPABILITY command.
The server responds with its capabilities.

Tag 00000001
The client logs in the user “dianna” with plaintext password “xxxxxxxx” using
the LOGIN command. The server responds that the user was successfully
logged in.

Tag 00000002
The client selects the INBOX. The server responds with several pieces of
information:

Client: 00000008 FETCH 1 BODY.PEEK[HEADER.FIELDS (Resent-Date Resent-From \
 Resent-To Resent-cc Resent-Subject)]
Server: * 1 FETCH (BODY[HEADER.FIELDS (Resent-Date Resent-From Resent-To \
 Resent-cc Resent-Subject)] {2}

)
 00000008 OK Completed

Client: 00000009 FETCH 1 BODY[1]
Server: * 1 FETCH (FLAGS (\Seen) BODY[1] {29}
 This is the message body.

)
 00000009 OK Completed

Client: 0000000a STORE 1 +Flags (\DELETED)
Server: * 1 FETCH (FLAGS (\Deleted \Seen))
 0000000a OK Completed

Client: 0000000b NOOP
Server: 0000000b OK Completed

Client: 0000000c EXPUNGE
Server: * 1 EXPUNGE
 * 0 EXISTS
 * 0 RECENT
 0000000c OK Completed

Client: 0000000d NOOP
Server: 0000000d OK Completed

Client: 0000000e LOGOUT
Server: * BYE LOGOUT received
 0000000e OK Completed

Example 3-1. Simple IMAP Session (continued)

An IMAP Session Play-by-Play 45

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

— Flags and permanent flags that are defined for the mailbox (\Answered,
\Flagged, \Draft, \Deleted, and \Seen)

— Number of messages in the mailbox (1)

— Number of messages that have arrived since the session started (0)

— Number of unseen messages (1)

— The UIDVALIDITY (929804083)

Finally, the server returns the command result (OK), indicating that the INBOX
was selected successfully and that the mailbox is both read and write.

Tag 00000003
The client sends a NOOP, probably something that it does periodically to ping
the server to reset the inactivity timer and make sure the connection doesn’t
time out.

Tag 00000004
The client uses the FETCH command to request a list of flags that are set on
the message that corresponds to sequence number 1. The server answers that
there are no flags set.

Tag 00000005
The client uses the FETCH command again, this time to request the UID num-
ber of the message corresponding to message sequence number 1.

Tag 00000006
The client asks the server to send some of message number 1’s header infor-
mation (the RFC 822 fields Path, Message-ID, Newsgroups, Followup-To, and
References, the message internal date, the RFC 822 size, and the flags that are
set on the message).

The server returns, not necessarily in the order requested, the data items
requested. Each item is labeled appropriately for consumption by the client.

Tag 00000007
In this sequence, the client is eyeballing the body of the message. Fetching the
BODYSTRUCTURE data item, in fact, is one of the more powerful capabilities
of IMAP. It permits the client to retrieve the skeletal structure of the message
without retrieving the message itself. That capability allows the client to exer-
cise discretion by downloading some parts of a message, such as a short text/
plain part, and not others, for example a very large video/mpg2 part.

Tag 00000008
In this sequence, the client is apparently checking to see if the message was
“bounced.” If so, it would have various “Resent-” header lines. That isn’t the
case here, so the server returns blank values for the requested header fields.

46 Chapter 3: Anatomy of an IMAP Session

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Tag 00000009
The client requests the body for the message with sequence number [1]. The
server complies without a lot of to-do.

Tag 0000000a
The client deletes message number 1, which involves setting the \Deleted flag
on the message. The flag is set using the STORE command. The server
responds that the flag was set successfully, and hence, the message is now
marked “deleted.”

Tag 0000000b
The client sends another NOOP to keep the connection alive and poll the
server for new mail.

Tag 0000000c
The client expunges, or permanently removes, all messages marked “deleted”
using the EXPUNGE command. The server responds with the message
sequence number of each expunged message (in this case, message number 1,
the only message in the mailbox). It also responds that the number of mes-
sages in the mailbox (EXISTS) is now 0 and that the number of messages that
have not been read (UNSEEN) is also 0.

Tag 0000000d
The client sends another NOOP, and the server responds with OK.

Tag 0000000e
Finally, the client sends the LOGOUT command. The server responds by say-
ing “BYE” and closing the connection.

A POP3 Session for Comparison

Veteran Internet messaging techs will recognize Example 3-2 at first glance. Once
upon a time, all email was retrieved using POP3. Here’s a POP3 session for
comparison.

As was mentioned in Chapter 2, POP is much less complex than IMAP, but also
has fewer features. Here’s a list of differences between POP and IMAP that are evi-
dent in comparing the POP3 session (Example 3-2) with the IMAP session
(Example 3-1):

• POP operates in offline mode only.

• It has only one mailbox per user, so there is no SELECT command in POP.

• POP has no extensions, such as a Quota or ACL extension.

• It’s not possible to determine the structure of a message in POP—all messages
are single, contiguous entities. The entire message body must be downloaded.

An IMAP Session Play-by-Play 47

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

• POP allows for the selective download of headers and message body sepa-
rately, and most servers support that option. It’s unusual, however, for clients
to take advantage of that option. It’s not done in our example.

• POP doesn’t handle new mail that is received while a POP session is already
open. The new mail is unavailable until the current session is closed and a
new one open.

Example 3-2. Simple POP3 Session

ROOT@Server # tcpflow -c 'host Client and port 110'
tcpflow[3829]: listening on le0
Server: +OK POP3 Server v7.59 server ready

Client: USER drm
Server: +OK User name accepted, password please

Client: PASS XXXXXXXX
Server: +OK Mailbox open, 1 message

Client: STAT
Server: +OK 1 1031

Client: LIST
Server: +OK Mailbox scan listing follows
1 1031
.

Client: RETR 1
Server: +OK 1031 octets
 Received: from Mercury.acs.unt.edu (mercury.acs.unt.edu [129.120.220.1])
 .by security.unt.edu (8.8.8/8.8.8) with ESMTP id FAA03831
 .for <drm@nec.unt.edu>; Sun, 27 Feb 2000 05:57:28 -0600 (CST)
 Received: from venus.acs.unt.edu (venus.acs.unt.edu [129.120.220.72])
 .by Mercury.acs.unt.edu (8.8.8/8.8.8) with ESMTP id FAA25269
 .for <drm@nec.unt.edu>; Sun, 27 Feb 2000 05:55:35 -0600 (CST)
 Received: from SUNFLOWER (rooster.themullets.net [209.223.13.243])
 .by venus.acs.unt.edu (8.8.8/8.8.8) with ESMTP id FAA25103
 .for <drm@nec.unt.edu>; Sun, 27 Feb 2000 05:55:35 -0600 (CST)
 Date: Sun, 27 Feb 2000 05:54:43 -0600
 From: Dianna Mullet <dianna@unt.edu>
 To: drm@nec.unt.edu
 Subject: This is subject.
 Message-ID: <2443111424.951630883@localhost>
 Originator-Info: login-id=; server=
 X-Mailer: Mulberry (Win32) [1.4.4, s/n U-301284]
 MIME-Version: 1.0
 Content-Type: text/plain; charset=us-ascii
 Content-Transfer-Encoding: 7bit
 Content-Disposition: inline
 Content-Length: 28
 Status:

48 Chapter 3: Anatomy of an IMAP Session

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

There are two reasons for diving down to the protocol level. First, when evaluat-
ing or comparing IMAP products, nothing is quite as helpful as benchtesting them
against one another and watching what happens on the network. When clients,
and perhaps servers, first started providing IMAP support, many grafted IMAP
functionality on top of their POP engines. Additionally, because IMAP is a proto-
col that isn’t easily grasped in a simple five-minute cruise of the RFC, some ven-
dors will take the short, error-fraught path and try to fake their way to IMAP
compliance. You will run into these products, no doubt about it.

The other reason is that once you’ve chosen your IMAP products and put them
into operation, the occasional problem will surface. Often it will be due to a lack
of 100% IMAP compliance in either the server or client (usually the client). Unless
you care to spend several weeks doing the finger-pointing dance with your ven-
dors, the only way to get the critical smoking gun is to analyze the IMAP traffic on
your network. In doing so you will be able to determine whether the problem lies
with server or client, and exactly what the problem is.

 This is the message body.

 .

Client: DELE 1
Server: +OK Message deleted

Client: QUIT
Server: +OK Sayonara

Example 3-2. Simple POP3 Session (continued)

