
154
This is the Title of the Book, eMatter Edition

Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 9

In this chapter:
• Cyrus System

Administration
• Common Tasks
• Batch Account

Maintenance
• Shared Folders and

Bulletin Boards
• Mailstore

Partitioning
• Quota Maintenance
• Disaster Recovery
• Migration from

Berkeley Mailbox
Format to Cyrus

• Mail Forwarding
and Filtering

• Usenet Integration
• Troubleshooting
• Adding SSL Support

9
Cyrus System
Administration

Now that you’ve installed and configured the Cyrus server, you’re faced with main-
taining it. This chapter covers the basics of managing a Cyrus system on a day-to-
day basis. We will walk through examples of how to create, delete, and list the
properties of mailboxes using cyradm, the Cyrus administration tool. We will also
see examples of how to use cyradm to manage existing mailboxes. Cyrus adminis-
trators are often faced with the task of creating, deleting, or modifying a batch of
accounts. Examples of batch cyradm scripts are shown. We will also see exam-
ples of how to add and remove partitions to and from the Cyrus mailstore. Shared
folders and bulletin boards are valuable features of the Cyrus server. We will see
examples of how to set up and manage both.

Cyrus System Administration
with cyradm
cyradm is a Tcl-based client for performing system administration on the Cyrus
server. cyradm can be run in either interactive mode or batch mode. We will look
at interactive mode first, and cover batch operations later in the chapter. Note that
the information contained in this chapter is not intended to be a comprehensive

Cyrus System Administration with cyradm 155

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

account of cyradm—there are cyradm command options that are rarely used. See
the manual page, cyradm(1), or Appendix A, Conversion from Berkeley Mail For-
mat to Cyrus: Tools, for the nitty-gritty details. The objective here is to cover the
most common tasks that Cyrus administrators encounter.

To start cyradm in interactive mode, simply enter the command:

$ cyradm –user username hostname port

username is a Cyrus administrative user defined in /etc/imapd.conf. hostname is
the hostname of the Cyrus server. port defaults to port 143, the standard IMAP
port. Here is an example interactive session:

$ cyradm -user cyrus localhost
localhost password: XXXXXXXX
localhost>

If you need help, type help at the prompt. When you want to quit, use one of the
commands quit or exit.

cyradm has a set of commands for performing common tasks on a Cyrus system,
such as creating accounts and listing users’ quotas. Table 9-1 lists the commands
and gives a brief description of the purpose of each. cyradm commands can be
abbreviated to cut down on keystrokes—the abbreviations are also shown in
Table 9-1.

The renamemailbox command is more complicated than meets the eye—it
renames a single mailbox only and ignores all other mailboxes in the hierarchy. A
workaround for renaming complete mailbox hierarchies is provided later in this
chapter.

Table 9-1. cyradm Commands

Command Abbreviation Purpose

listmailbox lm Lists the names of all mailboxes that match a given
pattern.

createmailbox cm Creates a new top-level mailbox.

deletemailbox dm Deletes a mailbox and all mailboxes below it in its
hierarchy.

renamemailbox renm Renames a mailbox.

setaclmailbox sam Adds an entry to a maibox’s ACL.

deleteaclmailbox dam Deletes an entry from a mailbox’s ACL.

listaclmailbox lam Lists a mailbox’s ACL.

setquota sq Sets a quota limit on a quota root.

listquota lq Lists the quotas on a quota root.

listquotaroot lqr or lqm Lists the quota roots on a mailbox.

156 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The .cyradmrc File

If the file .cyradmrc exists in user ’s home directory, cyradm will evaluate the file
as a Tcl script after connecting and authenticating to server and just before read-
ing the first command from standard input.

Common Tasks
This section shows examples of common tasks you’ll perform every day using
cyradm: listing, creating, and deleting mailboxes; setting quotas; and setting ACLs.

Listing Mailboxes

The listmailbox (or lm) command returns a list of mailbox names that match the
pattern given as an argument. The pattern can contain one of the wildcard charac-
ters asterisk (*) or percent (%). The * wildcard matches zero or more characters.
The % wildcard is like the * wildcard, except that it only matches mailboxes at a
single level in the mailbox hierarchy.

You can list all the users on the system by listing their top-level mailboxes
(remember, a top-level mailbox is essentially the same as a username in the Cyrus
namespace):

localhost> listmailbox user.%

To list all mailboxes one level below abt0003 ’s top-level mailbox, you would use
the % wildcard character to restrict output to include only that level:

localhost> listmailbox user.abt0003.%
user.abt0003.drafts user.abt0003.sent-mail

To list all users whose usernames begin with the letters abt, you would again use
the % wildcard to restrict output to only top-level mailboxes:

localhost> listmailbox user.abt%
user.abt0003 user.abt0008

The next example shows how the * wildcard character returns mailboxes that
match the pattern at all levels of the mailbox hierarchy:

localhost> listmailbox user.abt*
user.abt0003 user.abt0003.sent-mail user.abt0008.drafts
user.abt0003.drafts user.abt0008

Creating a Mailbox or Adding a User

The createmailbox (cm) command creates a new mailbox, mailbox. There is an
optional partition argument that specifies the name of the partition on which to

Common Tasks 157

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

create the mailbox. If no partition is specified, the mailbox is created on the parti-
tion named default (it is defined in /etc/imapd.conf as the defaultpartition
option).

On production Cyrus systems, users are usually added to the system in batches by
running a script, but on occasion, you might have to add a new user manually.
Once a top-level mailbox is created for a user, the user is officially “on the sys-
tem” and can begin receiving email. To add a new user, abt0010, you would issue
the command:

localhost> createmailbox user.abt0010
localhost> listmailbox user.abt0010
user.abt0010

abt0010 ’s top-level mailbox would be created on the defaultpartition.

A top-level mailbox is essentially the same as an IMAP account—
once a user has a top-level mailbox and some means to authenti-
cate to the server, he or she has an account on the Cyrus server.

If the user does not already have authentication credentials, then you should set
them up now—see Chapter 8, Configuring the Cyrus Server, for details on setting
up authentication.

You may also create mailboxes below a user’s top-level mailbox. Many sites cre-
ate a few default mailboxes for each new user added to the system, such as a
Trash mailbox (user.username.Trash) or a Drafts mailbox (user.username.Drafts),
for the convenience of the user.

Mailbox Access Control

Cyrus has an Internet standards-compliant way of organizing access to each mail-
box. That method is known as an access control list (ACL). Simply speaking, an
ACL is like a security guard with a clipboard sitting at the entrance to each and
every mailbox, checking all who would presume to enter against an administra-
tive list of who’s allowed to do what. A more familiar example of an access con-
trol system may be Unix file ownership and permissions. We don’t want to launch
into a full-fledged description of Unix access control—it’s been done well in other
books. Unix files and directories have an owner, and access to other users can be
granted with different combinations of group ownership and permission settings
on the file.

A Cyrus mailbox also has an owner, and as with a Unix file, access to the mailbox
can be granted to other users. Cyrus access control is more granular, though, than

158 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

the Unix access control model. In the Cyrus model, it’s possible to grant more than
one group of users access to the mailbox without nesting groups, as you would
have to do when dealing with Unix groups. Instead of just the read, write, and
execute permissions that are granted on Unix files, a Cyrus user can be granted
nine different levels of access (see Table 9-2).

When a new mailbox is created in the Cyrus system, it is created with a default set
of access rights that are defined in the IMAP configuration file, /etc/imapd.conf.
That default ACL applies only to newly created top-level mailboxes—mailboxes
that are created in an existing hierarchy inherit the ACL of their nearest parent
mailbox. That’s a bit different from what you would expect if you’re familiar with
Unix permissions. In the Unix system, permissions on subdirectories are not inher-
ited from the parent directory in a filesystem.*

The question is, then, “when are ACLs used?” They are primarily used to allow
users other than the mailbox owner to access a mailbox. This might be desirable
when:

• You want to allow a colleague to read mail in a mailbox where you store mail
related to a project you’re collaborating on.

• A group of users, such as a technical support group, need to share a mailbox
and keep track of the status of messages in that mailbox.

• You want to make a mailing list archive publicly accessible to the Internet.†

Read on to find out how to set the ACL for each of those three situations.

The setaclmailbox command

setaclmailbox is the cyradm command to modify a mailbox’s ACL. The usage is:

setaclmailbox mailbox identifier rights

identifier refers to a user, group (a group is an entity specific to your authentica-
tion mechanism; e.g., a group in /etc/group if you use Unix authentication—refer
to Chapter 8 for information on setting up groups), or one of the predefined spe-
cial identifiers, anonymous or anyone, which were described in Chapter 6, Intro-
duction to the Cyrus IMAP Server. Rights are shown in Table 9-2.

* Subdirectories in a Unix filesystem can be forced to inherit the ownership of the parent directory by
setting the appropriate “special” bits on the file.

† CMU makes the info-cyrus mailing list archive publicly available as a Cyrus shared folder. It’s available
through a web interface at http://asg.web.cmu.edu/archive/mailbox.php3?mailbox=archive.info-cyrus.

Common Tasks 159

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

There are abbreviations describing the more common sets of rights that make it
easier to set the more common ACLs. The abbreviations are listed in Table 9-3.

Cyrus administrators (those users defined as admins in /etc/imapd.conf) have
l and a rights on all mailboxes by default. When a new user is added to the sys-
tem, the user is first assigned all rights on her top-level mailbox. In all other cases,
when a new mailbox is created, the new mailbox inherits the ACL of the closest
parent mailbox. Non-user mailboxes (such as those used to export Usenet news
groups) with no parent are assigned the ACL defined in the defaultacl option in
/etc/imapd.conf.

Table 9-2. Mailbox Access Rights

Access Right Purpose

l Look up the name of the mailbox (but not its contents).

r Read the contents of the mailbox.

s Preserve the “seen” and “recent” status of messages across IMAP sessions.

w Write (change message flags such as “recent,” “answered,” and “draft”).

i Insert (move or copy) a message into the mailbox.

p Post a message in the mailbox by sending the message to the mailbox’s
submission address (for example, post a message in the cyrushelp mail-
box by sending a message to sysadmin+cyrushelp@somewhere.net).

c Create a new mailbox below the top-level mailbox (ordinary users cannot
create top-level mailboxes).

d Delete a message and/or the mailbox itself.

a Administer the mailbox (change the mailbox’s ACL).

Table 9-3. Abbreviations for Common Access Rights

Abbreviation Access Rights Result

none Blank The user has no rights whatsoever.

read lrs Allows a user to read the contents of the mailbox.

post lrps Allows a user to read the mailbox and post to it through
the delivery system by sending mail to the mailbox’s sub-
mission address.

append lrsip Allows a user to read the mailbox and append messages
to it, either via IMAP or through the delivery system.

write lrswipcd Allows a user to read the maibox, post to it, append mes-
sages to it, and delete messages or the mailbox itself. The
only right not given is the right to change the mailbox’s
ACL.

all lrswipcda The user has all possible rights on the mailbox. This is
usually granted to users only on the mailboxes they own.

160 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

To compute a user’s or group’s mailbox access rights, the server takes the union of
the user’s rights and the rights of all groups the user is a member of. In the follow-
ing example ACL, user mary is a member of group helpdesk, so she inherits p
rights from the helpdesk group and, as a result, has l, r, s, and p rights:

mary lrs
group:helpdesk lrsp

It is also possible to assign a user negative rights by prefixing the identifier (not
the access right) with a dash (-) character. The result is that the access rights are
removed from the mailbox for the user or group that comprise the identifier. For
example:

anyone read
-anonymous s

This ACL allows anyone l, r, and s rights, while anonymous is allowed only l and r
rights. After computing a user’s access rights, the server computes the user’s nega-
tive rights by taking the union of all negative rights assigned to the user and all
groups the user is a member of, and removes those rights.

Common examples

Earlier, we promised to illustrate how to set up ACLs for three common uses of
shared folders. The first example involves sharing a mailbox with one other user.
Suppose johndoe has a mailbox, user.johndoe.grant-proposal, and he wishes to
give his colleague, annsmith, read-only access to the messages in that mailbox.
johndoe would set the ACL on the mailbox as follows:

localhost> listaclmailbox user.johndoe.grant-proposal
johndoe lrswipcda
localhost> setaclmailbox user.johndoe.grant-proposal annsmith read
localhost> listaclmailbox user.johndoe.grant-proposal
johndoe lrswipcda
annsmith lrs

The second example involves sharing a mailbox with both read and write access
to a group of users that needs to preserve the state of the mailbox between access
by different users. Such a group might be a Helpdesk. In the example that fol-
lows, the group helpdesk (defined in /etc/group) is given write access to the mail-
box user.help. One member of the helpdesk group, boss, is granted administrative
access—somebody has to maintain the mailbox’s ACL, and boss, the Helpdesk
coordinator, seems to be the best candidate:

localhost> listaclmailbox user.help
help lrswipcda
localhost> setaclmailbox user.help group:helpdesk write
localhost> setaclmailbox user.help boss all

Common Tasks 161

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

localhost> listaclmailbox user.help
help lrswipcda
group:helpdesk lrswipcd
boss lrswipcda

In the final example, a site maintains a mailing list archive and wants to make it
accessible to anyone on the Internet. The archive is stored in the mailbox
user.lists.security-l.archive. To open up access to anyone on the Internet, the
access rights would be set to allow anyone to read the mailbox:

localhost> listaclmailbox user.lists.security-l.archive
lists lrswipcda
localhost> setaclmailbox user.lists.security-l.archive anonymous read
help lrswipcda
anonymous lrs

Deleting a Mailbox or Removing a User

The deletemailbox (dm) command deletes a top-level mailbox, its contents, and all
mailboxes below it in the hierarchy, essentially removing the user from the Cyrus
system.

Administrators do not have delete rights on mailboxes by default.

Before you attempt to delete a mailbox, be sure to use the setaclmailbox com-
mand to give yourself explicit d (delete) rights before deleting a mailbox, as in the
following example:

localhost> setaclmailbox user.johndoe cyrusadm d
localhost> deletemailbox user.johndoe

Managing Quotas

setquota sets the quota limit on a quota root to a given value. Quotas on the Cyrus
system are always expressed in kilobytes. Typically, the quota root is a user’s top-
level mailbox:

localhost> setquota user.johndoe 15000

The listquotaroot (or lqr) command lists the usage and limit on the given quota
root. In the following example, the user johndoe has a quota limit of 15,000 kilo-
bytes on his top-level mailbox and has used 1,363 kilobytes:

localhost> listquotaroot user.johndoe
user.dianna STORAGE 1363/15000 (9%)

162 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

cyradm does not offer a facility for removing a user’s quota—quotas have to be
removed manually by deleting the quota file associated with the user, then
rebuilding the Cyrus quota database. The details are explained later in this chapter.

Renaming a User’s Account

The renamemailbox command:

renamemailbox mailbox newmailbox partition

renames mailbox to newmailbox. The optional partition argument is used if you
want to move the newmailbox to a different partition.

renamemailbox does exactly what its name implies, and that’s all it does—it
renames a single mailbox. The command has an important limitation, though: it
cannot be used to rename a top-level mailbox. Here is what happens when we
attempt to rename a top-level mailbox:

localhost> renamemailbox user.diannal user.diannam
command failed: Operation is not supported on mailbox

Top-level mailboxes cannot be renamed because of a Cyrus architectural issue.
Renaming a top-level mailbox requires changes in other parts of the system, such
as the mailboxes file, the quota subsystem, the mailbox subscription database, and
the names of all mailboxes below the top level in the hierarchy. This can be a
problem—many sites allow users to change their account names at some time after
the account is initially created. It is also important to note that renamemailbox
does not hierarchically rename mailboxes—it only renames the mailbox that it is
given as an argument. All other mailboxes below that mailbox in the hierarchy are
left untouched. CMU will provide a hierarchical renamemailbox command in
Cyrus 2.0, but it does not yet appear in any release up through Version 1.6.22.
Until cyradm supports hierarchical renaming, it will be of limited use on its own.
Fortunately, as with many limitations, there is a usually a workaround. The
workaround, which is implemented as a Tcl script in Example 9-2 in the next sec-
tion of this chapter, involves these steps (in the order given):

1. Create a new top-level mailbox named for the new username (for example,
user.newname).

2. Create new sub-mailboxes for all the mailboxes in the user’s old hierarchy
(user.newname.sent-mail).

3. Replace the new, empty mailbox hierarchy with the old mailbox hierarchy.

4. Delete the old account.

Batch Account Maintenance with cyradm 163

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

5. Reconstruct the new account using the Cyrus reconstruct utility.

6. Set a quota root on the new account.

Note that although you may read about other workarounds that
involved direct editing of the mailboxes file, we caution you never to
edit the mailboxes file directly! It’s an unnecessary risk—the tools
exist for working within the system; it’s just a matter of stringing
them together in the right way to do the job.

Batch Account Maintenance
with cyradm
cyradm can be invoked in a script to read and evaluate a series of Tcl commands.
In batch mode, cyradm command names cannot be abbreviated as they can be in
interactive mode (e.g., setaclmailbox cannot be invoked as sam). When running
cyradm in non-interactive mode, you will always use one Tcl command that has
not been mentioned yet: the command cyradm connect. The cyradm connect
command opens an IMAP connection to the server, and it is always the first com-
mand you execute in a batch cyradm script.

The usage of the cyradm connect command is:

cyradm connect connectionname

where connectionname is an arbitrary handle that denotes the connection to the
IMAP server. Once a connection is established, other cyradm commands are
issued as:

connectionname command

The command command is any one of the cyradm commands discussed earlier in
the chapter. It may also be one of the following commands that have not yet been
introduced:

connectionname servername
Returns the hostname of the server the connection is connected to.

connectionname authenticate
Authenticates the connection. connection authenticate has two command
switches, shown in Table 9-4.

164 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Add New Users

Example 9-1, addusers, is a Tcl script that uses cyradm to create a batch of new
IMAP user accounts and set a quota root on each account. To run the script, type
the command:

$ addusers filename

where filename is a plain file containing one username per line.

The script opens a connection to the Cyrus server called venus and logs in as user
cyrusadm with password xxxxxxxx. Once the connection is established and
authenticated, the input file is opened. The script loops through each line of input,
assigns the contents of the line to the variable user, and creates a new top-level

Table 9-4. connection authenticate Command Switches

Switch Function

-user username Log in to the Cyrus server as username.

-pwcommand script Perform a plaintext password login. script must consist of Tcl
commands that return the username and password, for example:

cyr_conn authenticate –pwcommand {
 set adminid "cyrusadm"
 set adminpw "xxxxxxxx"
 list $adminid $adminpw
}

Example 9-1. The addusers Script

#!/usr/local/bin/cyradm –file

Batch Cyrus user creation script. Usage: addusers filename

set inputfile [lindex $argv 0] # Name of file containing users
set quotalimit 15360 # Quota limit in Kbytes

eval cyradm connect cyr_conn venus 143
puts stdout "Connected to IMAP server. Authenticating..."

if [catch {eval cyr_conn authenticate -pwcommand {{
 set hostname "localhost"
 set adminid "cyrusadm"
 set adminpw "xxxxxxxx"
 list $adminid $adminpw
}} } result] {
 puts stderr "$result (cleartext)"
 return -code error $result
} else {
 puts "Authentication successful."
}

Batch Account Maintenance with cyradm 165

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

mailbox for user. After the mailbox is created, the quota defined in the variable
quotalimit at the start of the script is applied to the new mailbox:

if [catch {open $inputfile r} fileId] {
 puts stderr "Error: cannot open $inputfile"
} else {

 while {[gets $fileId user] >= 0} {

 ## Create the INBOX

 if [catch {cyr_conn createmailbox user.$user} result] {
 puts stderr $result
 } else {
 puts "Created mailbox user.$user"
 }

 ## Create the default mailboxes

 if [catch {cyr_conn createmailbox user.$user.drafts} result] {
 puts stderr $result
 } else {
 puts " Created mailbox user.$user.drafts"
 }

 if [catch {cyr_conn createmailbox user.$user.sent-mail} result] {
 puts stderr $result
 } else {
 puts " Created mailbox user.$user.sent-mail"
 }

 ## Set the quota

 puts " Setting quota $quotalimit on user.$user..."
 cyr_conn setquota "user.$user" "storage" "$quotalimit"
 }
}

Rename an Account

The next script, rename, is a Tcl script that renames a user’s mailboxes. Cyradm
has a built-in rename command, but the command works only on top-level mail-
boxes—it does not rename mailboxes lower in the hierarchy. The rename script in
Example 9-2 renames the top-level mailbox and all mailboxes below it in the
user’s mailbox hierarchy.

You will often find it necessary to rename a user’s mailbox if her name is reflected
in her username and her full name changes. In the examples provided in this sec-
tion, user anndoe (Ann Doe) married and changed her last name to Smith, and
she asked the system administrator to change her Cyrus username to annsmith.

166 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

First, in cyradm, list the user’s mailboxes, excluding the top-level mailbox. Save
the mailbox names in a text file—you will use it later as input to the script that
renames the account:

localhost> lm user.anndoe.*
user.anndoe.networker.bootstrap
user.anndoe.networker
user.anndoe.saved-messages
user.anndoe.sent-mail

Suppose we saved the lm output in a file called lm.out. To rename anndoe ’s
account to annsmith, you would run the command:

$ rename lm.out anndoe annsmith

Example 9-2. The rename Script

#!/usr/local/bin/cyradm –file
#
Usage: rename filename olduser newuser
#
set inputfile [lindex $argv 0]
set oldmb [lindex $argv 1]
set newmb [lindex $argv 2]
set mailstore "/var/spool/imap/user"

eval cyradm connect cyr_conn localhost 143
puts stdout "Connected to IMAP server. Authenticating..."

if [catch {eval cyr_conn authenticate -pwcommand {{
 set hostname "localhost"
 set adminid "cyrus"
 set adminpw "XXXXXXXX"
 list $adminid $adminpw
}} } result] {
 puts stderr "$result (cleartext)"
 return -code error $result
} else {
 puts "Authentication successful."
}
##
Open the file containing mailbox names, and create the
top-level mailbox.
##
if [catch {open $inputfile r} fileId] {
 puts stderr "Error: cannot open $inputfile"
} else {

 ## Create the toplevel mailbox

 if [catch {cyr_conn createmailbox user.$newmb} result] {
 puts stderr $result
 } else {
 puts "Created mailbox user.$newmb"
 }

Shared Folders and Bulletin Boards 167

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

After renaming the mailboxes, run reconstruct as the cyrus user, before doing any-
thing else. Until you have run reconstruct, the account is not fully active:

$ reconstruct –r user.annsmith

Shared Folders and Bulletin Boards
The Cyrus IMAP server is unique in its capability to make a mailing list available to
many users via the IMAP protocol alone. Cyrus accomplishes that feat with shared
folders and bulletin boards.

Shared folders and bulletin boards are ordinary Cyrus mailboxes with ACLs that
allow more than one user access to the mailbox. There is really not much differ-
ence between shared folders and bulletin boards: they are both Cyrus mailboxes,

 while {[gets $fileId line] >= 0} {

 ## Build the new mailbox name from the old one
 set newf [join [lreplace [split $line .] 1 1 $newmb] .]

 ## Create the mailbox
 if [catch {cyr_conn createmailbox $newf} result] {
 puts stderr $result
 } else {
 puts "Created sub-mailbox $newf"
 }
 }

 file delete -force /var/spool/cyrus/user/$newmb
 file copy $mailstore/$oldmb $mailstore/$newmb
 {exec /usr/bin/chown -R cyrus:mail $mailstore/$newmb}

 ## Delete the old account
 if [catch {cyr_conn setaclmailbox user.$oldmb cyrusadm d} \
 result] {
 puts stderr $result
 } else {
 puts "setaclmailbox user.$oldmb cyrusadm d"
 }

 if [catch {cyr_conn deletemailbox user.$oldmb} result] {
 puts stderr $result
 } else {
 puts "Deleted mailbox user.$oldmb"
 }
}

puts "Please run \'reconstruct user.$newmb\' as cyrus."

Example 9-2. The rename Script (continued)

168 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

and both allow users other than the mailbox owner to access the mailbox with the
permissions defined in the mailbox’s ACL.

When a Cyrus mailbox is referred to as a shared folder, it generally means that it is
a mailbox owned by an individual user who wants to allow other users access to
the mailbox. An additional feature of a shared folder is that, other than the “read”
flag, it does not retain message state information that is unique per user. Message
information like deleted or important is global to all users. That feature could be
useful if it is desirable to preserve state information across accesses by different
users. If you use a shared folder for a group of users, such as a Helpdesk, chances
are you will want to preserve the seen and answered states across sessions, to pro-
vide a sort of work flow for the Helpdesk employees.

A bulletin board is a Cyrus mailbox that is owned by the system, rather than by an
individual user. Bulletin boards are generally used when it is desirable to maintain
a per-user seen state. Good uses for bulletin boards are forums such as Usenet
groups and Internet mailing lists.

There are no fixed rules, only guidelines, about whether to use a shared folder or
bulletin board for your particular application.

Implementing Shared Folders

When creating a shared folder, the first step is to create the mailbox that will be
shared. Because clients handle mailbox names differently, make the mailbox name
as descriptive as possible. Remember that with Unix authentication, the mailbox
name is actually the name of a user in the password file. That limits the mailbox
name to eight characters or less. A good guideline to follow when creating the
top-level mailbox is to configure for the lowest common denominator. Don’t use
more than eight characters in the top-level mailbox name—anticipate a migration
to another mail system or authentication system someday in the future. There is
also the issue of MUAs—some clients can get confused by long usernames. If there
are to be sub-folders in the hierarchy, you need not be as strict with naming them.

After creating the mailboxes, set the ACL to allow the appropriate users access. For
example, suppose we need a shared mailbox called announce, with sub-folders
called events, for_sale, and official_notices. The user announce has all permis-
sions on all the mailboxes in the hierarchy. We also want the sub-folders to be
readable by everyone on the Cyrus system, and we want only two users, johndoe
and msmith, to append messages to the sub-folders. To allow those two users to
post messages to the sub-folders, the ACLs on the sub-folders should look like:

localhost> lam user.announce.events
announce lrswipcda
msmith p
johndoe p
anyone lr

Shared Folders and Bulletin Boards 169

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

johndoe and msmith can append mail directly to any of the mailboxes in the hier-
archy via IMAP by using the “+” notation. For example, to post a message directly
to the events mailbox, johndoe or msmith would send a message to:

announce+events@yourdomain.com

The deliver program would append the message to the events folder in the
announce mailbox. If any other user attempts to append mail directly to one of
the shared folders, it will end up in announce ’s inbox, where only announce can
see it.

In order for a user to post mail to a mailbox using the + notation,
that user must have p access rights on the mailbox.

That implies that the ACL on the top-level mailbox must be set more strictly than
the events, for_sale, and official_notices. First, we create the top-level mailboxes
and the sub-folders:

localhost> createmailbox user.announce

By default, the user.announce mailbox is created with an ACL that grants all rights
to the mailbox owner, announce. Because we don’t want other users to view the
mailbox, no change in the ACL is necessary on the top-level mailbox:

localhost> createmailbox user.announce.events
localhost> createmailbox user.announce.for_sale
localhost> createmailbox user.announce.official_notices

Finally, set the ACL on each sub-folder to allow everyone read and list access, and
msmith and johndoe permission to post messages to the mailboxes (repeat the last
three commands for msmith):

localhost> setaclmailbox user.announce.events anyone lr
localhost> setaclmailbox user.announce.for_sale anyone lr
localhost> setaclmailbox user.announce.official_notices anyone lr
localhost> setaclmailbox user.announce.events johndoe p
localhost> setaclmailbox user.announce.for_sale johndoe p
localhost> setaclmailbox user.announce.official_notices johndoe p

If you use a shared folder to provide a group of staff members with
a forum, distribute your workload—delegate someone as the shared
folder or bulletin board owner. Give that person all access rights, so
that person can manage the mailbox’s ACL and its permissions as
changes in staff occur.

170 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Implementing Bulletin Boards

As with shared folders, the first step in creating a bulletin board is to create a mail-
box that will be used as the bulletin board. After creating the mailbox, set the
ACL—the ACL should have the l and r bits set so that the users can see and read
the mailbox. If users are allowed to post to the bulletin board, then the p bit
should also be set. If they are allowed to store messages they have seen in the
bulletin board, then the s bit should be set.

If your installation’s sendmail configuration was built using the cyrus-proto.mc M4
file that came with the sendmail distribution, mail sent to bb+mailboxname will be
delivered to the bulletin board.

Sites that use some MTA other than sendmail should take a look at the deliver (8)
manpage for details on how to invoke deliver to allow postings to the bulletin
board.

A Word of Warning . . .

d (delete) rights should be used on bulletin boards and shared folders with cau-
tion. While d rights may be granted with the intention of allowing a user to delete
messages in the folder or bulletin board, d rights also enable the user to delete the
folder or bulletin board itself. When the folder or bulletin board is deleted, incom-
ing mail bounces. The problem has been known for some time and is fixed in
Cyrus Version 2.0, due to be released soon. Although the problem cannot neces-
sarily be considered a bug, a fix exists that can be applied to versions of the
source code prior to 2.0 to allow d rights yet prevent users from deleting the
folder itself.

The fix involves changing code that checks the user’s ACL in imap/mailboxlist.c in
the mboxlist_deletemailbox function. The code provided in the Cyrus distribution
checks the user’s ACL for d rights before allowing him to delete a mailbox. By
changing the code to test for a rights instead of d rights, a user can still be allowed
to delete messages in the folder, but must have administrative rights added to his
ACL before he can delete the folder. There are two ACL tests in mboxlist_delete-
mailbox, shown in Example 9-3.

Example 9-3. The Offending Code from mboxlist.c (Cyrus IMAP Version 1.5.19)

mboxlist_deletemailbox(name, isadmin, userid, auth_state, checkacl)
char *name;
int isadmin;
char *userid;
struct auth_state *auth_state;
int checkacl;
{

Mailstore Partitioning 171

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The same code, with the fix applied (in boldface type), is shown in Example 9-4.

Mailstore Partitioning
Cyrus scales well as your storage requirements grow. Scaling is accomplished by
spreading the mailstore across filesystems. New partitions can be added to the

(Lines deleted for brevity...)

 /* Check ACL before doing anything stupid
 * We don't have to lie about the error code since we know
 * the user is an admin.
 */
 if (!(acl_myrights(auth_state, acl) & ACL_DELETE)) {
 return IMAP_PERMISSION_DENIED;
 }

(More lines of code deleted...)

 access = acl_myrights(auth_state, acl);
 if (checkacl && !(access & ACL_DELETE)) {
 mboxlist_unlock();

Example 9-4. Fixed mailboxlist.c

mboxlist_deletemailbox(name, isadmin, userid, auth_state, checkacl)
char *name;
int isadmin;
char *userid;
struct auth_state *auth_state;
int checkacl;
{

(Lines deleted for brevity...)

 /* Check ACL before doing anything stupid
 * We don't have to lie about the error code since we know
 * the user is an admin.
 */
 if (!(acl_myrights(auth_state, acl) & ACL_ADMIN)) {
 return IMAP_PERMISSION_DENIED;
 }

(More lines of code deleted...)

 access = acl_myrights(auth_state, acl);
 if (checkacl && !(access & ACL_ADMIN)) {
 mboxlist_unlock();

Example 9-3. The Offending Code from mboxlist.c (Cyrus IMAP Version 1.5.19) (continued)

172 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

mailstore at any time without requiring downtime,* copying of files, or even the
users’ knowledge.

The default Cyrus configuration requires two properties related to mailstore parti-
tioning in /etc/imapd.conf :

partition-default: /var/spool/cyrus
defaultpartition: default

Under this default configuration, when a new mailbox is created, it inherits the
partition of its parent mailbox. If the new mailbox does not have a parent mail-
box, then the mailbox is placed on the default partition partition-default.

Depending on the specifics of the hardware configuration, the system administra-
tor may want to distribute the mailstore across several disks. Suppose, for exam-
ple, a system with a single disk for its mailstore reached 90% of its disk capacity,
and the administrator added two disks and a new disk controller. In this case, the
system administrator would probably decide to keep her mailstore partitioning as
simple as possible and add a new partition for each new disk.† After adding the
new hardware to the system, formatting the disks, and mounting the new parti-
tions, the administrator would create a user subdirectory under each new partition
and change /etc/imapd.conf to look like:

partition-default: /var/spool/cyrus
partition-1: /var/spool/cyrus1
partition-2: /var/spool/cyrus2
defaultpartition: default

To add new accounts to one of the new partitions, the administrator would need
to specify the partition name as an argument to the createmailbox command. If
she does not specify the partition, the mailbox is created on the default partition.
For example, using cyradm interactively, give the command:

localhost> createmailbox user.marydoe 1

The createmailbox command creates a new account for marydoe and, because
partition-1 is located on the filesystem /var/spool/cyrus1, places marydoe ’s
mailbox in /var/spool/cyrus1/user/marydoe/.

To move existing accounts to other partitions, the rename script (Example 9-2)
could be used. There is also a very useful public domain IMAP tool, fast.imap (see
Chapter 18, IMAP Tools), which can be used to manually move or automatically
balance mailboxes across partitions.

* This is assuming the partitions are being added, not moved. Downtime may, of course, be required to
add new disk hardware to a system, but that downtime would be required regardless of the mail server
software.

† While simple, the configuration takes maximum advantage of the hardware by spreading I/O requests
across the two controllers.

Quota Maintenance 173

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

A common partitioning scheme that is used at many sites involves dividing the
mailstore into 26 partitions, one for each letter in the alphabet. Users are then
assigned to the partition that corresponds to the first letter of their last name.
Although many sites do this to make the system more scalable or to work around
filesystem limits, we don’t recommend it. The problem with the alphabet partition-
ing scheme is that you’re likely to get an uneven distribution of mailboxes across
partitions; e.g., your “m” partition might fill up before your “z” partition. Addition-
ally, having a large number of small partitions makes the system more complex
and difficult to manage. Careful configuration of the system makes this sort of par-
titioning scheme unnecessary. Keeping a smaller number of partitions keeps the
system scalable without making it more complex than it has to be.

Quota Maintenance
On occasion, quotas will get horked. A common corrupted quota scenario goes
like this: a user receives alerts from his client that he cannot save mail to his fold-
ers.* You use cyradm to check his quota, and everything looks fine—he has plenty
of space. However, you check a little deeper and you see that his mail is being
deferred to the queue and is not being delivered to his mailbox, which usually
happens when a user is over quota. A quick way to determine whether the prob-
lem is quota-related is to use the quota command to fix the user’s quota root (run
the command as user cyrus from the shell prompt):

$ quota user.username

After running quota, run cyradm and check the quota again. Chances are that it
will report the user as being over quota when you run it this time.

The quota command, when run with no command-line arguments, can also be
used to report quota limits and usage on your entire user base:

$ quota
Quota % Used Used Root
15360 0 0 user.aa0002
15360 0 0 user.aa0006
15360 0 137 user.aa0008
15360 0 0 user.aa0009

If quotas become corrupted, all that is required to fix the problem is to run the
quota command with the –f switch:

$ quota -f

* The errors depend on the client and can range from “permission denied” to “cannot save to mailbox.”

174 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The command may require several minutes to complete, depending on the num-
ber of users your system supports. More information on quota subsystem mainte-
nance is provided in later in the chapter.

Disaster Recovery
Anticipate disaster! The best approach you can take is a proactive approach. Here
are some things you can do to be prepared.

Checkpoint Your mailboxes File

Reconstructing the mailboxes file is time-consuming, but you can avoid recon-
structing that file from scratch. Save a history of past versions of the mailboxes file
periodically on disk so that you can go back in small increments of time to the last
good copy of the mailboxes file. True, it may be a few minutes too old to bring
your system back to its exact state before the problems started, but in most cases
that is better than bringing the system down for several hours to reconstruct the
mailboxes file. Saving one copy of the file is not useful—suppose the corruption in
the mailboxes surfaced hours ago, and you’ve been backing up the corrupt file
every five minutes since then? To be on the safe side, save each set of files on a
separate physical disk. Even better yet, save two copies in two different physical
locations. Save as often as possible, as often as every few minutes. A script for
rotating the mailboxes file is given in Example 9-5 later in this chapter.

Back Up Your Data

Have a good backup strategy. While reliable backups are essential, the ability to
recover files on demand is equally important. Are you prepared to restore any part
of your system right now? If so, document where the data is kept and how to
recover it.

Be Prepared for More than One Disaster

Disasters can happen simultaneously at more than one level in your infrastructure.
What would you do if you lost both your tape backup system and your mail server
at the same time? Document your infrastructure—what systems and services does
Cyrus depend on? Include one or more extra Cyrus servers that can take over
while the primary server is being recovered.

Keep Hard Copies of Your Configuration

If a disk containing part of your Cyrus system is lost, you must be prepared to
install a new disk, rebuild the filesystem on the new disk, and restore data. To

Disaster Recovery 175

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

rebuild the disk, you need to know how the filesystems were laid out on the disk
and how much space was allocated to each partition. Keeping hard copies of con-
figuration data, such as your IMAP server configuration file or your MTA configura-
tion, can make recovery of the server much easier if for some reason you must
install it from scratch. Useful information to keep in hard copy includes:

• Partition tables from the format command

• Output of the df command

• /etc/vfstab or /etc/fstab

• /etc/imapd.conf

• sendmail.mc

• RAID configuration files

• Automounter configuration files

Disasters and Recovery Strategies

In this section, we’ll look at some common disasters and how to recover from
those disasters.

Corruption or inconsistency in the mailboxes file

As we learned in Chapter 7, Installing the Cyrus IMAP Server, the /var/imap/
mailboxes file is critical to the operation of the Cyrus system. Fortunately, Cyrus
comes with a utility, reconstruct, that can be used to rebuild the mailboxes file in
case of loss or corruption.

The reconstruct utility must always run as user cyrus ! If run as root
or another user, it will reset the ownership of the mailbox and the
mailboxes will no longer be accessible.

Shut down imapd before running reconstruct. Comment out the imapd entry in
/etc/inetd.conf, and send a HUP signal to the inetd process to turn off imapd.
Then, as user cyrus, run the reconstruct utility with the –m switch:

$ reconstruct -m

The –m argument tells reconstruct to correct the system-wide mailboxes file, if
possible. After correcting mailboxes, reconstruct checks each partition defined in
/etc/imapd.conf for mailboxes, and adds them to mailboxes if necessary. When
reconstruct finishes its work, uncomment imapd in /etc/inetd.conf and send
another HUP signal to inetd to turn imapd back on.

176 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Be aware that on a system with a large number of users, reconstruct can take quite
some time to run.* It is strongly recommended that on all Cyrus systems, but espe-
cially on large systems, you checkpoint your mailboxes file to an alternate disk
periodically throughout the day and that you keep copies going several hours
back. The mailboxes file changes when:

• A new user account is created

• A mailbox is created or deleted

• A quota root changes

• A mailbox’s ACL changes

If your system has a large number of users, or your users are very active, your
mailboxes file changes often. For systems with an active mailboxes file, check-
pointing the mailboxes file every 5 or 10 minutes is recommended. Having a good
copy of mailboxes around will help you avoid taking time to recover the file from
tape and will save hours of downtime by making a reconstruct of the complete
mailboxes file unnecessary. Always try replacing the corrupted mailboxes file with
the backed-up copy before running reconstruct. If the file is current enough,
chances are that it will suffice and the entire file will not need to be rebuilt.
Example 9-5 shows a script for rotating the mailboxes file.

* On a Sun Enterprise 3500 with the mailboxes file on local disk, reconstruct took 7 hours to rebuild a
mailboxes file containing 60,000 entries.

Example 9-5. Script to Rotate the mailboxes File

#!/usr/local/bin/perl

$file = "/var/cyrus/mailboxes";
$gzip = "/usr/local/bin/gzip";
$maxrot = 60;
$suffix = "gz";

if (! -e $file) { print "$file does not exist! exiting.\n"; exit; }

$rot = $maxrot;
while ($rot >= 0) {

 $rotn = $rot + 1;
 if (-e "$file.$rot.$suffix") {
 rename "$file.$rot.$suffix", "$file.$rotn.$suffix";
 }
 $rot = $rot - 1;
}

`cp $file $file.0`;
`$gzip $file.0`;

Disaster Recovery 177

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

On less active systems, backing up mailboxes once per hour should be sufficient.
If you have a very small number of users, reconstruct runs quickly and it’s not
really necessary to checkpoint your mailboxes file.

reconstruct does not adjust the quota usage recorded in the quota root files. After
reconstructing or recovering the mailboxes file, it’s always necessary to rebuild the
quota subsystem using the quota –f command.

Corruption in a user’s mailbox

On occasion, you will encounter inconsistencies in individual mailbox directories.
reconstruct can also be used to recover from inconsistencies in mailboxes and
mailbox hierarchies. To rebuild a single mailbox without affecting any other mail-
boxes in the same hierarchy, run reconstruct with the mailbox name as an argu-
ment. Remember, reconstruct must be run as the cyrus user:

$ reconstruct user.johndoe
user.johndoe

To rebuild a mailbox and all mailboxes below it in its local hierarchy, use the –r
argument to reconstruct:

$ reconstruct –r user.johndoe
user.johndoe
user.johndoe.Trash
user.johndoe.work
user.johndoe.work.projects

reconstruct first checks the mailbox for cyrus.header and cyrus.index files. If the
files exist, then reconstruct recovers information from those files that it cannot
gather from the message files, such as the date stamp and flag names and states.
reconstruct recovers information from the message files themselves that it cannot
find in the header and cache files.

Inconsistency in quotas

On rare occasions, a mailbox will wind up with the wrong quota root. When this
happens, the cyradm listquota command will report an incorrect quota usage. A
good indication that something in the quota system has gone haywire is when a
user’s mail is bouncing with “Deferred—quota exceeded” errors, but listquota
reports that the usage is below the limit. The Cyrus distribution includes a tool,
quota(8), for maintaining the consistency of the quota subsystem.

You may recall from Chapter 6 that the Cyrus quota subsystem is comprised of a
directory in the Cyrus configuration area that contains a set of text files, one file
per quota root. The association between a mailbox and a quota root is not made
in the quota subsystem—that information is maintained in the mailboxes file. Each

178 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

quota file, which is named after the quota root, contains the quota root’s quota
usage (in bytes) and quota limit (in kilobytes). Here is an example of a quota file:

$ cd /var/imap/quota
$ cat user.aa0006
4052251
15360

The first line of user.aa0006 is the quota usage, in bytes; the second line is the
quota limit, in kilobytes.

If we go to the mailboxes file and look for the quota root user.aa0006, we can
find all mailboxes that it applies to. Here is an excerpt from the mailboxes file. The
first field in the line is the mailbox name, the second is the partition on which the
mailbox resides, the third field is the quota root (sans the “user.” prefix), and the
last field is the mailbox’s ACL:

user.aa0006 default aa0006 lrswipcda
user.aa0006.Drafts default aa0006 lrswipcda
user.aa0006.Trash default aa0006 lrswipcda
user.aa0006.sent-mail default aa0006 lrswipcda

The quota program, when run with the –f option, fixes inconsistencies in the
quota subsystem by recalculating the quota root of each mailbox and the quota
usage of each quota root:

$ quota -f

The quota command first repairs the quota subsystem, then reports its results after
all repairs have been made. The results include the quota root, its usage before the
consistency check, and its usage after the repairs:

user.aa0002: usage was 0, now 307223
user.aa0006: usage was 5181, now 4052251
user.aa0030: usage was 105945, now 5446403
user.aad0006: usage was 0, now 6261
user.aadavis: usage was 0, now 8239

The Cyrus distribution does not include a tool for removing a quota root. To
remove a quota root without removing the mailbox it is associated with, you must
remove the quota root’s file from the /var/imap/quota directory, then run the
quota command to make the quota subsystem consistent:

$ rm /var/imap/quota/user.aa0002
$ quota -f

It is advisable to run the quota command periodically (e.g., once per week) out of
cron to keep the quota subsystem in a consistent state.

Migration from Berkeley (Unix) Mailbox Format to Cyrus 179

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Loss of a disk

You heeded our advice and saved copies of your disk configurations, so you
know how the partitions were laid out on the disk and what each one is used for.
Here are the steps to follow:

1. Replace the disk.

2. Boot your system to single-user mode.

3. Rebuild the filesystem on the new disk and determine that you can mount
each partition on its usual mount point.

4. Restore data to the new filesystem.

5. Arrange your startup scripts so that sendmail does not start up when the sys-
tem boots, and comment out the entry for imapd in /etc/inetd.conf.

6. If you recovered data that included the mailboxes file or any part of a mail-
box, then run reconstruct.

7. Reboot the system. If the system comes up with all partitions mounted, then
start sendmail and uncomment the entry for imapd in /etc/inetd.conf.

Migration from Berkeley (Unix)
Mailbox Format to Cyrus
Unix systems and the out-of-the-box UW IMAP server both store mail messages in
Berkeley mail format (also referred to as mbox, Unix, or /var/mail format) mail
folders. Many sites that use Berkeley format move their users onto a Cyrus server
to take advantage of the quota and ACL support that Cyrus offers. In this section,
we’ll walk though the steps involved in such a migration. Source code for the tools
we used to accomplish the migration are provided in Appendix A.

How Do I Know My Mail Is Berkeley Format?

If your mail setup matches six out of seven of the criteria below, then you’re stor-
ing mail in Berkeley format:

• There is no mail server—users log on to a Unix machine and run a mail pro-
gram to read their mail.

• There is a mail server, but it’s the UW IMAP server, running out-of-the-box
with no special site configuration.

• Each user’s incoming mail is stored in a spool directory, such as /var/mail or
/var/spool/mail.

180 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

• Each user’s incoming mail is stored within a single file, named after the user.

• Mail folders are stored in the user’s home directory.

• Mail reading is done with programs such as Elm, PINE, mail(1), rmail(1), or
mailx(1).

• Each mail folder contains a header, blank line, and message body, and delim-
its messages with the From header line.*

Issues

When converting a production mail system to Cyrus, several issues need to be
taken into consideration to make the conversion go smoothly.

User-driven versus batch conversion

Will you take responsibility for moving your users over to the Cyrus server, or will
you put some utility in place to allow them to do it on their own? If moving to
Cyrus is optional, it might be easier on you if the users migrate their own mail to
the new server. A one-time, all-or-none conversion might be optional in your cir-
cumstances. If you don’t have another immediate need for the old machine and
can keep both the old and new machines running simultaneously, then you could
take advantage of a user-driven conversion. The size of your user base plays a
role, too—user-driven conversion is much easier to manage in a small user base.
In a larger user base, it becomes difficult to get everyone to move their mail
before your deadline.

If you are constrained to providing mail service on the new Cyrus server immedi-
ately, then you will need to move all your users at one time in batch mode.

Downtime

Downtime is a serious consideration for sites that depend on Cyrus as a produc-
tion mail server. You may decide to bypass the issue of downtime completely and
move one or two users at a time over a period of months until everyone has been
moved to the Cyrus server. Some sites do not have the infrastructure or hardware
to support that strategy. Those sites will need to move all users from the old sys-
tem to Cyrus in one fell swoop.

Downtime can be considerable if the migration is not planned carefully. If down-
time is a serious issue, then a dry run of your migration plan is advisable.

* The From and From: header lines are not the same.

Migration from Berkeley (Unix) Mailbox Format to Cyrus 181

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

It’s all or nothing!

Once you’ve migrated users to your Cyrus system and start delivering mail to the
system, it is possible, but time-consuming, to revert to Berkeley mail. Be prepared
to revert to your old system if something goes terribly wrong mid-migration. Tools
for backing out of a conversion are provided later in this chapter.

Tools

Unfortunately, there are no generic migration tools good for both large and small
user bases. Mark Crispin at the University of Washington developed a set of tools
that includes mailbox conversion programs (see Chapter 18). The UW tools can be
used to migrate a small number of mailboxes. However, those tools use the IMAP
protocol to move mail around and require authentication for each user being con-
verted, making them unsuitable for a mass migration. Those tools are somewhat
problematic to use for conversion to Cyrus, and after a few days of working with
them unsuccessfully, we found it easier to write our own tools. In this chapter, we
provide generic tools that are good for user-driven and both large and small batch
conversions.

Backward compatibility

You may be supporting features that could become problematic on a Cyrus server,
such as server-side mail filtering or .forward files. Keep those features in mind
when you’re drawing up your migration plans.

User-Driven Conversion

Users can copy their own Berkeley-format incoming mailbox and mail folders into
a Cyrus mailbox using the Perl script, user2cyrus, shown in Example 9-6. The
script makes the transfer using IMAP, so the Berkeley folder and Cyrus server need
not reside on the same machine. The script does assume that each user already
has an account on the Cyrus server.

If the user runs user2cyrus while she has an IMAP client open, she
may need to exit and restart the client to see the new mailbox and
messages.

To provide user2cyrus to your users, you would need to install it somewhere pub-
lic, like /usr/local/bin, on the machine where the Berkeley format folders reside.
The script automatically skips the first message in the Berkeley folder to avoid

182 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

copying the “FOLDER INTERNAL DATA” message. If you want to copy the mes-
sage, then edit the script as you wish.

user2cyrus requires the NetxAP Perl module, which is freely available from CPAN.

Example 9-6. The user2cyrus Script

#!/usr/local/bin/perl
#
This is a modified version of a public domain script written by
Steve Snodgrass (ssnodgra@fore.com).
#
user2cyrus - Dump a user's Unix mail file into a Cyrus mailbox
#
Usage: user2cyrus mbox
#
Input: Name of an RFC 822 mail folder
#
Dependency: NetxAP Perl module from CPAN
#
use File::Basename;
use Net::IMAP;

Set this to the hostname of your IMAP server
$IMAPSERVER = "europa.acs.unt.edu";

$mbox = "$ARGV[0]";
if (!$mbox) { die "Usage: $0 mbox\n"; }

chop ($whoami = ‘/usr/ucb/whoami‘);
if ($whoami eq "root" || $whoami eq "cyrus") {
 die "This script cannot be run by a privileged user!\n";
}

#
Main Code
#

Log in to Cyrus IMAP server
($user, $pass) = GetLogin();
$imap = new Net::IMAP($IMAPSERVER, Synchronous => 1);
$response = $imap->login($user, $pass);
print "Login: ", $response->status, "-",
 $response->status_text, "\n";

cyrmailbox is the mailbox name on the Cyrus server
$cyrmailbox = "user." . "$user." . basename($mbox);

Create the new mailbox. If the mailbox already exists, do not
allow its contents to be overwritten!
$response = $imap->create($cyrmailbox);

print "Create: ", $response->status, "-",
 $response->status_text, "\n";

Migration from Berkeley (Unix) Mailbox Format to Cyrus 183

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

if ($response->status eq "NO") {
 print "Mailbox $cyrmailbox already exists on Cyrus server!\n";
 print "Rename your file and try again.\n";
 $response = $imap->logout();
 print "Logout: ", $response->status, "-",
 $response->status_text, "\n";
 exit;
}

Copy the mbox
if (-s $mbox) {
 TransferMbox($imap, $cyrmailbox, $mbox);
}

Disconnect from IMAP server
$response = $imap->logout();
print "Logout: ", $response->status, "-",
 $response->status_text, "\n";

#
Get username and password information
#
sub GetLogin {
 my ($username, $password);

 print "Enter your IMAP username: ";
 chop ($username = <STDIN>);
 system "stty -echo";
 print "Enter your IMAP password: ";
 chop ($password = <STDIN>);
 system "stty echo";
 print "\n";
 return ($username, $password);
}

#
Dump a Unix-style mbox file into a Cyrus folder
#
sub TransferMbox {
 my ($imap, $mailbox, $mboxfile) = @_;

 my $blank = 1;
 my $count = 0;
 my $message = "";
 my $response;

 print "Transferring $mboxfile...\n";
 open(MBOX, $mboxfile);
 while (<MBOX>) {
 if ($blank && /^From /) {
 if ($message) {
 chop $message; # Remove extra blank line before next From
 $response = $imap->append($mailbox, $message) if $count;
 $count++;

Example 9-6. The user2cyrus Script (continued)

184 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Batch Conversion: An Example and Tools

Batch conversion from a Berkeley system to a Cyrus system can be done in two
different ways:

Extract and copy
Create the complete, empty mailbox hierarchy on the Cyrus server, then split
the Berkeley-style folders into separate RFC 822 messages and copy them into
the appropriate mailbox on the Cyrus system. Once all messages have been
copied, reconstruct each mailbox hierarchy.

Extract and deliver
Similar to extract and copy, but instead of copying the extracted mail mes-
sages directly into the Cyrus mailboxes, they are piped into the deliver pro-
gram. deliver places the messages in the appropriate mailbox and updates the
mailbox header and cache files, making it unnecessary to reconstruct each
mailbox hierarchy. There is overhead involved in using deliver (the state files
must be updated with each message) that makes this method slower than
extract and copy.

Batch conversions could be done using a utility similar to the user2cyrus utility
shown in Example 9-6, but there is a drawback: it’s nearly 75% slower in real time
than an extract and copy. If you have more than 1,000 users to convert, you
should probably rule it out.

The extract and copy method is the most direct and requires the least amount of
downtime, making it the best option for large-scale migrations. It saves time by
avoiding use of the protocol and a third-party delivery agent and by allowing
some of the work (such as creating the mailbox hierarchies) to be done before

 }
 $message = "";
 }
 else {
 chop;
 s/$/\r\n/; # IMAP requires CR/LF on each line
 $message .= $_;
 }
 $blank = /^\r$/ ? 1 : 0;
 }
 $response = $imap->append($mailbox, $message) if $count;
 $count++;
 close(MBOX);
 print "Transferred $count messages from $mboxfile to
 $mailbox.\n";
}

Example 9-6. The user2cyrus Script (continued)

Migration from Berkeley (Unix) Mailbox Format to Cyrus 185

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

taking the system down. Because this method directly manipulates the mailbox
database, it is also a good opportunity to learn the mechanics of the Cyrus sys-
tem. For those reasons, we will examine the extract and copy approach.

Procedure

The starting point for the conversion is a text file listing usernames of the accounts
to be converted. The procedure for conversion from a Unix to a Cyrus system con-
sists of the following steps:

1. Shut down imapd and sendmail.

2. Create an IMAP account for each user on the list.

3. Create an empty Cyrus mailbox on the new system for each mail folder that
resides on the old system.

4. Transfer messages from the old incoming mailbox to the Cyrus incoming
mailbox.

5. Transfer messages from the old mail folders into the new mailboxes on the
Cyrus server.

6. Reconstruct the Cyrus mailboxes file.

7. Restart imapd and sendmail.

In the rest of the section, we will walk through an actual conversion, using the
tools provided in Appendix A. As we go along, we’ll also list the output and
results of each step. For simplicity’s sake, our example will move only one user.
Note that the procedure is the same whether you have a few accounts or thou-
sands (we have run this identical procedure on 20,000 accounts in one batch).

Step 1: Shut down imapd and sendmail

Chaos can result if mail is delivered to the Cyrus system while the conversion is
underway. Be sure to turn off both imapd and sendmail before proceeding any
further.

Step 2: Create the new accounts

Creating IMAP accounts in advance can save up to several hours of downtime.

First, save the list of usernames you’re going to convert in a text file. We saved the
usernames we’re converting in a text file called users.txt, and that’s the file used
throughout the examples in this chapter. Once you have your text file, create a
Cyrus IMAP account for each user in users.txt. This involves two steps:

• Set up authentication for your users. If you use Unix authentication, add the
users (or NIS/NIS+ usernames or netgroups) to the local password file. If you

186 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

plan to run your Cyrus system as a black box, assign each user a null shell,
such as /bin/false, to prevent them from logging in and snooping around. If
your site authenticates using a SASL mechanism, such as Kerberos or CRAM-
MD5, it’s not necessary to add the users to the password file. If you use an
alternative to Unix authentication, then Unix accounts are not required for
your users. Chapter 8 has more information on how to set up authentication
for your users.

• Create an IMAP account for each user. A handy Tcl script for creating new
IMAP accounts, addusers, is given in Example 9-1. This step can be per-
formed while both the new and the old systems are up and running:

addusers users.txt

The result of Step 2 is that each user on the list now has a top-level mailbox
(INBOX) with the default ACL or, in other words, an account on the Cyrus system.

Step 3: Create Cyrus mail folders

The next step, creating empty mailboxes that correspond to folders, is a bit more
involved. To understand what the goal is here, see Figure 9-1. The figure shows
how johndoe ’s incoming mailbox and mail folders on a Berkeley mail format sys-
tem map to Cyrus mailboxes.

Figure 9-1. Mapping of johndoe’s Berkeley mail folders to Cyrus mailboxes

Berkeley mail
format system

Cyrus
system

user.jsmith
user.johndoe
user.kjones

user.johndoe.saved-messages
user.johndoe.sent-mail
user.johndoe.work
user.johndoe.lists

/var/mail/
jsmith

johndoe
kjones

saved-messages
sent-mail

work
lists

/home/jsmith/mail/
/home/johndoe/mail/
/home/kjones/mail/

Migration from Berkeley (Unix) Mailbox Format to Cyrus 187

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

As the figure shows, johndoe ’s incoming mailbox and each of his folders must be
converted into a Cyrus mailbox. The Cyrus mailbox format is different from Berke-
ley format in several ways. For one, it’s hierarchical—the incoming mailbox is the
root of the tree, and the folders and sub-folders are branches. The other differ-
ence is that Berkeley format mail folders contain many mail messages within a sin-
gle file, whereas Cyrus folders store each message in a separate file. Another
difference is that the Cyrus account holder does not own his own mail folders—
they’re owned by the Cyrus system. The details of the Cyrus mailbox format were
covered in Chapter 6.

Because Cyrus mail format is so different from Berkeley format, some preparation
work must be done before you actually create the empty mailboxes. First, you
have to find the pathnames of all the Berkeley format folders that belong to the
user and map them into mailbox names in the Cyrus namespace. Using johndoe as
an example, we could look up his home directory in the password file and, know-
ing that, find all the folders in his ~/Mail directory, then translate those folder
names into Cyrus mailbox names.

The mapping from Berkeley folder names into the Cyrus namespace is accom-
plished using the Perl script, bsd2cyrus. bsd2cyrus does nothing more than formu-
late a list of Cyrus mailbox names—the output of bsd2cyrus is to be fed into
another script later on to create the actual mailboxes.

To run the script and redirect its output to a file, mailboxes.txt (for later use in the
other conversion scripts), use the command:

bsd2cyrus users.txt > mailboxes.txt

Save the output of bsd2cyrus in a text file and keep it for later refer-
ence. Other conversion tools will rely on it for input, and it’s the
only correlation you’ll have between Berkeley folder pathnames and
Cyrus mailbox names.

There are several points worth noting about the bsd2cyrus script:

• The script expects that each user’s mail folders are stored in a subdirectory off
the user’s home directory on the Berkeley system. In the examples in this
chapter, that subdirectory is ~/mail. The script also expects that the user’s
home directories will be mounted temporarily on the Cyrus machine for the
duration of the conversion.

• There is always the possibility that folders on the Berkeley system may have
content that is not RFC 822 compliant (e.g., they might be compressed files,

188 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

executables, or subdirectories). Such folders are ignored by bsd2cyrus. You
always have the option of going back and handling the exceptions.

• You may recall from Chapter 6 that Cyrus does not support special characters
in mailbox names. bsd2cyrus converts all characters except alphabetic charac-
ters, digits, underscore, and dash to their ASCII representation preceded by an
underscore. For example, user diannam ’s Berkeley folder name mail&news
would become user.diannam.mail_046news on the Cyrus system (046 is the
ASCII representation of the character “&”).

The output of the bsd2cyrus script will be used as input into two other scripts,
which perform the following:

• Create the new, empty folders on the Cyrus system

• Convert the contents of the old BSD mail folders to Cyrus format and insert
the mail into the new mailboxes

Let’s look at what the bsd2cyrus script does. Our user, diannam, has several BSD
mail folders on the old system:

% ls -aF
. binaryfile* how spacy s.me
.. compressed.Z s!me same
.hidden directory/ s&me saved
Trash gzip.gz s*me sent

After running the script, take a look at its output:

cat mailboxes.txt
diannam:user.diannam.Trash:/home/jove/stu/dl0020/mail/Trash
diannam:user.diannam.s_041me:/home/jove/stu/dl0020/mail/s!me
diannam:user.diannam.s_046me:/home/jove/stu/dl0020/mail/s&me
diannam:user.diannam.s_052me:/home/jove/stu/dl0020/mail/s*me
diannam:user.diannam.s_056me:/home/jove/stu/dl0020/mail/s.me
diannam:user.diannam.same:/home/jove/stu/dl0020/mail/same
diannam:user.diannam.saved:/home/jove/stu/dl0020/mail/saved
diannam:user.diannam.sent:/home/jove/stu/dl0020/mail/sent

Note that the script is designed to ignore certain files, such as hidden files, directo-
ries, binary files, and empty files—that is why some files in the directory are not
found in mailboxes.txt. As you can see in the output, the script renamed the new
folders using the ASCII representation of the special characters.

Next, feed the bsd2cyrus output into the createfolders script. createfolders is a Tcl
script that creates empty Cyrus mailboxes. This work must be done with Tcl script,
because the command to create a new mailbox on a Cyrus system is a cyradm
command—you may recall that cyradm is an extended Tcl interpreter. The
createfolders script is shown in Example A-2 in Appendix A.

Migration from Berkeley (Unix) Mailbox Format to Cyrus 189

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Here’s the output of createfolders when we run it on the mailboxes.txt file that we
saved earlier:

createfolders mailboxes.txt
Connected to IMAP server. Authenticating...
Authentication successful.
Created mailbox user.diannam.sent-mail
Created mailbox user.diannam.saved-messages
Created mailbox user.diannam.same
Created mailbox user.diannam.s_041me
Created mailbox user.diannam.s_052me
Created mailbox user.diannam.Trash
Created mailbox user.diannam.s_046me
Created mailbox user.diannam.s_056me

Step 4: Transfer messages from old inbox to new inbox

Now that the framework of mailbox hierarchies is in place, the next step is to pop-
ulate the top-level mailboxes with messages from the Berkeley inbox on the old
system. The inboxfer script copies mail from the Berkeley inbox into the Cyrus
INBOX. The script is shown in Example A-3. It takes the filename of your list of
users (users.txt in our examples) as input. The usage is:

inboxfer users.txt

Step 5: Transfer messages from old folders to Cyrus folders

Once the Berkeley inboxes have been migrated to the Cyrus system, we turn to
the Berkeley-format folders. The script in Example A-5 copies the content of
Berkeley-format folders on the old system, converts it to Cyrus-friendly format, and
copies it into the appropriate empty Cyrus folder on the Cyrus system. The usage
of the folderxfer script is:

$ folderxfer mailboxes.txt

Again, you use the mailboxes.txt file that we created with the bsd2cyrus script as
input.

Step 6: Reconstruct the new mailboxes

The final step once everything has been copied over is to reconstruct each user’s
mailbox hierarchy. reconstruct can only be run as the cyrus user, so before run-
ning the reconstruct command, you must change the ownership of all mailboxes
to user cyrus and group mail :

chown –R cyrus:mail /var/spool/imap/user

If you have a large number of users, the chown command may take an hour or so
to complete. Once the permissions have been changed, run the batchreconstruct
script shown in Example A-6. The usage is:

$ batchreconstruct users.txt

190 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Step 7: Restart imapd and sendmail

At this point, all mail has been moved to the Cyrus system. Uncomment the imapd
entry in /etc/inetd.conf, restart inetd, and restart sendmail.

Backing Out

Things don’t always go as planned, and so we provide you with a way to back out
of Cyrus and go back to Berkeley-format mailboxes.

We once began a conversion from the UW server to a commercial IMAP server
based on CMU Cyrus. We were concerned with the amount of time it would take
to convert our 20,000-user base to the new server. The company’s technical staff
assured us that, using their conversion tools, it wouldn’t take more than a day to
have our users up and running on the new server. We made the very expensive
mistake of blindly trusting their assurances and based our entire plan on their pre-
diction of our downtime. We warned our users of the downtime, prepared our
data, and on the big day, took our old system offline and started the conversion
scripts provided to us by the developers at the company. Twelve hours later, after
only 265 users had been converted, we realized we were in deep water and
decided to back out. Example 9-7 is the script we threw together on the spot and
used to grab the converted mail and put it back where it came from.

Example 9-7. revert

#!/usr/local/bin/perl

$LOCK_EX = 2;
$LOCK_UN = 8;
$formail = "/usr/local/bin/formail";
$base = "/var/spool/imap/user";
$spool = "/var/mail";

open (USERLIST, "$ARGV[0]") || die "$!";

while (<USERLIST>) {

 chop;
 print "$_\n";

 opendir(DIR,"$base/$user") || die;
 @files = readdir(DIR);
 closedir DIR;

 open (BSDMAILBOX,">>$spool/$user") || next;

 foreach $file (@files) {

 next if $file eq '..';
 next if $file eq '.';

Mail Forwarding and Filtering on a Black Box 191

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

After our horrendous experience, we attempted to develop our own conversion
tools and give it another try. However, the server’s value-added features and pro-
prietary twists kept our conversion code from working as expected. We gave up
and installed the open source Cyrus server instead. The tools we developed
worked like a charm with Cyrus and gave us more appreciation than ever for the
fruits of the open source community.

Mail Forwarding and Filtering
on a Black Box
The Cyrus server is intended to run as a black box. Because users have no home
directories on the Cyrus server, they cannot enable mail forwarding by creating a
.forward file.

Forwarding

How is forwarding done without .forward files? You guessed it—user mail for-
warding is from within the sendmail aliases database on a Cyrus system. To make
maintenance easier, you can keep the user aliases and the system aliases in sepa-
rate files:

• System aliases should be kept in the standard /etc/mail/aliases file.

• Users’ mail forwarding orders should be stored in another file (or files),
defined in your local sendmail configuration.

Let’s suppose that we will store users’ forwarding orders in an alias file that’s
named /etc/mail/forward. The format of the /etc/mail/forward file is the same as
the sendmail aliases file format. To activate the /etc/mail/forward file, edit your M4

 flock (BSDMAILBOX,$LOCK_EX);
 if ($file =~ /\.$/) {

 open(FORMAIL,"$formail < $base/$user/$file |")
 || die;
 while (<FORMAIL>) {
 $_ =~ s/^M//g;
 print BSDMAILBOX $_;
 }
 close FORMAIL;
 }
 flock (BSDMAILBOX,$LOCK_UN);
 }
 close BSDMAILBOX;
}
close USERLIST;

Example 9-7. revert (continued)

192 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

file (sendmail ships with an example, cyrusproto.mc, or you may have rolled your
own) and add the following line:

define('ALIAS_FILE', '/etc/mail/aliases,/etc/mail/forward')

Finally, build a new sendmail.cf file and restart sendmail. If you don’t use an M4
macro to build your sendmail.cf file, then edit your sendmail.cf file and look for
the lines:

location of alias file
O AliasFile=/etc/mail/aliases

Change the definition of AliasFile to:

O AliasFile=/etc/mail/aliases,/etc/mail/forward

Because users cannot log in and directly edit their forwarding orders, they need to
be allowed to edit their forwarding orders via a web form or some other indirect
method.

Migrating existing .forward files to aliases

.forward files have to be taken into account during a conversion process from a
Berkeley-style mail system to Cyrus. The Perl script in Example 9-8, fwd2alias,
finds .forward files for a list of users and converts the contents of the .forward
files into an aliases file. Run the script on your Berkeley or UW mail system. The
aliases file that the script produces should be moved to your Cyrus server’s /etc/
mail directory and incorporated into your sendmail configuration as described ear-
lier in this section.

Example 9-8. fwd2alias

#!/usr/local/bin/perl

open (USERS,"users.txt") || die "$!";
open (OUTFILE,">/tmp/forward") || die "$!";

while (<PR>) {

 chop;
 ($name,$pass,$uid,$gid,$quota,$comment,$gcos,$dir,$shell)
 = getpwnam($_);

 open (FW,"$dir/.forward") || warn "can't open $dir/.forward";
 chop ($address = <FW>);
 print OUTFILE "$_:$address\n";
 close FW;
}
close USERS;
close OUTFILE;

Mail Forwarding and Filtering on a Black Box 193

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

.forward support

If you simply must allow use of .forward files for one reason or another, then you
can mount home directories on the Cyrus server and tweak your sendmail config-
uration to enable support for .forward files (sendmail ’s cyrusproto.mc file comes
with support for .forward files disabled).

To enable .forward support, add the users to the /etc/passwd file, if necessary (for
example, if you’re using an authentication mechanism that does not require that
the users have Unix accounts). .forward forwarding will not work unless the users
have Unix logins.

Edit your sendmail M4 file and find the line:

MAILER(cyrus)

On the line immediately following, add the statement:

define('CYRUS_MAILER_FLAGS','A5@W')

The w flag tells sendmail that users exist in /etc/passwd and that it should look for
a ~/.forward in the user’s home directory.

Server-Side Mail Filtering with procmail

procmail is a popular Unix mail filtering utility used to perform server-side mail fil-
tering. On Cyrus servers, the mail storage format makes it difficult for individual
users to use procmail to filter and sort incoming messages into mailboxes. Tradi-
tionally, the user invokes procmail from their .forward, which doesn’t exist on a
black box server.

We’ve seen that it is indeed possible to allow users to use .forward files with the
Cyrus IMAP server. If a user were to invoke procmail from a .forward file, he
would have to use the Cyrus deliver program in his procmail rules file to deposit
mail into his mailbox. In order for that to even be possible, the permissions on the
deliver program would have to be changed to allow any user to run it (normally, it
can only be run by user cyrus). Changing permissions in that way puts the integ-
rity of the system at risk—we’ve mentioned before that the Cyrus system is finicky
about ownership and permissions. It also opens a gaping security hole, essentially
allowing any user to insert mail into any other user’s mailbox by filtering the mail
either directly or through an intermediate program.

Obviously, invoking procmail out of .forward is something to be avoided. Instead,
users’ mail-filtering rules could be stored centrally in a subdirectory under /var/
imap (the examples in this chapter will be stored under /var/imap/procmail) and
owned by the Cyrus system. To edit his rules, the user would log in to an authen-
ticated CGI that runs as user cyrus.

194 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The setup that is described in this section has the following essential features:

• sendmail calls procmail, not deliver, as a delivery agent.

• procmail reads a global procmail rules file and calls Cyrus deliver from that
file to deliver mail.

• The global procmail rules file looks to see if the user has a personal rules file
and if so, reads the rules in that file and applies them.

Figure 9-2 illustrates the three features. In the figure, the MTA passes the mail mes-
sage to the delivery agent, procmail. procmail filters the message through the glo-
bal rules file. After processing the message, the global rules file checks whether
the recipient has a personal rules file and, if he does, the message is filtered
through that file. Finally, the message is dropped into the user’s mailbox.

The global procmail rules file

To put procmail to work, start by creating a global procmail rules file, /var/imap/
procmail/procmail.global. The global rules file contains procmail filtering rules that
apply to every message that is received by the MTA. The rules in the global file
apply to all users. Any mailbox used in a recipe in the global file must already
exist—if it does not exist, deliver will fail and the message will bounce.

deliver is invoked in the procmail rules as:

/usr/cyrus/bin/deliver -e -a username -m user.username

The –a parameter authorizes username (the mailbox owner) to deliver mail to the
specified mailbox. Why is the –a parameter necessary, you might ask? When send-
mail invokes deliver, it runs the deliver process as user cyrus. Because cyrus owns
every mailbox in the Cyrus system, cyrus can deliver to any mailbox. In fact, cyrus
is the only user other than root who can deliver to a mailbox. When deliver is run

Figure 9-2. Procmail server-side filtering on a Cyrus server

if personal
rules exist

If personal rules do not exist

Client's
Mailbox

MTA

Cyrus Server

Delivery Agent
(procmail)

Global
procmail

Rules

Personal
procmail

Rules

Mail Forwarding and Filtering on a Black Box 195

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

outside of sendmail, it runs as the user who invoked it. Because the user is not
cyrus, she can’t deliver into any mailbox. deliver has to be told to grant authoriza-
tion to the user to perform the delivery.

An example global rules file is given in Example 9-9. The first rule in Example 9-9
is used during testing—it saves a backup copy of every incoming message in the
user’s backup mailbox (user.username.backup). In order to use this rule, the
backup mailbox must exist for every user on the system. Once testing is com-
plete, the backup rule can be commented out.

The variable CYRUSUSER refers to the username of the mail recipient. CYRUSUSER
is set by the MTA before procmail is called, so the value of CYRUSUSER is avail-
able to the filtering script.

Example 9-9. A Global procmail Rules File

File: procmail.global

PATH=/usr/bin:/usr/local/bin:/usr/cyrus/bin
SHELL=/bin/sh
DELIVER=/usr/cyrus/bin/deliver
SPAM=/dev/null

Make a backup copy of all incoming mail (comment the next entry
out once you're finished testing procmail integration)
#:0 ic
#| $DELIVER -e -a $CYRUSUSER -m user.$CYRUSUSER.backup

Execute CYRUSUSER's personal rules
INCLUDERC=/var/imap/procmail/user/procmail.$CYRUSUSER

[The user’s procmail rules are included (via the INCLUDERC statement above)
and executed here. Rules after this point resume after the user’s personal
rules have been executed.]

Example recipes

If the "To:" line doesn't exist, it's SPAM
:0:$CYRUSUSER.lock
* !^To:
| $SPAM

Get rid of SPAM from a specific email address
:0:$CYRUSUSER.lock
* ^To:.*makemoneyfast@aol.com
| $SPAM

All the mail that falls through to this point
will be delivered into the user's INBOX
:0:$CYRUSUSER.lock
| $DELIVER -e -a $CYRUSUSER -m user.$CYRUSUSER

196 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Personal procmail rules file

Each user has a personal procmail rules file. It’s stored under /var/imap/procmail/
user/ in the file procmail.username. The personal rules file is the file each user
edits when he wants to change his filtering rules. If the file exists, the INCLUDERC
statement in the global procmail rules file runs the rules in the personal file.
Example 9-10 shows a simple example of a personal procmail rules file.

Remember that mail cannot be delivered to a mailbox unless the
mailbox already exists.

For the rules in the previous example to work, the mailboxes user.username.
Folders.Mailing_Lists.imap_list and user.username.Folders.Work must both exist.
deliver will fail if it cannot find the mailbox it’s told to deliver to.

As with mail forwarding, the personal procmail files are private to the Cyrus sys-
tem. In order to edit the rules, the user needs some sort of indirect method, such
as a CGI form, to create or modify his rules.

Setting up the MTA

Putting it all into action involves replacing deliver with procmail as the local deliv-
ery agent. As we saw in the example procmail rules files, deliver is invoked by
procmail, instead of directly by the MTA.

Edit /etc/sendmail.cf and look for the section that defines the Cyrus mailer. It will
look something like the lines below. If you’ve customized your sendmail configu-
ration, it might look slightly different, but will begin with the identifier “Mcyrus”.

Example 9-10. A Personal procmail Rules File

File: procmail.username

MAILLISTS=user.$CYRUSUSER.Folders.Mailing_Lists
WORK=user.$CYRUSUSER.Folders.Work

Filter mailing list messages into the appropriate mailbox

:0:$CYRUSUSER.lock
* (^Cc:|^CC:|^To:|^Sender:).*imap@cac.washington.edu
| $DELIVER -e -a $CYRUSUSER -m $MAILLISTS.imap_list

:0:$CYRUSUSER.lock
* (^Cc:|^CC:|^To:|^Sender:).*root@.*
| $DELIVER -e -a $CYRUSUSER -m $WORK

Usenet Integration 197

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Mcyrus, P=/usr/cyrus/bin/deliver, F=lsDFMnPqA5@, S=10, R=20/40, T=X-Unix,
 U=cyrus:mail,
 A=deliver -e -m $h -- $u

Comment out that section and add the following lines below it:

Mcyrus, P=/usr/bin/procmail, F=lsDFMnPqA5@, S=10, R=20/40, T=X-Unix,
 U=cyrus:mail,
 A=procmail -p /var/imap/procmail/procmail.global CYRUSUSER=$u

The –p argument tells procmail to preserve the existing environment (see the
procmail(1) manual page for details on which environment variables are pre-
served). The last parameter, /var/imap/procmail/procmail.global, tells procmail to
use /var/imap/procmail/procmail.global to determine its filtering behavior. The last
parameter, CYRUSUSER, sets the CYRUSUSER variable to username and passes the
variable to procmail. CYRUSUSER is used in the procmail rules files, as we saw in
Example 9-9 and Example 9-10. Once the sendmail configuration changes are in
place, restart sendmail to make the changes active.

Server-Side Filtering with CMU Sieve

CMU Sieve is a server-side mail filtering language and is described in detail in
Chapter 15, Server-Side Mail Filtering. Sieve is supported in Cyrus releases newer
than 1.6.1b and does not require any special installation. Sieve runs out of deliver
and requires sendmail 8.9 or higher.

Usenet Integration
Cyrus IMAP supports exporting Usenet news groups as mailboxes. If you run an
INN server at your site, the Cyrus distribution provides utilities that allow you to
integrate Usenet news into Cyrus. INN is beyond the scope of this book—we
assume that, if you attempt to integrate news with Cyrus, you have a working
knowledge of the INN server.

Programs for News Integration

Four programs, collectnews, rmnews, syncnews, and feedcyrus are provided with
the Cyrus distribution for managing and integrating newsgroups with Cyrus. The
programs are located in /usr/cyrus/bin. Each command, except feedcyrus, is fur-
ther documented in section 8 of the online manual pages.

collectnews
collectnews adds a list of news articles to the Cyrus auxiliary databases. When
collectnews comes across a newsgroup that does not have a corresponding
IMAP mailbox, it creates one.

198 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

rmnews
rmnews removes a list of canceled, superseded, and expired news articles
from the Cyrus auxiliary databases and unlinks the article files.

syncnews
syncnews compares the news active file with the full list of IMAP news mail-
boxes and removes mailboxes that are not found in the active file. If news-
groups in the active file are found that do not have a corresponding mailbox,
then the mailbox is created.

feedcyrus
feedcyrus is a shell script that sends news to the Cyrus IMAP server. The script
is created during the installation process if the build was configured to sup-
port news.

Configuring News

Integrating Usenet with Cyrus is simply done in two steps:

1. Create a partition for the news spool directory.

2. Set up for maintenance of the Cyrus server’s auxiliary databases.

The partition name news is reserved specifically for Usenet news.
You must name your news partition news. Even if you’re not inte-
grating news with Cyrus, the partition name news cannot be used for
any other purpose.

Create the news partition

Select a directory to use as the news partition. It should not be the same directory
as your INN news spool. In the following example, we selected /var/spool/imap/
news to use as the news partition.

First, create the new partition directory and give ownership to the cyrus user:

cd /var/spool/imap
mkdir news
chown cyrus imap-news
chgrp mail imap-news
chmod 750 imap-news

Edit your /etc/imapd.conf and set the newsspool and partition-news options as
shown in the lines below. newsspool is the pathname of your INN news spool
directory. newsprefix is optional—if you want the name of the news group to

Troubleshooting 199

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

appear with a prefix (e.g., “news.comp.mail” instead of “comp.mail”), then set it to
your preferred prefix, followed by a “.”.

partition-news: /var/spool/imap/news
newsprefix: news.
newsspool: /var/spool/news/articles

Set up auxiliary databases

The basic setup for news involves granting write access to cyrus on the news
spool and setting up cron entries to feed news to the Cyrus server and synchro-
nize the newsgroups with Cyrus mailboxes.

The Cyrus utilities run as the cyrus user and will write to the news spool direc-
tory. To make the news spool directory writable by user cyrus, add the cyrus user
to the news group and make the news spool directory group writable. In /etc/
group, the line defining the news group should appear as follows:

news::13:cyrus

Change permissions on the news spool to allow group write access:

chmod –R g+w /var/spool/news

Update the newsfeeds file by adding the following line:

collectnews!:*:Tf,WO:collectnews

Set up cron jobs to maintain the auxiliary databases. The jobs should run as cyrus,
so as the cyrus user, add the cron jobs to cyrus ’s crontab. feedcyrus should be run
every ten minutes. syncnews, collectnews, and rmnews should be run once a day.
If necessary, replace /var/news/active with the pathname of your news active file.
The crontab entries are as follows:

10,20,30,40,50 * * * * /usr/bin/feedcyrus
0 2 * * * /usr/cyrus/bin/syncnews /var/news/active > /dev/null 2>&1
10 * * * * /usr/cyrus/bin/collectnews
20 2 * * * /usr/cyrus/bin/rmnews </home/news/lib/expire-these.files

Troubleshooting
This section describes some problems commonly encountered on Cyrus systems,
tells you how to diagnose them, and gives you a fix for one.

Testing the Server

From any account, telnet to the IMAP port on your Cyrus server and issue the
IMAP NOOP command:

% telnet localhost imap
Trying 127.0.0.1...

200 Chapter 9: Cyrus System Administration

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Connected to localhost.
Escape character is '^]'.
* OK venus Cyrus IMAP4 v1.5.14 server ready
. noop
. OK Completed

If the server returns the message OK Completed, then the server is up and
responding. If it returns anything other than OK Completed, then there is a prob-
lem—check the following:

1. Check that /etc/services contains an entry for imap :

imap 143/tcp imap # IMAP Server

2. Check that an entry for imapd exists in /etc/inetd.conf and that imapd runs as
the cyrus user:

imap stream tcp nowait cyrus /usr/cyrus/bin/imapd imapd

3. Check the permissions on the imapd executable:

$ ls -l /usr/cyrus/bin/imapd
-rwxr-xr-x 1 cyrus mail 303576 Apr 1 10:07 /usr/cyrus/bin/imapd*

4. Check permissions on all directories on the path to imapd. The cyrus user
must be able to traverse that path.

User cannot access mailboxes

If the server is up, then the problem is most likely a client configuration. Check to
make sure she used the correct syntax to define her mailboxes.

If the syntax is correct, then the user may be trying to access a mailbox for which
she has no permissions. In that case, check the ACL on the mailbox.

User stops receiving mail

If the user is able to log in to the server and read his mail, but complains that he
has not been receiving mail, then:

1. Make sure sendmail is running.

2. Check to see if the user is over quota.

3. Check to see if the user’s quota is in a consistent state.

Users are unable to log in

First, determine whether the problem is authentication-related or if the server is
not responding. Check the latest entries in /var/log/imapd.log. If there are more
than a few badlogin entries, such as this one:

May 13 15:21:54 venus imapd[21934]: badlogin: europa [129.120.220.72] plaintext
announce Incorrect password
May 13 15:22:02 venus last message repeated 1 time

Adding SSL Support to Cyrus 201

This is the Title of the Book, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

then the problem is related to authentication. If it does not appear to be an
authentication problem, skip this section and read on.

If you use Unix shadow passwords to authenticate users:

1. (Cyrus IMAP Version 1.5.24 and older) Check to see if the pwcheck daemon is
running. If not, then start it (etc/init.d/pwcheck start).

2. Determine whether the user’s password has a space character. Space charac-
ters are not supported in all IMAP clients.*

If you authenticate users using Kerberos:

1. Check that the /etc/srvtab file exists.

2. If the file exists, check that the permissions are 0400 (-r--------) and that it
is owned by user cyrus and group mail.

3. Run klist –srvtab. If either rcmd or imap are not there, restart the server.

Adding SSL Support to Cyrus
If sending passwords in cleartext across the wire makes you nervous and you
don’t have the infrastructure to support Kerberos or CRAM, then you can hack SSL
support into IMAP as a quick workaround. To take advantage of SSL, you would
of course have to use an IMAP client that supports SSL. Currently, your choices are
narrow: Netscape Messenger and Outlook Express/Outlook 98. The entire proce-
dure for adding SSL support to IMAP is covered in Appendix B, Adding SSL Sup-
port to IMAP.

* Not all IMAP clients quote the password like they should.

