In this chapter:

o What Is UW IMAP?
* UW’s Strengths

o UW’s Limitations

o UW IMAP Concepts

e Does UW IMAP Match
Your Needs?

Introduction to the
UW IMAP Server

This chapter provides a high-level picture of the University of Washington IMAP
server. The server is part of the IMAP4revl/C-Client Development Environment
written by Mark Crispin of the University of Washington. Crispin is also the author
of the IMAP RFC itself, as well as several of the ancillary RFCs related to IMAP.

The primary strength of the UW server is its flexibility. While the Cyrus IMAP
server has very specific requirements about the format of the mailstore, UW goes
to great lengths to support numerous formats. If Cyrus with all its advanced
administration and information-sharing features can be thought of as doing a lot
with a little bit, UW is the converse, doing a little bit with a lot. UW lacks the
application-layer quotas and access-control support of Cyrus, but its ability to han-
dle many different mail formats makes it an attractive choice for sites that have a
chaotic mail infrastructure. It’s also the best server for sites that need to bring
IMAP up in a hurry with a minimum of time spent on configuration and migration.

What Is UW IMAP?

The University of Washington IMAP server (UW IMAP) is an IMAP server that uses
inetd or a similar Internet superdaemon to provide users IMAP access to a
mailstore.

Usually when people refer to UW IMAP, they're referring specifically to the IMAP
daemon component of the IMAP4revl/C-Client Development Environment. The
development environment bundle includes an IMAP test utility called mtest and an
IMAP API library called C-Client. It also includes a couple of POP servers that offer
proxy access to your IMAP server through POP, for an easier transition from
legacy POP systems. The UW IMAP daemon itself is bundled with the popular
PINE mail client and included with many versions of the Linux operating system.

205

206 Chapter 10: Introduction to the UW IMAP Server

Available in a separate package are the UW IMAP Utilities, a set of tools for man-
aging an IMAP server. The UW IMAP utilities were developed by the University of
Washington and based on the C-Client API. They’re covered in Chapter 18, IMAP
Tools.

The UW feature set and design make it well suited for an existing Unix system that
wants to add IMAP. It can be used out of the box on any Unix shell user system,
without modifications or special infrastructure.

It can also be used for a dedicated IMAP server; however, you may need to start
thinking about modifying it if you plan on scaling it to very large user communi-
ties. How many UW IMAP users a particular system will support depends greatly
on the hardware and the operating system. UW IMAP does not need much in the
way of CPU resources, but it does require adequate per-process memory and disk
bandwidth. You can have more UW IMAP users on a system than Unix shell users,
but within reason: if a particular machine won’t handle 5,000 Unix shell users well,
don’t expect it to handle 100,000 UW IMAP users well.

In general, scaling works better with a cluster of small systems than with a gigan-
tic monolith. A fast CPU is much less important than lots of disk bandwidth. As
simple a trick as putting sendmail’s /var/spool/mqueue directory on a different disk
than IMAP mailboxes results in significant performance benefits.

The University of Washington serves its community of 80,000 users with a cluster
of small, inexpensive IMAP servers, each of which is assigned a portion of the
overall user space. The IMAP servers are in a special DNS domain that is tied to
UW’s account system. User fred may be moved to a different IMAP server, but
Sfred.deskmail. washington.edu always points to his assigned IMAP server.

Most Unix variants, particularly the open source varieties, typically come with an
unlabeled IMAP daemon (imapd). Chances are that the daemon is the UW IMAP
server. You will probably find no obvious documentation or clues as to the dae-
mon’s origins, but if you'd like to identify it as the UW server, there are a couple
of things to try. First, look at the server’s capabilities:

% echo ". CAPABILITY" | /usr/local/sbin/imapd

* OK localhost IMAP4Arevl v12.250 server ready

* CAPABILITY IMAP4 IMAPAREV1 NAMESPACE IDLE SCAN SORT MAILBOX-REFERRALS
LOGIN-REFERRALS AUTH=LOGIN AUTH=ANONYMOUS THREAD=ORDEREDSUBJECT

. OK Completed

%

Most IMAP daemons answer the CAPABILITY command with the name of the
company or organization that released the daemon. The UW IMAP server doesn’t
identify itself as belonging to any particular organization. If the server’s version
number is of the format “v12.NNN” (versions prior to UW IMAP 2000) or the

What Is UW IMAP? 207

format “v2000.NNN” (UW IMAP 2000), it’s most likely the UW server. The SCAN,
SORT, and THREAD capabilities are UW experimental capabilities; their presence
also suggests that the server is the UW server.

You can also look for artifacts of the UW phile driver. The phile driver is likely to
be found only in software based on the UW C-Client library:

% strings /usr/local/sbin/imapd | egrep phile

phile

phile

phile recycle stream

%
Be careful, though, because there are likely to be other IMAP servers out there
based on the C-Client libraries.

Probably the most interesting and significant fact about the UW IMAP server is that
it was written by Mark Crispin, the progenitor of IMAP itself. It’s fair to say that
Crispin is to the IMAP community as Linus Torvalds is to the Linux community.
Crispin invented IMAP entirely on his own, when he was asked to build a distrib-
uted mail system with no guidance. He wrote the original IMAP server from
scratch in DEC-20 assembly language in 1985. IMAP’s early design was strongly
influenced by the DEC-20 mail system, of which Crispin was also the primary
developer and maintainer. The first nine years of IMAP’s development can be
attributed entirely to Crispin.

History

The UW IMAP server was first written in November 1990. It took Mark Crispin
only a few days to write imapd, because he based it on the C-Client library. Quot-
ing Crispin, “If you have the right underlying structures and tools, any project can
be reduced to triviality.”

imapd didn’t include support for traditional Unix mailbox format in its original
release. The users of legacy Unix mail programs such as /bin/mail were clamoring
for Unix mailbox support in imapd, though. Crispin was reluctant to add Unix
mailbox support because of its limitations, such as the inability to have a mailbox
open by multiple users simultaneously. He added this support to a later release,
though, and support for other mailbox formats followed soon after. The current
preferred mailbox format, mbx, continues this tradition.

It's interesting that, from its inception, UW imapd supported multiple, simulta-
neous access to a single mailbox using tenex format, something that was consid-
ered impossible on Unix systems.

208 Chapter 10: Introduction to the UW IMAP Server

The C-Client Library

C-Client, also written by Crispin, was originally developed while he worked at
Stanford beginning in 1988. C-Client is a C port of an LISP IMAP client, hence its
name—it’s the C client as opposed to the LISP client.

C-Client is a C API that implements IMAP and SMTP as well as numerous mailbox
driver interfaces that read and write different mailbox formats, which we’ll talk
about in later chapters. The UW IMAP daemon is based on C-Client. Many IMAP
client programs are also based on C-Client, including the popular PINE mail client.

You'll find excellent documentation on C-Client included in the UW IMAP source
distribution in the file docs/internal.txt.

UW’s Strengths

UW imapd is at once both a kit of sorts and a completely self-contained IMAP
server. By kit, we mean that there are adequate mechanisms built into UW IMAP
to extend it to use virtually any kind of mailbox or authentication scheme, often
with only a relinking required. By self-contained, we mean that it already has sup-
port for most authentication and mailbox schemes you're likely to want to use.

Flexibility

The UW server takes a very different approach than the Cyrus server to dealing
with mailbox formats. Cyrus understands only one mailbox format. To access a
Cyrus mailstore, you're limited to access through the Cyrus server. The UW server,
on the other hand, understands many different mailbox formats. It goes to great
lengths to detect the format of an existing mailbox and work with it.

The flexibility in mailbox formats can be a major selling point for the UW server.
Some sites have users who demand that mail be stored in standard Unix format so
that it can be directly manipulated (e.g., with Unix tools like grep or with Unix
mail clients like elm) without using IMAP. With the UW server, the site administra-
tor has the option of leaving the mailstore open to direct access or locking it down
to IMAP access only.

You may come across claims that the UW server doesn’t perform as well as Cyrus.
Most performance comparisons of UW to Cyrus are comparing apples to oranges.
The default UW IMAP installation uses traditional Unix mailbox format, where the
mailbox is a single file of concatenated messages. Cyrus, on the other hand, stores
the mailbox in a slightly modified form of the MH format, where each message is
stored in a separate file and tracked in an index file. Cyrus does not have to share
its data with legacy mail software, so it doesn’t have to make the compromises that
the UW server does.

UW’s Limitations 209

In general, Cyrus is faster than the UW server. However, the UW server can do
some things (notably, expunge many messages and search text) faster than Cyrus
because it doesn’t have to deal with multiple files. Replacing the traditional Unix
mailbox format with the mbx format helps close the gap. A huge benefit is the
support for server-based sorting in the UW server. PINE users who use sorted
views will notice much better performance from the UW server than from Cyrus.

So the real answer is, “it all depends.”

Modularity

UW IMAP also provides system administrators with a modular system. If you want
to write code to provide a value-added service or scale not easily available else-
where, UW IMAP may be a good choice.

UW’s Limitations

All this plug-and-play ability must, of course, come at some price. With UW IMAP,
that price is lack of support for some important features and a certain degree of
Unix-centricity. Note that we say these are limitations, not necessarily shortcom-
ings. Ultimately the result of the limitations is that UW IMAP is a tightly focused
server.

No Support for IMAP Quotas

UW IMAP does not support the RFC 2087 quota extension. That means that,
instead of application-specific IMAP quotas, UW IMAP servers must rely on the
underlying OS for quotas. The effect is that, with the default Unix MDA, a mes-
sage delivered to an over-quota UW INBOX is bounced back to the sender. It is
not deferred and reattempted later—it bounces hard. On an RFC 2087—compliant
server, the message would be held in queue for n days and delivery would be
reattempted periodically, until either the usage drops below the quota limit or time
runs out and the mail is bounced.”

Many system administrators would prefer that UW IMAP included support for
IMAP quotas (RFC 2087) because such support would allow a finer degree of gran-
ularity over allocating space in the mailstore to users. A user, for example, could
have numerous unrelated quotas that apply to different parts of her personal mail-
store. The IMAP quota specification provides for not just one quota, but entire
hierarchies of quotas. User joebob might have a quota of 10 MB on his INBOX, a

* Such soft bouncing assumes that the system employs a RFC 2087—cooperative Mail Delivery Agent
(MDA), such as Cyrus’s deliver program. The number of days mail is held in queue is, strictly speaking,
a Mail Transport Agent (MTA) thing.

210 Chapter 10: Introduction to the UW IMAP Server

separate overall quota of 30 MB on his entire collection of mailboxes including the
INBOX, and a further quota of 10 MB on his sent-mail folder.

Many sites’ quota needs may be met just fine by using the standard Unix quota
facility. Because incoming mailboxes are frequently on different partitions than
users’ personal mail folders, it’s straightforward to use something like edqguota(1)
to assign users one quota for the /var/spool/ partition, which might hold the users’
INBOXes, and another quota for the /export/bome partition, which might hold
users’ personal mailboxes.

The RFC 2087 quota behavior is kinder to the sender and the recipient at the
expense of storage and processing resources used to retain and attempt redelivery
of the overflow mail in local queues. The UW behavior is kinder to local system
resources at the expense of message sender and recipient angst.

You may be stuck on the horns of a dilemma in which you can’t do without the
distinctive features of UW IMAP, but you've absolutely got to have quotas that
result in Cyrus-style soft bounces. In that case, you might be able to cobble some-
thing together by chaining two MTAs together, one that houses your destination
mailboxes, and the other a queuing host that initially receives all the incoming
mail bound for the mailbox host. It’s feasible that the MTA on the queuing host
could be modified to retain quota bounces from the destination host, retaining
them for later attempts. Such wizardry should only be attempted by the pure of
heart and strong of spirit, preferably after massive coffee consumption.

No Support for IMAP ACLs

At the time this book was written, UW included no support for IMAP ACLs (RFC
2086). That lack of support means that, instead of using an IMAP client’s built-in
mechanism to grant or remove access to mailboxes, a user must rely on the oper-
ating system’s access control mechanisms (e.g., change permissions on a file using
chmod). Support for IMAP ACLs in the UW server is in the design phase now and
will be included in upcoming releases.

Relies Heavily on Unix

Out of the box, UW imapd relies very heavily on the underlying Unix operating
system structure. For example, you can’t have an IMAP user that doesn’t also exist
in /etc/passwd. You can’t assign a quota that doesn’t already exist on a Unix file-
system. And you can’t create a hierarchy of mailboxes that doesn’t correspond to
files and directories in the underlying filesystem.

Note that everything we say about UW imapd applies to UW imapd straight out of
the box unless otherwise noted. Because the server is so flexible, you can make it
fit nearly any requirements it doesn’t already fit, with some time and code.

UW IMAP Concepts 211

UW IMAP Concepts

Black Box and Clearbox Models

We mention black box* and clearbox modes only because, once you unpack the
UW IMAP development environment, you're likely to run across several refer-
ences to a black box mode in the accompanying documentation. You may also
see mention of it in discussion lists and, if you’re so inclined, in the server source
code itself. Clearbox mode, the default, is the mode in which we strongly urge
you run UW IMAP. Black box mode has to be explicitly enabled.

References to black box IMAP servers usually occur in two contexts. One context
refers to a machine whose mission is solely that of an IMAP server—it does not
provide shell, Web, or other Internet services. In the other context, black box
refers to a configuration mode and namespace intended solely for internal use at
the University of Washington. It's easy to get the impression from the UW docu-
mentation that black box is a valid configuration choice for users outside the Uni-
versity of Washington. It’s not. UW black box mode was designed for a single
server at UW. It is not a general mechanism, nor is it intended as such. UW’s pub-
lic servers don’t even use black box mode, even though they are black boxes.
Later, we'll give you chapter and verse of the warning from Mark Crispin himself.

In the general context of Internet messaging, though, the black box distinction is
usually loose enough to include any server that:

e Has no interactive logins (with the exception of the administrators’ accounts)

e Serves up only IMAP and closely related protocols (SMTP, for example)

UW IMAP Namespace

Having hopefully scared you away from attempting to operate the UW server in
black box mode, let’s talk briefly about the UW IMAP namespace. In the context
of IMAP, a namespace is a convention for describing the location of a mailbox in
relation to other mailboxes. Some familiar namespaces in other contexts include
the Usenet News newsgroup namespace and the DNS domain namespace.

IMAP4 (RFC 2060) doesn’t specify a namespace. There is an IMAP Namespace
document (RFC 2342) that presents two alternative approaches to the namespace:
the Complete Hierarchy model and the Personal Mailbox model. The Personal
Mailbox model is used by UW IMAP as the namespace that describes the location

* Mark Crispin mentioned these briefly in the course of a discussion on the UW IMAP mailing list
concerning the IMAP server namespace in 1997. See http.//www.washington.edu/imap/listarch/
msg02743.htmi.

212 Chapter 10: Introduction to the UW IMAP Server

of each individual user’s mailboxes in relation to her home directory. UW IMAP
uses the Complete Hierarchy model to name shared, public, and anonymous mail-
boxes relative to the root of the public namespace.

Issuing the IMAP NAMESPACE command to an out-of-the-box UW IMAP server
results in something like the output below:

telnet localhost imap

Trying 127.0.0.1...

Connected to localhost.

Escape character is '"]'.

* OK localhost IMAP4revl v12.250 server ready
. login kvm xcoooooot

. OK Completed

. namespace

* NAMESPACE (("" "/") ("#mhinbox" NIL) ("#mh/" "/")) (("~" "/"))
(("#shared/" "/") ("#ftp/" "/") ("#news." ".") ("#public/" "/"))
. OK Completed

. logout

* BYE myhost.unt.edu IMAP4revl server terminating connection

. OK Completed

Connection closed by foreign host.
The NAMESPACE command returns a list of namespaces (e.g., ("#mh/" "/")).
Each namespace consists of the namespace’s name and a hierarchy separator. The
hierarchy separator is a character used in a mailbox name to delimit different lev-
els in the mailbox hierarchy. Take the “~” namespace, for example: a mailbox in
that namespace would have a name like ~/mail/saved-messages.

In the previous example, the logged-in user kwm has at least eight namespaces
available, most of which have “/” as a hierarchy separator, but one of which uses
“.”. Within the context of this example, then, #shared/yippie/tie/yie/yea/ is a syntac-
tically valid mailbox name, whereas #news/comp/dcomy/telecom isn't.

Onward to the individual namespaces of UW IMAP:

INBOX
The INBOX appears as the first token, ("" "/"), in the output of the
NAMESPACE command. As specified in section 5.1 of RFC 2060, this special
reserved name is a token that stands for “the primary mailbox for this user on
this server.” UW IMAP even uses some elementary heuristics to try and figure
out what mailbox type (Unix, mmdf, mbx, etc.) the user is given to using so it
can apply the appropriate mailbox driver.

#mhbinbox
This special name tells UW IMAP to assume that the INBOX is in MH format.
Because the INBOX occupies only one level of the hierarchy, there is no hier-
archy separator, hence the NIL. UW IMAP includes MH implementation to
support legacy mailboxes only. If you really want to use an MH format
INBOX, then you have to use #mbinbox.

UW IMAP Concepts 213

#news
This name permits reading of a local news spool. #news.alt.sysadmin.recovery,
for example, would present the contents of the alt.sysadmin.recovery news-
group as if it were a read-only IMAP mail mailbox. You can also substitute the
stock driver for one that makes UW IMAP use #news as a proxy NNTP server.

#ip
#ftp is a way to download files from the anonymous FTP directory using
IMAP. The mailbox #fip/pub/messages actually points to and serves up the file
~fip/pub/messages. This capability is typically used to serve up one or more
mailboxes to users who aren’t necessarily provisioned at your site.

#public
Another anonymous login name. This is different from #fip in that it serves a
directory dedicated to IMAP. This would be good for data you want to serve
through IMAP only, not through FTP.

#shared
#shared is like #public, except that anonymous IMAP users cannot access
#shared, whereas they can access #fip and #public.

~/ (tilde expansion)
UW IMAP supports the use of a tilde (~) to indicate files in the home direc-
tory of the logged-in user. Ordinarily, users of multiuser systems keep their
mailboxes in a directory somewhere south of their top-level home directory.
Something along the lines of ~/mail/ or ~/Mail/ is probably more useful than
browsing through the top-level files in the user’s home directory.

Remote names
Using the remote names convention, UW IMAP can be turned into an IMAP,
POP3, or NNTP proxy. A mailbox specification like {news.myisp.net/
nntpjcomp.mail.imap can be used to present a Usenet newsgroup in the same
way any mailbox is presented in your MUA. Likewise, you can use the same
method to pull up your POP3 mailbox or another IMAP mailbox.

C-Client Drivers

The University of Washington IMAP can be thought of as the emacs of IMAP serv-
ers. emacs’s power lies in the fact that it knows little or nothing about individual
terminal types—instead, it interfaces to the curses API and the Termcap/Terminfo
capability databases, which are easy to use and know about a wide variety of ter-
minals. At its core, UW IMAP doesn’t access mailboxes directly. Instead, it makes
calls to the C-Client API. C-Client is an API that uses numerous modular drivers to
perform mailbox operations (see Figure 10-1).

214 Chapter 10: Introduction to the UW IMAP Server

Slele

University of Washington IMAP

C-Client Library

B e
driver Driver

Unix tenex mmdf
driver driver driver

Figure 10-1. C-Client API

Modularity is one of the primary strengths of UW IMAP. In the default clearbox
mode, which is the mode all but a handful of people should use, the server goes
through some simple heuristics to try and match up the mailbox in question with
the correct mailbox driver. In order, it tries to match the mailbox with mbox, mx,
mbx, tenex, mtx, mmdf, Unix, and, finally, just plain flat file formats. One of the
drivers is selected if certain expected files are present and are in the anticipated
format. For example, if mbox, mx, and mbx selection fail, the server would next
check to see if file ~/mail.txt exists and is either empty or in tenex format. If it did
exist and it was empty or in tenex format, then UW IMAP would select the tenex
driver and proceed.

Authentication and Authenticator Modules

Another strength of UW IMAP is its ability to use additional authenticator mod-
ules. By default, the MD5 and Unix standard authentication types are included at
build time. Inclusion of Kerberos 4, OTP, S/Key, or other types of authentication
schemes can be accomplished by adding a third-party authenticator module.

UW IMAP Concepts 215

Your selection of an authentication method directly impacts two features of your
mail service: scalability and security. It affects your scalability because different
components of different authentication mechanisms begin to break down at
different sizes. The flat file, /etc/passwd, begins to become quite difficult to provi-
sion after a certain number of users. Exactly how many depends on the operating
system; on some systems it is as low as 10,000 users. The kernel structure defin-
ing the number of hard links to any given directory is a fixed number of bits wide
(usually 32). That places a fixed limit on the number of users you can have in a
non-hashed home directory structure. Component limits like this impact your
choice of what authentication mechanisms scales best for you.

The far more obvious impact of your authentication mechanism choice is on secu-
rity. Depending on the scheme you use, you could be tossing a copy of your front
door key into the street every time you enter your home. If you use Unix authenti-
cation, you're exposing yourself to the single biggest vulnerability on most IMAP
servers: the use of cleartext passwords. More and more people are hopping on the
Internet. An increasing number of those people are running mail clients to check
for new mail (and sending a cleartext password over the Net in the process) every
5 or 10 minutes. The Net is becoming a gold mine for passwords.

The IETF is working to remedy the situation by refusing to standardize protocols
that rely on cleartext authentication. In the meantime, you can do your part to
help. If you simply must use a cleartext password, engineer a provisioning system
so that it precludes reusing your mail password on any other system. Or employ a
virtual private network (VPN) mechanism, such as Point-to-Point Tunneling Proto-
col (PPTP), Secure Shell (SSH), or Secure Socket Layer (SSL), to encrypt the path
between your mail client and the mail server. Webmail is another option. You
could install a web-based IMAP client (such as IMP or WING®), run the HTTP
server with SSL, and keep the IMAP server and the web server on the same
machine. Passwords will then travel from the web server to the IMAP server over
the machine’s loopback interface and will not travel the Net.

Addition of both drivers and authenticators is accomplished by including them in
the EXTRAAUTHENTICATORS= or EXTRADRIVERS= lines of the top-level makefile.
Some drivers or authenticators may require that you add or patch code in your
build tree before rebuilding IMAP to accommodate their product.

* See Chapter 5, Web-Based IMAP Clients, for a discussion of webmail.

216 Chapter 10: Introduction to the UW IMAP Server

Logging
There are various ways to keep track of what's going on with your UW server. It’s
likely that you’ll want to log its messages to syslog.

Here are the kind of syslog entries you can expect from UW IMAP. Typically,
they’re logged to facility mail and level debug.

The following entry is generally the first log entry you’ll see. It means the LISTEN
on the IMAP TCP port established a connection with a remote machine, in this
case, 10.120.220.41:

Jun 9 14:55:14 nec imapd[14506]: imap service init from 10.120.220.41

The following sequence typifies the trail left behind by IMAP login successes and
failures:

Jun 5 23:24:40 nec imapd[27712]: Login user=kwm host=raz.unt.edu [10.120.110.4]

Jun 9 11:33:49 nec imapd[11568]: Authenticated user=kwm host=raz.unt.edu
[10.120.110.4]

Jun 7 22:32:36 nec imapd[5310]: Login failure user=ANONYMOUS host=localhost
[127.0.0.1]

Jun 5 23:19:07 nec imapd[27668]: Logout user=kwm host=grove.acad.unt.edu
[10.120.220.41]

As usual, some stuff will always fall on the floor:

Jun 9 14:39:53 nec imapd[14429]: Autologout user=??? host=raz.unt.edu
[10.120.110.4]

Jun 5 23:17:26 nec imapd[27652]: command stream end of file,
while reading char user=??? host=localhost [127.0.0.1]

Jun 9 16:09:39 nec imapd[19284]: AUTHENTICATE LOGIN failure
host=grove.acad.unt.edu [10.120.220.41]

Jun 5 23:17:24 nec imapd[27652]: Missing command before authentication
host=localhost [127.0.0.1]

Jun 10 00:48:44 nec imapd[29142]: Connection reset by peer, while reading
line user=kwm host=grove.acad.unt.edu [10.120.220.41]

Installing TCP Wrappers (fcpd) is also a good step. The tcpd wrapper daemon has
a facility for variable expansion in commands given at connect time. For example,
if you put an entry like the following in your /etc/bosts.allow file:

ALL: ALL: (logger -p auth.debug -t "tcp wrapper[$S]" \
"client (%a), \

client info(%c), \

daemon (%d) , \

client address (%h), \

client hostname (%n), \

daemon PID (%p), \

server info (%s), \

client username (%u).\

I|)&

Does UW IMAP Match Your Needs? 217

your syslog log file will then begin to accumulate log entries like the following:

Jun 10 23:26:45 nec tcp wrapper[1961]: client(10.120.220.41),
client info(grove.acad.unt.edu), daemon (imapd),
client address (grove.acad.unt.edu), client hostname (grove.acad.unt.edu),
daemon PID (1960), server info (imapd@raz.unt.edu),
client username (29009).

Of course, there’s the ultimate in logging—the protocol analyzer. One non-open
source alternative that is included with every copy of Solaris is snoop. The follow-
ing is a command line that would help watch an IMAP session between two hosts.
The —x 54 tells snoop to dump the contents of each packet in classical hexdump
format with hex on the left and the ASCII translation on the right, but skipping
the first 54 bytes of overhead. The port imap means “display all packets using the
port assigned to ‘imap’ in the /etc/services file.” It's assumed that, barring the use of
—d <device>, the primary network interface is used.

snoop -x 54 port imap

grove.acad.unt.edu -> raz.unt.edu TCP D=143 S=49462
Ack=3848578507 Seq=3307990424 Len=17 Win=8760
0: 3030 3030 3030 3133 204c 4f47 4f55 540d 00000013 LOGOUT.
16: Oa

raz.unt.edu -> grove.acad.unt.edu TCP D=49462 S=143
Ack=3307990441 Seg=3848578507 Len=0 Win=8760

raz.unt.edu -> grove.acad.unt.edu TCP D=49462 S=143
Ack=3307990441 Seg=3848578507 Len=89 Win=8760

0: 2a20 4259 4520 6e65 632e 756e 742e 6564 * BYE raz.unt.ed
16: 7520 4944 4150 3472 6576 3120 7365 7276 u IMAP4revl serv
32: 6572 2074 6572 6469 6e61 7469 6e67 2063 er terminating c
48: 6f6e 6e65 6374 696f 6e0d 0a30 3030 3030 onnection..00000
64: 3031 3320 4f4b 204c 4f47 4f£55 5420 636f 013 OK Co
80: 6d70 6c65 7465 640d 0Oa mpleted. .

A bit of street wisdom here—commercial protocol analyzers are some of your
more expensive toys. You might want to exploit the full capability of things like
snoop, tcpdump, ethereal, and other open source or easily available packages
before you decide that the added bit of functionality is worth the cost.

Does UW IMAP Match Your Needs’?

Many sites select UW for its simplicity. For many system administrators, the ability
to just slap an entry into your imapd.conf file and have a functional IMAP server
with literally no time spent on configuration is highly attractive.

218 Chapter 10: Introduction to the UW IMAP Server

If a large proportion of your Unix users access traditional Unix mail directly or
with native mail clients, UW will allow you to gradually move the users from tradi-
tional Unix mail access methods to IMAP. UW lets you add IMAP to the mix with-
out taking anything away. As we’ll see a few chapters later, the Cyrus IMAP server
requires “all or nothing.” The only way to access Cyrus mailboxes is via IMAP—
direct access is not possible because the mailboxes are owned by the Cyrus sys-
tem and are invisible to normal users.

If you have mailstores in two or more formats or you need to have shell account
access to your mailstore, UW is probably the best choice. If you have a modest
number of users (under 15,000, say) and can suitably work around the lack of ACL
and IMAP quota support, then UW IMAP will probably work for your site.

If you need something that scales to many users more easily, then Cyrus is the
best choice. Cyrus fits better because of ACL and IMAP quota support. If you have
no need for simultaneous shell account and IMAP access to the same mailboxes,
then you would probably be better served by Cyrus.

A typical growth path for an email infrastructure goes something like this:

e The first email system is usually something largely proprietary, either loosely
based on Internet standards or not based on Internet standards at all: Group-
Wise, Notes, or Exchange.

e The day of open standards reckoning arrives, and open source Internet email
systems start replacing the old proprietary ones. Until recently, this was very
likely to be a POP3 server. Now, that’s only somewhat likely.

e The single-mode POP3 server starts to grate on users’ nerves when they have
to search around for the PC they were using when they last downloaded indi-
vidual pieces of mail. They will beg for IMAP as they struggle with mail in
Netscape on one machine, Pegasus mail on another, and a handful of mes-
sages they accumulated during their vacation in Yahoo! Mail.

e The company has been bought out five times in as many years, with a couple
of mergers thrown in for fun. UW IMAP isn’t supporting the patchwork quilt
mail system as well as you'd like, so you design a new system from scratch
using Cyrus IMAP that should last through the next dozen mergers.

Everyone has heard the old saw: “The only hard and fast rule is that there are no
hard and fast rules.” It applies equally well to choosing an IMAP server. We're not
just trying to play it safe by saying that. UW IMAP and Cyrus are both strong pack-
ages with a great deal of overlap and some definite cultural differences. A good
way to think of it might be to see UW IMAP as being the Apache of Unix IMAP
servers and Cyrus as being the Netscape. Large and small sites use each, but try-
ing to say which is better is like choosing which of the Mac or the PC is better.

Does UW IMAP Match Your Needs? 219

To help you decide whether you prefer UW or Cyrus, Table 10-1 gives a compari-
son of the features listed with the IMAP CAPABILITY command of Cyrus v1.5.14
and UW IMAP v4.7.

Table 10-1. A Comparison of Some Cyrus and UW Features

Feature Cyrus IMAP v1.5.19 UW IMAP v4.7
Protocol Revision IMAP4revl IMAP4revl
IMAP4 ACL Extension (RFC 2086) v Not supported
IMAP4 QUOTA Extension (RFC 2087) v Not supported
IMAP4 IDLE Command (RFC 2177) Not supported v

IMAP4 Mailbox Referrals (RFC 2193) Not supported v

IMAP4 Login Referrals (RFC 2221) Not supported v

IMAP4 Namespace (RFC 2342) v 4

IMAP SORT Extension (Draft) Not supported v

IMAP THREAD Extension (Draft) Not supported v

Here’s a more detailed description of the features listed in Table 10-1:

RFC 2086 (ACL Extension)
RFC 2086 provides a system for associating access controls with users and
mailboxes that are wholly separate from the rights that may be present in the
underlying operating systems. Access rights such as lookup, read, keeping
seen/unseen information across sessions, write, insert, post, create, delete, and
administer are associated with user/mailbox pairs.

RFC 2087 (Quota)

RFC 2087, known as the Quota Extension, permits servers to place limits on
user resource usage. In theory, limits may be placed on any practical resource
consumed by IMAP operations. In practice, quotas are usually limited to
restrictions on disk usage. Quotas are not necessarily all encompassing, but
are applied to one or more “quota roots,” which are arbitrary points in a user’s
namespace, below which her quotas are inherited unless new quota roots with
different sets of quotas are encountered.

RFC 2177 (Idle)

RFC 2177 provides a way for the IMAP server to know that it can asynchro-
nously give “EXISTS” responses without being periodically polled to do so
(e.g., with a NOOP command). The client can go into idle mode, then after
some period of time, return from idle mode by sending a DONE. After leav-
ing idle mode, the client receives all the EXISTS responses that may have
queued up during the idle interval because the size of the SELECTed or
EXAMINEd mailbox changed.

220 Chapter 10: Introduction to the UW IMAP Server

RFC 2221 (Login Referral)
RFC 2221 gives an IMAP server the ability to authenticate a user, then direct
him to a new mailbox, essentially saying, “Yeah, I know you’re legit, but
you're supposed to get your mail down the hall now.” Login Referral capabil-
ity is useful for sites that split their user base out over numerous mail servers,
using the front-door mail processor as a kind of connection multiplexer.

RFC 2193 (Mailbox Referral)
The Mailbox Referral capability, as specified in RFC 2193, gives a kind of sym-
bolic linking capability to individual mailboxes. Thought of another way, it
does for mailboxes what RFC 2221 does for entire sessions. With this capabil-
ity, users may find that their shared folders, or perhaps their personal folders
over a given size threshold, have been moved to BigMailServer@example.com
and will be automatically redirected accordingly.

RFC 2342 (Namespace)
The Namespace capability (RFC 2342) provides a method for clients to dis-
cover the symbolic descriptions of the various namespaces used on a given
server. Servers that implement this command probably require less user con-
figuration on the client end to get their users up and running.

Draft: IMAP SORT Extension
The IMAP SORT extension is a standard for sorting messages on the server
instead of the client.

Draft: IMAP THREAD Extension
The IMAP THREAD extension provides for a threaded view with the server
doing the threading instead of the client.

When choosing between Cyrus and UW, remember that, although Cyrus gives you
one choice of mailstore format, UW gives you many choices. As you will read in
the file docs/drivers.txt, in the UW server the various mailbox drivers vary in per-
formance from very good to very poor and have some unique characteristics. It
would be an unfair test to pit Cyrus against UW with one of its poorly performing
mailbox drivers.

Unfortunately, although you might want to compare Cyrus with UW using its mh
driver, the mh driver is listed as being a very poor performer. A better test would
be to use the mtx or mbx driver, both of which permit concurrent read-write oper-
ations and are listed as very good performers. The University of Washington pre-
fers mbx format.

Does UW IMAP Match Your Needs? 221

Late-Breaking Note

When we went to press, the University of Washington was in the early stages
of releasing the next major versions of their server, UW IMAP 2000. Here’s a
preview of the major differences between UW IMAP 2000 and the previous
4.X release:

e Integrated SSL, TLS, and STARTTLS functionality. SSL and TLS/STARTTLS
functionality are integrated into UW IMAP 2000 by means of the
OpenSSL package, available from htip.//www.openssi.org/. TLS is the next
generation version of SSL. UW neither supplies nor supports the
OpenSSL package, but the UW IMAP does dovetail with it to provide
end-to-end encrypted IMAP service, with encryption of both authentica-
tion and data. A new document, docs/SSLBUILD, conveys the mechanics
of how to bring up UW with this capability.

There are two advantages to doing SSL/TLS this way rather than with
stunnel. One of the benefits is process economy. Instead of each imapd
process having a corresponding stunnel process, both the SSL/TLS and
IMAP functions are carried out by the imapd process. Another is that
instead of having only SSL functionality, the OpenSSL-enabled imapd has
SSL and TLS functionality, which includes support for STARTTLS—which,
in turn, enables a session to begin in unencrypted mode, then transition
cleanly to encrypted mode.

e Improved C++ Compatibility. Historically, C++ developers who build
their own C-Client applications and servers with the C-Client Toolkit
have had a moderate amount of difficulty getting C-Client to build as
well with C++ as with a standard C compiler. A new header file, c-client.
b, greatly reduces or eliminates that problem.

e Kerberos Version 5. UW IMAP 2000 will support Kerberos v5 in both
Unix and Win32 builds. If you build it for Windows 2000 or Windows
ME, Kerberos v5 is enabled automatically. Kerberos v4 is not directly
supported by UW in IMAP 2000.

e The IMAP Administrator. Starting in UW IMAP 2000, UW IMAP has the
feature of an IMAP Administrator. By using this feature, a system admin-
istrator can log in by giving her user ID and password, but indicate a dif-
ferent user and actually be logged in as that user, although she is using
her own password. If your site supports the “SASL authorization iden-
tity,” you can use that to emulate su functionality in IMAP to let you
troubleshoot another person’s mailbox without having to know his pass-
words.

—Continued—

222 Chapter 10: Introduction to the UW IMAP Server

Only users who are in the Unix group mailadm can use this facility. If
your site doesn’t support the SASL authorization identity mechanism, you
can separate your authorization identity from your authentication iden-
tity with an asterisk. The authorization identity is the identity of the user
whose mailbox you are examining, and the authentication identity is
your own user ID. The credentials would be the password you normally
use to gain access to the server. For example, if you are user helpdesk
and you are troubleshooting the mailbox for user enduser, you would
log in as enduser*helpdesk. The “*” hack works for all UW IMAP authen-
ticators, such as MD5 and Kerberos.

e Support for the MULTIAPPEND extension. In draft status at the time of
publication, this extension permits an arbitrary number of messages to
be appended to a mailbox in a single atomic action. They either all suc-
ceed or all fail uniformly. The draft is available at bttp://search.ietf.org/
internet-drafts/drafi-crispin-imap-multiappend-01 .txt.

