In this chapter:

o IMAP Configuration
File and Directory

» Configuring the
Authentication
Mechanism

» Configuring syslog
o Configuring the MTA

* Getting Cyrus Up and C 0 n ﬁgu fing

Running

* Testing Your Server the Cyrus Server

Now that the none-too-exciting work of building Cyrus IMAP is over, let’s get
down to business and configure it.

IMAP Configuration File and Directory

The Cyrus IMAP server has a single configuration file: /etc/imapd.conf. No mess-
ing about with the source code or the Makefile is necessary. Once you've used the
appropriate options to make a build of Cyrus that’s appropriate for your site, any
configuration is done simply by editing imapd.conf.

The Server Configuration File: imapd.conf

First, let’s create the /etc/imapd.conf file, which holds all the defining configura-
tion parameters for imapd. Each line of imapd.conf contains an option and a value
for the option, separated by a colon:

option: value

Blank lines and lines beginning with # are treated as comments and are ignored.
Boolean options take the values yes, 1, t, or on to turn the option on, and no, 0,
£, or off to turn the option off.

For the time being, it’s best to minimize the number of entries in this file to make
debugging your installation easier. The barebones IMAP configuration file must
contain at least the following entries:

configdirectory: /var/imap
partition-default: /var/spool/imap
admins: cyrus johndoe2

See Table 8-1 for the purpose of each of the three options.

137

138

Chapter 8: Configuring the Cyrus Server

to read mail!

A user listed in admins should never use her administrative account

Users listed as admins should never log in to the IMAP server to read mail.
admins have special privileges that may lead to problems if they open a mailbox
using certain IMAP clients. For example, admins are able to write to parts of the
Cyrus system to which non-privileged users cannot write. Notably, if an adminis-
trative user reads mail, he might accidentally create top-level mailboxes (e.g.,
“Trash” or “Outbox”) that other users would see as “public” mailboxes. To be on
the safe side, do not even create IMAP mailboxes for your admins.

The complete set of options is listed in Table 8-1, and is also documented in the
imapd.conf(5) manual page. Options that list a default value of “No default” have
no default value. Options that list a default value of “None” default to an empty

value.

Table 8-1. imapd.conf Options

Option Default Value

Value

configdirectory No default

defaultpartition default

partition-name No default

admins None

srvtab /etc/srvtab

Required. The pathname to the IMAP con-
figuration directory. The widely used con-
vention is /var/imap.

The default partition (by partition-name, not
path) on which new mailboxes are created.

Required. The full path of the partition

name. At least one partition-name defi-

nition is required for the partition specified

in the defaultpartition option. For example,

if the defaultpartition is set as follows:
defaultpartition: default

then the required option is:
partition-default: /some/path

A list of users, delimited by whitespace, that
have administrative rights. admins do not
have the ability to change the server config-
uration. Any user can be listed in admins,
including cyrus, but admins should never
read IMAP mail using the account listed in
admins.

Kerberos only. The full path of the srvtab
file containing the IMAP server’s private
key. This option is only used if the server
was compiled with Kerberos authentication.

IMAP Configuration File and Directory

139

Table 8-1. imapd.conf Options (continued)

Option Default Value

Value

umask 077

allowanonymouslogin | no

quotawarn 90

timeout 30
imspservers None
defaultacl anyone 1rs

newsspool No default

newsprefix None

Umask value used by programs under /us7/
cyrus/bin. By default, when those programs
create files, the files have ownership (cyrus:
mail) permissions:

If you want your admins to be able to read
the files without becoming root, then set
the value of umask to 027 and add your
admins to group mail.

When set, permits the user anonymous to
log in with any password. If you plan to
provide anonymous access to public mail
folders, set this option to yes.

Percent of quota usage over which the
server sends a warning message to the user.
You'll want to set this so that the user
receives a warning when he is within 1 MB
or so of his quota limit. Ninety percent is a
good value for sites with quotas between 10
and 20 MB.

A value is required for this option. The
length of inactivity, in minutes, after which
the server logs the session out automati-
cally. If you have large numbers of users
logging in over dialups, keep the default—
dialup users tend not to log out gracefully.
Corporate sites whose users are on the LAN,
on the other hand, would probably set the
timeout much higher.

List of hostnames of IMSP servers. This fea-
ture was never implemented and has been
removed from Versions 1.6 and higher.

The ACL to set by default on new mail-
boxes that do not have a parent mailbox.
If the mailbox has a parent, it inherits the
parent’s ACL.

The pathname of the news spool directory.
The newsspool option is used only if the
option partition-news is defined.

The prefix added to the beginning of a
newsgroup name to form the corresponding
IMAP mailbox name.

140

Chapter 8: Configuring the Cyrus Server

Table 8-1. imapd.conf Options (continued)

Option Default Value

Value

autocreatequota 0

logtimestamps no

cleartextloginpause 0

loginrealms None

loginuseacl no

reject8bit no

netscapeurl http://
andrew?2 .
andrew.cmu.
edu/cyrus/

imapd

The name of this option doesn’t describe
the option well—autocreatequota is dual
purpose: the value determines whether or
not a user can create his INBOX (and
hence, his IMAP account) the first time he
attempts to log in to the server. If the value
is zero, the user cannot create his own
account; if non-zero, the user can create his
account.

If the value is non-zero and positive, the
user’s quota is set to the value. If the value
is non-zero and negative, the user is given
an unlimited quota.

Sites that have enterprise-wide usernames
could save some work by enabling this
option. Sites that want more control over
the mailbox environment (such as pre-
defined folders with per-folder quotas)
should accept the default.

When set, the server will log the number of
seconds since the last command or
response in the protocol telemetry logs.

Specifies the number of seconds to wait
after a successful cleartext authentication
before opening the session. The purpose of
this option is mainly to train users to associ-
ate a cost with using cleartext authentica-
tion. A pause after each login also
substantially increases the amount of time it
would take to crack any given password
with a dictionary attack.

Kerberos only. List of remote realms whose
users may log in using cross-realm authenti-
cation. The realms should be delimited by
whitespace.

Kerberos only. When set, an identity that
has rights on an INBOX may log in as the
owner of the INBOX.

When set, the deliver program rejects mes-
sages with 8-bit characters in their headers.
If not set, then 8-bit characters are changed
to the letter X.

Specifies the site to contact when Netscape
queries the IMAP server for the location of
the administration HTTP server. This option
must be enabled at compile time. The
default site provides only an informational
message.

Configuring the Authentication Mechanism 141

The Configuration Directory

The configuration directory is the repository for information on all components
and user data that make up the Cyrus system. The popular convention is to name
the configuration directory /var/imap (that is the convention we will use in our
examples). Access to the configuration directory should be restricted to the cyrus
user and group only. The following commands create the configuration directory
and set the correct permissions and ownership:

cd /var

mkdir imap

chown cyrus:mail imap
chmod 0750 imap

The Cyrus server is finicky about file permissions and ownership. Be
sure the ownership and permissions are set correctly to prevent
problems from happening later.

Odds and Ends

Create the supporting files in the configuration directory with the permissions
shown. Create an empty mailboxes file and the directories that Cyrus will use to
store its configuration information:

cd /var/imap

touch mailboxes

mkdir user quota proc log msg

chown cyrus:mail *
Create the directory that was defined in imapd.conf as defaultpartition. The
defaultpartition directory is where users’ mailboxes are stored. Recall that the
defaultpartition was defined as /vaw/spool/imap in the sample imapd.conf
shown earlier in this chapter.

cd /var/spool

mkdir imap

chown cyrus:mail imap

chmod 750 imap

Configuring the Authentication
Mechanism

This section shows you how to configure the IMAP server to perform cleartext
shadow password and Kerberos authentication. Cleartext authentication without
shadow passwords does not require special configuration. The mechanism for

142 Chapter 8: Configuring the Cyrus Server

If You're Configuring Cyrus on a Linux System . . .

You would be well served to set the configuration directory, mailstore, user,
quota, and mailstore directory for synchronous updates.

cd /var/imap

chattr +S . user quota

chattr +S /var/spool/imap

chattr +S /var/spool/mgueue

Doing so allows you to purchase a slightly higher amount of robustness in
exchange for a degree of performance (although if your system has more than
5,000 mailboxes, the performance trade-off has been shown to be too high to
support synchronous updates). If a file is updated asynchronously, then the
cache associated with that file is flushed to disk some time later. If it's set to
update synchronously, its cache is flushed immediately. When the cache is
flushed immediately, there’s less risk of damage to your system if, for example,

it were to halt inadvertently.

Note that this advice applies only to ext2 filesystems. If you're not sure what
type of filesystem you have, use the mount(8) command.

authenticating users to the Cyrus server is external to the server itself and elimi-
nates the need for users to have Unix accounts on the server. It’s possible to
authenticate against an LDAP directory or SQL database, for example. Alternative
authentication mechanisms and their associated tools are described in Chapter 18,
IMAP Tools.

Cleartext Authentication with Shadow Passwords

Cleartext authentication is nothing more than a check against your local passwd
file. Some flavors of Unix store encrypted passwords right along with usernames
and other account information in the local password file. Others store the user-
name and account information in one file and the encrypted passwords in another,
separate file (the shadow file). The shadow file has strict access rights—it’s owned
by root and is readable only by root—and thus protects encrypted passwords from
prying eyes.

Cyrus IMAP authentication support changed significantly between the 1.5.19 and
the 1.6.22 releases. Versions 1.6 and higher support the puwcheck daemon for
shadow password authentication from within SASL. There are slight differences in
configuring the authentication in Versions 1.5.19 and 1.6.22, which we’ll mention
later in this section.

Configuring the Authentication Mechanism 143

Setting up cleartext autbentication in Cyrus Version 1.5.19

The pwcheck program was introduced in Chapter 7, Installing the Cyrus IMAP
Server—it is a daemon that the Cyrus server uses to check passwords against the
Unix shadow password file. pwcheck is required because the Cyrus IMAP server
runs as user cyrus, and hence does not have read access to the shadow password
file (it’s readable only by roof). pwcheck creates a named pipe under the directory
/var/pweheck that the Cyrus server uses to communicate with the pwcheck dae-
mon. If you configured your Cyrus server to use pwcheck, then you must create
that directory and set the permissions appropriately:

mkdir /var/pwcheck

chown cyrus /var/pwcheck

chmod 0700 /var/pwcheck
pwceheck is meant to be started at system boot time and run as a background pro-
cess. To start it, create an initialization script for pwcheck and arrange for that
script to be run at boot time. On a Solaris system, create the file /etc/init.d/
pwcheck shown in Example 8-1.

Example 8-1. pwcheck Startup Script

#!/sbin/sh
#
Start CMU Cyrus pwcheck daemon

case "$1" in

'start')
if [-f /usr/cyrus/bin/pwcheck]; then
/usr/cyrus/bin/pwcheck &
fi
'stop')
pid="/usr/bin/ps -eo pid, comm | /usr/bin/awk '{ \
if ($2 == "/usr/cyrus/bin/pwcheck") print $1 }'°
if test "spid"
then
/usr/bin/kill $pid

fi

*)
echo "Usage: $0 { start | stop }"
exit 1

esac

exit 0

144 Chapter 8: Configuring the Cyrus Server

Once /etc/init.d/pweheck is in place, arrange for pwcheck to be started or stopped
when the system is booted or shut down by creating a link from /etc/rc3.d to the
initialization script you created:

cd /etc/rc3.d

1n -s /etc/init.d/pwcheck S98pwcheck

cd /etc/rc2.d

1n -s /etc/init.d/pwcheck K20pwcheck
The names of the links to the pwcheck script depend on what's already in /etc/rc3.d
and when you want it run in the startup process—any more detail than that is
beyond the scope of this book.

Setting up cleartext authentication in Version 1.6.22

Cyrus 1.6.22 uses the SASL framework for authentication. Cyrus SASL 1.5.15 is a
separate package that is a prerequisite for Cyrus 1.6.22. Its installation was cov-
ered in Chapter 7. On most systems, no special configuration is required. SASL
uses the authentication that you specified when you ran the Cyrus configure script.
If none is specified, it defaults to the most secure level of authentication available.
If you're using cleartext passwords, you should have configured Cyrus with the
configure option --with-auth-unix.

If you use plain passwords with no shadow, there is no special configuration
required. On most systems, SASL will use PAM to authenticate using the plain
password. If you do use shadow passwords, there may be some extra work
involved. On Linux systems, for example, the permissions on the shadow file have
to be changed to allow the cyrus user to read it. On Solaris systems, some tweak-
ing of PAM is necessary. Most sites that depend on shadow passwords have opted
to either stick with Cyrus 1.5.19 or use pwcheck in its most simplistic form with
Cyrus 1.6.22.

Kerberos Authentication

If you compiled Cyrus to support Kerberos, you'll need to create a Kerberos key
for the Cyrus IMAP server and add the key to the srvtab file.

The following example creates a key for the hostname rooster. rooster’s Kerberos
realm is THEMULLETS.NET.

ksrvutil -f /etc/srvtab add

Name: imap

Instance: rooster

Realm: THEMULLETS.NET

Version number: <Return>

New principal: imap.rooster@THEMULLETS.NET; version 0
Is this correct? (y/n) [yl ¥

Password: Xxooooo

Configuring the MTA 145

Verifying, please re-enter Password: oooooomX
Key successfully added.
Would you like to add another key? (y/n) [yl n

Finally, give ownership of /etc/srvtab to the cyrus user:

chown cyrus /etc/srvtab

Configuring syslog

The Cyrus server uses the BSD 4.3 variant of syslog. BSD 4.3 syslog separates log
messages into both facilities and severity levels. Before configuring syslog on your
system to log messages from the Cyrus server, you will need to determine whether
your syslog is the BSD 4.3 variant. Run the command:

% man syslog
Look at the definition of the openlog () function in the synopsis:
void openlog(const char *ident, int logopt, int facility);

The openlog () function takes either two or three arguments. If the openlog ()
function takes three arguments, then your syslog is a BSD 4.3 variant and is com-
patible with Cyrus syslog function calls. To configure syslog, edit /etc/syslog.conf to
include a line similar to the following line, which tells syslog to log debug level
messages to the /local6 facility and write them to the log file /var/log/imapd.log:

local6.debug /var/log/imapd.log
Then create an empty imapd.log file and restart syslog:

touch /var/log/imapd.log

/etc/init.d/syslog stop; /etc/init.d/syslog start
If your system’s openlog () function takes only two arguments, then it’s not the
BSD 4.3 variant and you must use the syslogd and syslog.conf that are provided
with the Cyrus distribution. Make backup copies of your system’s syslogd and
syslog.conf; then change directory to the top level of your Cyrus source distribution:

(Stop syslog)

cd syslog

cp syslogd /etc/syslogd

cp syslog.conf /etc/syslog.conf
(Start syslog)

Configuring the MTA

Unlike the UW server, Cyrus IMAP’s mailstore format ties it intrinsically to the local
mail transport agent or, more accurately, to the local mail delivery agent. In this
book, we're presuming that you've chosen sendmail as your MTA. sendmail can
serve just about any size user base. If, however, you elect to use another MTA, be

146 Chapter 8: Configuring the Cyrus Server

mindful of the fact that you'll have to configure it to use the Cyrus deliver pro-
gram as a delivery agent, and use this section as a rough guide.

The deliver MDA

The Cyrus deliver program is the mail delivery agent that drops mail messages into
users’ mailboxes. deliver takes a mail message on standard input and delivers it to
the specified mailboxes. deliver’s configuration options are set in /etc/imapd.conf.

deliver uses the options listed in Table 8-2 when invoked to deliver mail. Other
options are described in the deliver(8) manual page.

Table 8-2. deliver Options

Option Description

-m mailbox Deliver a message to the Cyrus mailbox mailbox.
To deliver to a specific mailbox, for example user.jobndoe.lists, use

deliver -m user.johndoe.lists
You must have p access rights on the specified mailbox; if you don't,
then delivery fails and returns the message:4

user.johndoe.lists: Mailbox does not exist
If a mailbox is specified with the -m argument and a username argu-
ment is given, then deliver will attempt delivery to the specified mail-
box under the mailbox hierarchy belonging to the username. For
example, the command:

/usr/cyrus/bin/deliver -m lists johndoe
delivers a message to user.jobndoe.lists. Again, the user invoking
deliver must have p access rights (access rights are described in
Chapter 9, Cyrus System Administration) on the specified mailbox.
If a mailbox and list of usernames are specified, deliver will attempt to
deliver the message to the mailbox for each username. For example,
the command:

/usr/cyrus/bin/deliver -m lists johndoe msmith kjones
delivers a message to user.jobndoe.lists, user.msmith.lists, and
user.kjones.lists.

-e Enable duplicate delivery suppression.

-q Force delivery of a message when the specified mailbox is over quota.

-F flag Set the flag flag on the delivered message. flag can take the values
\seen, \answered, \flagged, \draft, or \deleted.

-a authID Specify the authorization ID authID of the sender. If no value for

authIDis given, defaults to anonymous. authIDis a way that person
A could allow person B to use his authorized privileges without shar-
ing his password (person B would use her own password).

-r address Insert a Return-Path: header containing address at the top of the
message.
-f address Identical to —r argument.

a The error message is misinformational—it is returned whether or not the mailbox actually exists if you
do not have prights on the mailbox.

Configuring the MTA 147

To manually deliver the message contained in the file 39. to jobndoe’s mailbox
from the Unix shell prompt, use the command:

% /usr/cyrus/bin/deliver -m user.johndoe johndoe < 39.

You must specify both the mailbox name (user.jobndoe) using the —m argument,
and the username that the mailbox belongs to (johndoe). If you do not specify the
username, deliver will assume that you want to deliver the mail to the mailbox
belonging to the user running the program from the command line. For example,
if you are logged in as smith and you run the previous example command from
your shell prompt, deliver will attempt to find a mailbox called user.jobndoe in
your (smith’s) mailbox hierarchy, and will fail. If you specify the username of the
recipient but not the mailbox name, then deliver will attempt to deliver the mes-
sage to the mailbox user.username by default.

Some delivery agents are configured to generate a Unix-style From* header. deliver
does not handle the From header. If you try to use deliver on the command line to
deliver a message that contains a From header, deliver will fail. For example, if the
file 39. contains the line:

>From johndoe@localhost Fri Jul 16 11:31:13 1999
The deliver command will return the message:
johndoe: Message contains invalid header

As we'll see in the next section, deliver should be configured in your sendmail
configuration not to generate the From header. The message should minimally
contain 7o:, From:, Subject:, and Date: headers. If those headers are missing, the
message will be delivered, but it is difficult to say what the corresponding fields in
the mail client will contain when the recipient reads his mail. deliver will deliver a
message that contains no header at all if the message begins with a blank line.

The sendmail Configuration File

sendmail versions newer than 8.7 include support for Cyrus and include a proto-
type M4 macro file that can be used to build a basic sendmail.cf configuration file.
This section provides basic instructions for building a sendmail.cf file to support
Cyrus. The instructions assume that sendmail is already installed and that the
source distribution is available.

* Not to be confused with the RFC 822 From: header, we are referring here to the “MTA” From header,
which has no colon delimiter and is appended to the message by the MTA (sendmail).

148 Chapter 8: Configuring the Cyrus Server

Build the sendmail configuration file

Change directory to the top level of the sendmail source tree. An Is should show
most or all of the following files:

% 1ls -CF

FAQ RELEASE_NOTES doc/ makemap/ smrsh/
KNOWNBUGS cf/ mail.local/ praliases/ src/
READ_ME contrib/ mailstats/ rmail/ test/

The M4 macros are located in the ¢f/cf subdirectory. Under that directory, you will
see a file named cyrusproto.mc:

% cd cf/cf

% 1ls cyrusproto.mc

cyrusproto.mc
cyrusproto.mc is an M4 macro script used to build a sendmail configuration file.
Before building your configuration file, you’ll need to edit the macro script to
specify your operating system version. If you have a domain-specific sendmail
configuration, you should also include a statement to define your domain. The
OSTYPE variable is used to specify the operating system type. The supported val-
ues of OSTYPE can be found in the c¢f/ostype directory in the sendmail source dis-
tribution. For a Solaris 2.x system in the wunt.edu domain, the following lines
would have to be added to cyrusproto.mc:

OSTYPE (solaris2.ml)
DOMAIN('UNT.EDU')

To build a bare-bones configuration file that supports Cyrus, use m4:
$ méd ../md/cf.md cyrusproto.mc > cyrusproto.cf

The cyrusproto.cf is a modified version of the sendmail.cf that uses Cyrus deliver
as the MDA. The MDA specification, as it appears in cyrusproto.cf, is shown in
Example 8-2.

Example 8-2. Cyrus Mailer Specification

FHHEHEE R R
Cyrus Mailer specification H###
A

@ (#)cyrus.md 8.4 (Carnegie Mellon) 9/2/96
Mcyrus, P=/usr/cyrus/bin/deliver, F=1sDFMnPgA5@W, S=10, R=20/40,

U=cyrus:mail,
A=deliver -m $h -- Su

Configuring the MTA 149

The specification translates as follows (consult the sendmail® book for a more
detailed understanding):

Mcyrus

The name of this mailer definition is “cyrus.”
P=/usr/cyrus/bin/deliver

Path to the deliver program.

F=1sDFMnPgA5EW
The list of delivery flags that tell deliver how to behave. In particular, the n
flag tells the mailer not to include the Unix-style From header.

S=10
Use ruleset 10 to process both the envelope and header sender addresses.

R=20/40
Use ruleset 20 to process the envelope recipient address and ruleset 40 to pro-
cess the header recipient address.

U=cyrus:mail
The user and group to become when running the cyrus mailer. deliver must
always run as user cyrus.

A=deliver-m $h -- Su
The deliver program and its arguments, as described in Table 8-2.

Copy the cyrusproto.cf file you just created into the directory where you normally
keep your sendmail configuration file (usually /etc/mail), then restart sendmail.

% su -

cp /etc/mail/sendmail.cf /etc/mail/sendmail.cf.bak

cp cyrusproto.cf /etc/mail/sendmail.cf
The Cyrus installation document tells you to add the user daemon to the mail
group in /etc/group, but that is unnecessary if you're running a modern incarna-
tion of sendmail (i.e., the recommended Version 8.7.1 or better). sendmail runs as
root, so the groups it belongs to are irrelevant as far as deliver is concerned:

/etc/init.d/sendmail stop; /etc/init.d/sendmail start

* sendmail, by Bryan Costales with Eric Allman (O'Reilly).

150 Chapter 8: Configuring the Cyrus Server

Testing the sendmail configuration

First and most important: you must set up a Cyrus test account to which mail can
be delivered. Use the commands below to set up a basic test account called
“debug.” If you're using Unix authentication, be sure to put the user in the local
password file:

% cyradm -user cyrus localhost imap

localhost password:

localhost> cm user.debug
Next, use sendmail on the command line to deliver a test message to the test
account:

% su - debug

Password: xcooooox

Sun Microsystems Inc. SunOsS 5.7 Generic October 1998

$ echo "Subject: Testing 1 2 3" | /usr/lib/sendmail -v debug

debug... Connecting to cyrus...

debug... Sent
The message should appear in the debug user’s mailbox. You can check this with-
out using a mail client by looking at the contents of debug’s top level mailbox:

$ cd /var/spool/cyrus/user/debug

$ 1ls -ltr

total 18

-rW——————- 1 cyrus mail 135 Jun 19 09:54 cyrus.header
-IW-—————— 1 cyrus mail 53 Jul 17 12:19 cyrus.seen
—rw-——-———- 1 cyrus mail 96 Jul 17 20:08 cyrus.index
-rW——————- 1 cyrus mail 488 Jul 17 20:08 cyrus.cache
—rw-—————-— 1 cyrus mail 289 Jul 17 20:08 1.

S cat 1.

Return-Path: <debug>
Received: (from debug@localhost)
by localhost (8.9.1/8.9.1) id UAA25991
for debug; Sat, 17 Jul 1999 20:08:36 -0500 (CDT)
Date: Sat, 17 Jul 1999 20:08:36 -0500 (CDT)
From: debug
Message-Id: <199907180108.UAA25991@1ocalhost>

Testing 1 2 3

Duplicate delivery suppression and the delivered database maintenance

deliver can be invoked by sendmail with the —e option enabled. The —e option
suppresses delivery of messages that have a Message-ID: header identical to a mes-
sage that has already been delivered to a given mailbox. Information on mail
deliveries is maintained in the delivered database (see Chapter 6, Introduction to
the Cyrus IMAP Server, for a description). The delivered database should be pruned
periodically to keep it from growing too large. To keep the delivered database

Testing Your Server 151

clean, run deliver with the —F argument every day or so. Create a crontab entry to
run as the cyrus user.” The crontab entry would look like this:

0 2 * * * /usr/cyrus/bin/deliver -E 3

The —F 3 argument, for example, tells deliver to prune the delivered database of
entries older than 3 days. If the database is small, you may decide to prune it less
often. There is a cost, albeit a small one, in using duplicate delivery suppression—
when it'’s turned on, every delivery accesses the delivered database. The delivered
database may also be problematic during Cyrus upgrades; depending on the new
version of Cyrus being installed, there may be a rebuild required of the delivered
database. Some sites opt out of suppressing duplicate deliveries at all. The deliv-
ered database is really only required in Versions 1.6 and higher to support Sieve
filtering.

Getting Cyrus Up and Running

Edit /etc/services, if necessary, to contain the following line:
imap 143/tcp

Edit /etc/inetd.confto include the line:
imap stream tcp nowait cyrus /usr/cyrus/bin/imapd imapd

Once the files have been edited, restart inetd. On most Unix systems, find the pro-
cess ID, then send a HUP signal to the process using the ki// command:

ps -ef | grep inetd

root 13005 1 0 22:50:57 2 0.00 0:00 /usr/sbin/inetd -s

kill -HUP 13005

If your Unix supports the pkill command, then you can save a step by using the
command:

/usr/bin/pkill -HUP -x inetd

Testing Your Server

You've configured your server, in time to just tell everyone it’s in production and
leave on your vacation for the Bahamas. On second thought, maybe it would be a
good idea to test it first.

* It is imperative that the crontab entry belong to the cyrus user, not to root or some other user listed
under admins in the IMAP configuration file.

152 Chapter 8: Configuring the Cyrus Server

Testing a Cyrus Installation on the Same Machine
as Your Production Server
If you are currently running an IMAP server and wish to test a Cyrus installation
without disabling the current IMAP server, specify an alternate name and port
in /etc/services, such as:
imaptest 243/tcp
Add the following line to /etc/inetd.conf:

imaptest stream tcp nowait cyrus /usr/cyrus/bin/imapd imapd

After restarting inetd, the imaptest server will be running on port 243. Switch-
ing from the old to the new server is a simple matter of changing the name of
the imaptest service in /etc/inetd.confto imap and restarting inetd.

Caution is advised: the test server should never modify files that belong to the
production server. Configure your test server’s imapd.confto use a different set
of configuration files and a different mailstore than your production server uses.

Check That the Server Is Running

Most simple test first. Let’s check to see if the IMAP listen is being serviced on the
right port and if the Cyrus server is on the other end of that listen. As a normal
(i.e., non-administrative) user, felnet to the IMAP port on your machine:

% telnet localhost imap

Trying 127.0.0.1...

Connected to localhost.

Escape character is '"]'.

* OK localhost Cyrus IMAP4 v1.5.19 server ready
. logout

* BYE LOGOUT received

. OK Completed

Connection closed by foreign host.

The command . logout closes the connection. If you see a message that begins
with . OK, then the server is running. Any other message, or no message at all,
indicates a problem.

Testing Cleartext Password Authentication

If you use cleartext password authentication, take advantage of the imtest program
to test authentication.” Run the imtest program as user cyrus or another existing

* You could felnet to the IMAP port and log in using your cleartext password, but some people are (right-
fully) nervous about seeing passwords in cleartext on their display. imtest does not echo the password.

Testing Your Server 153

IMAP account on your system (at this point you probably have not created user
accounts yet and have only the cyrus account). The following example is run from
the cyrus account:

% /usr/local/bin/imtest -p localhost imap

* OK localhost Cyrus IMAP4 v1.5.19 server ready

Password:

. LOGIN cyrus {L+}

X

. OK User logged in

. logout
The reply message . OK User logged in indicates that authentication is working.
The message . NO Login incorrect can indicate any of the following problems:

e The password entered was incorrect.
e The user running imtest does not have an IMAP account on the system.
e pwcheck should be running and is not.

e There is an error in permissions or ownership somewhere, and it needs cor-
rection.

Type the command . logout to close the connection and quit.

Testing Kerberos Authentication

If your server uses Kerberos authentication, you can also use the imtest command
to make sure Kerberos authentication is working. As cyrus or another existing user
on your system, enter the command:

% /usr/local/bin/imtest -k localhost imap
If the output ends with the message:
. OK User logged in (no protection)

then Kerberos authentication is working. Any other message indicates a failure.
More specific error messages are logged to the imapd.log file—check there for
hints about what the source of the problem might be. To end the test and close
the connection, type the command . Jogout.

