In this chapter:

* Security Resources

* A Handful of Security
Tips

* Monitoring Security

* Boiling It All Down

Addressing IMAP
Security

Keeping your IMAP server secure is no different from keeping your other
resources secure. Well...let’s back up for a second. You can’t keep your IMAP
server secure any more than you can keep anything else secure. Short of sealing
your server in a block of titanium and firing it off into the sun, the best you can do
is keep your server mostly secure. The standard test of whether you’re spending
too much time on security is whether you've made it more difficult to compro-
mise your system than the rewards of doing so are worth. Of course, hell-bent,
disgruntled employees probably think any level of compromise is worth any
amount of effort, so we'll expend a bit more effort on their behalf.

There are three things to keep in mind:

e Stay informed!
e Stay updated!
e Stay vigilant!

The best thing you can do to stay informed is to make it a habit of reviewing
online resources, such as mailing lists, Usenet newsgroups, and web sites, for
information about recently discovered vulnerabilities in all the various operating
systems, servers, clients, and tools you use. It’s safe to say that because your pro-
fessional world revolves around providing service to your users and, at best, secu-
rity is a secondary concern, you'll be far from the first person to learn about
vulnerabilities on your system. Hackers,” on the other hand, are likely to live in a
world that revolves entirely around discovering vulnerabilities in your system and

* The popular press has narrowed common usage until crackers, phreaks, and hackers all became the
same. For brevity and with the exception of this protestation, we’ll acquiesce to the same usage. There’s
an excellent discussion of the meaning of hack at the Jargon File site (htip://www.tuxedo.org/~esr/
Jargon/btml/The-Meaning-of-Hack.btml).

245



246 Chapter 13: Addressing IMAP Security

leaving their unauthorized handprints inside. Already, you have a scenario where
your potential opponents are much more motivated than you are. Your best hope
is to be more rational than they are and expend your effort in the best possible
way as you shore up your system security

Perhaps the only thing worse than not knowing and not fixing the vulnerabilities
in your system is knowing and not fixing. It's simply not enough to know that you
have some vulnerabilities in your system and that someday you’ll get around to
fixing them. We're proud of our systems and want to add features to move them
forward. And we know that system security is one of those jobs that are invisible
when done well. Tt very often boils down to working on security rather than
adding new wonderful features to our systems. Someday, youll be glad you did—
when one of your peers at another site has to spend a week rebuilding every-
thing from scratch because he didn’t. Don’t just learn about the flaws in your
system—stay ahead of the curve by updating your software regularly. Apply the
necessary patches, workarounds, and updates as necessary to keep your system
beyond the threshold of likely hacker attention span.

Security Resources

Online informational security resources could loosely be grouped into three cate-
gories: hacker resources, neutral resources, and security professional resources.
We won't attempt to make the value judgments necessary to group each site men-
tioned in this chapter into the categories. We'll just say that knowing that the dif-
ferent categories are there might help you decide with how much gravity to take
information that you find at one of the sites.

Hacker resources often present themselves as free “services,” while, in actuality,
they post code that many twelve-year-olds could use to take down your site. Some
of the “old guard” professional sites are somewhat hypersensitive where safety is
concerned. They’ll only post a warning about a vulnerability after each major ven-
dor has had an opportunity to run their “spin” through the local legal and market-
ing departments, making the warning only marginally helpful once the information
finally gets to you.

The Computer Emergency Response Team/
Coordination Center (CERT/CC)

bttp://www.cert.org/

Since 1988, from its home at the Carnegie Mellon Software Engineering Institute,
CERT has stood watch over security on the Internet. Although CERT is regarded as
somewhat slow on the draw these days in getting the word out, they performed



Security Resources 247

the difficult job of centralized security coordination back when no one else was
there to do so. CERT® was formed as a response to the vulnerability pointed out
by the Morris Worm attack (see http://www.worm.net/) that marked the first time
many people ever heard of the Internet. CERT issues regular alerts in the form of
advisories, summaries, and vendor-initiated bulletins, all of which are propagated
through their cert-advisory@cert.org mailing list.

Aduvisories are time-sensitive notifications of events or recently discovered vulnera-
bilities that merit broad attention. Summaries are in-depth analyses of current
threats on the Internet and advice on how best to address the threats. Vendor-
initiated bulletins are postings provided by vendors who wish to send out secu-
rity bulletins regarding their own products.

LOpbt Heavy Industries
http.//www.l0pht.com/

LOpht Heavy Industries is basically a bunch of hackers who put together a very
polished full-disclosure web site that disseminates information about vulnerabili-
ties—what systems have them, as well as how to exploit the vulnerabilities your-
self. What this kind of site does is like practicing nuclear deterrence by giving
everyone the missile codes and keys to the silos.

Fortunately or unfortunately, depending on your point of view, sites like this are
the best source of information about newly discovered vulnerabilities. Usually, the
first to discover an vulnerability will be hackers who may want to keep the vulner-
ability to themselves to give themselves a competitive edge over their peers. Before
long, however, information about the vulnerabilities percolates out to full-disclosure
sites like LOpht, RootShell, and Bugtraq, and sometime later, it eventually finds its
way out to limited disclosure, industry-friendlier sites like CERT and CIAC.

Computer Incident Advisory Capability
http.//ciac.linl.gov/

The Computer Incident Advisory Capability (CIAC) is the U.S. Department of
Energy’s security tiger team. Their primary mission is to secure DOE facilities. Nev-
ertheless, so much of what they do and the information they gather is of use to the
general Internet community that their site has become a popular resource on the
Internet over the years. One of the original security teams formed in the post—
Morris Worm era, CIAC is useful to non-DOE folks mostly as a clearinghouse for
warnings posted from other sites. Typically, CIAC will post CERT or vendor warn-
ings but preface them with a sensible executive summary that boils the entire issue
and its perceived urgency down to one screenful of useful information.



248 Chapter 13: Addressing IMAP Security

A couple of the more interesting features of the CIAC site are their hoaxes list
(http://ciac.linl.gov/ciac/CIACHoaxes.html) and chain letter list (hitp.//ciac.linl.gov/
ciac/CIACHoaxes.html). CIAC collects data and stories on many Internet hoaxes
and chain letters and keeps them as caveats.

RootShell
htp://www.rootshell.com/

RootShell is arguably the most informative, commonly known site about vulnera-
bilities and events on the net. This full-disclosure site has reportedly been assigned
partial blame by the U.S. Department of Defense for substantial increases in hack-
ing attempts directed against DOD resources.

RootShell is, for the most part, a very attractive and useful site. The frequency with
which vulnerabilities and methods are posted will keep anyone with a morbid
interest in who'’s gotten hacked lately coming back for more. On a more practical
note, RootShell propagates more than just plain-vanilla information on IP buffer
overflow attacks. There’s plenty of information on the site to encourage sleepless-
ness among the ranks of JavaScript users, Novell IPX network managers,
MS-Windows SMB/CIFS users, anyone using a certain kind of UPS, anyone using
certain kinds of wireless networking, anyone using certain kinds of printers—you
get the idea. RootShell is food for your to-do list.

Bugtraq and SecurityFocus.com
htp.//securityfocus.com/

If you have time to keep up to date with only one security web site, btp://
securityfocus.com would be a good one to pick. The crown jewel of the site is the
Bugtraq mailing list archives. Bugtraq content is much like RootShell, in that
they’re both full-disclosure sites. Bugtraq has much more of a system administra-
tor flavor than RootShell, which is aimed more at an audience of hackers. As an
interesting exercise, search the Bugtraq archive for keywords related to the sys-
tems you run (e.g., Solaris, sendmail, IMAP) and see what comes up.

Security Focus also has one of the very best archives around of security-related
software. You might even consider it the Tucows or Hotfiles® of security software,
with generous examples of access control, auditing, authentication, cryptography,
intrusion detection, network monitoring, policy enforcement, programming, recov-
ery, replacement, sniffers, system security, and other utilities. During our review of

* bttp.//www.tucows.com/ and bttp.//www.botfiles.com/, a couple of our favorite software archives.



A Handful of Security Tips 249

this site, we found a nifty MS-Windows port of the Unix standard snooping utility,
tcpdump, which captures and dissects just about any packet on your network.

A Handful of Security Tips

As much as we’d like to be comprehensive here, we won’t. We can’t. Nobody can.
The nature of security is that it’s always incomplete. As elusive as it is, 100%
uptime is much easier to achieve than 100% security. The goal of this chapter,
however, is to point you in some directions that will help you get as far above
99% secure as possible.

Having a secure site has a lot to do with not making any stupid little mistakes. A
friend of ours once made the mistake of running an FTP session from a remote
shell account provider to a local corporate site to get his .cshre file, while under
contract to a national ISP. Just that single occasion of grabbing a file turned into a
situation where one of my accounts was compromised, using my password, and
used to run an eggdrop® server. Those five seconds of indiscretion cost many
hours of work by several people who had to pull the machine out of production,
re-install the OS and all software, and put it back into production.

Assume all your unencrypted keystrokes are already in the hands of hackers. If
that makes you feel uncomfortable, it ought to. Strong encryption hasn’t propa-
gated to all common applications, let alone all uncommon applications, yet. The
best you can do sometimes is assume that you will be periodically compromised
and take effective, routine protective measures.

Tripwire

A good example of one of those measures would be to run Tripwire. Tripwire, a
host filesystem monitoring utility originally developed at Purdue University, retains
a database of checksums and other data about files, directories, and devices
throughout your system and notifies you if any of those entities you're watching
changes. Free, old versions of Tripwire are available from Purdue University at
Stp://coast.cs.purdue.edu/pub/tools/unix/Tripwire/. For-pay, commercial, new ver-
sions are available from Tripwire Security, Inc. at bttp://www.tripwiresecurity.cony/.

Tripwire depends on having a reliable read-only copy of its database, usually on a
write-protected floppy or a CD-ROM. Once installed on a clean system that has
never been on the Net, it can be used reliably to notify you of the kinds of things
a hacker might do to conceal her tracks. Some of those things might be modifying

* Eggdrop is a daemon used to automate maintenance of an IRC channel. In this case, it was likely being
used as a file server for bootleg software and cracking information. One site with a fair amount of Egg-
drop information is bhttp.//www.roon.org/eggdrop/.



250 Chapter 13: Addressing IMAP Security

utmp or wtmp databases, modifying executables like finger, who, w, or ps, or
doing things like making /dev/kmem” world-readable.

Social Engineering

Another vulnerability to watch out for is social engineering. A friend of ours, also a
former employee of the security group at a large ISP, called his new replacement,
who didn’t recognize his voice, and claimed to be the Unix system administration
group leader. With polite apologies, he explained that he’d lost the slip of paper
on which he had his root passwords written and asked the new guy if he would
be so kind as to give him the passwords over the telephone. Not only did the
former employee get the complete list of root passwords, but he also proceeded to
call one of the Unix system administrators and conferenced in the new guy again
to confirm the spelling of one of the passwords. It was an interesting day. Produc-
tion essentially ceased while everyone scrambled to change the root passwords on
all the machines immediately.

There are ways to engineer your system so that it’s less vulnerable to social engi-
neering. For example, instead of having all system administrators share the
account named root, assign each person a root-equivalent account that could eas-
ily be turned off if an event necessitated it, without affecting root access for other
system administrators.

The Man-in-the-Middle

For years, a major vulnerability that was found in most computing environments
was intrinsic to the local area network itself: Ethernet. Ethernet is a broadcast net-
work, and every station on the network can potentially see the traffic to and from
every other station. That leaves the enormous potential for intermediate stations to
capture copies of the traffic between legitimate hosts and use the information for
illegitimate aims. A “Man in the Middle” attack refers to exploitation of informa-
tion available to any intermediate point between the source and the destination of
an IP packet. A passive man-in-the-middle attack might be the collection of pass-
words from cleartext logins. An active man-in-the-middle attack might involve
active substitution of SSL or SSH encryption keys or capturing one end of a TCP
session.

In fact, most cable modem arrangements and even some DSL setups are suscepti-
ble to this kind of exploit. With high-bandwidth, always-on Internet access becom-
ing more prevalent, it's not unusual for users to find themselves the target of hack

* On some systems, /dev/kmem is a file providing direct access to the entirety of virtual system memory,
in which you can read and write anything in process space.



A Handful of Security Tips 251

attempts within minutes of the time they first come online through their new cable
modem or DSL connection. Even if you manage to successfully firewall your home
network, the traffic going between your home and all the places you go on the
Net may be considered fair game for hackers. It’s best to assume that anything you
send unencrypted on the Internet can, and will, be read by someone.

As an illustration, one of the colleges at a university where we worked recently
started offering an entry-level class to train fledgling Unix system administrators.
As a class exercise, everyone ran packet-gathering software to collect passwords
for other users whose traffic might be passing through the network where their
computer lab resides. That pretty much neutralized what little security was pro-
vided by any cleartext password scheme.

There are a few things you can do to greatly reduce the number of cleartext pass-
word transmissions on your network. One way is probably already being done at
your site: using switches. With an Ethernet switch, as opposed to a hub, any given
port only sees unicast® traffic that is destined for devices on that port. The closer
you can get to achieving a 1:1 ratio of devices to switch ports, the more resistant
your system will be to packet-capturing from intermediate systems. This doesn’t
reduce the damage that could be done if someone manages to capture your traf-
fic, but it does significantly reduce the likelihood that traffic will be caught.

Even on a switched network, though, malicious users on the source or destination
machine can surreptitiously obtain privileges on the host, capture all the packets
sent to that host, and use them for ill gain. Overall, it’s better to have numerous,
modestly appointed hosts serving a single purpose than a small number of super-
hosts serving multiple purposes each. That is true if for no other reason than that a
smaller user population for each host represents a smaller number of sources for
locally based attacks.

TCP Wrappers

One way to make a substantial contribution to the security of your IMAP server is
to run the TCP Wrappers package.? We'll cover a few of the more prominent
applications and features of TCP Wrappers here, but you’d be well advised to read
the manpages in depth for a more complete understanding.

*

For the uninitiated, network traffic can be divided into three types: unicast, broadcast, and multicast.
Unicast traffic is between one single machine and another single machine. Broadcast traffic is sent from
a single machine to a group of machines on a single local area network. Multicast traffic is sent from a
single machine to a group of machines that may reside on two or more geographically dispersed local
area networks.

t The TCP Wrappers package is available from fip:/coast.cs.purdue.edu/pub/tools/unix/tcp_wrappers.



252 Chapter 13: Addressing IMAP Security

The name TCP Wrappers is actually a misnomer. The TCP Wrappers package is
more of a border guard than a wrapper. TCP Wrappers monitors incoming
requests for TCP services, such as Telnet, FTP, POP, and IMAP, that have a one-to-
one mapping onto executable files. When inetd receives a request for a service,
it’s tricked into running the TCP Wrappers program (fcpd) instead of the server
program (for example, /usr/cyrus/bin/imapd). The TCP Wrappers program logs
the request and checks its configuration to see whether or not it is allowed to ser-
vice the request. If everything’s kosher, TCP Wrappers runs the server program
and disposes of itself.

The distinction between a true wrapper and a TCP Wrappers—style “border guard”
is important for a couple of reasons. First, TCP Wrappers can do nothing to pro-
tect your assets once it has decided to let a service daemon start. If an incoming
request meets all the criteria set forth in hosts.allow and hosts.deny, then TCP
Wrappers has served its entire purpose by checking the request and starting the
service.

Second, TCP Wrappers is a poor tool to improve the security of daemons that may
service requests from more than one remote process during their lifetime. Some
HTTPDs, for example, are fired off once in inetd, service their first request, and
then stick around to service additional requests.

Basic installation

Once you've pulled down, compiled, and done the first rough-cut of installing the
TCP Wrappers package, the next step is to configure it. There’s more than one
way to implement TCP Wrappers. We'll just discuss the most robust and secure
way. The first step is to modify your /etc/inetd.conffile.

First, inetd needs to be tricked into running fcpd instead of a TCP service dae-
mon. This means changing a line in /etc/inetd.conf. If, for example, your imapd
looks like the following line before TCP Wrappers is installed:

imap4 stream tcp nowait cyrus /usr/cyrus/bin/imapd imapd
then the TCP wrapped version would be something like this:
imap4d stream tcp nowait cyrus /usr/local/etc/tcpd /usr/cyrus/bin/imapd

In the modified version, incoming requests for the imap4 service are handed off to
/usr/local/etc/tcpd. If tcpd decides that it’s okay to service the imap4 request, it will
run /usr/cyrus/bin/imapd.

Notice we've appended the full path to the process name of the imapd daemon in
the modified version. This may not strictly be necessary, but we don’t like to rely
on the daemon we need being somewhere in the system path. If the default path



A Handful of Security Tips 253

« »

for root gets corrupted (e.g., someone adds “.” to the path to make life easier for
themselves), we want one fewer thing to chase down and fix.

Now that you've changed your inetd.conf file, do whatever is necessary on your
system to put your new inetd.conf into production. On most Unix systems, that
means sending a HUP signal to the inetd process.

Before you restart inetd, make sure that you don’t already have files called /etc/
hosts.allow or /etc/bosts.deny in place. If you do, make sure you know that they
reflect the security policy you want to enact on that particular host. If you haven’t
tested the rules in those files, errors could result in essential services being denied
to your users—not a good thing on a production system.

Once TCP Wrappers is in production and fcpd is being used to fire off your indi-
vidual TCP service daemons, the lack of /etc/bosts.allow and /etc/bosts.deny should
permit all traffic to continue through as if TCP Wrappers weren'’t installed. The
only difference you should notice at this point is syslog messages from tcpd in the
log files for various TCP processes indicating when connections have been estab-
lished from remote hosts.

The access files: /etc/bosts.allow and /etc/bosts.deny

The access granted to remote processes on your machine by TCP Wrappers is con-
trolled by two files: /etc/bosts.allow and /etc/bosts.deny. If they don’t exist or are
empty, no restrictions are applied to incoming connections. hosts.allow is exam-
ined before hosts.deny. The first time a rule matches the given circumstance of
connection, fcpd acts and further examination is discontinued. This means that if
you permit all hosts in usnd.edu in bosts.allow and deny hoopal.usnd.edu in hosts.
deny, tcpd will never see the rule to deny hoopal.usnd.edu. As soon as the match
is made for permitting usnd.edu, rule examination will cease.

This section only provides a thumbnail sketch of how to set up TCP Wrappers.
The hosts_access(5) and host_options(5) manpages together provide documenta-
tion for the TCP Wrappers Host Access Control Language. We're only touching on
the basic essentials here.

Both hosts.allow and hosts.deny have the same format. Each entry takes the form:
daemon_list : client_list : option : option ...

daemon_list is a list of services to which a particular rule applies. The list can con-
sist of daemon process names listed as the right-most argument in inetd.conf lines
(in.telnetd, in. fipd, imapd) and of wildcards such as ALL.

client_list is a list of source names and/or addresses to which a particular rule
applies. It can include hostnames, addresses, patterns, and wildcards. vaxb.acs.
unt.edu, .acs.unt.edu, .edu, 10.0.1.2, 129.120.51.50/255.255.255.254, root@ALL, and



254 Chapter 13: Addressing IMAP Security

kwm@cray23.themullets.net are all examples of valid entries. Fully qualified
domain names, portions thereof, IP addresses, IP subnets expressed as address
with netmasks, and users@posts are all valid. In that last example, the username
would have to be verifiable via the IDENT protocol. Please bear in mind that
IDENT is not a verifiably reliable method for determining the authentic identity of
the person on the other end of a communications channel. A user could be run-
ning a hacked version of IDENT or could connect using a username that com-
monly exists on most systems (e.g., 7000).

option is a modifier to the rule such as allow, deny, spawn, twist, and severity.
allow and deny, respectively, permit or prohibit the request from being serviced
by your host. fwist permits you to hand off sessions bound for a rule match to an
alternate command. This would let you hand off internal requests for your com-
pany’s website to an HTTP server that defaults to the intranet site and hand off
external requests to your company’s external HTTP server.

severity lets you change the syslog severity with which a given event/rule match is
logged. This can be used as a key in /etc/syslog.conf to direct given types of error
messages to a file by themselves.

It's interesting to note that the keywords allow and deny permit the entire set of
rules to be kept in one file, so you have a choice of two configuration file
approaches. To keep things simple, we’ll use one file, hosts.deny. Suppose you
wanted to configure hosts.deny to perform the following work:

1. Deny all telnet connections from all sites, and display an informational banner
message to anyone who tries to felnet into your machine.

2. Deny imapd connections from hacker.someplace.org.
You’d add these entries to your hosts.deny:

in.telnetd: ALL: banner /etc/banners : DENY

imapd: hacker.someplace.org
Granted, TCP Wrappers is a somewhat narrowly focused security package, but it
does everything it attempts to do very well. There’s not a lot of secondary docu-
mentation out there on TCP Wrappers. Fortunately, the manpages that come with
the source distribution are well written and have a very good signal-to-noise ratio.

Our verdict: all IMAP servers (and arguably all Unix hosts in general) should use
the TCP Wrappers package as one component of a broad security framework.

A Word Against Cleartext Passwords

Possibly the biggest security risk on your IMAP server is the constant, unrelenting
transmission of many users’ passwords across the net. When the user runs an



A Handful of Security Tips 255

IMAP client on her local machine, the IMAP client sends the username and pass-
word in cleartext every time it contacts the server (assuming that the client and
server don’t support an encrypted authentication method). The username and
password could travel a long way over the Internet between client and server,
leaving many chances that they might be compromised somewhere along the way.
Anything you can do to reduce this risk would be good. You can protect your
passwords by tunneling IMAP through SSL or SSH or by using an encrypted
authentication method, such as Kerberos or CRAM.

SSL

One way to reduce the risk, especially if you have a captive customer base as in a
corporate intranet, is to distribute SSL-capable clients and permit o#n/y SSL access to
your server. In Appendix B, Adding SSL Support to IMAP, we cover the procedure
for adding SSL support to your IMAP server. Adding SSL to your IMAP server
encrypts all passwords and content between the IMAP client and the server pro-
cesses as well as insulates users from the details of encryption. All they need know
is that by using certain IMAP clients, their email traffic is safe from useful capture
on the network.

SSH

One option for secure communication between the IMAP client and server is to
tunnel the communication inside the Secure Shell protocol. The difficulty in doing
so is just enough that we don’t recommend it for people who either aren’'t wiz-
ards or don’t have access to wizards. The mechanics are easy enough, but it might
be necessary to call on a wizard the first time a problem crops up.

Conceptually, it works like this. First, you install an SSH client on the local
machine where you run your IMAP client. You use the SSH client to establish an
SSH connection to the remote host where the IMAP server is running.” You also
use the SSH client to establish a “listen” on a local port for IMAP requests. Here’s
the cool part: when you fire up your IMAP client, it connects to the IMAP port on
localbost—your machine—instead of connecting to port 143 on a remote server
machine.

The SSH client then forwards everything it receives on the local IMAP port through
the SSH session, or tunnel, to the remote SSH daemon, which then forwards the
data to the IMAP port on the remote host.

* The SSH tunnel only encrypts from the client to the remote host. If the IMAP server is not running on
the remote host, then packets from the remote host to the IMAP server will not be encrypted.



256 Chapter 13: Addressing IMAP Security

How does the SSH daemon on the receiving end know what to do with all this
IMAP information coming at it? Well, the information is part of the port-forwarding
arrangement you gave the daemon when you first fired up the SSH session. For
example, you’d invoke SSH from your client machine like this:*

client# ssh -f -L 143:localhost:143 kwm@serverhost tail -f /dev/null

The command must be invoked as root because root privilege is required to set up
port forwarding. The —f option tells SSH to run in the background after port for-
warding has been established. —L localport:remotehost:remoteport specifies that the
given port on the local (client) host is to be forwarded to the given host and port
on the remote side. In our example, we use port 143 on both the client and the
host, but that’s just for simplicity. In reality, you can use any port on the client that
isn’t already in use. The server port must be whichever port listens for IMAP
requests (143 on most systems). Depending on the SSH client, youll either be
prompted for your password to log in to the server when issuing the tunneling
command, or you’ll have to initiate a login manually to establish the session. In all
cases, you'll have to use SSH to log in to the remote host before you can use it to
“launder” your connection. The entire IMAP port-forwarding scenario is shown in
Figure 13-1.

If this all seems a little obtuse, don’t worry. A couple of examples should help.
We'll start with a command-line example. We start by using IsofT to check for soft-
ware listening at local TCP port 143. There is none. We confirm this by trying to
telnet to localhost at port 143 without success.

[kwm@clienthost]% lsof -i tcp:143 Lists all activity on port 143
[kwm@clienthost]% telnet localhost 143

Trying 127.0.0.1...

telnet: Unable to connect to remote host: Connection refused

At this point, we’re certain that there’s no activity, such as a listen or an open con-
nection, on port 143 on our local machine. That port is okay to use. Next, we set
up the port forwarding by issuing an SSH command. Remember that you have to
be root to set up port forwarding:

[kwm@clienthost] % su -

Password:

[root@clienthost]# ssh -f -L 143:localhost:143 kwm@serverhost tail -f /dev/null

kwm@serverhost's password:
[root@clienthost]# AD

* If you use a Windows or Mac SSH client such as TeraTerm, port forwarding is done through the win-
dows interface.

t Isof (Is Open Files), a program that tells you which open files and network connections belong to which
processes, is available at fip.//vic.cc.purdue.edu/pub/tools/unix/Isof/.



A Handful of Security Tips 257

IMAP client connects to local address at port 143, which
is a "LISTEN" established by the local SSH client. The
SSH client forwards all communication with that port
through an SSH connection to the IMAP server host at

the standard SSH port.
localhost ssh connection
connection over network

Server

localhost
connection

The receiving sshd forwards the stream to the local
address on the server at port 143, thus establishing
an IMAP connection entirely in software without spilling
cleartext packets onto the network.

Figure 13-1. IMAP port forwarding through SSH

The tail —f /dev/null that we tacked on to the end of the SSH command is just a
low-overhead command to keep the session open. We didn’t want to keep an
actual shell session open and running in the background when we didn’t need it,
so we used the fail command instead.

Port forwarding is active. Now, when we look at port 143 on our local machine,
it’s ready to accept IMAP connections:

[kwm@clienthost]% lsof -i tcp:143

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

ssh 1958 root 4u TIPv4d 45438 TCP localhost:imap (LISTEN)
[kwm@clienthost]% telnet localhost 143

Trying 127.0.0.1...

Connected to localhost.

Escape character is '~]'.

* OK localhost IMAPArevl v12.250 server ready

. capability

* CAPABILITY IMAP4 IMAPAREV1 NAMESPACE IDLE SCAN SORT MAILBOX-REFERRALS
LOGIN-REFERRALS AUTH=LOGIN AUTH=ANONYMOUS THREAD=ORDEREDSUBJECT

. OK Completed

. logout

* BYE serverhost IMAP4revl server terminating connection

. OK Completed

Connection closed by foreign host.



258 Chapter 13: Addressing IMAP Security

Although we’re connected to the IMAP server port on clienthost, the goodbye mes-
sage from the IMAP server identifies the server as serverbost. Users can now point
their IMAP clients at port 143 on clienthost and have their IMAP sessions
encrypted between clienthost and serverbost. If their IMAP clients are actually run-
ning on clienthost, their IMAP traffic is encrypted. This kind of arrangement may
also be useful for remote campuses needing to participate in an enterprise’s intra-
net by tunneling sensitive information (email over IMAP, in this case) within
encrypted tunnels (SSH, here).

Encrypted authentication: Kerberos and CRAM

Another good way to provide password security is though an encryption method
such as CRAM or Kerberos. CRAM encrypts the password only, and Kerberos relies
on the encryption of Kerberos tickets so, strictly speaking, your password isn’t
going out over the Net. CRAM is less desirable than SSL because the transmission
of an obviously encrypted password string amounts to hacker bait for someone
with the tools to attempt cracking the encryption. Kerberos is less desirable than
SSL simply because it has the added requirement of bringing up a Kerberos server.

The Core of the Problem

Some implementations of IMAP retain security information, such as passwords, in
the memory space of the imapd process. For that reason, it's a good idea to set
your maximum corefile size to zero for the imapd process. Because imapd is
usually run out of inetd, this means setting the limit in the startup script that starts
inetd. On a Solaris system, for example, the startup script would be found under
/etc/init.d and would be a Bourne shell script. In the Bourne shell, this is done
with the command:

ulimit -c¢ 0

Once you've done that, malicious folks can’t covertly trigger a coredump in an
imapd process and salvage password information from its contents.

Monitoring Security

We recommend a two-pronged strategy for the monitoring necessary to keep
apprised of the quality of security on your network and IMAP server. First, run a
variety of tools that let you observe, at a low level, the character of the traffic on
your network. Second, never be in doubt about the status of your services. Know
beyond any doubt if every server of yours is up or down and, by extension, if
every service is up or down. Hopefully, you have the resources to engineer your
Internet services so that the failure of one or two servers doesn’t negatively impact
the status of the service they provide.



Monitoring Security 259

IP Watcher

htp.//www.engarde.com/software/ipwatcher/

IP Watcher is a slick application that displays, in either an X or a Curses applica-
tion, a list of all the current TCP-based sessions in progress and permits you to
observe or disconnect them. IP Watcher is a tool you may never need. If, how-
ever, you have an incursion on your network and the hacker’s already on the pre-
mises, there’s a chance you might be able to gather more evidence if you have IP
Watcher handy.

NetLog
bitp.//www.net.tamu.edu/ftp/security/ TAMU/netlog. README

NetLog is at the other end of the spectrum from IP Watcher. While IP Watcher
excels at watching what a single person is doing on the network, right down to
duplicating the contents of her Telnet session screen, NetLog lets you characterize
the usage of your network over time. Think of IP Watcher as a single phone tap
and NetLog as the National Security Agency.

NetLog consists of four packages, fcplogger, udplogger, extract, and NetWatch.
tcplogger and udplogger 1og TCP and UDP sessions on the locally visible network.
extract pulls information out of the logs they produce, and NetWaich is a real-time
monitor: a more statistically oriented version of IP Watcher.

Using the information from tcplogger and a log-triggering package like swatch (see
the next section), you can send yourself a page if a port scan starts or other weird
traffic starts developing against your hosts.

swatch
Jfip://coast.cs.purdue.edu/pub/tools/unix/swatch/

swatch is one of those packages that ought to be on every Unix box. If you've
administered a host for any length of time, you've been there. The log files,
extracts from log files, and renamed log files are slowly taking over your disk
space. They’re full of good information about system events, but more often than
not, you find out on Monday that something went wrong on Friday at 5:30. swatch
observes your log files, watches for regular expressions you define, and notifies
you in one of about a zillion ways without getting carried away. If a given event
causes 50 log messages, you can choose to be notified only once. Not surpris-
ingly, swatch is written in Perl.



260 Chapter 13: Addressing IMAP Security

Network Operations Center On-Line (NOCOL)

bttp.//www.netplex-tech.com/software/nocol/

If you ply your trade at a site of any decent size, you probably have a fair amount
of resources dedicated to high-end network management packages like HP Open-
view, SunNet Manager, and Cabletron Spectrum. All those things are fine and
dandy for configuring or pulling statistics from your various devices. If what you
really want, though, is a status screen for you and your operators to tell at a glance
what’s running and what’s not, NOCOL is very likely just the ticket.

NOCOL consists of command-line, Curses, Web, and multiple API interfaces into a
single state engine. That state engine comes with monitors for ICMP ping, RPC
portmapper, OSI ping, Ethernet load, TCP ports, nameserver, radius server, syslog
messages, mail queue, NTP, UPS (APC) battery, Unix host performance, BGP
peers, SNMP variables, and overall host data throughput. Additional probes are
easily written. Rather than be in binary UP or DOWN states, each monitored ser-
vice can be in info (up), warning, error, or critical states that are definable for each
service.

Boiling It All Down

Essentially, in order to care for the security of your hosts and the services, you
have to be both a psychologist and a sociologist. That applies to your hosts, their
users, and the abusers as well. Knowing how all the processes and resources
within a host interact is as important as knowing how the host interacts with other
hosts on the network. Anticipating what your users are going to do next has to be
balanced with time spent trying to second-guess the next hacker with too much
spare time.

You're probably going to spend either too much or too little time on security.
There’s no way of knowing ahead of time if the risks merit the effort—that’s the
nature of insurance policies.



